1
|
Sherstnev I, Judina A, Luciani GB, Ghigo A, Hirsch E, Gorelik J. Role of PDE4 Family in Cardiomyocyte Physiology and Heart Failure. Cells 2025; 14:460. [PMID: 40136709 PMCID: PMC11941749 DOI: 10.3390/cells14060460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) is a key regulator of cyclic adenosine monophosphate (cAMP) signalling in cardiomyocytes, controlling contractility, calcium handling, and hypertrophic responses. PDE4 provides spatial and temporal precision to cAMP signalling, particularly under β-adrenergic stimulation, through its compartmentalised activity in subcellular nanodomains, including the sarcoplasmic reticulum, plasma membrane and nuclear envelope. This review highlights the cardiac PDE4 isoforms PDE4A, PDE4B and PDE4D, focusing on their distinct localisation and contributions to cardiac physiology and pathophysiology, particularly in heart failure and arrhythmias. Although PDE4 plays a smaller role in overall cAMP hydrolysis in human hearts than in rodents, its compartmentalised function remains critical. Recent therapeutic advances have shifted from pan-PDE4 inhibitors to isoform-specific approaches to enhance efficacy while minimising systemic toxicity. We discuss the potential of selective PDE4 modulators, gene therapies and combination strategies in restoring cAMP compartmentation and preventing maladaptive cardiac remodelling. By integrating rodent and human studies, this review underscores the translational challenges and therapeutic opportunities surrounding PDE4, positioning it as both a key regulator of cardiac signalling and a promising target for heart failure therapies.
Collapse
Affiliation(s)
- Ivan Sherstnev
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (I.S.); (A.J.)
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37126 Verona, Italy;
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Aleksandra Judina
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (I.S.); (A.J.)
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37126 Verona, Italy;
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (I.S.); (A.J.)
| |
Collapse
|
2
|
Bolger GB. Therapeutic Targets and Precision Medicine in COPD: Inflammation, Ion Channels, Both, or Neither? Int J Mol Sci 2023; 24:17363. [PMID: 38139192 PMCID: PMC10744217 DOI: 10.3390/ijms242417363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The development of a wider range of therapeutic options is a key objective in drug discovery for chronic obstructive pulmonary disease (COPD). Fundamental advances in lung biology have the potential to greatly expand the number of therapeutic targets in COPD. The recently reported successful Phase 3 clinical trial of the first biologic agent for COPD, the monoclonal antibody dupilumab, adds additional support to the importance of targeting inflammatory pathways in COPD. However, numerous other cellular mechanisms are important targets in COPD therapeutics, including airway remodeling, the CFTR ion channel, and mucociliary function. Some of these emerging targets can be exploited by the expanded use of existing COPD drugs, such as roflumilast, while targeting others will require the development of novel molecular entities. The identification of additional therapeutic targets and agents has the potential to greatly expand the value of using clinical and biomarker data to classify COPD into specific subsets, each of which can be predictive of an enhanced response to specific subset(s) of targeted therapies. The author reviews established and emerging drug targets in COPD and uses this as a framework to define a novel classification of COPD based on therapeutic targets. This novel classification has the potential to enhance precision medicine in COPD patient care and to accelerate clinical trials and pre-clinical drug discovery efforts.
Collapse
Affiliation(s)
- Graeme B Bolger
- BZI Pharma LLC, 1500 1st Ave N., Unit 36, Birmingham, AL 35203-1872, USA
| |
Collapse
|
3
|
Cazzola M, Page C, Calzetta L, Singh D, Rogliani P, Matera MG. What role will ensifentrine play in the future treatment of chronic obstructive pulmonary disease patients? Implications from recent clinical trials. Immunotherapy 2023; 15:1511-1519. [PMID: 37779474 DOI: 10.2217/imt-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Data from the phase III ENHANCE clinical trials provide compelling evidence that ensifentrine, an inhaled 'bifunctional' dual phosphodiesterase 3/4 inhibitor, can provide additional benefit to existing treatments in patients with chronic obstructive pulmonary disease and represents a 'first-in-class' drug having bifunctional bronchodilator and anti-inflammatory activity in a single molecule. Ensifentrine, generally well tolerated, can provide additional bronchodilation when added to muscarinic receptor antagonists or β2-agonists and reduce the exacerbation risk. This information allows us to consider better the possible inclusion of ensifentrine in the future treatment of chronic obstructive pulmonary disease. However, there is less information on whether it provides additional benefit when added to inhaled corticosteroid or 'triple therapy' and, therefore, when this drug is best utilized in clinical practice.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, UK
| | - Luigino Calzetta
- Unit of Respiratory Diseases & Lung Function, Department of Medicine & Surgery, University of Parma, 43126, Parma, Italy
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester & Manchester University NHS Foundation Trust, M23 9QZ, Manchester, UK
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| |
Collapse
|
4
|
Singh K, Teyani RL, Moniri NH. Agonists and hydrogen peroxide mediate hyperoxidation of β2-adrenergic receptor in airway epithelial cells: Implications for tachyphylaxis to β2-agonists in constrictive airway disorders. Biomed Pharmacother 2023; 168:115763. [PMID: 37865997 PMCID: PMC10842251 DOI: 10.1016/j.biopha.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Asthma and other airway obstructive disorders are characterized by heightened inflammation and excessive airway epithelial cell reactive oxygen species (ROS), which give rise to a highly oxidative environment. After decades of use, β2-adrenergic receptor (β2AR) agonists remain at the forefront of treatment options for asthma, however, chronic use of β2-agonists leads to tachyphylaxis to the bronchorelaxant effects, a phenomenon that remains mechanistically unexplained. We have previously demonstrated that β2AR agonism increases ROS generation in airway epithelial cells, which upholds proper receptor function via feedback oxidation of β2AR cysteine thiolates to Cys-S-sulfenic acids (Cys-SOH). Our previous results also demonstrate that prevention of normal redox cycling of this post-translational oxi-modification back to the thiol prevents proper receptor function. Given that Cys-S-sulfenic acids can be irreversibly overoxidized to Cys-S-sulfinic (Cys-SO2H) or S-sulfonic (Cys-SO3H) acids, which are incapable of further participation in redox reactions, we hypothesized that β2-agonist tachyphylaxis may be explained by hyperoxidation of β2AR to S-sulfinic acids. Here, using airway epithelial cell lines and primary small airway epithelial cells from healthy and asthma-diseased donors, we show that β2AR agonism generates H2O2 in a receptor and NAPDH oxidase-dependent manner. We also demonstrate that acute and chronic receptor agonism can facilitate β2AR S-sulfination, and that millimolar H2O2 concentrations are deleterious to β2AR-mediated cAMP formation, an effect that can be rescued to a degree in the presence of the cysteine-donating antioxidant N-acetyl-L-cysteine. Our results reveal that the oxidative state of β2AR may contribute to receptor functionality and may, at least in part, explain β2-agonist tachyphylaxis.
Collapse
Affiliation(s)
- Kirti Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA
| | - Razan L Teyani
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA; Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, GA 31207, USA.
| |
Collapse
|
5
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
6
|
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types. Biophys J 2022; 121:2693-2711. [PMID: 35717559 DOI: 10.1016/j.bpj.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types of which the enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally, but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell (VCell) environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform-specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.
Collapse
|
7
|
Rich TC, Leavesley SJ, Brandon AP, Evans CA, Raju SV, Wagener BM. Phosphodiesterase 4 mediates interleukin-8-induced heterologous desensitization of the β 2 -adrenergic receptor. FASEB J 2021; 35:e21946. [PMID: 34555226 DOI: 10.1096/fj.202002712rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by decreased alveolar-capillary barrier function, pulmonary edema consisting of proteinaceous fluid, and inhibition of net alveolar fluid transport responsible for resolution of pulmonary edema. There is currently no pharmacotherapy that has proven useful to prevent or treat ARDS, and two trials using beta-agonist therapy to treat ARDS demonstrated no effect. Prior studies indicated that IL-8-induced heterologous desensitization of the beta2-adrenergic receptor (β2 -AR) led to decreased beta-agonist-induced mobilization of cyclic adenosine monophosphate (cAMP). Interestingly, phosphodiesterase (PDE) 4 inhibitors have been used in human airway diseases characterized by low intracellular cAMP levels and increases in specific cAMP hydrolyzing activity. Therefore, we hypothesized that PDE4 would mediate IL-8-induced heterologous internalization of the β2 -AR and that PDE4 inhibition would restore beta-agonist-induced functions. We determined that CINC-1 (a functional IL-8 analog in rats) induces internalization of β2 -AR from the cell surface, and arrestin-2, PDE4, and β2 -AR form a complex during this process. Furthermore, we determined that cAMP associated with the plasma membrane was adversely affected by β2 -AR heterologous desensitization. Additionally, we determined that rolipram, a PDE4 inhibitor, reversed CINC-1-induced derangements of cAMP and also caused β2 -AR to successfully recycle back to the cell surface. Finally, we demonstrated that rolipram could reverse CINC-1-mediated inhibition of beta-agonist-induced alveolar fluid clearance in a murine model of trauma-shock. These results indicate that PDE4 plays a role in CINC-1-induced heterologous internalization of the β2 -AR; PDE4 inhibition reverses these effects and may be a useful adjunct in particular ARDS patients.
Collapse
Affiliation(s)
- Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA.,Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Silas J Leavesley
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA.,Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.,Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama, USA
| | - Angela P Brandon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cilina A Evans
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - S Vamsee Raju
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brant M Wagener
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Extracellular metabolism of 3',5'-cyclic AMP as a source of interstitial adenosine in the rat airways. Biochem Pharmacol 2021; 192:114713. [PMID: 34331910 DOI: 10.1016/j.bcp.2021.114713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/29/2023]
Abstract
In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the β2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that β2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.
Collapse
|
9
|
The cAMP-phosphodiesterase 4 (PDE4) controls β-adrenoceptor- and CFTR-dependent saliva secretion in mice. Biochem J 2021; 478:1891-1906. [PMID: 33944911 DOI: 10.1042/bcj20210212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Saliva, while often taken for granted, is indispensable for oral health and overall well-being, as inferred from the significant impairments suffered by patients with salivary gland dysfunction. Here, we show that treatment with several structurally distinct PAN-PDE4 inhibitors, but not a PDE3 inhibitor, induces saliva secretion in mice, indicating it is a class-effect of PDE4 inhibitors. In anesthetized mice, while neuronal regulations are suppressed, PDE4 inhibition potentiates a β-adrenoceptor-induced salivation, that is ablated by the β-blocker Propranolol and is absent from homozygous ΔF508-CFTR mice lacking functional CFTR. These data suggest that PDE4 acts within salivary glands to gate saliva secretion that is contingent upon the cAMP/PKA-dependent activation of CFTR. Indeed, PDE4 contributes the majority of total cAMP-hydrolytic capacity in submandibular-, sublingual-, and parotid glands, the three major salivary glands of the mouse. In awake mice, PDE4 inhibitor-induced salivation is reduced by CFTR deficiency or β-blockers, but also by the muscarinic blocker Atropine, suggesting an additional, central/neuronal mechanism of PDE4 inhibitor action. The PDE4 family comprises four subtypes, PDE4A-D. Ablation of PDE4D, but not PDE4A-C, produced a minor effect on saliva secretion, implying that while PDE4D may play a predominant role, PDE4 inhibitor-induced salivation results from the concurrent inactivation of multiple (at least two) PDE4 subtypes. Taken together, our data reveal a critical role for PDE4/PDE4D in controlling CFTR function in an in vivo model and in inducing salivation, hinting at a therapeutic potential of PDE4 inhibition for cystic fibrosis and conditions associated with xerostomia.
Collapse
|
10
|
Turner MJ, Abbott-Banner K, Thomas DY, Hanrahan JW. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol Ther 2021; 224:107826. [PMID: 33662448 DOI: 10.1016/j.pharmthera.2021.107826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF) lung disease results from mutations in the CFTR anion channel that reduce anion and fluid secretion by airway epithelia. Impaired secretion compromises airway innate defence mechanisms and leads to bacterial colonization, excessive inflammation and tissue damage; thus, restoration of CFTR function is the goal of many CF therapies. CFTR channels are activated by cyclic nucleotide-dependent protein kinases. The second messengers 3'5'-cAMP and 3'5'-cGMP are hydrolysed by a large family of cyclic nucleotide phosphodiesterases that provide subcellular spatial and temporal control of cyclic nucleotide-dependent signalling. Selective inhibition of these enzymes elevates cyclic nucleotide levels, leading to activation of CFTR and other downstream effectors. Here we examine members of the PDE family that are likely to regulate CFTR-dependent ion and fluid secretion in the airways and discuss other actions of PDE inhibitors that can influence cyclic nucleotide-regulated mucociliary transport, inflammation and bronchodilation. Finally, we review PDE inhibitors and the potential benefits they could provide as CF therapeutics.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada.
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Gao J, Xu G, Xu P. Comparative transcriptome analysis reveals metabolism transformation in Coilia nasus larvae during the mouth-open period. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100712. [DOI: 10.1016/j.cbd.2020.100712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023]
|
12
|
Turner MJ, Dauletbaev N, Lands LC, Hanrahan JW. The Phosphodiesterase Inhibitor Ensifentrine Reduces Production of Proinflammatory Mediators in Well Differentiated Bronchial Epithelial Cells by Inhibiting PDE4. J Pharmacol Exp Ther 2020; 375:414-429. [PMID: 33012706 DOI: 10.1124/jpet.120.000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel that impair airway salt and fluid secretion. Excessive release of proinflammatory cytokines and chemokines by CF bronchial epithelium during airway infection leads to chronic inflammation and a slow decline in lung function; thus, there is much interest in finding safe and effective treatments that reduce inflammation in CF. We showed previously that the cyclic nucleotide phosphodiesterase (PDE) inhibitor ensifentrine (RPL554; Verona Pharma) stimulates the channel function of CFTR mutants with abnormal gating and also those with defective trafficking that are partially rescued using a clinically approved corrector drug. PDE inhibitors also have known anti-inflammatory effects; therefore, we examined whether ensifentrine alters the production of proinflammatory cytokines in CF bronchial epithelial cells. Ensifentrine reduced the production of monocyte chemoattractant protein-1 and granulocyte monocyte colony-stimulating factor (GM-CSF) during challenge with interleukin-1β Comparing the effect of ensifentrine with milrinone and roflumilast, selective PDE3 and PDE4 inhibitors, respectively, demonstrated that the anti-inflammatory effect of ensifentrine was mainly due to inhibition of PDE4. Beneficial modulation of GM-CSF was further enhanced when ensifentrine was combined with low concentrations of the β 2-adrenergic agonist isoproterenol or the corticosteroid dexamethasone. The results indicate that ensifentrine may have beneficial anti-inflammatory effects in CF airways particularly when used in combination with β 2-adrenergic agonists or corticosteroids. SIGNIFICANCE STATEMENT: Airway inflammation that is disproportionate to the burden of chronic airway infection causes much of the pathology in the cystic fibrosis (CF) lung. We show here that ensifentrine beneficially modulates the release of proinflammatory factors in well differentiated CF bronchial epithelial cells that is further enhanced when combined with β2-adrenergic agonists or low-concentration corticosteroids. The results encourage further clinical testing of ensifentrine, alone and in combination with β2-adrenergic agonists or low-concentration corticosteroids, as a novel anti-inflammatory therapy for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Nurlan Dauletbaev
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Larry C Lands
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - John W Hanrahan
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| |
Collapse
|
13
|
Wang Y, Zhao J, Cai Y, Ballard HJ. Cystic fibrosis transmembrane conductance regulator-dependent bicarbonate entry controls rat cardiomyocyte ATP release via pannexin1 through mitochondrial signalling and caspase activation. Acta Physiol (Oxf) 2020; 230:e13495. [PMID: 32386453 DOI: 10.1111/apha.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
AIM Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the heart, but its function there is unclear. CFTR regulates an ATP release pore in many tissues, but the identity and regulatory mechanism of the pore are unknown. We investigated the role of CFTR in ATP release from primary cardiomyocytes and ventricular wall in vivo. METHODS Proteins involved in the signalling pathway for ATP release during simulated ischaemia (lactic acid treatment) were investigated using inhibitors and siRNA; colocalization was identified by coimmunofluorescence and proximity ligation assays; changes in near-membrane pH and calcium were identified with total internal reflection microscopy; in vivo ATP release was investigated using interstitial microdialysis of rat heart. RESULTS Lactic acid-induced CFTR-dependent ATP release from cultured cardiomyocytes and left ventricle in vivo. Lactic acid entry elevated near-membrane calcium, which involved Na/H- and Na/Ca-exchangers colocalized with CFTR. Calcium entry-induced CFTR activation, which involved cAMP, protein kinase A, FAK, Pyk2 and Src. Removal of extracellular bicarbonate abolished cardiomyocyte ATP release induced by lactic acid or CFTR activators. Bicarbonate stimulated cytochrome c expression, cytochrome c release and ATP release from isolated cardiomyocyte mitochondria. Pannexin 1 (Panx1) colocalized with CFTR. Lactic acid increased cardiomyocyte caspase activity: caspase inhibitors or Panx1 siRNA abolished cardiomyocyte ATP release, while pannexin inhibition abolished cardiac ATP release in vivo. CONCLUSION During simulated ischaemia, CFTR-dependent bicarbonate entry stimulated ATP and cytochrome c release from mitochondria; in the cytoplasm, cytochrome c-activated caspase 3, which in turn activated Panx1, and ATP was released through the opened Panx1 channel.
Collapse
Affiliation(s)
- Yongshun Wang
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Junjun Zhao
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Yin Cai
- Department of Anaesthesiology The University of Hong Kong Pokfulam Hong Kong
| | - Heather J. Ballard
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong
| |
Collapse
|
14
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
15
|
Ahuja M, Chung WY, Lin WY, McNally BA, Muallem S. Ca 2+ Signaling in Exocrine Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035279. [PMID: 31636079 DOI: 10.1101/cshperspect.a035279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) and cyclic AMP (cAMP) signaling cross talk and synergize to stimulate the cardinal functions of exocrine cells, regulated exocytosis, and fluid and electrolyte secretion. This physiological process requires the organization of the two signaling pathways into complexes at defined cellular domains and close placement. Such domains are formed by membrane contact sites (MCS). This review discusses the basic properties of Ca2+ signaling in exocrine cells, the role of MCS in the organization of cell signaling and in cross talk and synergism between the Ca2+ and cAMP signaling pathways and, finally, the mechanism by which the Ca2+ and cAMP pathways synergize to stimulate epithelial fluid and electrolyte secretion.
Collapse
Affiliation(s)
- Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Wei-Yin Lin
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Beth A McNally
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| |
Collapse
|
16
|
Turner MJ, Luo Y, Thomas DY, Hanrahan JW. The dual phosphodiesterase 3/4 inhibitor RPL554 stimulates rare class III and IV CFTR mutants. Am J Physiol Lung Cell Mol Physiol 2020; 318:L908-L920. [PMID: 32159371 DOI: 10.1152/ajplung.00285.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over 2,000 mutations have been reported in the cystic fibrosis transmembrane conductance regulator (cftr) gene, many of which cause disease but are rare and have no effective treatment. Thus, there is an unmet need for new, mutation-agnostic therapies for cystic fibrosis (CF). Phosphodiesterase (PDE) inhibitors are one such class of therapeutics that have been shown to elevate intracellular cAMP levels and stimulate CFTR-dependent anion secretion in human airway epithelia; however, the number of people with CF that could be helped by PDE inhibitors remains to be determined. Here we used Fisher rat thyroid (FRT) cells stably transduced with rare human CFTR mutants and studied their responsiveness to the dual phosphodiesterase 3/4 inhibitor RPL554 (Verona Pharma). Through its inhibitory effect on PDE4D, we find that RPL554 can elevate intracellular cAMP leading to a potentiation of forskolin-stimulated current mediated by R334W, T338I, G551D, and S549R mutants of CFTR when used alone or in combination with CFTR modulators. We also were able to reproduce these effects of RPL554 on G551D-CFTR when it was expressed in primary human bronchial epithelial cells, indicating that RPL554 would have stimulatory effects on rare CFTR mutants in human airways and validating FRT cells as a model for PDE inhibitor studies. Furthermore, we provide biochemical evidence that VX-809 causes surprisingly robust correction of several class III and IV CFTR mutants. Together, our findings further support the therapeutic potential of RPL554 for patients with CF with class III/IV mutations and emphasize the potential of PDEs as potential drug targets that could benefit patients with CF.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McGill University, Montreal, Quebec, Canada.,Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yishan Luo
- Department of Physiology, McGill University, Montreal, Quebec, Canada.,Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada
| | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, Quebec, Canada.,Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Hasan S, Sebo P, Osicka R. A guide to polarized airway epithelial models for studies of host-pathogen interactions. FEBS J 2018; 285:4343-4358. [PMID: 29896776 DOI: 10.1111/febs.14582] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Mammalian lungs are organs exhibiting the cellular and spatial complexity required for gas exchange to support life. The respiratory epithelium internally lining the airways is susceptible to infections due to constant exposure to inhaled microbes. Biomedical research into respiratory bacterial infections in humans has been mostly carried out using small mammalian animal models or two-dimensional, submerged cultures of undifferentiated epithelial cells. These experimental model systems have considerable limitations due to host specificity of bacterial pathogens and lack of cellular and morphological complexity. This review describes the in vitro differentiated and polarized airway epithelial cells of human origin that are used as a model to study respiratory bacterial infections. Overall, these models recapitulate key aspects of the complexity observed in vivo and can help in elucidating the molecular details of disease processes observed during respiratory bacterial infections.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
18
|
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, Gudmundsson GH. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect Immun 2018; 86:e00445-17. [PMID: 29203545 PMCID: PMC5820963 DOI: 10.1128/iai.00445-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | | | - Irena Linhartova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | |
Collapse
|
19
|
Brewington JJ, Backstrom J, Feldman A, Kramer EL, Moncivaiz JD, Ostmann AJ, Zhu X, Lu LJ, Clancy JP. Chronic β2AR stimulation limits CFTR activation in human airway epithelia. JCI Insight 2018; 3:93029. [PMID: 29467332 DOI: 10.1172/jci.insight.93029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
Traditional pulmonary therapies for cystic fibrosis (CF) target the downstream effects of CF transmembrane conductance regulator (CFTR) dysfunction (the cause of CF). Use of one such therapy, β-adrenergic bronchodilators (such as albuterol), is nearly universal for airway clearance. Conversely, novel modulator therapies restore function to select mutant CFTR proteins, offering a disease-modifying treatment. Recent trials of modulators targeting F508del-CFTR, the most common CFTR mutation, suggest that chronic β-agonist use may undermine clinical modulator benefits. We therefore sought to understand the impact of chronic or excess β-agonist exposure on CFTR activation in human airway epithelium. The present studies demonstrate a greater than 60% reduction in both wild-type and modulator-corrected F508del-CFTR activation following chronic exposure to short- and long-acting β-agonists. This reduction was due to reduced cellular generation of cAMP downstream of the β-2 adrenergic receptor-G protein complex. Our results point towards a posttranscriptional reduction in adenylyl cyclase function as the mechanism of impaired CFTR activation produced by prolonged β-agonist exposure. β-Agonist-induced CFTR dysfunction was sufficient to abrogate VX809/VX770 modulation of F508del-CFTR in vitro. Understanding the clinical relevance of our observations is critical for CF patients using these drugs, and for investigators to inform future CFTR modulator drug trials.
Collapse
Affiliation(s)
| | | | - Amanda Feldman
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | | | | | | | - Xiaoting Zhu
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - L Jason Lu
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John P Clancy
- Division of Pulmonary Medicine, Department of Pediatrics, and
| |
Collapse
|
20
|
Chen H, Chan HC. Amplification of FSH signalling by CFTR and nuclear soluble adenylyl cyclase in the ovary. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:78-85. [PMID: 28345252 DOI: 10.1111/1440-1681.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is one of the most important signalling pathways widely distributed in most eukaryotic cells. The activation of the canonical cAMP/PKA pathway depends on transmembrane adenylyl cyclase (tmAC). Recently, soluble adenylyl cyclase (sAC), which is activated by HCO3- or Ca2+ , emerges to provide an alternative way to activate cAMP/PKA pathway with the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- /HCO3- -conducting anion channel, as a key player. This review summarizes new progress in the investigation of the CFTR/HCO3- -dependent sAC signalling and its essential role in various reproductive processes, particularly in ovarian functions. We present the evidence for a CFTR/HCO3- -dependent nuclear sAC signalling cascade that amplifies the FSH-stimulated cAMP/PKA pathway, traditionally thought to involve tmAC, in granulosa for the regulation of oestrogen production and granulosa cell proliferation. The implication of the CFTR/HCO3- /sAC pathway in amplifying other receptor-activated cAMP/PKA signalling in a wide variety of cell types and pathophysiological processes, including aging, is also discussed.
Collapse
Affiliation(s)
- Hui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| |
Collapse
|
21
|
Raju SV, Rasmussen L, Sloane PA, Tang LP, Libby EF, Rowe SM. Roflumilast reverses CFTR-mediated ion transport dysfunction in cigarette smoke-exposed mice. Respir Res 2017; 18:173. [PMID: 28923049 PMCID: PMC5604356 DOI: 10.1186/s12931-017-0656-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Dysfunction in cystic fibrosis transmembrane conductance regulator (CFTR) can be elicited by cigarette smoke and is observed in patients with chronic bronchitis. We have previously demonstrated in human airway epithelial cell monolayers that roflumilast, a clinically approved phosphodiesterase 4 inhibitor that reduces the risk of exacerbations in chronic obstructive pulmonary disease patients with chronic bronchitis and a history of exacerbations, activates CFTR-dependent chloride secretion via a cAMP-mediated pathway, partially restores the detrimental effects of cigarette smoke on CFTR-mediated ion transport, and increases CFTR-dependent gastrointestinal fluid secretion in isolated murine intestine segments. Based on these findings, we hypothesized that roflumilast could improve CFTR-mediated chloride transport and induce secretory diarrhea in mice exhibiting cigarette smoke-induced CFTR dysfunction. METHODS A/J mice expressing wild type CFTR (+/+) were exposed to cigarette smoke or air with or without roflumilast and the effect of treatment on CFTR-dependent chloride transport was quantified using nasal potential difference (NPD) measurements in vivo and short-circuit current (Isc) analysis of trachea ex vivo. Stool specimen were collected and the wet/dry ratio measured to assess the effect of roflumilast on secretory diarrhea. RESULTS Acute roflumilast treatment increased CFTR-dependent chloride transport in both smoke- and air-exposed mice (smoke, -2.0 ± 0.4 mV, 131.3 ± 29.3 μA/cm2, P < 0.01 and air, 3.9 ± 0.8 mV, 147.7 ± 38.0 μA/cm2, P < 0.01 vs. vehicle -0.3 ± 0.7 mV, 10.4 ± 7.0 μA/cm2). Oral administration of roflumilast over five weeks completely reversed the deleterious effects of cigarette smoke on CFTR function in smoke-exposed animals, in which CFTR-dependent chloride transport was 64% that of air controls (roflumilast, -15.22 ± 2.7 mV vs. air, -14.45 ± 1.4 mV, P < 0.05). Smoke exposure increased the wet/dry ratio of stool specimen to a level beyond which roflumilast had little additional effect. CONCLUSIONS Roflumilast effectively rescues CFTR-mediated chloride transport in vivo, further implicating CFTR activation as a mechanism through which roflumilast benefits patients with bronchitis.
Collapse
Affiliation(s)
- S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Cell, Integrative, and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence Rasmussen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter A Sloane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Li Ping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Falk Libby
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Cell, Integrative, and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, USA. .,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,MCLM 702, 1918 University Blvd, Birmingham, AL, 35294-0006, USA.
| |
Collapse
|
22
|
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor. Sci Rep 2016; 6:27390. [PMID: 27278076 PMCID: PMC4899698 DOI: 10.1038/srep27390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.
Collapse
|
23
|
Turner MJ, Saint-Criq V, Patel W, Ibrahim SH, Verdon B, Ward C, Garnett JP, Tarran R, Cann MJ, Gray MA. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia. J Physiol 2015; 594:1643-61. [PMID: 26574187 PMCID: PMC4799982 DOI: 10.1113/jp271309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist-stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP-regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin-stimulated elevations in intracellular cAMP as well as both adenosine- and forskolin-stimulated increases in CFTR-dependent transepithelial short-circuit current, in polarised cultures of Calu-3 human airway cells. This CO2 -induced reduction in anion secretion was not due to a decrease in HCO3 (-) transport given that neither a change in CFTR-dependent HCO3 (-) efflux nor Na(+) /HCO3 (-) cotransporter-dependent HCO3 (-) influx were CO2 -sensitive. Hypercapnia also reduced the volume of forskolin-stimulated fluid secretion over 24 h, yet had no effect on the HCO3 (-) content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR-dependent, electrogenic Cl(-) and fluid secretion, but not CFTR-dependent HCO3 (-) secretion, which highlights a differential sensitivity of Cl(-) and HCO3 (-) transporters to raised CO2 in Calu-3 cells. Hypercapnia also reduced forskolin-stimulated CFTR-dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs.
Collapse
Affiliation(s)
- Mark J Turner
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Department of Physiology, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| | - Vinciane Saint-Criq
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Waseema Patel
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Salam H Ibrahim
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Bernard Verdon
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institute for Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - James P Garnett
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin J Cann
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Michael A Gray
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
24
|
Turner MJ, Matthes E, Billet A, Ferguson AJ, Thomas DY, Randell SH, Ostrowski LE, Abbott-Banner K, Hanrahan JW. The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am J Physiol Lung Cell Mol Physiol 2015; 310:L59-70. [PMID: 26545902 DOI: 10.1152/ajplung.00324.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF), a genetic disease caused by mutations in the CFTR gene, is a life-limiting disease characterized by chronic bacterial airway infection and severe inflammation. Some CFTR mutants have reduced responsiveness to cAMP/PKA signaling; hence, pharmacological agents that elevate intracellular cAMP are potentially useful for the treatment of CF. By inhibiting cAMP breakdown, phosphodiesterase (PDE) inhibitors stimulate CFTR in vitro and in vivo. Here, we demonstrate that PDE inhibition by RPL554, a drug that has been shown to cause bronchodilation in asthma and chronic obstructive pulmonary disease (COPD) patients, stimulates CFTR-dependent ion secretion across bronchial epithelial cells isolated from patients carrying the R117H/F508del CF genotype. RPL554-induced CFTR activity was further increased by the potentiator VX-770, suggesting an additional benefit by the drug combination. RPL554 also increased cilia beat frequency in primary human bronchial epithelial cells. The results indicate RPL554 may increase mucociliary clearance through stimulation of CFTR and increasing ciliary beat frequency and thus could provide a novel therapeutic option for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada;
| | - Elizabeth Matthes
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Arnaud Billet
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Amy J Ferguson
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - David Y Thomas
- McGill CF Translational Research Centre, Montreal, Canada; Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Canada
| | - Scott H Randell
- Department of Cell Biology and Physiology and the Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - John W Hanrahan
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
25
|
Ge X, Milenkovic L, Suyama K, Hartl T, Purzner T, Winans A, Meyer T, Scott MP. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma. eLife 2015; 4. [PMID: 26371509 PMCID: PMC4569902 DOI: 10.7554/elife.07068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022] Open
Abstract
Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors. DOI:http://dx.doi.org/10.7554/eLife.07068.001 A communication system in cells called the Hedgehog signaling pathway plays an essential role in the formation of tissues and organs in animal embryos. The activity of the pathway is carefully controlled during development and if Hedgehog signaling is disrupted it can lead to developmental defects and particular types of cancer. Some of these cancers can be treated with a drug called vismodegib, which targets a particular molecule in the Hedgehog signaling pathway. However, tumor cells can become resistant to this drug, so researchers are hoping to find new therapies that target other aspects of the signaling pathway. Hedgehog signaling promotes the division of brain cells called granule neuron precursor cells (or GNP cells for short). If the signaling pathway is over-active it can trigger the GNP cells to divide more than they should. This can lead to medulloblastoma, which is the most common type of brain tumor that affects children. Proteins called Neuropilins—which bind to molecules known as Semaphorins—promote Hedgehog signaling and the formation of medulloblastoma, but it was not clear how this works. Here Ge et al. studied the role of Neuropilin in cultured cells and in the cerebellum of mice. The experiments show that Semaphorin 3 promotes the accumulation of an enzyme called PDE4D at the cell membrane. PDE4D interacts with Neuropilin and blocks the activity of another enzyme that normally inhibits Hedgehog signaling. In mice that lack Neuropilin and Semophorin 3, the GNP cells are less able to divide, which leads to abnormal development of the cerebellum. Further experiments show that drugs that target PDE4D inhibit both the Hedgehog pathway and the growth of tumors that are resistant to vismodegib treatment. Ge et al.'s findings uncover a new way in which Hedgehog signaling is regulated and highlight a potential new strategy for treating medulloblastoma and other similar tumors. Current PDE4D inhibitors are associated with severe side effects, so the next challenge is to develop new drugs that have fewer side effects. DOI:http://dx.doi.org/10.7554/eLife.07068.002
Collapse
Affiliation(s)
- Xuecai Ge
- Department of Developmental Biology, Department of Genetics, Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| | - Ljiljana Milenkovic
- Department of Developmental Biology, Department of Genetics, Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| | - Kaye Suyama
- Department of Developmental Biology, Department of Genetics, Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| | - Tom Hartl
- Department of Developmental Biology, Department of Genetics, Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| | - Teresa Purzner
- Department of Developmental Biology, Department of Genetics, Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| | - Amy Winans
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Matthew P Scott
- Department of Developmental Biology, Department of Genetics, Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
26
|
Tyrrell J, Qian X, Freire J, Tarran R. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1068-77. [PMID: 25795727 DOI: 10.1152/ajplung.00395.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/20/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis.
Collapse
Affiliation(s)
- Jean Tyrrell
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina
| | - Xiaozhong Qian
- Forest Research Institute, Incorporated, Jersey City, New Jersey
| | - Jose Freire
- Forest Research Institute, Incorporated, Jersey City, New Jersey
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina;
| |
Collapse
|
27
|
Monterisi S, Casavola V, Zaccolo M. Local modulation of cystic fibrosis conductance regulator: cytoskeleton and compartmentalized cAMP signalling. Br J Pharmacol 2014; 169:1-9. [PMID: 23072488 DOI: 10.1111/bph.12017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/12/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022] Open
Abstract
The cystic fibrosis conductance regulator (CFTR) is a cAMP-regulated Cl(-) channel expressed predominantly at the apical membrane of secreting epithelial cells. Mutations in the CFTR gene lead to cystic fibrosis, the most frequent genetic disease in the Caucasian population. The most common mutation, a deletion of phenylalanine at position 508 (F508del), impairs CFTR folding and chloride channel function. Although an intense effort is under way to identify compounds that target the F508del CFTR structural defect and promote its expression and stability at the plasma membrane, so far their clinical efficacy has proven to be poor, highlighting the necessity to better understand the molecular mechanism of CFTR regulation and of the pathogenesis of the disease. Accumulating evidence suggests that the inclusion of the CFTR in macromolecular complexes and its interaction with the cortical cytoskeleton may play a key role in fine-tuning the regulation of channel function. Here we review some recent findings that support a critical role for protein-protein interactions involving CFTR and for the cytoskeleton in promoting local control of channel activity. These findings indicate that compounds that rescue and stabilize CFTR at the apical membrane may not be sufficient to restore its function unless the appropriate intracellular milieu is also reconstituted.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | | | | |
Collapse
|
28
|
Conti M, Mika D, Richter W. Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. ACTA ACUST UNITED AC 2014; 143:29-38. [PMID: 24378905 PMCID: PMC3874571 DOI: 10.1085/jgp.201311083] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marco Conti
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | | | | |
Collapse
|
29
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
30
|
Lambert JA, Raju SV, Tang LP, McNicholas CM, Li Y, Courville CA, Farris RF, Coricor GE, Smoot LH, Mazur MM, Dransfield MT, Bolger GB, Rowe SM. Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis. Am J Respir Cell Mol Biol 2014; 50:549-58. [PMID: 24106801 DOI: 10.1165/rcmb.2013-0228oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking causes acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction and is associated with delayed mucociliary clearance and chronic bronchitis. Roflumilast is a clinically approved phosphodiesterase 4 inhibitor that improves lung function in patients with chronic bronchitis. We hypothesized that its therapeutic benefit was related in part to activation of CFTR. Primary human bronchial epithelial (HBE) cells, Calu-3, and T84 monolayers were exposed to whole cigarette smoke (WCS) or air with or without roflumilast treatment. CFTR-dependent ion transport was measured in modified Ussing chambers. Airway surface liquid (ASL) was determined by confocal microscopy. Intestinal fluid secretion of ligated murine intestine was monitored ex vivo. Roflumilast activated CFTR-dependent anion transport in normal HBE cells with a half maximal effective concentration of 2.9 nM. Roflumilast partially restored CFTR activity in WCS-exposed HBE cells (5.3 ± 1.1 μA/cm(2) vs. 1.2 ± 0.2 μA/cm(2) [control]; P < 0.05) and was additive with ivacaftor, a specific CFTR potentiator approved for the treatment of CF. Roflumilast improved the depleted ASL depth of HBE monolayers exposed to WCS (9.0 ± 3.1 μm vs. 5.6 ± 2.0 μm [control]; P < 0.05), achieving 79% of that observed in air controls. CFTR activation by roflumilast also induced CFTR-dependent fluid secretion in murine intestine, increasing the wet:dry ratio and the diameter of ligated murine segments. Roflumilast activates CFTR-mediated anion transport in airway and intestinal epithelia via a cyclic adenosine monophosphate-dependent pathway and partially reverses the deleterious effects of WCS, resulting in augmented ASL depth. Roflumilast may benefit patients with chronic obstructive pulmonary disease with chronic bronchitis by activating CFTR, which may also underlie noninfectious diarrhea caused by roflumilast.
Collapse
|
31
|
Blanchard E, Zlock L, Lao A, Mika D, Namkung W, Xie M, Scheitrum C, Gruenert DC, Verkman AS, Finkbeiner WE, Conti M, Richter W. Anchored PDE4 regulates chloride conductance in wild-type and ΔF508-CFTR human airway epithelia. FASEB J 2013; 28:791-801. [PMID: 24200884 DOI: 10.1096/fj.13-240861] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 μA/cm(2)) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 μA/cm(2)) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼ 25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.
Collapse
Affiliation(s)
- Elise Blanchard
- 1Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, 513 Parnassus Ave., Box 0556, San Francisco, CA 94143-0556, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Billet A, Hanrahan JW. The secret life of CFTR as a calcium-activated chloride channel. J Physiol 2013; 591:5273-8. [PMID: 23959675 PMCID: PMC3936366 DOI: 10.1113/jphysiol.2013.261909] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/15/2013] [Indexed: 12/27/2022] Open
Abstract
cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of <200 amino acids). Thus it is not surprising that CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations.
Collapse
Affiliation(s)
- Arnaud Billet
- J. W. Hanrahan: Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6.
| | | |
Collapse
|
33
|
Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells. PLoS One 2013; 8:e69670. [PMID: 23936072 PMCID: PMC3720563 DOI: 10.1371/journal.pone.0069670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE) that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4) inhibitor Roflumilast N-oxide (RNO), alters RSV infection of well-differentiated HBE (WD-HBE) in vitro. WD-HBE were RSV infected in the presence or absence of RNO (0.1-100 nM). Viral infection (staining of F and G proteins, nucleoprotein RNA level), mRNA of ICAM-1, ciliated cell markers (digital high speed videomicroscopy, β-tubulin immunofluorescence, Foxj1 and Dnai2 mRNA), Goblet cells (PAS), mRNA of MUC5AC and CLCA1, mRNA and protein level of IL-13, IL-6, IL-8, TNFα, formation of H2O2 and the anti-oxidative armamentarium (mRNA of Nrf2, HO-1, GPx; total antioxidant capacity (TAC) were measured at day 10 or 15 post infection. RNO inhibited RSV infection of WD-HBE, prevented the loss of ciliated cells and markers, reduced the increase of MUC5AC and CLCA1 and inhibited the increase of IL-13, IL-6, IL-8, TNFα and ICAM-1. Additionally RNO reversed the reduction of Nrf2, HO-1 and GPx mRNA levels and consequently restored the TAC and reduced the H2O2 formation. RNO inhibits RSV infection of WD-HBE cultures and mitigates the cytopathological changes associated to this virus.
Collapse
|
34
|
Frizzell RA, Hanrahan JW. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2013; 2:a009563. [PMID: 22675668 DOI: 10.1101/cshperspect.a009563] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes.
Collapse
Affiliation(s)
- Raymond A Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
35
|
St Clair JR, Liao Z, Larson ED, Proenza C. PKA-independent activation of I(f) by cAMP in mouse sinoatrial myocytes. Channels (Austin) 2013; 7:318-21. [PMID: 23756695 DOI: 10.4161/chan.25293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN4) channels produce the "funny current," I(f), which contributes to spontaneous pacemaking in sinoatrial myocytes (SAMs). The C-terminus of HCN channels inhibits voltage-dependent gating, and cAMP binding relieves this "autoinhibition." We previously showed 1) that autoinhibition in HCN4 can be relieved in the absence of cAMP in some cellular contexts and 2) that PKA is required for β adrenergic receptor (βAR) signaling to HCN4 in SAMs. Together, these results raise the possibility that native HCN channels in SAMs may be insensitive to direct activation by cAMP. Here, we examined PKA-independent activation of If by cAMP in SAMs. We observed similar robust activation of If by exogenous cAMP and Rp-cAMP (an analog than cannot activate PKA). Thus PKA-dependent βAR-to-HCN signaling does not result from cAMP insensitivity of sinoatrial HCN channels and might instead arise via PKA-dependent limitation of cAMP production and/or cAMP access to HCN channels in SAMs.
Collapse
Affiliation(s)
- Joshua R St Clair
- Department of Physiology and Biophysics; University of Colorado Denver-Anschutz Medical Campus; Aurora, CO USA
| | | | | | | |
Collapse
|
36
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
37
|
Milara J, Armengot M, Bañuls P, Tenor H, Beume R, Artigues E, Cortijo J. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol 2012; 166:2243-62. [PMID: 22385203 DOI: 10.1111/j.1476-5381.2012.01929.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Mucociliary malfunction occurs in chronic obstructive pulmonary disease (COPD) and compromised functions of ciliated bronchial epithelial cells may contribute to this. Cigarette smoke, a major risk factor for COPD, impairs ciliary beat frequency (CBF). cAMP augments CBF. This in vitro study addressed, in differentiated, primary human bronchial epithelial cells, whether roflumilast N-oxide, a PDE4 inhibitor, (i) augments CBF; (ii) prevents the reduction in CBF induced by cigarette smoke extract (CSE); and (iii) protects against the loss of the ciliated phenotype following long-term CSE exposure. EXPERIMENTAL APPROACH Air-liquid interface cultured human bronchial epithelial cells were incubated with roflumilast N-oxide and exposed to CSE. CBF was assessed by digital high speed video microscopy (DHSV). Ciliated cells were characterized by β-tubulin IV staining and analyses of Foxj1 and Dnai2 mRNA and protein (real-time quantitative PCR, Western blotting). KEY RESULTS Roflumilast N-oxide concentration-dependently triggered a rapid and persistent increase in CBF and reversed the decrease in CBF following CSE. Long-term incubation of bronchial epithelial cells with CSE resulted in a loss in ciliated cells associated with reduced expression of the ciliated cell markers Foxj1 and Dnai2. The PDE4 inhibitor prevented this loss in the ciliated cell phenotype and the compromised Foxj1 and Dnai2 expression. The enhanced release of IL-13 following CSE, a cytokine that diminishes the proportion of ciliated cells and in parallel, reduces Foxj1 and Dnai2, was reversed by roflumilast N-oxide. CONCLUSION AND IMPLICATIONS Roflumilast N-oxide protected differentiated human bronchial epithelial cells from reduced CBF and loss of ciliated cells following CSE.
Collapse
Affiliation(s)
- J Milara
- Research Unit, University General Hospital Consortium, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Oldenburger A, Maarsingh H, Schmidt M. Multiple facets of cAMP signalling and physiological impact: cAMP compartmentalization in the lung. Pharmaceuticals (Basel) 2012; 5:1291-331. [PMID: 24281338 PMCID: PMC3816672 DOI: 10.3390/ph5121291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Anouk Oldenburger
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
39
|
Dekkers BGJ, Racké K, Schmidt M. Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther 2012; 137:248-65. [PMID: 23089371 DOI: 10.1016/j.pharmthera.2012.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibroblasts, substantially contribute to disease features by the release of inflammatory mediators, smooth muscle contraction, extracellular matrix deposition and structural changes in the airways. Current pharmacological treatment of both diseases intends to target the dynamic features of the endogenous intracellular suppressor cyclic AMP (cAMP). This review will summarize our current knowledge on cAMP and will emphasize on key discoveries and paradigm shifts reflecting the complex spatio-temporal nature of compartmentalized cAMP signalling networks in health and disease. As airway fibroblasts and airway smooth muscle cells are recognized as central players in the development and progression of asthma and COPD, we will focus on the role of cAMP signalling in their function in relation to airway function and plasticity. We will recapture on the recent identification of cAMP-sensing multi-protein complexes maintained by cAMP effectors, including A-kinase anchoring proteins (AKAPs), proteins kinase A (PKA), exchange protein directly activated by cAMP (Epac), cAMP-elevating seven-transmembrane (7TM) receptors and phosphodiesterases (PDEs) and we will report on findings indicating that the pertubation of compartmentalized cAMP signalling correlates with the pathopysiology of obstructive lung diseases. Future challenges include studies on cAMP dynamics and compartmentalization in the lung and the development of novel drugs targeting these systems for therapeutic interventions in chronic obstructive inflammatory diseases.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Center of Pharmacy, University of Groningen, The Netherlands.
| | | | | |
Collapse
|
40
|
Raju SV, Wang G. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia. PLoS One 2012; 7:e32112. [PMID: 22442662 PMCID: PMC3307712 DOI: 10.1371/journal.pone.0032112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 12/21/2022] Open
Abstract
Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC)) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B) adenosine receptor (A(2B)AR), largely abolished the adenosine-stimulated chloride transport, suggesting that A(2B)AR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2B)AR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.
Collapse
Affiliation(s)
- Sammeta V. Raju
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Guoshun Wang
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chen H, Guo JH, Lu YC, Ding GL, Yu MK, Tsang LL, Fok KL, Liu XM, Zhang XH, Chung YW, Huang P, Huang H, Chan HC. Impaired CFTR-dependent amplification of FSH-stimulated estrogen production in cystic fibrosis and PCOS. J Clin Endocrinol Metab 2012; 97:923-32. [PMID: 22170719 DOI: 10.1210/jc.2011-1363] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Estrogens play important roles in a wide range of physiological and pathological processes, and their biosynthesis is profoundly influenced by FSH that regulates the rate-limiting enzyme aromatase-converting estrogens from androgens. Abnormal estrogen levels are often seen in diseases such as ovarian disorders in polycystic ovarian syndrome (PCOS), an endocrine disorder affecting 5-10% of women of reproductive age, and cystic fibrosis (CF), a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR). OBJECTIVES We undertook the present study to investigate the mechanism underlying these ovarian disorders, which is not well understood. RESULTS FSH-stimulated cAMP-responsive element binding protein phosphorylation, aromatase expression, and estradiol production are found to be enhanced by HCO3- and a HCO3- sensor, the soluble adenylyl cyclase, which could be significantly reduced by CFTR inhibition or in ovaries or granulosa cells of cftr knockout/ΔF508 mutant mice. CFTR expression is found positively correlated with aromatase expression in human granulosa cells, supporting its role in regulating estrogen production in humans. Reduced CFTR and aromatase expression is also found in PCOS rodent models and human patients. CONCLUSIONS CFTR regulates ovarian estrogen biosynthesis by amplifying the FSH-stimulated signal via the nuclear soluble adenylyl cyclase. The present findings suggest that defective CFTR-dependent regulation of estrogen production may underlie the ovarian disorders seen in CF and PCOS.
Collapse
Affiliation(s)
- Hui Chen
- Epithelial Cell Biology Research Center, Room 408 Basic Medical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D, Reshkin SJ, Casavola V, Zaccolo M. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 2012; 125:1106-17. [PMID: 22302988 DOI: 10.1242/jcs.089086] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) mutation ΔF508CFTR still causes regulatory defects when rescued to the apical membrane, suggesting that the intracellular milieu might affect its ability to respond to cAMP regulation. We recently reported that overexpression of the Na(+)/H(+) exchanger regulatory factor NHERF1 in the cystic fibrosis (CF) airway cell line CFBE41o-rescues the functional expression of ΔF508CFTR by promoting F-actin organization and formation of the NHERF1-ezrin-actin complex. Here, using real-time FRET reporters of both PKA activity and cAMP levels, we find that lack of an organized subcortical cytoskeleton in CFBE41o-cells causes both defective accumulation of cAMP in the subcortical compartment and excessive cytosolic accumulation of cAMP. This results in reduced subcortical levels and increased cytosolic levels of PKA activity. NHERF1 overexpression in CFBE41o-cells restores chloride secretion, subcortical cAMP compartmentalization and local PKA activity, indicating that regulation of ΔF508CFTR function requires not only stable expression of the mutant CFTR at the cell surface but also depends on both generation of local cAMP signals of adequate amplitude and activation of PKA in proximity of its target. Moreover, we found that the knockdown of wild-type CFTR in the non-CF 16HBE14o-cells results in both altered cytoskeletal organization and loss of cAMP compartmentalization, whereas stable overexpression of wt CFTR in CF cells restores cytoskeleton organization and re-establishes the compartmentalization of cAMP at the plasma membrane. This suggests that the presence of CFTR on the plasma membrane influences the cytoskeletal organizational state and, consequently, cAMP distribution. Our data show that a sufficiently high concentration of cAMP in the subcortical compartment is required to achieve PKA-mediated regulation of CFTR activity.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of General and Environmental Physiology, University of Bari, Bari, 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC. Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2011; 302:C839-52. [PMID: 22116306 DOI: 10.1152/ajpcell.00361.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic AMP signals encode information required to differentially regulate a wide variety of cellular responses; yet it is not well understood how information is encrypted within these signals. An emerging concept is that compartmentalization underlies specificity within the cAMP signaling pathway. This concept is based on a series of observations indicating that cAMP levels are distinct in different regions of the cell. One such observation is that cAMP production at the plasma membrane increases pulmonary microvascular endothelial barrier integrity, whereas cAMP production in the cytosol disrupts barrier integrity. To better understand how cAMP signals might be compartmentalized, we have developed mathematical models in which cellular geometry as well as total adenylyl cyclase and phosphodiesterase activities were constrained to approximate values measured in pulmonary microvascular endothelial cells. These simulations suggest that the subcellular localizations of adenylyl cyclase and phosphodiesterase activities are by themselves insufficient to generate physiologically relevant cAMP gradients. Thus, the assembly of adenylyl cyclase, phosphodiesterase, and protein kinase A onto protein scaffolds is by itself unlikely to ensure signal specificity. Rather, our simulations suggest that reductions in the effective cAMP diffusion coefficient may facilitate the formation of substantial cAMP gradients. We conclude that reductions in the effective rate of cAMP diffusion due to buffers, structural impediments, and local changes in viscosity greatly facilitate the ability of signaling complexes to impart specificity within the cAMP signaling pathway.
Collapse
Affiliation(s)
- Wei P Feinstein
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
44
|
Schudt C, Hatzelmann A, Beume R, Tenor H. Phosphodiesterase inhibitors: history of pharmacology. Handb Exp Pharmacol 2011:1-46. [PMID: 21695634 DOI: 10.1007/978-3-642-17969-3_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.
Collapse
Affiliation(s)
- Christian Schudt
- Department of Biologics, Nycomed GmbH, 78467, Konstanz, Germany.
| | | | | | | |
Collapse
|
45
|
Xie M, Rich TC, Scheitrum C, Conti M, Richter W. Inactivation of multidrug resistance proteins disrupts both cellular extrusion and intracellular degradation of cAMP. Mol Pharmacol 2011; 80:281-93. [PMID: 21551375 PMCID: PMC3141887 DOI: 10.1124/mol.111.071134] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/06/2011] [Indexed: 12/20/2022] Open
Abstract
In addition to xenobiotics and several other endogenous metabolites, multidrug-resistance proteins (MRPs) extrude the second-messenger cAMP from various cells. Pharmacological and/or genetic inactivation of MRPs has been shown to augment intracellular cAMP signaling, an effect assumed to be a direct consequence of the blockade of cAMP extrusion. Here we provide evidence that the augmented intracellular cAMP levels are not due exclusively to the prevention of cAMP efflux because MRP inactivation is also associated with reduced cAMP degradation by phosphodiesterases (PDEs). Several prototypical MRP inhibitors block PDE activity at concentrations widely used to inhibit MRPs. Their dose-dependent effects in several paradigms of cAMP signaling are more consistent with their potency in inhibiting PDEs than MRPs. Moreover, genetic manipulation of MRP expression results in concomitant changes in PDE activity and protein levels, thus affecting cAMP degradation in parallel with cAMP efflux. These findings suggest that the effects of MRP inactivation on intracellular cAMP levels reported previously may be due in part to reduced degradation by PDEs and identify MRP-dependent transport mechanisms as novel regulators of cellular PDE expression levels. Mathematical simulations of cAMP signaling predict that selective ablation of MRP-dependent cAMP efflux per se does not affect bulk cytosolic cAMP levels, but may control cAMP levels in restricted submembrane compartments that are defined by small volume, high MRP activity, limited PDE activity, and limited exchange of cAMP with the bulk-cytosolic cAMP pool. Whether this regulation occurs in cells remains to be confirmed experimentally under conditions that do not affect PDE activity.
Collapse
Affiliation(s)
- Moses Xie
- Department of Gynecology, Obstetrics and Reproductive Sciences, University of California San Francisco, 513 Parnassus Ave., Box 0556, San Francisco, CA 94143-0556, USA
| | | | | | | | | |
Collapse
|
46
|
Pyle LC, Ehrhardt A, Mitchell LH, Fan L, Ren A, Naren AP, Li Y, Clancy JP, Bolger GB, Sorscher EJ, Rowe SM. Regulatory domain phosphorylation to distinguish the mechanistic basis underlying acute CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2011; 301:L587-97. [PMID: 21724857 DOI: 10.1152/ajplung.00465.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Modulator compounds intended to overcome disease-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) show significant promise in clinical testing for cystic fibrosis. However, the mechanism(s) of action underlying these compounds are not fully understood. Activation of CFTR ion transport requires PKA-regulated phosphorylation of the regulatory domain (R-D) and dimerization of the nucleotide binding domains. Using a newly developed assay, we evaluated nine compounds including both CFTR potentatiators and activators discovered via various high-throughput screening strategies to acutely augment CFTR activity. We found considerable differences in the effects on R-D phosphorylation. Some (including UC(CF)-152) stimulated robust phosphorylation, and others had little effect (e.g., VRT-532 and VX-770). We then compared CFTR activation by UC(CF)-152 and VRT-532 in Ussing chamber studies using two epithelial models, CFBE41o(-) and Fischer rat thyroid cells, expressing various CFTR forms. UC(CF)-152 activated wild-type-, G551D-, and rescued F508del-CFTR currents but did not potentiate cAMP-mediated CFTR activation. In contrast, VRT-532 moderately activated CFTR short-circuit current and strongly potentiated forskolin-mediated current. Combined with the result that UC(CF)-152, but not VRT-532 or VX-770, acts by increasing CFTR R-D phosphorylation, these findings indicate that potentiation of endogenous cAMP-mediated activation of mutant CFTR is not due to a pathway involving augmented R-D phosphorylation. This study presents an assay useful to distinguish preclinical compounds by a crucial mechanism underlying CFTR activation, delineates two types of compound able to acutely augment CFTR activity (e.g., activators and potentiators), and demonstrates that a number of different mechanisms can be successfully employed to activate mutant CFTR.
Collapse
Affiliation(s)
- Louise C Pyle
- Departments of Genetics, University of Alabama at Birmingham, 35294-0006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blackman BE, Horner K, Heidmann J, Wang D, Richter W, Rich TC, Conti M. PDE4D and PDE4B function in distinct subcellular compartments in mouse embryonic fibroblasts. J Biol Chem 2011; 286:12590-601. [PMID: 21288894 PMCID: PMC3069460 DOI: 10.1074/jbc.m110.203604] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Signaling through cAMP regulates most cellular functions. The spatiotemporal control of cAMP is, therefore, crucial for differential regulation of specific cellular targets. Here we investigated the consequences of PDE4B or PDE4D gene ablation on cAMP signaling at a subcellular level using mouse embryonic fibroblasts. PDE4B ablation had no effect on the global or bulk cytosol accumulation of cAMP but increased both basal and hormone-dependent cAMP in a near-membrane pool. Conversely, PDE4D ablation enhanced agonist-induced cAMP accumulation in the bulk cytosol as well as at the plasma membrane. Both PDE4B and PDE4D ablation significantly modified the time course and the level of isoproterenol-induced phosphorylation of vasodilator-stimulated phosphoprotein, a membrane cytoskeletal component. A second membrane response through Toll-like receptor signaling, however, was only affected by PDE4B ablation. PDE4D but not PDE4B ablation significantly prolonged cAMP-response element-binding protein-mediated transcription. These findings demonstrate that PDE4D and PDE4B have specialized functions in mouse embryonic fibroblasts with PDE4B controlling cAMP in a discrete subdomain near the plasma membrane.
Collapse
Affiliation(s)
- Brigitte E Blackman
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco School of Medicine, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are promising targets for pharmacological intervention. The presence of multiple PDE genes, diversity of the isoforms produced from each gene, selective tissue and cellular expression of the isoforms, compartmentation within cells, and an array of conformations of PDE proteins are some of the properties that challenge the development of drugs that target these enzymes. Nevertheless, many of the characteristics of PDEs are also viewed as unique opportunities to increase specificity and selectivity when designing novel compounds for certain therapeutic indications. This chapter provides a summary of the major concepts related to the design and use of PDE inhibitors. The overall structure and properties of the catalytic domain and conformations of PDEs are summarized in light of the most recent X-ray crystal structures. The distinctive properties of catalytic domains of different families as well as the technical challenges associated with probing PDE properties and their interactions with small molecules are discussed. The effect of posttranslational modifications and protein-protein interactions are additional factors to be considered when designing PDE inhibitors. PDE inhibitor interaction with other proteins needs to be taken into account and is also discussed.
Collapse
|
49
|
Hochbaum D, Barila G, Ribeiro-Neto F, Altschuler DL. Radixin assembles cAMP effectors Epac and PKA into a functional cAMP compartment: role in cAMP-dependent cell proliferation. J Biol Chem 2010; 286:859-66. [PMID: 21047789 DOI: 10.1074/jbc.m110.163816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
cAMP is an ubiquitous second messenger. Localized areas with high cAMP concentration, i.e. cAMP microdomains, provide an elegant mechanism to generate signaling specificity and transduction efficiency. However, the mechanisms underlying cAMP effector targeting into these compartments is still unclear. Here we report the identification of radixin as a scaffolding unit for both cAMP effectors, Epac and PKA. This complex localizes in a submembrane compartment where cAMP synthesis occurs. Compartment disruption by shRNA and dominant negative approaches negatively affects cAMP action. Inhibition can be rescued by expression of Rap1b, a substrate for both Epac1 and PKA, but only in its GTP-bound and phosphorylated state. We propose that radixin scaffolds both cAMP effectors in a functional cAMP-sensing compartment for efficient signal transduction, using Rap1 as a downstream signal integrator.
Collapse
Affiliation(s)
- Daniel Hochbaum
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
50
|
Namkung W, Finkbeiner WE, Verkman AS. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures. Mol Biol Cell 2010; 21:2639-48. [PMID: 20554763 PMCID: PMC2912350 DOI: 10.1091/mbc.e09-12-1004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca(2+)-activated chloride channel (CaCC) is activated by Ca(2+) agonists like UTP. We found that most chloride current elicited by Ca(2+) agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca(2+) activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling. Use of selective inhibitors showed that Ca(2+) agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca(2+) agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca(2+)/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1-CFTR association is responsible for Ca(2+)/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca(2+) agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.
Collapse
Affiliation(s)
- Wan Namkung
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|