1
|
Lim MCC, Maubach G, Naumann M. CYLD-TRAF6 interaction promotes ADP-heptose-induced NF-κB signaling in H. pylori infection. EMBO Rep 2025:10.1038/s44319-025-00480-y. [PMID: 40404856 DOI: 10.1038/s44319-025-00480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
The inflammatory response associated with Helicobacter pylori (H. pylori) infection causes a multitude of alterations in the gastric microenvironment, leading to the slow and steady disruption of the gastric epithelial barrier. Activation of NF-κB during H. pylori infection is crucial to this inflammatory response. Here, we show that CYLD, which interacts constitutively with TRAF6, enhances H. pylori's ADP-heptose-induced activation of the classical NF-κB pathway in gastric epithelial cells. This activating effect of CYLD contrasts with the inhibitory effect of CYLD on receptor-mediated NF-κB activity. Mechanistically, CYLD counteracts the hydrolysis of ubiquitin chains from TRAF6 by deubiquitinylase A20 in a catalytically independent manner, thus supporting the auto-ubiquitinylation of TRAF6 upon activation of NF-κB in early H. pylori infection. In addition, the subsequent classical NF-κB-dependent de novo synthesis of A20 provides a negative feedback loop leading to shutdown not only of the classical but also of the alternative NF-κB pathway. Our findings highlight the regulatory relationship between CYLD and A20 in controlling classical as well as alternative NF-κB signaling in H. pylori infection.
Collapse
Affiliation(s)
- Michelle C C Lim
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gunter Maubach
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Michael Naumann
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
2
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wu YC, Su BH, Cheng WH, Zou CT, Yeh ETH, Yang FM. CYLD links the TRAF6/sNASP axis to TLR4 signaling in sepsis-induced acute lung injury. Cell Mol Life Sci 2025; 82:124. [PMID: 40108019 PMCID: PMC11923351 DOI: 10.1007/s00018-025-05654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Sepsis-induced acute lung injury (ALI) involves severe lung dysfunction and leads to high morbidity and mortality rates due to the lack of effective treatments. The somatic nuclear autoantigenic sperm protein (sNASP)/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis plays a crucial role in regulating inflammatory responses during sepsis through Toll-like receptor 4 (TLR4) signaling. However, it is unclear whether deubiquitinating enzymes affect the TRAF6/sNASP axis. In this study, we showed that cylindromatosis (CYLD) directly binds to the sNASP and prevents TRAF6 activation. When TLR4 is activated, phosphorylation of sNASP releases CYLD from the TRAF6/sNASP complex, leading to TRAF6 autoubiquitination and the production of proinflammatory cytokines. To stop TRAF6 activation, a complex of sNASP, TRAF6, and CYLD is reformed once dephosphorylation of sNASP occurs by protein phosphatase 4 (PP4). Silencing sNASP negated the inhibitory effects of CYLD on interleukin (IL)-6 and TNF-α production after lipopolysaccharide (LPS) treatment. Similarly, the absence of CYLD also reduced PP4's negatively regulated production of proinflammatory cytokines, indicating that phosphorylation is crucial for the interaction between sNASP and CYLD as well as TRAF6 activation. Finally, mice infected with a recombinant adenovirus carrying the CYLD gene (Ad-CYLD WT), but not a mutation, showed significant reductions in cecal ligation and puncture (CLP)-mediated lung injury and proinflammatory cytokine production. In conclusion, CYLD alleviated sepsis-induced inflammation by interacting with the TRAF6/sNASP axis. These findings suggest that CYLD could be a potential therapeutic target for treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Yu-Chih Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Bing-Hua Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wun-Hao Cheng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Cheng-Tai Zou
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Edward T H Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Feng-Ming Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Nardi L, Bicker F, Maier J, Waisman A, Schmeisser MJ. Role of CYLD in brain physiology and pathology. J Mol Med (Berl) 2025; 103:255-263. [PMID: 39945824 PMCID: PMC11880164 DOI: 10.1007/s00109-025-02521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
A common hallmark of several neuropsychiatric conditions is an altered protein homeostasis. In this context, ubiquitination has emerged as one of the most important post-translational modifications, regulating various intracellular processes such as protein degradation, autophagy, protein activation, and protein-protein interactions. Ubiquitination can be reversed by the activity of several deubiquitinating enzymes (DUBs), and it is of utmost importance that both processes remain in balance. Understanding the extent to which this system is involved in specific brain disorders opens up new possibilities for treating a broader spectrum of patients by targeting this central hub. In recent years, the attention to one of those DUBs, called CYLD, has increased sharply, but with relatively little focus on the central nervous system (CNS): 55 results for "CYLD Brain" vs. 895 results for "CYLD" in total (NCBI Pubmed search, 17.01.2025). Thus, we aim to provide a first overview of the new findings from the past decade specifically related to the role of CYLD in the physiology and pathology of the CNS.
Collapse
Affiliation(s)
- Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Frank Bicker
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ari Waisman
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-Universitys, Mainz, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
5
|
Schmidt C, Harit K, Traidl S, Naumann M, Werfel T, Roesner LM, Nishanth G, Schlüter D. Ablation of the deubiquitinating enzyme cylindromatosis (CYLD) augments STAT1-mediated M1 macrophage polarization and fosters Staphylococcus aureus control. Front Immunol 2025; 16:1507989. [PMID: 39958342 PMCID: PMC11827430 DOI: 10.3389/fimmu.2025.1507989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
In atopic dermatitis (AD), lesional skin is frequently colonized by Staphylococcus aureus, which promotes clinical symptoms of the disease. The inflammatory milieu in the skin is characterized by a Th2 response, including M2 macrophages, which cannot eradicate S. aureus. Therefore, repolarization of macrophages toward the M1 phenotype may foster control of S. aureus. Our data show that the deubiquitinating enzyme cylindromatosis (CYLD) is strongly expressed in macrophages of AD patients and prevents the clearance of S. aureus. Mechanistically, CYLD impaired M1 macrophage polarization by K63-specific deubiquitination of STAT1 and activation of the NF-κB pathway via its interaction with TRAF6, NEMO, and RIPK2. Inhibition of STAT1 and NF-κB, independently, abolished the differences between S. aureus-infected CYLD-deficient and CYLD-competent M1 macrophages. Infection of Cyld-deficient and wild-type mice with S. aureus confirmed the protective CYLD function. Collectively, our study shows that CYLD impairs the control of S. aureus in macrophages of AD patients, identifying CYLD as a potential therapeutic target.
Collapse
Affiliation(s)
- Christina Schmidt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lennart M. Roesner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Dou B, Jiang G, Peng W, Liu C. OTULIN deficiency: focus on innate immune system impairment. Front Immunol 2024; 15:1371564. [PMID: 38774872 PMCID: PMC11106414 DOI: 10.3389/fimmu.2024.1371564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
OTULIN deficiency is a complex disease characterized by a wide range of clinical manifestations, including skin rash, joint welling, lipodystrophy to pulmonary abscess, and sepsis shock. This disease is mechanistically linked to mutations in the OTULIN gene, resulting in an immune disorder that compromises the body's ability to effectively combat pathogens and foreign stimuli. The OTULIN gene is responsible for encoding a deubiquitinating enzyme crucial for hydrolyzing Met1-poly Ub chains, and its dysfunction leads to dysregulated immune responses. Patients with OTULIN deficiency often exhibit an increase in monocytes, including neutrophils and macrophages, along with inflammatory clinical features. The onset of symptoms typically occurs at an early age. However, individuals with OTULIN haploinsufficiency are particularly susceptible to life-threatening staphylococcal infections. Currently, the most effective treatment for patients with OTULIN biallelic mutations involves the use of TNF-blocking agents, which target the dysregulated immune response. In conclusion, OTULIN deficiency presents a complex clinical picture with diverse manifestations, attributed to mutations in the OTULIN gene. Understanding the underlying mechanisms is crucial for developing targeted therapeutic interventions to address this challenging condition. Further research into the pathophysiology of OTULIN deficiency is essential for improving clinical management and outcomes for affected individuals.
Collapse
Affiliation(s)
- Bo Dou
- Central South University, Xiangya Hospital, Pediatric Department, Changsha, Hunan, China
| | - Gang Jiang
- Hunan Normal University, Hunan Provincial People's Hospital, Department of Respiratory Medicine, Changsha, Hunan, China
| | - Wang Peng
- Central South University, Xiangya Hospital, Pediatric Department, Changsha, Hunan, China
| | - Chentao Liu
- Central South University, Xiangya Hospital, Pediatric Department, Changsha, Hunan, China
| |
Collapse
|
7
|
Wu M, Zhao J, Wu W, Hao C, Yang Y, Zhang J. miR-130b regulates B cell proliferation via CYLD-mediated NF-κB signaling. Exp Cell Res 2024; 434:113870. [PMID: 38049082 DOI: 10.1016/j.yexcr.2023.113870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Previous studies have revealed that B cell activation is regulated by various microRNAs(miRNAs). However, the role of microRNA-130b regulating B cell activation and apoptosis is still unclear. In the present study, we first found that the expression of miR-130b was the lowest in Pro/Pre-B cells and the highest in immature B cells. Besides, the expression of miR-130b decreased after activation in B cells. Through the immuno-phenotypic analysis of miR-130b transgenic and knockout mice, we found that miR-130b mainly promoted the proliferation of B cells and inhibited B cell apoptosis. Furthermore, we identified that Cyld, a tumor suppressor gene was the target gene of miR-130b in B cells. Besides, the Cyld-mediated NF-κB signaling was increased in miR-130b overexpressed B cells, which further explains the enhanced proliferation of B cells. In conclusion, we propose that miR-130b promotes B cell proliferation via Cyld-mediated NF-κB signaling, which provides a new theoretical basis for the molecular regulation of B cell activation.
Collapse
Affiliation(s)
- Mengyun Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Jing Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Wenyan Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China.
| |
Collapse
|
8
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Zamani F, Khalighfard S, Kalhori MR, Poorkhani A, Amiriani T, Hosseinzadeh P, Esmati E, Alemrajabi M, Nikoofar A, Safarnezhad Tameshkel F, Alizadeh AM. Expanding CYLD protein in NF-κβ/TNF-α signaling pathway in response to Lactobacillus acidophilus in non-metastatic rectal cancer patients. Med Oncol 2023; 40:302. [PMID: 37725175 DOI: 10.1007/s12032-023-02170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
The CYLD gene is a tumor suppressor, reduced in many cancers. Here, we aimed to investigate CYLD protein level and NF-κβ/TNF-α signaling pathway in rectal cancer patients with Lactobacillus acidophilus (L. acidophilus) consumption. One hundred ten patients with non-metastatic rectal cancer were randomly divided into L. acidophilus probiotic (500 mg, three times daily) and placebo groups for 13 weeks. The expression of CYLD, TNF-α, and NF-κB proteins and the genes involved in the NF-κβ/TNF-α pathway were evaluated using ELISA and qPCR techniques. The survival rate was measured after five years. Unlike the placebo group, the results showed a significant increase in the expression of CYLD protein and tumor suppressor genes, including FOXP3, ROR-γ, Caspase3, GATA3, T-bet, and a considerable decrease in the expression of NF-ҝβ and TNF-α proteins and oncogenes, including STAT3, 4, 5, 6, and SMAD 3, in the probiotic group. A higher overall survival rate was seen after L. acidophilus consumption compared to the placebo group (P < 0.05). L. acidophilus consumption can reduce inflammation factors by affecting CYLD protein and its downstream signaling pathways. A schematic plot of probiotic consumption Effects on the CYLD protein in regulating the NF-ĸβ signaling pathway in colorectal cancer. NF-ĸβ can be activated by canonical and noncanonical pathways, which rely on IκB degradation and p100 processing, respectively. In the canonical NF-κβ pathway, dimmers, such as p65/p50, are maintained in the cytoplasm by interacting with an IκBα protein. The binding of a ligand to a cell-surface receptor activates TRAF2, which triggers an IKK complex, containing -α, -β, -g, which phosphorylates IKK-β. It then phosphorylates IκB-α, leading to K48-ubiquitination and degradation of this protein. The p65/p50 protein freely enters the nucleus to turn on target genes. The non-canonical pathway is primarily involved in p100/RelB activation. It differs from the classical pathway in that only certain receptor signals activate this pathway. It proceeds through an IKK complex that contains two IKK-α subunits but not NEMO. Several materials including peptidoglycan, phorbol, myristate, acetate, and gram-positive bacteria such as probiotics inhibit NF-κB by inducing CYLD. This protein can block the canonical and noncanonical NF-κβ pathways by removing Lys-63 ubiquitinated chains from activated TRAFs, RIP, NEMO, and IKK (α, β, and γ). Moreover, TNF-α induces apoptosis by binding caspase-3 to FADD.
Collapse
Affiliation(s)
- Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Payam Hosseinzadeh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Esmati
- Radiotherapy Department, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alemrajabi
- Surgery Department, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Nikoofar
- Radiotherapy Department, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Sasaki K, Iwai K. Role of linear ubiquitination in inflammatory responses and tissue homeostasis. Int Immunol 2023; 35:19-25. [PMID: 36149813 DOI: 10.1093/intimm/dxac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023] Open
Abstract
Polyubiquitination is a post-translational modification involved in a wide range of immunological events, including inflammatory responses, immune cell differentiation, and development of inflammatory diseases. The versatile functions of polyubiquitination are based on different types of ubiquitin linkage, which enable various UBD (ubiquitin binding domain)-containing adaptor proteins to associate and induce distinct biological outputs. A unique and atypical type of polyubiquitin chain comprising a conjugation between the N-terminal methionine of the proximal ubiquitin moiety and the C-terminal glycine of the distal ubiquitin moiety, referred to as a linear or M1-linked ubiquitin chain, has been studied exclusively within the field of immunology because it is distinct from other polyubiquitin forms: linear ubiquitin chains are generated predominantly by various inflammatory stimulants, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and act as a critical modulator of transient and optimal signal transduction. Moreover, accumulating evidence suggests that linear ubiquitin chains are of physiological significance. Dysregulation of linear ubiquitination triggers chronic inflammation and immunodeficiency via downregulation of linear ubiquitin-dependent nuclear factor-kappa B (NF-κB) signaling and by triggering TNF-α-induced cell death, suggesting that linear ubiquitination is a homeostatic regulator of tissue-specific functions. In this review, we focus on our current understating of the molecular and cellular mechanisms by which linear ubiquitin chains control inflammatory environments. Furthermore, we review the role of linear ubiquitination on T cell development, differentiation, and function, thereby providing insight into its direct association with maintaining the immune system.
Collapse
Affiliation(s)
- Katsuhiro Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Kanemaru A, Shinriki S, Kai M, Tsurekawa K, Ozeki K, Uchino S, Suenaga N, Yonemaru K, Miyake S, Masuda T, Kariya R, Okada S, Takeshita H, Seki Y, Yano H, Komohara Y, Yoshida R, Nakayama H, Li JD, Saito H, Jono H. Potential use of EGFR-targeted molecular therapies for tumor suppressor CYLD-negative and poor prognosis oral squamous cell carcinoma with chemoresistance. Cancer Cell Int 2022; 22:358. [PMID: 36376983 PMCID: PMC9664721 DOI: 10.1186/s12935-022-02781-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor suppressor CYLD dysfunction by loss of its expression, triggers malignant transformation, especially drug resistance and tumor invasion/metastasis. Although loss of CYLD expression is significantly associated with poor prognosis in a large variety of tumors, no clinically-effective treatment for CYLD-negative cancer patients is available. METHODS We focused on oral squamous cell carcinoma (OSCC), and sought to develop novel therapeutic agents for CYLD-negative cancer patients with poor prognosis. CYLD-knockdown OSCC cells by using CYLD-specific siRNA, were used to elucidate and determine the efficacy of novel drug candidates by evaluating cell viability and epithelial-mesenchymal transition (EMT)-like change. Therapeutic effects of candidate drug on cell line-derived xenograft (CDX) model and usefulness of CYLD as a novel biomarker using patient-derived xenograft (PDX) model were further investigated. RESULTS CYLD-knockdown OSCC cells were resistant for all currently-available cytotoxic chemotherapeutic agents for OSCC, such as, cisplatin, 5-FU, carboplatin, docetaxel, and paclitaxel. By using comprehensive proteome analysis approach, we identified epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, played key roles in CYLD-knockdown OSCC cells. Indeed, cell survival rate in the cisplatin-resistant CYLD-knockdown OSCC cells was markedly inhibited by treatment with clinically available EGFR tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib. In addition, gefitinib was significantly effective for not only cell survival, but also EMT-like changes through inhibiting transforming growth factor-β (TGF-β) signaling in CYLD-knockdown OSCC cells. Thereby, overall survival of CYLD-knockdown CDX models was significantly prolonged by gefitinib treatment. Moreover, we found that CYLD expression was significantly associated with gefitinib response by using PDX models. CONCLUSIONS Our results first revealed that EGFR-targeted molecular therapies, such as EGFR-TKIs, could have potential to be novel therapeutic agents for the CYLD-negative OSCC patients with poor prognosis.
Collapse
Affiliation(s)
- Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mimi Kai
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanae Tsurekawa
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kazuya Ozeki
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shota Uchino
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kou Yonemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shunsuke Miyake
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe honmachi, Chuo-Ku, Kumamoto, 862-0973, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hisashi Takeshita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Seki
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
12
|
Cass SP, Mekhael O, Thayaparan D, McGrath JJC, Revill SD, Fantauzzi MF, Wang P, Reihani A, Hayat AI, Stevenson CS, Dvorkin-Gheva A, Botelho FM, Stämpfli MR, Ask K. Increased Monocyte-Derived CD11b + Macrophage Subpopulations Following Cigarette Smoke Exposure Are Associated With Impaired Bleomycin-Induced Tissue Remodelling. Front Immunol 2021; 12:740330. [PMID: 34603325 PMCID: PMC8481926 DOI: 10.3389/fimmu.2021.740330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
Rationale The accumulation of macrophages in the airways and the pulmonary interstitium is a hallmark of cigarette smoke-associated inflammation. Notably, pulmonary macrophages are not a homogenous population but consist of several subpopulations. To date, the manner in which cigarette smoke exposure affects the relative composition and functional capacity of macrophage subpopulations has not been elucidated. Methods Using a whole-body cigarette smoke exposure system, we investigated the impact of cigarette smoke on macrophage subpopulations in C57BL/6 mice using flow cytometry-based approaches. Moreover, we used bromodeoxyuridine labelling plus Il1a-/- and Il1r1-/- mice to assess the relative contribution of local proliferation and monocyte recruitment to macrophage accumulation. To assess the functional consequences of altered macrophage subpopulations, we used a model of concurrent bleomycin-induced lung injury and cigarette smoke exposure to examine tissue remodelling processes. Main Results Cigarette smoke exposure altered the composition of pulmonary macrophages increasing CD11b+ subpopulations including monocyte-derived alveolar macrophages (Mo-AM) as well as interstitial macrophages (IM)1, -2 and -3. The increase in CD11b+ subpopulations was observed at multiple cigarette smoke exposure timepoints. Bromodeoxyuridine labelling and studies in Il1a-/- mice demonstrated that increased Mo-AM and IM3 turnover in the lungs of cigarette smoke-exposed mice was IL-1α dependent. Compositional changes in macrophage subpopulations were associated with impaired induction of fibrogenesis including decreased α-smooth muscle actin positive cells following intratracheal bleomycin treatment. Mechanistically, in vivo and ex vivo assays demonstrated predominant macrophage M1 polarisation and reduced matrix metallopeptidase 9 activity in cigarette smoke-exposed mice. Conclusion Cigarette smoke exposure modified the composition of pulmonary macrophage by expanding CD11b+ subpopulations. These compositional changes were associated with attenuated fibrogenesis, as well as predominant M1 polarisation and decreased fibrotic activity. Overall, these data suggest that cigarette smoke exposure altered the composition of pulmonary macrophage subpopulations contributing to impaired tissue remodelling.
Collapse
Affiliation(s)
- Steven P Cass
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Joshua J C McGrath
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Spencer D Revill
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Peiyao Wang
- Department Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Aaron I Hayat
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Christopher S Stevenson
- Janssen Disease Interception Accelerator, Janssen Pharmaceutical Companies of Johnson and Johnson, Raritan, NJ, United States
| | - Anna Dvorkin-Gheva
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Fernando M Botelho
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Zheng Y, Kong F, Liu S, Liu X, Pei D, Miao X. Membrane protein-chimeric liposome-mediated delivery of triptolide for targeted hepatocellular carcinoma therapy. Drug Deliv 2021; 28:2033-2043. [PMID: 34569906 PMCID: PMC8477919 DOI: 10.1080/10717544.2021.1983072] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Triptolide (TPL) is a diterpenoid triepoxide with broad antitumor efficacy, while lack of mechanism of action, severe systemic toxicity, and poor water solubility of TPL limited its usage. To unveil the mechanism of action and improve the pharmaceutical properties of TPL, here we explored the molecular mechanism of TPL and then fabricated TPL-loaded membrane protein-chimeric liposomes (TPL@MP-LP) and tested its anticancer efficacy against hepatocellular carcinoma (HCC). CCK8 assay, colony formation assay, EdU assay, and flow cytometry were used to examine the activity of TPL. RNA sequence and gain-and-loss of function assays were used to explore the molecular mechanisms. TPL@MP-LP was characterized by size, zeta potential, polydispersity index, and transmission electron microscopy. Cellular uptake and cell viability assay were performed to evaluate the internalization and anticancer efficacy of TPL@MP-LP in vitro. Biodistribution and in vivo antitumor efficacy of TPL@MP-LP were evaluated on orthotopic HCC mice models. TPL robustly inhibited HCC cells by inducing cell proliferation arrest, apoptosis via the mitochondrial pathway, and necroptosis via RIPK1/RIPK3/MLKL signaling. TPL was successfully loaded into MP-LP, with a drug-loading capacity of 5.62 ± 0.80%. MP-LP facilitated TPL internalization and TPL@MP-LP exerted enhanced anticancer efficacy against Huh7 cells. TPL@MP-LP showed targeting ability to the tumor site. More importantly, TPL@MP-LP treatment suppressed tumor growth but showed minimal damage to liver and renal functions. TPL exerted anticancer effects on HCC via inducing cell proliferation arrest, apoptosis, and necroptosis, and the MP-LP might be a promising delivery strategy to improve the antitumor efficacy while mitigating toxicity of TPL for HCC therapy.
Collapse
Affiliation(s)
- Yanwen Zheng
- Department of Liver Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fanhua Kong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Songyang Liu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dongni Pei
- Department of Liver Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiongying Miao
- Department of Liver Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
15
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
16
|
Expression of deubiquitinases in human gingiva and cultured human gingival fibroblasts. BMC Oral Health 2021; 21:290. [PMID: 34092220 PMCID: PMC8180082 DOI: 10.1186/s12903-021-01655-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Although deubiquitinating enzymes (DUBs) such as CYLD, A20 and OTULIN are expressed in multiple tissues and thought to be linked with inflammatory diseases, their expression in periodontal tissues remains to be determined. This research was designed to assess the expression of CYLD, A20 and OTULIN in human gingiva, and to evaluate the regulation of these DUBs in human gingival fibroblasts (HGFs) upon different stimuli. Methods Immunohistochemistry assay was conducted to determine the expression of CYLD, A20 and OTULIN in human gingiva. Immunofluorescence assay was employed to observe the protein expression of CYLD, A20 and OTULIN in HGFs. RT-PCR and western blots were carried out to assess gene and protein expression changes of these DUBs in HGFs upon LPS or TNF-α. Results CYLD, A20 and OTULIN were found to be expressed in human gingiva and HGFs. The expression of CYLD, A20 and OTULIN was lower in the inflamed gingival tissue samples compared with the healthy gingival tissue samples. Further, the expression of CYLD, A20 and OTULIN in HGFs exhibited distinct regulation by different stimuli. TNF-α treatment markedly increased NF-κB activation in HGFs Conclusions Our findings suggest that CYLD, A20 and OTULIN might play a role in the progression of periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01655-4.
Collapse
|
17
|
Ubiquitination and Deubiquitination in Oral Disease. Int J Mol Sci 2021; 22:ijms22115488. [PMID: 34070986 PMCID: PMC8197098 DOI: 10.3390/ijms22115488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
Oral health is an integral part of the general health and well-being of individuals. The presence of oral disease is potentially indicative of a number of systemic diseases and may contribute to their early diagnosis and treatment. The ubiquitin (Ub) system has been shown to play a role in cellular immune response, cellular development, and programmed cell death. Ubiquitination is a post-translational modification that occurs in eukaryotes. Its mechanism involves a number of factors, including Ub-activating enzymes, Ub-conjugating enzymes, and Ub protein ligases. Deubiquitinating enzymes, which are proteases that reversely modify proteins by removing Ub or Ub-like molecules or remodeling Ub chains on target proteins, have recently been regarded as crucial regulators of ubiquitination-mediated degradation and are known to significantly affect cellular pathways, a number of biological processes, DNA damage response, and DNA repair pathways. Research has increasingly shown evidence of the relationship between ubiquitination, deubiquitination, and oral disease. This review investigates recent progress in discoveries in diseased oral sites and discusses the roles of ubiquitination and deubiquitination in oral disease.
Collapse
|
18
|
Yang N, Ji F, Cheng L, Lu J, Sun X, Lin X, Lan X. Knockout of immunotherapy prognostic marker genes eliminates the effect of the anti-PD-1 treatment. NPJ Precis Oncol 2021; 5:37. [PMID: 33963274 PMCID: PMC8105367 DOI: 10.1038/s41698-021-00175-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The efficacy of immunotherapy is largely patient-specific due to heterogeneity in tumors. Combining statistic power from a variety of immunotherapies across cancer types, we found four biological pathways significantly correlated with patient survival following immunotherapy. The expression of immunotherapy prognostic marker genes (IPMGs) in these pathways can predict the patient survival with high accuracy not only in the TCGA cohort (89.36%) but also in two other independent cohorts (80.91%), highlighting that the activity of the IPMGs can reflect the sensitivity of the tumor immune microenvironment (TIME) to immunotherapies. Using mouse models, we show that knockout of one of the IPMGs, MALT1, which is critical for the T-cell receptor signaling, can eliminate the antitumor effect of anti-PD-1 treatment completely by impairing the activation of CD8+ T cells. Notably, knockout of another IPMG, CLEC4D, a C-type lectin receptor that expressed on myeloid cells, also reduced the effect of anti-PD-1 treatment potentially through maintaining the immunosuppressive effects of myeloid cells. Our results suggest that priming TIME via activating the IPMGs may increase the response rate and the effect of immune checkpoint blockers.
Collapse
Affiliation(s)
- Naixue Yang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, China
| | - Fansen Ji
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Liqing Cheng
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Jingzhe Lu
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaofeng Sun
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xin Lin
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China. .,Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China.
| | - Xun Lan
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
Selvaraj C, Vierra M, Dinesh DC, Abhirami R, Singh SK. Structural insights of macromolecules involved in bacteria-induced apoptosis in the pathogenesis of human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:1-38. [PMID: 34090612 DOI: 10.1016/bs.apcsb.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Marisol Vierra
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
20
|
Weinelt N, van Wijk SJL. Ubiquitin-dependent and -independent functions of OTULIN in cell fate control and beyond. Cell Death Differ 2020; 28:493-504. [PMID: 33288901 PMCID: PMC7862380 DOI: 10.1038/s41418-020-00675-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination, and its control by deubiquitinating enzymes (DUBs), mediates protein stability, function, signaling and cell fate. The ovarian tumor (OTU) family DUB OTULIN (FAM105B) exclusively cleaves linear (Met1-linked) poly-ubiquitin chains and plays important roles in auto-immunity, inflammation and infection. OTULIN regulates Met1-linked ubiquitination downstream of tumor necrosis factor receptor 1 (TNFR1), toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-containing protein 2 (NOD2) receptor activation and interacts with the Met1 ubiquitin-specific linear ubiquitin chain assembly complex (LUBAC) E3 ligase. However, despite extensive research efforts, the receptor and cytosolic roles of OTULIN and the distributions of multiple Met1 ubiquitin-associated E3-DUB complexes in the regulation of cell fate still remain controversial and unclear. Apart from that, novel ubiquitin-independent OTULIN functions have emerged highlighting an even more complex role of OTULIN in cellular homeostasis. For example, OTULIN interferes with endosome-to-plasma membrane trafficking and the OTULIN-related pseudo-DUB OTULINL (FAM105A) resides at the endoplasmic reticulum (ER). Here, we discuss how OTULIN contributes to cell fate control and highlight novel ubiquitin-dependent and -independent functions.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Fu YW, Li L, Wang XQ, Zhou Y, Zhu LF, Mei YM, Xu Y. The inhibitory effect of the deubiquitinase cylindromatosis (CYLD) on inflammatory responses in human gingival fibroblasts. Oral Dis 2020; 27:1487-1497. [PMID: 33031609 DOI: 10.1111/odi.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Experiments were performed to evaluate CYLD expression in human gingival tissue samples and to examine the effects of CYLD on inflammatory responses in lipopolysaccharide (LPS)- or TNF-α-stimulated human gingival fibroblasts (HGFs). METHODS Immunohistochemistry for CYLD and p65 expression was performed with healthy and inflamed gingival tissue samples. siRNA was used to knock down the expression of CYLD in HGFs. Upon LPS or TNF-α stimulation, NF-κB activation was detected in control and CYLD-knockdown HGFs. RT-PCR was applied to determine gene expression. Western blot analyses were employed to assess protein expression. Immunofluorescence staining was carried out to evaluate the nuclear translocation of p65. RESULTS Immunohistochemical staining showed the expression of CYLD in human gingival tissues. In addition, CYLD protein expression was reduced in inflamed gingival tissue samples compared with healthy tissue samples. CYLD knockdown greatly enhanced the mRNA expression of proinflammatory cytokines in LPS- or TNF-α-stimulated HGFs. Furthermore, knocking down CYLD expression increased LPS-stimulated NF-κB activation in HGFs. Unexpectedly, CYLD knockdown did not affect TNF-α-induced NF-κB activation. CONCLUSIONS Our results suggest that CYLD participates in periodontal inflammatory responses by negatively regulating LPS-induced NF-κB signalling.
Collapse
Affiliation(s)
- Yong-Wei Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Department of Stomatology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Fang Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - You-Min Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
23
|
Cui Z, Kang H, Grandis JR, Johnson DE. CYLD Alterations in the Tumorigenesis and Progression of Human Papillomavirus-Associated Head and Neck Cancers. Mol Cancer Res 2020; 19:14-24. [PMID: 32883697 DOI: 10.1158/1541-7786.mcr-20-0565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Genetic alterations of CYLD lysine 63 deubiquitinase (CYLD), a tumor-suppressor gene encoding a deubiquitinase (DUB) enzyme, are associated with the formation of tumors in CYLD cutaneous syndrome. Genome sequencing efforts have revealed somatic CYLD alterations in multiple human cancers. Moreover, in cancers commonly associated with human papillomavirus (HPV) infection (e.g., head and neck squamous cell carcinoma), CYLD alterations are preferentially observed in the HPV-positive versus HPV-negative form of the disease. The CYLD enzyme cleaves K63-linked polyubiquitin from substrate proteins, resulting in the disassembly of key protein complexes and the inactivation of growth-promoting signaling pathways, including pathways mediated by NF-κB, Wnt/β-catenin, and c-Jun N-terminal kinases. Loss-of-function CYLD alterations lead to aberrant activation of these signaling pathways, promoting tumorigenesis and malignant transformation. This review summarizes the association and potential role of CYLD somatic mutations in HPV-positive cancers, with particular emphasis on the role of these alterations in tumorigenesis, invasion, and metastasis. Potential therapeutic strategies for patients whose tumors harbor CYLD alterations are also discussed. IMPLICATIONS: Alterations in CYLD gene are associated with HPV-associated cancers, contribute to NF-κB activation, and are implicated in invasion and metastasis.
Collapse
Affiliation(s)
- Zhibin Cui
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
24
|
Li Q, Wang M, Xue H, Liu W, Guo Y, Xu R, Shao B, Yuan Q. Ubiquitin-Specific Protease 34 Inhibits Osteoclast Differentiation by Regulating NF-κB Signaling. J Bone Miner Res 2020; 35:1597-1608. [PMID: 32212276 DOI: 10.1002/jbmr.4015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 02/05/2023]
Abstract
The ubiquitination and deubiquitination enzymes ensure the stability and proper function of most cellular proteins. Disturbance of either enzyme compromises tissue homeostasis. We recently have identified that the ubiquitin-specific protease 34 (USP34) contributes to bone formation by promoting osteogenic differentiation of mesenchymal stem cells. However, its role in bone resorption, which couples bone formation, remains unknown. Here we show that knockdown of Usp34 promotes osteoclast differentiation of RAW264.7 cells. Conditional knockout of Usp34 in bone marrow-derived macrophages (BMMs) or in osteoclasts leads to elevated osteoclast function and low bone mass. Mechanically, we identify that USP34 restrains NF-κB signaling by deubiquitinating and stabilizing the NF-κB inhibitor alpha (IκBα). Overexpression of IκBα represses osteoclastic hyperfunction of Usp34-deficient RAW264.7 cells. Collectively, our results show that USP34 inhibits osteoclastogenesis by regulating NF-κB signaling. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hanxiao Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Li T, Zou C. The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E4842. [PMID: 32650621 PMCID: PMC7402294 DOI: 10.3390/ijms21144842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.
Collapse
Affiliation(s)
| | - Chunbin Zou
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
26
|
Yuan Y, Liu L, Wang Y, Liu S. Reduced expression of CYLD promotes cell survival and inflammation in gefitinib-treated NSCLC PC-9 cells: Targeting CYLD may be beneficial for acquired resistance to gefitinib therapy. Cell Biol Int 2020; 44:1911-1918. [PMID: 32441799 DOI: 10.1002/cbin.11397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non-small-cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR-TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR-TKI resistance remains elusive. Here, we found CYLD was upregulated in PC-9 cells, whereas downregulated in PC-9 acquired gefitinib-resistant (PC-9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC-9/GR cells than that in PC-9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin-6, transforming growth factor-β and tumor necrosis factor-α, which may contribute to acquired resistance of PC-9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC-9/GR cells downregulated CYLD expression, enhanced subsequent CYLD-dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib-resistant treatment in NSCLC.
Collapse
Affiliation(s)
- Yuan Yuan
- Central Laboratory of Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liu Liu
- Department of Oncology, Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi Wang
- Department of Oncology, Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shangquan Liu
- Central Laboratory of Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
27
|
La T, Jin L, Liu XY, Song ZH, Farrelly M, Feng YC, Yan XG, Zhang YY, Thorne RF, Zhang XD, Teng L. Cylindromatosis Is Required for Survival of a Subset of Melanoma Cells. Oncol Res 2020; 28:385-398. [PMID: 32252875 PMCID: PMC7851542 DOI: 10.3727/096504020x15861709922491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The deubiquitinase cylindromatosis (CYLD) functions as a tumor suppressor inhibiting cell proliferation in many cancer types including melanoma. Here we present evidence that a proportion of melanoma cells are nonetheless addicted to CYLD for survival. The expression levels of CYLD varied widely in melanoma cell lines and melanomas in vivo, with a subset of melanoma cell lines and melanomas displaying even higher levels of CYLD than melanocyte lines and nevi, respectively. Strikingly, although short hairpin RNA (shRNA) knockdown of CYLD promoted, as anticipated, cell proliferation in some melanoma cell lines, it reduced cell viability in a fraction of melanoma cell lines with relatively high levels of CYLD expression and did not impinge on survival and proliferation in a third type of melanoma cell lines. The decrease in cell viability caused by CYLD knockdown was due to induction of apoptosis, as it was associated with activation of the caspase cascade and was abolished by treatment with a general caspase inhibitor. Mechanistic investigations demonstrated that induction of apoptosis by CYLD knockdown was caused by upregulation of receptor-interacting protein kinase 1 (RIPK1) that was associated with elevated K63-linked polyubiquitination of the protein, indicating that CYLD is critical for controlling RIPK1 expression in these cells. Of note, microRNA (miR) profiling showed that miR-99b-3p that was predicted to target the 3′-untranslated region (3′-UTR) of the CYLD mRNA was reduced in melanoma cell lines with high levels of CYLD compared with melanocyte lines. Further functional studies confirmed that the reduction in miR-99b-3p expression was responsible for the increased expression of CYLD in a highly cell line-specific manner. Taken together, these results reveal an unexpected role of CYLD in promoting survival of a subset of melanoma cells and uncover the heterogeneity of CYLD expression and its biological significance in melanoma.
Collapse
Affiliation(s)
- Ting La
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Lei Jin
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Xiao Ying Liu
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Ze Hua Song
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Liu Teng
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
28
|
Suenaga N, Kuramitsu M, Komure K, Kanemaru A, Takano K, Ozeki K, Nishimura Y, Yoshida R, Nakayama H, Shinriki S, Saito H, Jono H. Loss of Tumor Suppressor CYLD Expression Triggers Cisplatin Resistance in Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20205194. [PMID: 31635163 PMCID: PMC6829433 DOI: 10.3390/ijms20205194] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic agents commonly used for several malignancies including oral squamous cell carcinoma (OSCC). Although cisplatin resistance is a major obstacle to effective treatment and is associated with poor prognosis of OSCC patients, the molecular mechanisms by which it develops are largely unknown. Cylindromatosis (CYLD), a deubiquitinating enzyme, acts as a tumor suppressor in several malignancies. Our previous studies have shown that loss of CYLD expression in OSCC tissues is significantly associated with poor prognosis of OSCC patients. Here, we focused on CYLD expression in OSCC cells and determined whether loss of CYLD expression is involved in cisplatin resistance in OSCC and elucidated its molecular mechanism. In this study, to assess the effect of CYLD down-regulation on cisplatin resistance in human OSCC cell lines (SAS), we knocked-down the CYLD expression by using CYLD-specific siRNA. In cisplatin treatment, cell survival rates in CYLD knockdown SAS cells were significantly increased, indicating that CYLD down-regulation caused cisplatin resistance to SAS cells. Our results suggested that cisplatin resistance caused by CYLD down-regulation was associated with the mechanism through which both the reduction of intracellular cisplatin accumulation and the suppression of cisplatin-induced apoptosis via the NF-κB hyperactivation. Moreover, the combination of cisplatin and bortezomib treatment exhibited significant anti-tumor effects on cisplatin resistance caused by CYLD down-regulation in SAS cells. These findings suggest the possibility that loss of CYLD expression may cause cisplatin resistance in OSCC patients through NF-κB hyperactivation and may be associated with poor prognosis in OSCC patients.
Collapse
Affiliation(s)
- Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Mimi Kuramitsu
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kanae Komure
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kanako Takano
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kazuya Ozeki
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Yuka Nishimura
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan.
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan.
| |
Collapse
|
29
|
MiR-106b promotes therapeutic antibody expression in CHO cells by targeting deubiquitinase CYLD. Appl Microbiol Biotechnol 2019; 103:7085-7095. [DOI: 10.1007/s00253-019-10000-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
|
30
|
Wang Z, Sheng C, Yao C, Chen H, Wang D, Chen S. The EF-Hand Protein CALML6 Suppresses Antiviral Innate Immunity by Impairing IRF3 Dimerization. Cell Rep 2019; 26:1273-1285.e5. [PMID: 30699354 DOI: 10.1016/j.celrep.2019.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/09/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The transcription factor IRF3 is phosphorylated in response to viral infection, and it subsequently forms a homodimer and translocates into the nucleus to induce the transcription of genes important for antiviral immunity, such as type I interferons (IFNs). This multistep process is essential for host defense against viral infection, but its regulation remains elusive. Here, we report that the EF-hand protein calmodulin-like 6 (CALML6) directly bound to the phosphorylated serine-rich (SR) region of IRF3 and impaired its dimerization and nuclear translocation. Enforced CALML6 expression suppressed viral infection-induced production of IFN-β and expression of IFN-stimulated genes (ISGs), whereas CALML6 deficiency had the opposite effect. In addition, impaired IFN-β and ISG expression in bone-marrow-derived macrophages and tissues of CALML6 transgenic mice promoted viral replication. These findings identify a phosphorylation-dependent negative feedback loop that maintains the homeostasis of antiviral innate immunity.
Collapse
Affiliation(s)
- Ziyang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Chunjie Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Chen Yao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Hongyuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Shuai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
31
|
Vitamin E δ-tocotrienol inhibits TNF-α-stimulated NF-κB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. J Nutr Biochem 2018; 64:101-109. [PMID: 30471562 DOI: 10.1016/j.jnutbio.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/30/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Nuclear factor-κB (NF-κB) regulates inflammation and cell survival, and is considered a potential target for anti-inflammatory and anti-cancer therapy. δ-Tocotrienol (δTE), a vitamin E form, has been shown to inhibit NF-κB, but the mechanism underlying this action is not clear. In the present study, we show that δTE inhibited TNF-α-induced activation of NF-κB and LPS-stimulated IL-6 in a dose- and time-dependent manner in Raw 264.7 macrophages. δTE potently inhibited TNF-α-induced phosphorylation of transforming growth factor β-activated kinase 1 (TAK1), an upstream kinase essential for the activation of NF-κB. Interestingly, δTE significantly increased the expression of A20 and to a less extent, cylindromatosis (CYLD), both of which are inhibitors of NF-κB. The importance of induction of A20 in δTE's anti-NF-κB effect is validated in A20 knockout cells where δTE's inhibition of NF-κB was largely diminished. In pursuit of the cause for A20 induction, we found that δTE treatment caused rapid and persistent elevation of dihydroceramides, while decreased ceramides initially but increased ceramides during prolonged treatment. These changes of sphingolipids were accompanied by increased cellular stress markers. Importantly, δTE's induction of A20 and inhibition of NF-κB activation were partially counteracted by myriocin, a potent inhibitor of de novo synthesis of sphingolipids, indicating a critical role of sphingolipid modulation in δTE-mediated effects. Since dihydroceramide has been shown to induce A20 and inhibit NF-κB in RAW cells, we conclude that that δTE inhibits NF-κB activation by enhancing its negative regulator A20 as a result of modulating sphingolipids especially elevation of dihydroceramides.
Collapse
|
32
|
Gupta I, Varshney NK, Khan S. Emergence of Members of TRAF and DUB of Ubiquitin Proteasome System in the Regulation of Hypertrophic Cardiomyopathy. Front Genet 2018; 9:336. [PMID: 30186311 PMCID: PMC6110912 DOI: 10.3389/fgene.2018.00336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays an imperative role in many critical cellular processes, frequently by mediating the selective degradation of misfolded and damaged proteins and also by playing a non-degradative role especially important as in many signaling pathways. Over the last three decades, accumulated evidence indicated that UPS proteins are primal modulators of cell cycle progression, DNA replication, and repair, transcription, immune responses, and apoptosis. Comparatively, latest studies have demonstrated a substantial complexity by the UPS regulation in the heart. In addition, various UPS proteins especially ubiquitin ligases and proteasome have been identified to play a significant role in the cardiac development and dynamic physiology of cardiac pathologies such as ischemia/reperfusion injury, hypertrophy, and heart failure. However, our understanding of the contribution of UPS dysfunction in the plausible development of cardiac pathophysiology and the complete list of UPS proteins regulating these afflictions is still in infancy. The recent emergence of the roles of TNF receptor-associated factor (TRAFs) and deubiquitinating enzymes (DUBs) superfamily in hypertrophic cardiomyopathy has enhanced our knowledge. In this review, we have mainly compiled the TRAF superfamily of E3 ligases and few DUBs proteins with other well-documented E3 ligases such as MDM2, MuRF-1, Atrogin-I, and TRIM 32 that are specific to myocardial hypertrophy. In this review, we also aim to highlight their expression profile following physiological and pathological stimulation leading to the onset of hypertrophic phenotype in the heart that can serve as biomarkers and the opportunity for the development of novel therapies.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
33
|
RIPK1-mediated induction of mitophagy compromises the viability of extracellular-matrix-detached cells. Nat Cell Biol 2018; 20:272-284. [PMID: 29459781 DOI: 10.1038/s41556-018-0034-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
For cancer cells to survive during extracellular matrix (ECM) detachment, they must inhibit anoikis and rectify metabolic deficiencies that cause non-apoptotic cell death. Previous studies in ECM-detached cells have linked non-apoptotic cell death to reactive oxygen species (ROS) generation, although the mechanistic underpinnings of this link remain poorly defined. Here, we uncover a role for receptor-interacting protein kinase 1 (RIPK1) in the modulation of ROS and cell viability during ECM detachment. We find that RIPK1 activation during ECM detachment results in mitophagy induction through a mechanism dependent on the mitochondrial phosphatase PGAM5. As a consequence of mitophagy, ECM-detached cells experience diminished NADPH production in the mitochondria, and the subsequent elevation in ROS levels leads to non-apoptotic death. Furthermore, we find that antagonizing RIPK1/PGAM5 enhances tumour formation in vivo. Thus, RIPK1-mediated induction of mitophagy may be an efficacious target for therapeutics aimed at eliminating ECM-detached cancer cells.
Collapse
|
34
|
Shinriki S, Jono H, Maeshiro M, Nakamura T, Guo J, Li JD, Ueda M, Yoshida R, Shinohara M, Nakayama H, Matsui H, Ando Y. Loss of CYLD promotes cell invasion via ALK5 stabilization in oral squamous cell carcinoma. J Pathol 2018; 244:367-379. [PMID: 29235674 DOI: 10.1002/path.5019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
Oral squamous cell carcinoma (OSCC) has a very poor prognosis because of its highly invasive nature, and the 5-year survival rate has not changed appreciably for the past 30 years. Although cylindromatosis (CYLD), a deubiquitinating enzyme, is thought to be a potent tumour suppressor, its biological and clinical significance in OSCC is largely unknown. This study aimed to clarify the roles of CYLD in OSCC progression. Our immunohistochemical analyses revealed significantly reduced CYLD expression in invasive areas in OSCC tissues, whereas CYLD expression was conserved in normal epithelium and carcinoma in situ. Furthermore, downregulation of CYLD by siRNA led to the acquisition of mesenchymal features and increased migratory and invasive properties in OSCC cells and HaCaT keratinocytes. It is interesting that CYLD knockdown promoted transforming growth factor-β (TGF-β) signalling by inducing stabilization of TGF-β receptor I (ALK5) in a cell autonomous fashion. In addition, the response to exogenous TGF-β stimulation was enhanced by CYLD downregulation. The invasive phenotypes induced by CYLD knockdown were completely blocked by an ALK5 inhibitor. In addition, lower expression of CYLD was significantly associated with the clinical features of deep invasion and poor overall survival, and also with increased phosphorylation of Smad3, which is an indicator of activation of TGF-β signalling in invasive OSCC. These findings suggest that downregulation of CYLD promotes invasion with mesenchymal transition via ALK5 stabilization in OSCC cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Satoru Shinriki
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Manabu Maeshiro
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Nakamura
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jianying Guo
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection and Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Hrdinka M, Gyrd-Hansen M. The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De)regulation. Mol Cell 2017; 68:265-280. [PMID: 29053955 DOI: 10.1016/j.molcel.2017.09.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/21/2017] [Accepted: 08/31/2017] [Indexed: 01/24/2023]
Abstract
The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.
Collapse
Affiliation(s)
- Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
36
|
Pan Y, Xu C, Pan ZK. MKP-1 negative regulates Staphylococcus aureus induced inflammatory responses in Raw264.7 cells: roles of PKA-MKP-1 pathway and enhanced by rolipram. Sci Rep 2017; 7:12366. [PMID: 28959039 PMCID: PMC5620070 DOI: 10.1038/s41598-017-10187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022] Open
Abstract
MAP phosphatases (MKP)-1 acts as an important regulator of innate immune response through a mechanism of control and attention both MAPK and NF-κB molecules during bacterial infection. However, the regulatory role of MKP-1 in the interplay between MAPK and NFκB pathway molecules is still not fully understood. In present study, we showed a direct interactions of p38, ERK or IκBα with MKP-1, and demonstrated that MKP-1 was a pivotal feedback control for both MAP kinases and NF-κB pathway in response to S. aureus. In addition, we found that rolipram had anti-inflammatory activity and repressed IκBα activation induced by S. aureus via PKA-MKP-1 pathway. Our report also demonstrated that PKA-cα can directly bind to IκBα upon S. aureus stimulation, which influenced the downstream signaling of PKA pathway, including altered the expression of MKP-1. These results presented a novel mechanism of PKA and IκB pathway, which may be targeted for treating S. aureus infection.
Collapse
Affiliation(s)
- Yiqing Pan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China
| | - Chen Xu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| | - Zhixing K Pan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, 43614, USA.
| |
Collapse
|
37
|
CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ 2017; 24:1172-1183. [PMID: 28362430 DOI: 10.1038/cdd.2017.46] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Polyubiquitination of proteins has a pivotal role in the regulation of numerous cellular functions such as protein degradation, DNA repair and cell signaling. As deregulation of these processes can result in pathological conditions such as inflammatory diseases, neurodegeneration or cancer, tight regulation of the ubiquitin system is of tremendous importance. Ubiquitination by E3 ubiquitin ligases can be counteracted by the activity of several deubiquitinating enzymes (DUBs). CYLD, A20 and OTULIN have been implicated as key DUBs in the negative regulation of NF-κB transcription factor-mediated gene expression upon stimulation of cytokine receptors, antigen receptors and pattern recognition receptors, by removing distinct types of polyubiquitin chains from specific NF-κB signaling proteins. In addition, they control TNF-induced cell death signaling leading to apoptosis and necroptosis via similar mechanisms. In the case of A20, also catalytic-independent mechanisms of action have been demonstrated to have an important role. CYLD, A20 and OTULIN have largely overlapping substrates, suggesting at least partially redundant functions. However, mice deficient in one of the three DUBs show significant phenotypic differences, indicating also non-redundant functions. Here we discuss the activity and polyubiquitin chain-type specificity of CYLD, A20 and OTULIN, their specific role in NF-κB signaling and cell death, the molecular mechanisms that regulate their activity, their role in immune homeostasis and the association of defects in their activity with inflammation, autoimmunity and cancer.
Collapse
|
38
|
Wang W, Mani AM, Wu ZH. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. JOURNAL OF CANCER METASTASIS AND TREATMENT 2017; 3:45-59. [PMID: 28626800 PMCID: PMC5472228 DOI: 10.20517/2394-4722.2017.03] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage is a vital challenge to cell homeostasis. Cellular responses to DNA damage (DDR) play essential roles in maintaining genomic stability and survival, whose failure could lead to detrimental consequences such as cancer development and aging. Nuclear factor-kappa B (NF-κB) is a family of transcription factors that plays critical roles in cellular stress response. Along with p53, NF-κB modulates transactivation of a large number of genes which participate in various cellular processes involved in DDR. Here the authors summarize the recent progress in understanding DNA damage response and NF-κB signaling pathways. This study particularly focuses on DNA damage-induced NF-κB signaling cascade and its physiological and pathological significance in B cell development and cancer therapeutic resistance. The authors also discuss promising strategies for selectively targeting this genotoxic NF-κB signaling aiming to antagonize acquired resistance and resensitize refractory cancer cells to cytotoxic treatments.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M. Mani
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
39
|
Yan M, Leng T, Tang L, Zheng X, Lu B, Li Y, Sheng L, Lin S, Shi H, Yan G, Yin W. Neuroprotectant androst-3β, 5α, 6β-triol suppresses TNF-α-induced endothelial adhesion molecules expression and neutrophil adhesion to endothelial cells by attenuation of CYLD-NF-κB pathway. Biochem Biophys Res Commun 2017; 483:892-896. [PMID: 28082198 DOI: 10.1016/j.bbrc.2017.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
Abstract
Neuroinflammation is one of key pathologic element in neurological diseases including stroke, traumatic brain injury, Alzheimer' s Disease, Parkinson's Disease, and multiple sclerosis as well. Up-regulation of endothelial adhesion molecules, which facilitate leukocyte adhesion to the endothelium, is the vital process of endothelial cells mediated neuroinflammation. Androst-3β, 5α, 6β-triol (Triol) is a synthetic steroid which has been reported to have neuroprotective effects in hypoxia/re-oxygenation-induced neuronal injury model. In the present study, we firstly investigated whether Triol inhibited the TNF-α-induced inflammatory response in rat brain microvascular endothelial cells (RBMECs). Our data showed that Triol decreased TNF-α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and the adhesion of neutrophil to RBMECs. We also found that Triol inhibited TNF-α-induced degradation of IκBα and phosphorylation of NF-κBp65 that are required for NF-κB activation. Furthermore, Triol significantly reversed TNF-α-induced down-expression of CYLD, which is a deubiquitinase that negatively regulates activation of NF-κB. These results suggest that Triol displays an anti-inflammatory effect on TNF-α-induced RBMECs via downregulating of CYLD-NF-κB signaling pathways and might have a potential benefit in therapeutic neuroinflammation related diseases.
Collapse
Affiliation(s)
- Min Yan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, GD 510080, PR China
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine, Guangdong Province's Traditional Chinese Medical Hospital, Guangzhou, GD 510120, PR China
| | - Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, GD 510080, PR China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Longxiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical, G Building F/4, 3 Lanyue Road, Science City, Guangzhou, 510663, PR China
| | - Haitao Shi
- Guangzhou Cellprotek Pharmaceutical, G Building F/4, 3 Lanyue Road, Science City, Guangzhou, 510663, PR China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China.
| |
Collapse
|
40
|
Activation of peroxisome proliferator-activated receptor gamma in mammary epithelial cells upregulates the expression of tumor suppressor Cyld to mediate growth inhibition and anti-inflammatory effects. Int J Biochem Cell Biol 2017; 82:49-56. [DOI: 10.1016/j.biocel.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
|
41
|
Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J Immunol Res 2016; 2016:4368101. [PMID: 28116318 PMCID: PMC5223024 DOI: 10.1155/2016/4368101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.
Collapse
|
42
|
Yin G, Zeng Q, Zhao H, Wu P, Cai S, Deng L, Jiang W. Effect and mechanism of calpains on pediatric lobar pneumonia. Bioengineered 2016; 8:374-382. [PMID: 27786573 PMCID: PMC5553339 DOI: 10.1080/21655979.2016.1234544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lobar pneumonia, one of the community-acquired pneumonia (CAP), is a common pediatric low respiratory tract infection. Calpains are Ca2+-activated cysteine proteases whose activation mechanism is elusive. The present study was undertaken to detect the role and mechanism of calpains in pediatric lobar pneumonia. The human acute lung infection model (ALIM) was constructed and infected by Streptococcus. Enzyme-linked immunosorbent assay (ELISA) was used to measure interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α. We observed the lactate dehydrogenase (LDH) release, calpains activity and calpain inhibitor effects in ALIM. The expression of proliferating cell nuclear antigen (PCNA) protein was quantified by western blotting. Then the effects of calpain 1 and 2 knockdown on expressions of inflammation factors and PCNA protein, LDH release and apoptosis were evaluated in lung MRC-5 cells. In constructed ALIM, expressions of IL-6 (P < 0.01), IL-8 (P < 0.01), TNF-α (P < 0.05) and PCNA protein (P < 0.05) were significantly reduced by the calpain inhibitor. Expressions of IL-6, IL-8, TNF-α, PCNA protein and relative LDH release were statistically reduced by the small interfering (si) RNA-calpain 1 and 2 in MRC-5 cells (P < 0.05). Calpains silence increased apoptotic cells from 5% (negative control) to more than 20% in MRC-5 cells. The present study suggests that calpains possess a significant effect on inflammations, cell proliferation and apoptosis. Suppression of calpains may provide a potential therapeutic target of lobar pneumonia.
Collapse
Affiliation(s)
- Genquan Yin
- a Chronic Airways Disease Laboratory, Department of Respiratory and Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China.,b Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong Province , China
| | - Qiang Zeng
- b Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong Province , China
| | - Haijin Zhao
- a Chronic Airways Disease Laboratory, Department of Respiratory and Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Peiqiong Wu
- b Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong Province , China
| | - Shaoxi Cai
- a Chronic Airways Disease Laboratory, Department of Respiratory and Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Li Deng
- b Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong Province , China
| | - Wenhui Jiang
- b Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong Province , China
| |
Collapse
|
43
|
Hirozane T, Tohmonda T, Yoda M, Shimoda M, Kanai Y, Matsumoto M, Morioka H, Nakamura M, Horiuchi K. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass. Sci Rep 2016; 6:34426. [PMID: 27677594 PMCID: PMC5039636 DOI: 10.1038/srep34426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023] Open
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Toru Hirozane
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Takahide Tohmonda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Anti-Aging Orthopedic Research, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Yoda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Anti-Aging Orthopedic Research, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Anti-Aging Orthopedic Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
45
|
Matthews GM, de Matos Simoes R, Dhimolea E, Sheffer M, Gandolfi S, Dashevsky O, Sorrell JD, Mitsiades CS. NF-κB dysregulation in multiple myeloma. Semin Cancer Biol 2016; 39:68-76. [PMID: 27544796 DOI: 10.1016/j.semcancer.2016.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022]
Abstract
The nuclear factor-κB (NF-κB) transcription factor family plays critical roles in the pathophysiology of hematologic neoplasias, including multiple myeloma. The current review examines the roles that this transcription factor system plays in multiple myeloma cells and the nonmalignant accessory cells of the local microenvironment; as well as the evidence indicating that a large proportion of myeloma patients harbor genomic lesions which perturb diverse genes regulating the activity of NF-κB. This article also discusses the therapeutic targeting of the NF-κB pathway using proteasome inhibitors, a pharmacological class that has become a cornerstone in the therapeutic management of myeloma; and reviews some of the future challenges and opportunities for NF-κB-related research in myeloma.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Jeffrey D Sorrell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States.
| |
Collapse
|
46
|
Jin YJ, Wang S, Cho J, Selim MA, Wright T, Mosialos G, Zhang JY. Epidermal CYLD inactivation sensitizes mice to the development of sebaceous and basaloid skin tumors. JCI Insight 2016; 1. [PMID: 27478875 DOI: 10.1172/jci.insight.86548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The deubiquitinase-encoding gene Cyld displays a dominant genetic linkage to a wide spectrum of skin-appendage tumors, which could be collectively designated as CYLD mutant-syndrome (CYLDm-syndrome). Despite recent advances, little is understood about the molecular mechanisms responsible for this painful and difficult-to-treat skin disease. Here, we generated a conditional mouse model with epidermis-targeted expression of a catalytically deficient CYLDm through K14-Cre-mediated deletion of exon 9 (hereafter refer to CyldEΔ9/Δ9 ). CyldEΔ9/Δ9 mice were born alive but developed hair and sebaceous gland abnormalities and dental defects at 100% and 60% penetrance, respectively. Upon topical challenge with DMBA/TPA, these animals primarily developed sebaceous and basaloid tumors resembling human CYLDm-syndrome as opposed to papilloma, which is most commonly induced in WT mice by this treatment. Molecular analysis revealed that TRAF6-K63-Ubiquitination (K63-Ub), c-Myc-K63-Ub, and phospho-c-Myc (S62) were markedly elevated in CyldEΔ9/Δ9 skin. Topical treatment with a pharmacological c-Myc inhibitor induced sebaceous and basal cell apoptosis in CyldEΔ9/Δ9 skin. Consistently, c-Myc activation was readily detected in human cylindroma and sebaceous adenoma. Taken together, our findings demonstrate that CyldEΔ9/Δ9 mice represent a disease-relevant animal model and identify TRAF6 and c-Myc as potential therapeutic targets for CYLDm-syndrome.
Collapse
Affiliation(s)
- Yingai Jane Jin
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - Sally Wang
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua Cho
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - M Angelica Selim
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Tim Wright
- Dental School, University North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
47
|
Webb LV, Ley SC, Seddon B. TNF activation of NF-κB is essential for development of single-positive thymocytes. J Exp Med 2016; 213:1399-407. [PMID: 27432943 PMCID: PMC4986527 DOI: 10.1084/jem.20151604] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/27/2016] [Indexed: 01/19/2023] Open
Abstract
Seddon and colleagues study mice whose T cells lack both of the catalytic subunits of the IKK complex and show that impaired TNF receptor activation of NF-κB is responsible for their block in thymocyte development. NF-κB activation has been implicated at multiple stages of thymic development of T cells, during which it is thought to mediate developmental signals originating from the T cell receptor (TCR). However, the Card11–Bcl10–Malt1 (CBM) complex that is essential for TCR activation of NF-κB in peripheral T cells is not required for thymocyte development. It has remained unclear whether the TCR activates NF-κB independent of the CBM complex in thymocyte development or whether another NF-κB activating receptor is involved. In the present study, we generated mice in which T cells lacked expression of both catalytic subunits of the inhibitor of κB kinase (IKK) complex, IKK1 and IKK2, to investigate this question. Although early stages of T cell development were unperturbed, maturation of CD4 and CD8 single-positive (SP) thymocytes was blocked in mice lacking IKK1/2 in the T cell lineage. We found that IKK1/2-deficient thymocytes were specifically sensitized to TNF-induced cell death in vitro. Furthermore, the block in thymocyte development in IKK1/2-deficient mice could be rescued by blocking TNF with anti-TNF mAb or by ablation of TNFRI expression. These experiments reveal an essential role for TNF activation of NF-κB to promote the survival and development of single positive T cells in the thymus.
Collapse
Affiliation(s)
- Louise V Webb
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, England, UK
| | - Steven C Ley
- Francis Crick Institute, Mill Hill Laboratories, London NW7 1AA, England, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, England, UK
| |
Collapse
|
48
|
Zhu M, Zhou X, Du Y, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, Wang T. miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol Med Rep 2016; 14:1742-50. [PMID: 27357419 DOI: 10.3892/mmr.2016.5413] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) has been demonstrated to contribute to drug resistance of cancer cells, and sustained nuclear factor (NF)κB activation is also pivotal in tumor resistance to chemotherapy. In the present study, an essential role for miRNA (miR)-20a was identified in the regulation of gastric cancer (GC) chemoresistance. The expression level of miR‑20a was assayed by reverse transcription‑quantitative polymerase chain reaction. Additionally, 3-(4,5-dimethylthiazol-2‑yl)-2,5-diphenyltetrazolium bromide was used to detect the drug‑resistance phenotype changes of cancer cells associated with upregulation or downregulation of miR‑20a. Protein expression levelss were measured by western blotting and immunohistochemistry. Flow cytometry was used to detect cisplatin‑induced apoptosis. It was found that miR‑20a was markedly upregulated in GC plasma and tissue samples. Additionally, miR‑20a was upregulated in GC plasma and tissues from patients with cisplatin (DDP) resistance, and in the DPP‑resistant gastric cancer cell line (SGC7901/DDP). The expression of miR‑20a was inversely correlated with the expression of cylindromatosis (CYLD). Subsequently, the assessment of luciferase activity verified that CYLD was a direct target gene of miR‑20a. Treatment with miR‑20a inhibitor increased the protein expression of CYLD, downregulated the expression levels of p65, livin and survivin, and led to a higher proportion of apoptotic cells in the SGC7901/DDP cells. By contrast, ectopic expression of miR‑20a significantly repressed the expression of CYLD, upregulated the expression levels of p65, livin and survivin, and resulted in a decrease in the apoptosis induced by DDP in the SGC7901 cells. Taken together, the results of the present study suggested that miR‑20a directly repressed the expression of CYLD, leading to activation of the NFκB pathway and the downstream targets, livin and survivin, which potentially induced GC chemoresistance. Altering miR‑20a expression may be a potential therapeutic strategy for the treatment of chemoresistance in GC in the future.
Collapse
Affiliation(s)
- Mingxia Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yiping Du
- Department of Oncology, The First People's Hospital of Kunshan Affiliated With Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Gongming Cheng
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
49
|
Hrdinka M, Fiil BK, Zucca M, Leske D, Bagola K, Yabal M, Elliott PR, Damgaard RB, Komander D, Jost PJ, Gyrd-Hansen M. CYLD Limits Lys63- and Met1-Linked Ubiquitin at Receptor Complexes to Regulate Innate Immune Signaling. Cell Rep 2016; 14:2846-58. [PMID: 26997266 PMCID: PMC4819907 DOI: 10.1016/j.celrep.2016.02.062] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
Innate immune signaling relies on the deposition of non-degradative polyubiquitin at receptor-signaling complexes, but how these ubiquitin modifications are regulated by deubiquitinases remains incompletely understood. Met1-linked ubiquitin (Met1-Ub) is assembled by the linear ubiquitin assembly complex (LUBAC), and this is counteracted by the Met1-Ub-specific deubiquitinase OTULIN, which binds to the catalytic LUBAC subunit HOIP. In this study, we report that HOIP also interacts with the deubiquitinase CYLD but that CYLD does not regulate ubiquitination of LUBAC components. Instead, CYLD limits extension of Lys63-Ub and Met1-Ub conjugated to RIPK2 to restrict signaling and cytokine production. Accordingly, Met1-Ub and Lys63-Ub were individually required for productive NOD2 signaling. Our study thus suggests that LUBAC, through its associated deubiquitinases, coordinates the deposition of not only Met1-Ub but also Lys63-Ub to ensure an appropriate response to innate immune receptor activation. CYLD associates with LUBAC via HOIP and limits signaling by NOD2 RIPK2 ubiquitination is regulated by CYLD and OTULIN CYLD trims Lys63 and Met1 linkages conjugated to RIPK2 Productive NOD2 signaling requires Lys63 and Met1 linkages
Collapse
Affiliation(s)
- Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Berthe Katrine Fiil
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Mattia Zucca
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Derek Leske
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Monica Yabal
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rune Busk Damgaard
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Philipp J Jost
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
50
|
Deubiquitinase CYLD acts as a negative regulator for bacterium NTHi-induced inflammation by suppressing K63-linked ubiquitination of MyD88. Proc Natl Acad Sci U S A 2015; 113:E165-71. [PMID: 26719415 DOI: 10.1073/pnas.1518615113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myeloid differentiation factor 88 (MyD88) acts as a crucial adaptor molecule for Toll-like receptors (TLRs) and interleukin (IL)-1 receptor signaling. In contrast to the well-studied positive regulation of MyD88 signaling, how MyD88 signaling is negatively regulated still remains largely unknown. Here, we demonstrate for the first time to our knowledge that MyD88 protein undergoes lysine 63 (K63)-linked polyubiquitination, which is functionally critical for mediating TLR-MyD88-dependent signaling. Deubiquitinase CYLD negatively regulates MyD88-mediated signaling by directly interacting with MyD88 and deubiquitinating nontypeable Haemophilus influenzae (NTHi)-induced K63-linked polyubiquitination of MyD88 at lysine 231. Importantly, we further confirmed this finding in the lungs of mice in vivo by using MyD88(-/-)CYLD(-/-) mice. Understanding how CYLD deubiquitinates K63-linked polyubiquitination of MyD88 may not only bring insights into the negative regulation of TLR-MyD88-dependent signaling, but may also lead to the development of a previously unidentified therapeutic strategy for uncontrolled inflammation.
Collapse
|