1
|
Isermann T, Schneider KL, Wegwitz F, De Oliveira T, Conradi LC, Volk V, Feuerhake F, Papke B, Stintzing S, Mundt B, Kühnel F, Moll UM, Schulz-Heddergott R. Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition. Cell Death Differ 2025:10.1038/s41418-025-01502-x. [PMID: 40204953 DOI: 10.1038/s41418-025-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The stress-associated chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing oncoproteins. Most inhibitors target the key component, heat-shock protein 90 (HSP90). Although HSP90 inhibitors are highly tumor-selective, they fail in clinical trials. These failures are partly due to interference with a negative regulatory feedback loop in the heat-shock response (HSR): in response to HSP90 inhibition, there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock-factor 1 (HSF1). We recently identified that wild-type p53 reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here, we test whether in HSP90-based therapies, simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. We found that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids, and patient-derived organoids (PDOs). Mechanistically, upon combination therapy, CRC cells upregulate p53-associated pathways, apoptosis, and inflammatory pathways. Likewise, in a CRC mouse model, dual HSF1-HSP90 inhibition represses tumor growth and remodels immune cell composition. Importantly, inhibition of the cyclin-dependent kinases 4/6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Moreover, in p53-deficient CRC cells, HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR and reduces cancer growth. Likewise, p53-mutated PDOs respond to dual HSF1-HSP90 inhibition, providing a strategy to target CRC independent of the p53 status. In sum, we provide new options to improve HSP90-based therapies to enhance CRC therapies.
Collapse
Affiliation(s)
- Tamara Isermann
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Björn Papke
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Mundt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
2
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. Amyloid aggregates induced by the p53-R280T mutation lead to loss of p53 function in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:35. [PMID: 38212344 PMCID: PMC10784298 DOI: 10.1038/s41419-024-06429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that is highly prevalent in Southeast Asia, especially in South China. The pathogenesis of NPC is complex, and genetic alterations of tumor suppressors and proto-oncogenes play important roles in NPC carcinogenesis. p53 is unexpectedly highly expressed in NPC and possesses an uncommon mutation of R280T, which is different from a high frequency of hotspot mutations or low expression in other tumors. However, the mechanism of p53 loss of function and its correlation with R280T in NPC are still unclear. In this study, p53 amyloid aggregates were found to be widespread in NPC and can be mainly induced by the R280T mutation. Aggregated p53-R280T impeded its entry into the nucleus and was unable to initiate the transcription of downstream target genes, resulting in decreased NPC cell cycle arrest and apoptosis. In addition, NPC cells with p53-R280T amyloid aggregates also contributed aggressively to tumor growth in vivo. Transcriptome analysis suggested that p53 amyloid aggregation dysregulated major signaling pathways associated with the cell cycle, proliferation, apoptosis, and unfolded protein response (UPR). Further studies revealed that Hsp90, as a key molecular chaperone in p53 folding, was upregulated in NPC cells with p53-R280T aggregation, and the upregulated Hsp90 facilitated p53 aggregation in turn, forming positive feedback. Therefore, Hsp90 inhibitors could dissociate p53-R280T aggregation and restore the suppressor function of p53 in vitro and in vivo. In conclusion, our study demonstrated that p53-R280T may misfold to form aggregates with the help of Hsp90, resulting in the inability of sequestered p53 to initiate the transcription of downstream target genes. These results revealed a new mechanism for the loss of p53 function in NPC and provided novel mechanistic insight into NPC pathogenesis.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CAL, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Pan W, Chen H, Wang A, Wang F, Zhang X. Challenges and strategies: Scalable and efficient production of mesenchymal stem cells-derived exosomes for cell-free therapy. Life Sci 2023; 319:121524. [PMID: 36828131 DOI: 10.1016/j.lfs.2023.121524] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Exosomes are small membrane vesicles secreted by most cell types, and widely exist in cell supernatants and various body fluids. They can transmit numerous bioactive elements, such as proteins, nucleic acids, and lipids, to affect the gene expression and function of recipient cells. Mesenchymal stem cells (MSCs) have been confirmed to be a potentially promising therapy for tissue repair and regeneration. Accumulating studies demonstrated that the predominant regenerative paradigm of MSCs transplantation was the paracrine effect but not the differentiation effect. Exosomes secreted by MSCs also showed similar therapeutic effects as their parent cells and were considered to be used for cell-free regenerative medicine. However, the inefficient and limited production has hampered their development for clinical translation. In this review, we summarize potential methods to efficiently promote the yield of exosomes. We mainly focus on engineering the process of exosome biogenesis and secretion, altering the cell culture conditions, cell expansion through 3D dynamic culture and the isolation of exosomes. In addition, we also discuss the application of MSCs-derived exosomes as therapeutics in disease treatment.
Collapse
Affiliation(s)
- Wei Pan
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 Jingwuweiqi Road 324, Jinan 250021, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, UC Davis Health Medical Center, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
5
|
Nishikawa S, Iwakuma T. Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel) 2023; 15:429. [PMID: 36672377 PMCID: PMC9856662 DOI: 10.3390/cancers15020429] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Mutations in the tumor suppressor p53 (p53) promote cancer progression. This is mainly due to loss of function (LOS) as a tumor suppressor, dominant-negative (DN) activities of missense mutant p53 (mutp53) over wild-type p53 (wtp53), and wtp53-independent oncogenic activities of missense mutp53 by interacting with other tumor suppressors or oncogenes (gain of function: GOF). Since p53 mutations occur in ~50% of human cancers and rarely occur in normal tissues, p53 mutations are cancer-specific and ideal therapeutic targets. Approaches to target p53 mutations include (1) restoration or stabilization of wtp53 conformation from missense mutp53, (2) rescue of p53 nonsense mutations, (3) depletion or degradation of mutp53 proteins, and (4) induction of p53 synthetic lethality or targeting of vulnerabilities imposed by p53 mutations (enhanced YAP/TAZ activities) or deletions (hyperactivated retrotransposons). This review article focuses on clinically available FDA-approved drugs and drugs in clinical trials that target p53 mutations and summarizes their mechanisms of action and activities to suppress cancer progression.
Collapse
Affiliation(s)
- Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
7
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
8
|
Somogyvári M, Khatatneh S, Sőti C. Hsp90: From Cellular to Organismal Proteostasis. Cells 2022; 11:cells11162479. [PMID: 36010556 PMCID: PMC9406713 DOI: 10.3390/cells11162479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.
Collapse
|
9
|
Yu TJ, Yen CY, Cheng YB, Yen CH, Jeng JH, Tang JY, Chang HW. Physapruin A Enhances DNA Damage and Inhibits DNA Repair to Suppress Oral Cancer Cell Proliferation. Int J Mol Sci 2022; 23:ijms23168839. [PMID: 36012104 PMCID: PMC9408722 DOI: 10.3390/ijms23168839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 12/13/2022] Open
Abstract
The selective antiproliferation to oral cancer cells of Physalis peruviana-derived physapruin A (PHA) is rarely reported. Either drug-induced apoptosis and DNA damage or DNA repair suppression may effectively inhibit cancer cell proliferation. This study examined the selective antiproliferation ability of PHA and explored detailed mechanisms of apoptosis, DNA damage, and repair. During an ATP assay, PHA provided high cytotoxicity to two oral cancer cell lines (CAL 27 and Ca9-22) but no cytotoxicity to two non-malignant oral cells (HGF-1 and SG). This selective antiproliferation of PHA was associated with the selective generation of reactive oxygen species (ROS) in oral cancer cells rather than in non-malignant oral cells, as detected by flow cytometry. Moreover, PHA induced other oxidative stresses in oral cancer cells, such as mitochondrial superoxide generation and mitochondrial membrane potential depletion. PHA also demonstrated selective apoptosis in oral cancer cells rather than non-malignant cells in annexin V/7-aminoactinmycin D and caspase 3/7 activity assays. In flow cytometry and immunofluorescence assays, PHA induced γH2AX expressions and increased the γH2AX foci number of DNA damages in oral cancer cells. In contrast, the mRNA expressions for DNA repair signaling, including homologous recombination (HR) and non-homologous end joining (NHEJ)-associated genes, were inhibited by PHA in oral cancer cells. Moreover, the PHA-induced changes were alleviated by the oxidative stress inhibitor N-acetylcysteine. Therefore, PHA generates selective antiproliferation, oxidative stress, and apoptosis associated with DNA damage induction and DNA repair suppression in oral cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
10
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|
11
|
Biebl MM, Delhommel F, Faust O, Zak KM, Agam G, Guo X, Mühlhofer M, Dahiya V, Hillebrand D, Popowicz GM, Kampmann M, Lamb DC, Rosenzweig R, Sattler M, Buchner J. NudC guides client transfer between the Hsp40/70 and Hsp90 chaperone systems. Mol Cell 2022; 82:555-569.e7. [DOI: 10.1016/j.molcel.2021.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
|
12
|
Piven YA, Scherbakov AM, Yastrebova MA, Sorokin DV, Shchegolev YY, Matous AE, Zinovich VG, Khlebnicova TS, Lakhvich FA. Effective synthesis of novel dihydrobenzisoxazoles bearing the 2-aminothiazole moiety and evaluation of the antiproliferative activity of their acylated derivatives. Org Biomol Chem 2021; 19:10432-10443. [PMID: 34846407 DOI: 10.1039/d1ob01614h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An effective method for the synthesis of 8-aryl-4,5-dihydrothiazolo[4',5':3,4]benzo[1,2-c]isoxazol-2-amines was developed. This method includes the α-keto bromination of 3-aryl-6,7-dihydrobenzo[c]isoxazol-4(5H)-ones followed by the condensation of the obtained bromo derivatives with thiourea in acetonitrile. Using virtual screening, a series of acylated derivatives of the obtained compounds were selected as potential HSP90 inhibitors. These compounds were prepared and evaluated as antiproliferative agents against three cancer cell lines (A431, 22Rv1, and MCF-7). Compounds 8b, 8c and 8q exhibiting high antiproliferative potency against MCF-7 breast cancer cells with IC50 values ranging from 2.3 to 9.5 μM were chosen for in-depth evaluation. The selected compounds had remarkable effects on HSP90 client proteins, including steroid hormone receptors and the anti-apoptotic factor BCL2. The obtained compounds are of interest for anticancer drug development.
Collapse
Affiliation(s)
- Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus.
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Danila V Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - Yuri Yu Shchegolev
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - Anton E Matous
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus.
| | - Veronica G Zinovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus.
| | - Tatyana S Khlebnicova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus.
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus.
| |
Collapse
|
13
|
Denney AS, Weems AD, McMurray MA. Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast. G3-GENES GENOMES GENETICS 2021; 11:6318398. [PMID: 34544131 PMCID: PMC8496213 DOI: 10.1093/g3journal/jkab230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here, we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.
Collapse
Affiliation(s)
- Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Luwang JW, Nair AR, Natesh R. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability. Biochimie 2021; 189:99-107. [PMID: 34197865 DOI: 10.1016/j.biochi.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
The p53 protein has been known to exist structurally in three different forms inside the cells. Earlier studies have reported the predominance of the lower oligomeric forms of p53 over its tetrameric form inside the cells, although only the tetrameric p53 contributes to its transcriptional activity. However, it remains unclear the functional relevance of the existence of other p53 oligomers inside the cells. In this study, we characterize the stability and conformational state of tetrameric, dimeric and monomeric p53 that spans both DNA Binding Domain (DBD) and Tetramerization Domain (TD) of human p53 (94-360 amino acid residues). Intriguingly, our studies reveal an unexpected drastic reduction in tetrameric p53 thermal stability in comparison to its dimeric and monomeric form with a higher propensity to aggregate at physiological temperature. Our EMSA study suggests that tetrameric p53, not their lower oligomeric counterpart, exhibit rapid loss of binding to their consensus DNA elements at the physiological temperature. This detrimental effect of destabilization is imparted due to the tetramerization of p53 that drives the DBDs to misfold at a faster pace when compared to its lower oligomeric form. This crosstalk between DBDs is achieved when it exists as a tetramer but not as dimer or monomer. Our findings throw light on the plausible reason for the predominant existence of p53 in dimer and monomer forms inside the cells with a lesser population of tetramer form. Therefore, the transient disruption of tetramerization between TDs could be a potential cue for the stabilization of p53 inside the cells.
Collapse
Affiliation(s)
- Johnson Wahengbam Luwang
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Aadithye R Nair
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India.
| |
Collapse
|
15
|
Lacey T, Lacey H. Linking hsp90's role as an evolutionary capacitator to the development of cancer. Cancer Treat Res Commun 2021; 28:100400. [PMID: 34023771 DOI: 10.1016/j.ctarc.2021.100400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
This paper links Heat Shock Protein Hsp90 as an evolutionary capacitator with the development of cancer. Hsp90 stabilises proteins associated with cancer in a number of ways. Canalisation allows for the accumulation of malignant mutations in the genome, and selection of beneficial phenotypes when cancer cells are stressed, allowing oncogenic development and progression. Hsp90 may allow for mutational 'big bangs' that can trigger primary malignant transformation. Hsp90 buffers catastrophic mutations in the oncogenome to prevent protein degradation and cellular apoptosis. Hsp90 was found to prevent the degradation of mutated p53, encouraging uncontrolled proliferation of cancer cells. Hsp90 buffering of mutations in response to cytotoxic therapy can lead to expression of beneficial phenotypes when Hsp90 is supressed and development of drug resistance. Trials with Hsp90 inhibitors have shown some success as an adjunctive therapy in preventing cancer progression, development of drug resistance, and even re-sensitisation to therapy after chemoresistance has developed.
Collapse
Affiliation(s)
- Thomas Lacey
- School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, United Kingdom
| | - Hester Lacey
- Brighton and Sussex Medical School, Brighton and Sussex University Hospitals Trust, 1 Brookway Burgess Hill RH15 0LL, Brighton, BN2 5BE United Kingdom.
| |
Collapse
|
16
|
Han L, Xu D, Xi Z, Wu M, Nik Nabil WN, Zhang J, Sui H, Fu W, Zhou H, Lao Y, Xu G, Guo C, Xu H. The Natural Compound Oblongifolin C Exhibits Anticancer Activity by Inhibiting HSPA8 and Cathepsin B In Vitro. Front Pharmacol 2021; 11:564833. [PMID: 33390942 PMCID: PMC7773843 DOI: 10.3389/fphar.2020.564833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
PPAPs (Polycyclic polyprenylated acylphloroglucinols) are a class of compounds with diverse bioactivities, including anticancer effects. Oblongifolin C (OC) is a PPAP isolated from the plant of Garcinia yunnanensis Hu. We previously discovered that OC induces apoptosis, inhibits autophagic flux, and attenuates metastasis in cancer cells. However, the protein targets and the detailed mechanism of action of OC remain unclear. To identify protein targets of OC, a non-labeled protein fishing assay was performed, and it was found that OC may interact with several proteins, including the heat shock 70 kDa protein 8 (HSPA8). Expanding on our previous studies on protein cathepsin B, this current study applied Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) to confirm the potential binding affinity between OC and two protein targets. This study highlights the inhibitory effect of OC on HSPA8 in cancer cells under heat shock stress, by specifically inhibiting the translocation of HSPA8. OC also enhanced the interaction between HSPA8, HSP90, and p53, upregulated the expression of p53 and significantly promoted apoptosis in cisplatin-treated cells. Additionally, a flow cytometry assay detected that OC sped up the apoptosis rate in HSPA8 knockdown A549 cells, while overexpression of HSPA8 delayed the OC-induced apoptosis rate. In summary, our results reveal that OC potentially interacts with HSPA8 and cathepsin B and inhibits HSPA8 nuclear translocation and cathepsin B activities, altogether suggesting the potential of OC to be developed as an anticancer drug.
Collapse
Affiliation(s)
- Li Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Danqing Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hua Sui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of National Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cheng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Kubra KT, Uddin MA, Akhter MS, Barabutis N. Luminespib counteracts the Kifunensine-induced lung endothelial barrier dysfunction. Curr Res Toxicol 2020; 1:111-115. [PMID: 33094291 PMCID: PMC7575137 DOI: 10.1016/j.crtox.2020.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unfolded protein response (UPR) suppression by Kifunensine has been associated with lung hyperpermeability, the hallmark of Acute Respiratory Distress Syndrome. The present study investigates the effects of the heat shock protein 90 inhibitor Luminespib (AUY-922) towards the Kifunensine-triggered lung endothelial dysfunction. Our results indicate that the UPR inducer Luminespib counteracts the effects of Kifunensine in both human and bovine lung endothelial cells. Hence, we suggest that UPR manipulation may serve as a promising therapeutic strategy against potentially lethal respiratory disorders, including the ARDS related to COVID-19.
Collapse
Affiliation(s)
| | | | | | - Nektarios Barabutis
- Corresponding author at: School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States of America.
| |
Collapse
|
18
|
Proto MC, Fiore D, Forte G, Cuozzo P, Ramunno A, Fattorusso C, Gazzerro P, Pascale M, Franceschelli S. Tetra-substituted pyrrole derivatives act as potent activators of p53 in melanoma cells. Invest New Drugs 2020; 38:634-649. [PMID: 31240514 DOI: 10.1007/s10637-019-00813-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/06/2019] [Indexed: 01/27/2023]
Abstract
Cutaneous melanoma, the most aggressive form of skin cancer, is characterized by activating BRAF mutations. Despite the initial success of selective BRAF inhibitors, only few patients exhibited complete responses, whereas many showed disease progression. Melanoma is one of the few types of cancer in which p53 is not frequently mutated, but p53 inactivation can be indirectly achieved by a stable activation of MDM2 induced by a deletion in CDKN2A (Cyclin Dependent Kinase Inhibitor 2A) locus, encoding for p16INK4A and p14ARF, two tumor suppressor genes. In this study, we tested the efficacy of the previously synthesized tetra-substituted pyrrole derivatives, 8 g, 8 h and 8i, in melanoma cell lines, and we compared the effects of the most active of these, the 8i compound, with that exerted by Nutlin 3, a well-known inhibitor of p53-MDM2 interaction. The obtained results showed that 8i potentiates the inhibitory effect of Nutlin 3 and the combined use of 8i and Nutlin 3 triggers apoptosis and significantly impairs melanoma viability. Finally, the 8i compound reduces p53-MDM2 interaction and induces p53-HSP90 complex formation, suggesting that the observed raise in p53 transcriptional activity could be mediated by HSP90. Because the main feature of melanoma is the resistance to most chemotherapeutics, our studies suggest that the 8i tetra-substituted pyrrole derivative, restoring p53 functions and its transcriptional activities, may have potential application, at least as adjuvant, in the treatment of human melanoma.
Collapse
Affiliation(s)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Giovanni Forte
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Paola Cuozzo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | | | - Maria Pascale
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | |
Collapse
|
19
|
Barabutis N. Heat shock protein 90 inhibition in the inflamed lungs. Cell Stress Chaperones 2020; 25:195-197. [PMID: 31950341 PMCID: PMC7058811 DOI: 10.1007/s12192-020-01069-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 is a highly conserved molecular chaperone, essential for cellular survival under diverse environments. Since this protein is employed by tumors to promote their prevalence, heat shock protein 90 inhibitors have been developed to oppose malignancies. The anti-cancer effects of those compounds appear to be associated with anti-inflammatory properties. Thus, ongoing laborious efforts investigate the possible application of those agents towards inflammatory disorders of the lungs, such as the acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
20
|
Jentsch M, Snyder P, Sheng C, Cristiano E, Loewer A. p53 dynamics in single cells are temperature-sensitive. Sci Rep 2020; 10:1481. [PMID: 32001771 PMCID: PMC6992775 DOI: 10.1038/s41598-020-58267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cells need to preserve genome integrity despite varying cellular and physical states. p53, the guardian of the genome, plays a crucial role in the cellular response to DNA damage by triggering cell cycle arrest, apoptosis or senescence. Mutations in p53 or alterations in its regulatory network are major driving forces in tumorigenesis. As multiple studies indicate beneficial effects for hyperthermic treatments during radiation- or chemotherapy of human cancers, we aimed to understand how p53 dynamics after genotoxic stress are modulated by changes in temperature across a physiological relevant range. To this end, we employed a combination of time-resolved live-cell microscopy and computational analysis techniques to characterise the p53 response in thousands of individual cells. Our results demonstrate that p53 dynamics upon ionizing radiation are temperature dependent. In the range of 33 °C to 39 °C, pulsatile p53 dynamics are modulated in their frequency. Above 40 °C, which corresponds to mild hyperthermia in a clinical setting, we observed a reversible phase transition towards sustained hyperaccumulation of p53 disrupting its canonical response to DNA double strand breaks. Moreover, we provide evidence that mild hyperthermia alone is sufficient to induce a p53 response in the absence of genotoxic stress. These insights highlight how the p53-mediated DNA damage response is affected by alterations in the physical state of a cell and how this can be exploited by appropriate timing of combination therapies to increase the efficiency of cancer treatments.
Collapse
Affiliation(s)
- Marcel Jentsch
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Petra Snyder
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Caibin Sheng
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Basel, Switzerland
| | - Elena Cristiano
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
21
|
Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 2019; 4:69-83. [PMID: 31844155 PMCID: PMC7080209 DOI: 10.1038/s41551-019-0485-1] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Exosomes are attractive as nucleic-acid carriers because of their favourable pharmacokinetic and immunological properties and their ability to penetrate physiological barriers that are impermeable to synthetic drug-delivery vehicles. However, inserting exogenous nucleic acids, especially large messenger RNAs, into cell-secreted exosomes leads to low yields. Here we report a cellular-nanoporation method for the production of large quantities of exosomes containing therapeutic mRNAs and targeting peptides. We transfected various source cells with plasmid DNAs and stimulated the cells with a focal and transient electrical stimulus that promotes the release of exosomes carrying transcribed mRNAs and targeting peptides. Compared with bulk electroporation and other exosome-production strategies, cellular nanoporation produced up to 50-fold more exosomes and a more than 103-fold increase in exosomal mRNA transcripts, even from cells with low basal levels of exosome secretion. In orthotopic phosphatase and tensin homologue (PTEN)-deficient glioma mouse models, mRNA-containing exosomes restored tumour-suppressor function, enhanced inhibition of tumour growth and increased survival. Cellular nanoporation may enable the use of exosomes as a universal nucleic-acid carrier for applications requiring transcriptional manipulation.
Collapse
|
22
|
Identification of key regulators in prostate cancer from gene expression datasets of patients. Sci Rep 2019; 9:16420. [PMID: 31712650 PMCID: PMC6848149 DOI: 10.1038/s41598-019-52896-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Identification of key regulators and regulatory pathways is an important step in the discovery of genes involved in cancer. Here, we propose a method to identify key regulators in prostate cancer (PCa) from a network constructed from gene expression datasets of PCa patients. Overexpressed genes were identified using BioXpress, having a mutational status according to COSMIC, followed by the construction of PCa Interactome network using the curated genes. The topological parameters of the network exhibited power law nature indicating hierarchical scale-free properties and five levels of organization. Highest degree hubs (k ≥ 65) were selected from the PCa network, traced, and 19 of them was identified as novel key regulators, as they participated at all network levels serving as backbone. Of the 19 hubs, some have been reported in literature to be associated with PCa and other cancers. Based on participation coefficient values most of these are connector or kinless hubs suggesting significant roles in modular linkage. The observation of non-monotonicity in the rich club formation suggested the importance of intermediate hubs in network integration, and they may play crucial roles in network stabilization. The network was self-organized as evident from fractal nature in topological parameters of it and lacked a central control mechanism.
Collapse
|
23
|
Wu H, Dyson HJ. Aggregation of zinc-free p53 is inhibited by Hsp90 but not other chaperones. Protein Sci 2019; 28:2020-2023. [PMID: 31503385 DOI: 10.1002/pro.3726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 11/09/2022]
Abstract
The structured DNA-binding domain (DBD) of p53 is a well-known client protein of the chaperone Hsp90. The p53 DBD contains a single zinc ion, coordinated by the side chains of Cys176, His179, Cys238, and Cys242; zinc coordination plays a structural role to stabilize the DBD and is required for its DNA binding. The ambiguous nature of the p53-Hsp90 interaction, together with the stabilizing role of the zinc in the structure of the DBD, prompted us to examine the interaction of Hsp90 with zinc-free p53 DBD. NMR spectroscopy and native gel electrophoresis did not show any apparent preference for the interaction of the destabilized zinc-free form of p53 DBD with Hsp90. Intriguingly, however, at lower protein concentrations, closer to physiological concentrations, the addition of Hsp90, but not other chaperones such as Hsp70, Hsp40, p23, and HOP, appears to slow or prevent the aggregation of zinc-free p53 DBD. This result suggests that part of the function of the Hsp90-p53 interaction in the cell may be to stabilize the apoprotein in the absence of zinc.
Collapse
Affiliation(s)
- Huiwen Wu
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California
| | | |
Collapse
|
24
|
Biebl MM, Buchner J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034017. [PMID: 30745292 DOI: 10.1101/cshperspect.a034017] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a plethora of substrates ("clients"), including protein kinases, transcription factors, and E3 ubiquitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 undergoes large conformational changes during its ATPase cycle. The processing of clients by cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90 ATPase function or conformational rearrangements in Hsp90. Because of the importance of Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of the Hsp90 machinery in diseases such as cancer and neurodegeneration are being developed. In this review, we summarize recent structural and mechanistic progress in defining the function of organelle-specific and cytosolic Hsp90, including the impact of individual cochaperones on the maturation of specific clients and complexes with clients as well as ways of exploiting Hsp90 as a drug target.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
25
|
Dai Y, Schlanger S, Haque MM, Misra S, Stuehr DJ. Heat shock protein 90 regulates soluble guanylyl cyclase maturation by a dual mechanism. J Biol Chem 2019; 294:12880-12891. [PMID: 31311859 DOI: 10.1074/jbc.ra119.009016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Indexed: 01/07/2023] Open
Abstract
The enzyme soluble guanylyl cyclase (sGC) is a heterodimer composed of an α subunit and a heme-containing β subunit. It participates in signaling by generating cGMP in response to nitric oxide (NO). Heme insertion into the β1 subunit of sGC (sGCβ) is critical for function, and heat shock protein 90 (HSP90) associates with heme-free sGCβ (apo-sGCβ) to drive its heme insertion. Here, we tested the accuracy and relevance of a modeled apo-sGCβ-HSP90 complex by constructing sGCβ variants predicted to have an impaired interaction with HSP90. Using site-directed mutagenesis, purified recombinant proteins, mammalian cell expression, and fluorescence approaches, we found that (i) three regions in apo-sGCβ predicted by the model mediate direct complex formation with HSP90 both in vitro and in mammalian cells; (ii) such HSP90 complex formation directly correlates with the extent of heme insertion into apo-sGCβ and with cyclase activity; and (iii) apo-sGCβ mutants possessing an HSP90-binding defect instead bind to sGCα in cells and form inactive, heme-free sGC heterodimers. Our findings uncover the molecular features of the cellular apo-sGCβ-HSP90 complex and reveal its dual importance in enabling heme insertion while preventing inactive heterodimer formation during sGC maturation.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Saurav Misra
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
26
|
Hsp70- and Hsp90-Mediated Regulation of the Conformation of p53 DNA Binding Domain and p53 Cancer Variants. Mol Cell 2019; 74:831-843.e4. [DOI: 10.1016/j.molcel.2019.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
27
|
Dahiya V, Agam G, Lawatscheck J, Rutz DA, Lamb DC, Buchner J. Coordinated Conformational Processing of the Tumor Suppressor Protein p53 by the Hsp70 and Hsp90 Chaperone Machineries. Mol Cell 2019; 74:816-830.e7. [PMID: 31027879 DOI: 10.1016/j.molcel.2019.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022]
Abstract
p53, the guardian of the genome, requires chaperoning by Hsp70 and Hsp90. However, how the two chaperone machineries affect p53 conformation and regulate its function remains elusive. We found that Hsp70, together with Hsp40, unfolds p53 in an ATP-dependent reaction. This unfolded state of p53 is susceptible to aggregation after release induced by the nucleotide exchange factor Bag-1. However, when Hsp90 and the adaptor protein Hop are present, p53 is transferred from Hsp70 to Hsp90, allowing restoration of the native state upon ATP hydrolysis. Our results suggest that the p53 conformation is constantly remodeled by the two major chaperone machineries. This connects p53 activity to stress, and the levels of free molecular chaperones are important factors regulating p53 activity. Together, our findings reveal an intricate interplay and cooperation of Hsp70 and Hsp90 in regulating the conformation of a client.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ganesh Agam
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany
| | - Jannis Lawatscheck
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Daniel Andreas Rutz
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany.
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
28
|
Chao C, Lai C, Badrealam KF, Lo J, Shen C, Chen C, Chen R, Viswanadha VP, Kuo W, Huang C. CHIP attenuates lipopolysaccharide‐induced cardiac hypertrophy and apoptosis by promoting NFATc3 proteasomal degradation. J Cell Physiol 2019; 234:20128-20138. [DOI: 10.1002/jcp.28614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Chun‐Nun Chao
- Department of Biotechnology Asia University Taichung Taiwan
- Department of Pediatrics Ditmanson Medical Foundation Chia‐Yi Christian Hospital Chiayi Taiwan
| | - Chao‐Hung Lai
- Division of Cardiology, Department of Internal Medicine Armed Force Taichung, General Hospital Taichung Taiwan
| | | | - Jeng‐Fan Lo
- Institute of Oral Biology National Yang‐Ming University Taipei Taiwan
| | - Chia‐Yao Shen
- Department of Nursing MeiHo University Pingtung Taiwan
| | - Chia‐Hua Chen
- Graduate Institute of Basic Medical Science China Medical University Taichung Taiwan
| | - Ray‐Jade Chen
- Department of Surgery, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
| | | | - Wei‐Wen Kuo
- Department of Biological Science and Technology China Medical University Taichung Taiwan
| | - Chih‐Yang Huang
- Department of Biotechnology Asia University Taichung Taiwan
- Graduate Institute of Basic Medical Science China Medical University Taichung Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Tzu Chi University Hualien Taiwan
- Medical Research Center for Exosomes and Mitochondria Related Diseases China Medical University Hospital Taichung Taiwan
| |
Collapse
|
29
|
Quintana-Gallardo L, Martín-Benito J, Marcilla M, Espadas G, Sabidó E, Valpuesta JM. The cochaperone CHIP marks Hsp70- and Hsp90-bound substrates for degradation through a very flexible mechanism. Sci Rep 2019; 9:5102. [PMID: 30911017 PMCID: PMC6433865 DOI: 10.1038/s41598-019-41060-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/22/2019] [Indexed: 11/26/2022] Open
Abstract
Some molecular chaperones are involved not only in assisting the folding of proteins but also, given appropriate conditions, in their degradation. This is the case for Hsp70 and Hsp90 which, in concert with the cochaperone CHIP, direct their bound substrate to degradation through ubiquitination. We generated complexes between the chaperones (Hsp70 or Hsp90), the cochaperone CHIP and, as substrate, a p53 variant containing the GST protein (p53-TMGST). Both ternary complexes (Hsp70:p53-TMGST:CHIP and Hsp90:p53-TMGST:CHIP) ubiquitinated the substrate at a higher efficiency than in the absence of the chaperones. The 3D structures of the two complexes, obtained using a combination of cryoelectron microscopy and crosslinking mass spectrometry, showed the substrate located between the chaperone and the cochaperone, suggesting a ubiquitination mechanism in which the chaperone-bound substrate is presented to CHIP. These complexes are inherently flexible, which is important for the ubiquitination process.
Collapse
Affiliation(s)
| | | | - Miguel Marcilla
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Guadalupe Espadas
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
30
|
Chatterjee BK, Jayaraj A, Kumar V, Blagg B, Davis RE, Jayaram B, Deep S, Chaudhuri TK. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32. J Biol Chem 2019; 294:6450-6467. [PMID: 30792306 DOI: 10.1074/jbc.ra118.002502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a eukaryotic chaperone responsible for the folding and functional activation of numerous client proteins, many of which are oncoproteins. Thus, Hsp90 inhibition has been intensely pursued, resulting in the development of many potential Hsp90 inhibitors, not all of which are well-characterized. Hsp90 inhibitors not only abrogate its chaperone functions, but also could help us gain insight into the structure-function relationship of this chaperone. Here, using biochemical and cell-based assays along with isothermal titration calorimetry, we investigate KU-32, a derivative of the Hsp90 inhibitor novobiocin (NB), for its ability to modulate Hsp90 chaperone function. Although NB and KU-32 differ only slightly in structure, we found that upon binding, they induce completely opposite conformational changes in Hsp90. We observed that NB and KU-32 both bind to the C-terminal domain of Hsp90, but surprisingly, KU-32 stimulated the chaperone functions of Hsp90 via allosteric modulation of its N-terminal domain, responsible for the chaperone's ATPase activity. In vitro and in silico studies indicated that upon KU-32 binding, Hsp90 undergoes global structural changes leading to the formation of a "partially closed" intermediate that selectively binds ATP and increases ATPase activity. We also report that KU-32 promotes HeLa cell survival and enhances the refolding of an Hsp90 substrate inside the cell. This discovery explains the effectiveness of KU-32 analogs in the management of neuropathies and may facilitate the design of molecules that promote cell survival by enhancing Hsp90 chaperone function and reducing the load of misfolded proteins in cells.
Collapse
Affiliation(s)
| | - Abhilash Jayaraj
- the Supercomputing Facility for Bioinformatics and Computational Biology, and
| | - Vinay Kumar
- the Department of Chemistry, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India and
| | - Brian Blagg
- the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Rachel E Davis
- the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - B Jayaram
- the Supercomputing Facility for Bioinformatics and Computational Biology, and
| | - Shashank Deep
- the Department of Chemistry, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India and
| | | |
Collapse
|
31
|
Sun M, Kotler JLM, Liu S, Street TO. The endoplasmic reticulum (ER) chaperones BiP and Grp94 selectively associate when BiP is in the ADP conformation. J Biol Chem 2019; 294:6387-6396. [PMID: 30787103 DOI: 10.1074/jbc.ra118.007050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/09/2019] [Indexed: 11/06/2022] Open
Abstract
Hsp70 and Hsp90 chaperones are critical for protein quality control in the cytosol, whereas organelle-specific Hsp70/Hsp90 paralogs provide similar protection for mitochondria and the endoplasmic reticulum (ER). Cytosolic Hsp70/Hsp90 can operate sequentially with Hsp90 selectively associating with Hsp70 after Hsp70 is bound to a client protein. This observation has long suggested that Hsp90 could have a preference for interacting with clients at their later stages of folding. However, recent work has shown that cytosolic Hsp70/Hsp90 can directly interact even in the absence of a client, which opens up an alternative possibility that the ordered interactions of Hsp70/Hsp90 with clients could be a consequence of regulated changes in the direct interactions between Hsp70 and Hsp90. However, it is unknown how such regulation could occur mechanistically. Here, we find that the ER Hsp70/Hsp90 (BiP/Grp94) can form a direct complex in the absence of a client. Importantly, the direct interaction between BiP and Grp94 is nucleotide-specific, with BiP and Grp94 having higher affinity under ADP conditions and lower affinity under ATP conditions. We show that this nucleotide-specific association between BiP and Grp94 is largely due to the conformation of BiP. When BiP is in the ATP conformation its substrate-binding domain blocks Grp94; in contrast, Grp94 can readily associate with the ADP conformation of BiP, which represents the client-bound state of BiP. Our observations provide a mechanism for the sequential involvement of BiP and Grp94 in client folding where the conformation of BiP provides the signal for the subsequent recruitment of Grp94.
Collapse
Affiliation(s)
- Ming Sun
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Judy L M Kotler
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Shanshan Liu
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy O Street
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
32
|
Regulators of Oncogenic Mutant TP53 Gain of Function. Cancers (Basel) 2018; 11:cancers11010004. [PMID: 30577483 PMCID: PMC6356290 DOI: 10.3390/cancers11010004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor p53 (TP53) is the most frequently mutated human gene. Mutations in TP53 not only disrupt its tumor suppressor function, but also endow oncogenic gain-of-function (GOF) activities in a manner independent of wild-type TP53 (wtp53). Mutant TP53 (mutp53) GOF is mainly mediated by its binding with other tumor suppressive or oncogenic proteins. Increasing evidence indicates that stabilization of mutp53 is crucial for its GOF activity. However, little is known about factors that alter mutp53 stability and its oncogenic GOF activities. In this review article, we primarily summarize key regulators of mutp53 stability/activities, including genotoxic stress, post-translational modifications, ubiquitin ligases, and molecular chaperones, as well as a single nucleotide polymorphism (SNP) and dimer-forming mutations in mutp53.
Collapse
|
33
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
34
|
Khan QA, Pediaditakis P, Malakhau Y, Esmaeilniakooshkghazi A, Ashkavand Z, Sereda V, Krupenko NI, Krupenko SA. CHIP E3 ligase mediates proteasomal degradation of the proliferation regulatory protein ALDH1L1 during the transition of NIH3T3 fibroblasts from G0/G1 to S-phase. PLoS One 2018; 13:e0199699. [PMID: 29979702 PMCID: PMC6034817 DOI: 10.1371/journal.pone.0199699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
ALDH1L1 is a folate-metabolizing enzyme abundant in liver and several other tissues. In human cancers and cell lines derived from malignant tumors, the ALDH1L1 gene is commonly silenced through the promoter methylation. It was suggested that ALDH1L1 limits proliferation capacity of the cell and thus functions as putative tumor suppressor. In contrast to cancer cells, mouse cell lines NIH3T3 and AML12 do express the ALDH1L1 protein. In the present study, we show that the levels of ALDH1L1 in these cell lines fluctuate throughout the cell cycle. During S-phase, ALDH1L1 is markedly down regulated at the protein level. As the cell cultures become confluent and cells experience increased contact inhibition, ALDH1L1 accumulates in the cells. In agreement with this finding, NIH3T3 cells arrested in G1/S-phase by a thymidine block completely lose the ALDH1L1 protein. Treatment with the proteasome inhibitor MG-132 prevents such loss in proliferating NIH3T3 cells, suggesting the proteasomal degradation of the ALDH1L1 protein. The co-localization of ALDH1L1 with proteasomes, demonstrated by confocal microscopy, supports this mechanism. We further show that ALDH1L1 interacts with the chaperone-dependent E3 ligase CHIP, which plays a key role in the ALDH1L1 ubiquitination and degradation. In NIH3T3 cells, silencing of CHIP by siRNA halts, while transient expression of CHIP promotes, the ALDH1L1 loss. The downregulation of ALDH1L1 is associated with the accumulation of the ALDH1L1 substrate 10-formyltetrahydrofolate, which is required for de novo purine biosynthesis, a key pathway activated in S-phase. Overall, our data indicate that CHIP-mediated proteasomal degradation of ALDH1L1 facilitates cellular proliferation.
Collapse
Affiliation(s)
- Qasim A. Khan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Yuryi Malakhau
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Amin Esmaeilniakooshkghazi
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Zahra Ashkavand
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Valentin Sereda
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Natalia I. Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sergey A. Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mai W, Liu H, Chen H, Zhou Y, Chen Y. RGNNV-induced cell cycle arrest at G1/S phase enhanced viral replication via p53-dependent pathway in GS cells. Virus Res 2018; 256:142-152. [PMID: 29940189 PMCID: PMC7114848 DOI: 10.1016/j.virusres.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Infection of RGNNV redistributed NPM1, stabilized p53 and inhibited cell proliferation by inducing G1 arrest. Infection of RGNNV activated p53-dependent pathway, resulting in G1/S phase cell cycle arrest in host cells and directly impacting viral replication. NPM1 knockdown could abrogate RGNNV-induced cell proliferation inhibition and cell cycle arrest. Our results revealed that RGNNV infection could perturb the progression of cell cycle via the NPM1-p53 pathway and facilitate virus gene replication.
Nervous necrosis virus (NNV) is a ubiquitous pathogen in the aquaculture worldwide. Little is known about the relationship between NNV virus and host cells. Our studies showed that RGNNV infection could induce cell cycle arrest via activation of p53 signaling in cultured host cells. Infection of RGNNV redistributed NPM1, stabilized p53 and inhibited cell proliferation by inducing G1 arrest. RGNNV infection also led to phosphorylation and accumulation of p53 in a time-dependent manner. Furthermore, RGNNV infection upregulated cyclin-dependent kinase inhibitor 1 A (p21) and downregulated cyclin E and cyclin-dependent kinase 2 (CDK2). The expression of genes in the p53 pathway did not change significantly after p53 knockdown by pifithrin-α during RGNNV infection. However, NPM1 knockdown could abrogate RGNNV-induced cell proliferation inhibition, activation of p53 signaling and cell cycle arrest. In addition, RGNNV infection of the cells synchronized in various stages of cell cycle showed that viral genomic RNA and virus titer were higher in the cells released from G1 phase- or S phase-synchronized cells than that in the cells released from the G2 phase-synchronized or asynchronous cells after 18 h p.i. Therefore, our study reveals that RGNNV infection induces the p53-dependent pathway, resulting in a cell cycle arrest at G1 phase in host cells, which might provide a favorable condition for viral replication.
Collapse
Affiliation(s)
- Weijun Mai
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Hongxiao Liu
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huiqing Chen
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yajing Zhou
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yan Chen
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
36
|
Chai K, Ning X, Nguyễn TTT, Zhong B, Morinaga T, Li Z, Shingyoji M, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Yamaguchi N, Tagawa M. Heat shock protein 90 inhibitors augment endogenous wild-type p53 expression but down-regulate the adenovirally-induced expression by inhibiting a proteasome activity. Oncotarget 2018; 9:26130-26143. [PMID: 29899847 PMCID: PMC5995238 DOI: 10.18632/oncotarget.25452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) inhibitors suppressed MDM4 functions which mediated p53 ubiquitination, and blocked a chaperon function which influenced expression of the client proteins. We examined cytotoxic effects of the inhibitors, 17-allylamino-17-demetheoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), on mesothelioma and investigated combinatory effects of the inhibitors and adenoviruses expressing the wild-type p53 gene (Ad-p53). A majority of mesothelioma lacks p14 and p16 expression, which leads to defective p53 pathway despite bearing the wild-type p53 genotype. The HSP90 inhibitors up-regulated endogenous wild-type p53 expression and induced cell death. Furthermore, the inhibitors increased the endogenous p53 levels that were induced by cisplatin. Nevertheless, the HSP90 inhibitors suppressed Ad-p53-induced exogenous p53 expression primarily at a posttranscriptional level and inhibited the Ad-p53-mediated cell death. HSP90 inhibitors suppressed ubiquitination processes which were involved in p53 degradation, but a proteasome inhibitor, MG-132, prevented the HSP90 inhibitors-induced p53 down-regulation. In contrast, an inhibitor for HSP70 with a chaperon function, pifithrin-μ, did not produce the p53 down-regulation. The HSP90 inhibitors did not suppress expression of Ad receptor molecules but rather increased expression of green fluorescence protein transduced by the same Ad vector. These data collectively indicated that an HSP90 inhibitor possessed a divalent action on p53 expression, as an activator for endogenous wild-type p53 through inhibited ubiquitination and a negative regulator of exogenously over-expressed p53 through the proteasome pathway.
Collapse
Affiliation(s)
- Kuan Chai
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Xuerao Ning
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Thảo Thi Thanh Nguyễn
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan
| | - Zhihan Li
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo 276-8524, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
37
|
Abreu PL, Cunha-Oliveira T, Ferreira LMR, Urbano AM. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells. Biometals 2018; 31:477-487. [DOI: 10.1007/s10534-018-0093-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
38
|
Song C, Cui Y, Liu B, Xie J, Ge X, Xu P, Ren M, Miao L, Zhou Q, Lin Y. HSP60 and HSP90β from blunt snout bream, Megalobrama amblycephala: Molecular cloning, characterization, and comparative response to intermittent thermal stress and Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:119-132. [PMID: 29306763 DOI: 10.1016/j.fsi.2017.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Heat shock proteins (HSPs) play critical roles in the process of anti-stress and immunity and are implicated in autoimmune diseases. In order to understand the comparative stress responses of HSP60 and HSP90β under intermittent thermal stress and Aeromonas hydrophila infection, we cloned their full-length cDNAs from Megalobrama amblycephala liver, predicted their secondary and tertiary structure, and examined their tissue-specific expression patterns. The full length of HSP60 and HSP90β cDNAs indicated that they included all signature sequences of corresponding protein families. They showed high homology to their counterparts in other species, and were consistent with the known classification of fishes based on phylogenetic analysis. HSP60 showed the highest expression in head-kidney, brain, and gill, while HSP90β presented higher in hindgut, liver, and brain. Significant mRNA expression differences were determined between HSP60 and HSP90β in tissues of bladder, liver, heart, and gill. During thermal stress and recovery phase, the highest expression of them were observed at the first recovery for 2 d and 1 d, respectively. The expression between them were extremely significant difference during the first recovery and second stress period. After A. hydrophila infection, their expressions were extremely significantly upregulated. The significant upregulation and rapid response indicated that they were sensitive to thermal stress and bacterial challenge. This study demonstrated that HSP60 and HSP90β might participate in innate immune and environmental responses of M. amblycephala. It indicated that they could be used as biomarkers to test the stress caused by local aquaculture environment.
Collapse
Affiliation(s)
- Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yanting Cui
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| |
Collapse
|
39
|
Progress in Molecular Chaperone Regulation of Heat Shock Protein 90 and Cancer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61071-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Wu H, Hyun J, Martinez-Yamout MA, Park SJ, Dyson HJ. Characterization of an Hsp90-Independent Interaction between Co-Chaperone p23 and Transcription Factor p53. Biochemistry 2018; 57:935-944. [PMID: 29334217 DOI: 10.1021/acs.biochem.7b01076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer-suppressing transcription factor p53 is regulated by a wide variety of cellular factors, including many chaperones. The DNA-binding domain (DBD) of p53 is known to interact with the chaperone Hsp90, but the role of other members of the chaperone network, including co-chaperones such as p23, is unknown. Using a combination of nuclear magnetic resonance (NMR) titration, isothermal titration calorimetry, fluorescence anisotropy, and native agarose gel electrophoresis, we have identified a direct interaction between the p53 DBD and Hsp90 co-chaperone p23 that occurs in the absence of Hsp90. The affinity is relatively weak and largely determined by electrostatic interactions between the acidic C-terminal disordered tail of p23 and the two DNA-binding regions of the p53 DBD. We show by NMR and native agarose gel electrophoresis that a p53-specific double-stranded DNA sequence competes successfully with p23 for binding to the p53 DBD. The Hsp90 independence of the interaction between p23 and p53 DBD, together with the competition of p23 versus DNA for p53, raises the intriguing possibility that p23, like other small charged proteins, may affect p53 in hitherto unknown ways.
Collapse
Affiliation(s)
- Huiwen Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jashil Hyun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
41
|
Tracz-Gaszewska Z, Klimczak M, Biecek P, Herok M, Kosinski M, Olszewski MB, Czerwińska P, Wiech M, Wiznerowicz M, Zylicz A, Zylicz M, Wawrzynow B. Molecular chaperones in the acquisition of cancer cell chemoresistance with mutated TP53 and MDM2 up-regulation. Oncotarget 2017; 8:82123-82143. [PMID: 29137250 PMCID: PMC5669876 DOI: 10.18632/oncotarget.18899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
Utilizing the TCGA PANCAN12 dataset we discovered that cancer patients with mutations in TP53 tumor suppressor and overexpression of MDM2 oncogene exhibited decreased survival post treatment. Interestingly, in the case of breast cancer patients, this phenomenon correlated with high expression level of several molecular chaperones belonging to the HSPA, DNAJB and HSPC families. To verify the hypothesis that such a genetic background may promote chaperone-mediated chemoresistance, we employed breast and lung cancer cell lines that constitutively overexpressed heat shock proteins and have shown that HSPA1A/HSP70 and DNAJB1/HSP40 facilitated the binding of mutated p53 to the TAp73α protein. This chaperone-mediated mutated p53–TAp73α complex induced chemoresistance to DNA damaging reagents, like Cisplatin, Doxorubicin, Etoposide or Camptothecin. Importantly, when the MDM2 oncogene was overexpressed, heat shock proteins were displaced and a stable multiprotein complex comprising of mutated p53-TAp73α-MDM2 was formed, additionally amplifying cancer cells chemoresistance. Our findings demonstrate that molecular chaperones aid cancer cells in surviving the cytotoxic effect of chemotherapeutics and may have therapeutic implications.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Marta Klimczak
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemyslaw Biecek
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Herok
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Marcin Kosinski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.,Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | | | - Patrycja Czerwińska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Laboratory of Gene Therapy, Department of Cancer Immunology, The Greater Poland Cancer Center, Poznan, Poland
| | - Milena Wiech
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Wiznerowicz
- Laboratory of Gene Therapy, Department of Cancer Immunology, The Greater Poland Cancer Center, Poznan, Poland
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | |
Collapse
|
42
|
Eskandani M, Vandghanooni S, Barar J, Nazemiyeh H, Omidi Y. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells. Int J Biol Macromol 2017; 99:46-62. [DOI: 10.1016/j.ijbiomac.2016.10.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
|
43
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
44
|
Ryu HW, Shin DH, Lee DH, Choi J, Han G, Lee KY, Kwon SH. HDAC6 deacetylates p53 at lysines 381/382 and differentially coordinates p53-induced apoptosis. Cancer Lett 2017; 391:162-171. [DOI: 10.1016/j.canlet.2017.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 02/02/2023]
|
45
|
Ciccarese C, Massari F, Blanca A, Tortora G, Montironi R, Cheng L, Scarpelli M, Raspollini MR, Vau N, Fonseca J, Lopez-Beltran A. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin Ther Targets 2017; 21:401-414. [PMID: 28281901 DOI: 10.1080/14728222.2017.1297798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Despite more than 30 years of research on p53 resulting in >50,000 publications, we are now beginning to figure out the complexity of the p53 pathway, gene ontology and conformational structure of the molecule. Recent years brought great advances in p53 related drugs and the potencial ways in which p53 is inactivated in cancer. Areas covered: We searched for related publications on Pubmed and ClinicalTrial.gov using the following keywords 'p53, Tp53, p53 and bladder cancer, p53 and therapeutic target'. Relevant articles improved the understanding on p53 pathways and their potential as candidate to targeted therapy in bladder cancer. Expert opinion: Novel strategies developed to restore the function of mutants with chemical chaperones or by using compounds to improved pharmacokinetic properties are in development with potential to be applied in the oncology clinic. Other strategies targeting aberrantly overexpressed p53 regulators with wild-type p53 are also an active area of research. In particular, studies inhibiting the interaction of p53 with its negative regulators MDMX and MDM2 are an important field in drug discovery. Small molecules for inhibition of MDM2 are now in clinical trials process. However, personalized anticancer therapy might eventually advance through analyses of p53 status in cancer patients.
Collapse
Affiliation(s)
- Chiara Ciccarese
- a Medical Oncology, Azienda Ospedaliera Universitaria Integrata , University of Verona , Verona , Italy
| | - Francesco Massari
- b Medical Oncology , Azienda Ospedaliera Universitaria Integrata (A.O.U.I.) , Verona , Italy
| | - Ana Blanca
- c Maimonides Biomedical Research Institute of Cordoba, Spain - Urology Department , Reina Sofía Hospital , Córdoba , Spain
| | - Giampaolo Tortora
- d Medical Oncology dU, Policlinico 'G.B. Rossi' , University of Verona , Verona , Italy
| | - Rodolfo Montironi
- e Pathological Anatomy , Polytechnic University of the Marche Region, School of Medicine, United Hospitals , Ancona , Italy
| | - Liang Cheng
- f Department of Pathology and Laboratory Medicine , Indiana University School of Medicine , Indianapolis , IN 46202 , USA
| | - Marina Scarpelli
- e Pathological Anatomy , Polytechnic University of the Marche Region, School of Medicine, United Hospitals , Ancona , Italy
| | - Maria R Raspollini
- g Histopathology and Molecular Diagnostics Service , Careggi University Hospital Florence , Florence , Italy
| | - Nuno Vau
- h Medical Oncology , Champalimaud Clinical Center , Lisbon , Portugal
| | - Jorge Fonseca
- i Urology service , Champalimaud Clinical Center , Lisbon , Portugal
| | - Antonio Lopez-Beltran
- j Department of Surgery and Pathology , Cordoba University Medical School, Cordoba, Spain and Champalimaud Clinical Center , Lisbon , Portugal
| |
Collapse
|
46
|
Lebedev I, Nemajerova A, Foda ZH, Kornaj M, Tong M, Moll UM, Seeliger MA. A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems. J Mol Biol 2016; 428:4154-4167. [PMID: 27515399 PMCID: PMC5453312 DOI: 10.1016/j.jmb.2016.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Tissue necrosis as a consequence of ischemia-reperfusion injury and oxidative damage is a leading cause of permanent disability and death worldwide. The complete mechanism by which cells undergo necrosis upon oxidative stress is not understood. In response to an oxidative insult, wild-type p53 has been implicated as a central regulatory component of the mitochondrial permeability transition (mPT), triggering necrosis. This process is associated with cellular stabilization and translocation of p53 into the mitochondrial matrix. Here, we probe the mechanism by which p53 activates the key mPT regulator cyclophilin D (CypD). We explore the involvement of Trap1, an Hsp90-related mitochondrial matrix protein and a member of the mitochondrial unfolded protein response, and its ability to suppress mPT in a p53-dependent manner. Our study finds that catalytically active CypD causes strong aggregation of wild-type p53 protein (both full-length and isolated DNA-binding domain) into amyloid-type fibrils in vitro. The responsible CypD residues for this activity were mapped by NMR to the active site amino acids R55, F60, F113, and W121. The data also present a new proline isomerization assay for CypD by monitoring the aggregation of p53 as an indicator of CypD activity. Moreover, we find that the inhibition of Trap1 by the mitochondria-specific HSP90 ATPase antagonist Gamitrinib strongly sensitizes primary mouse embryonic fibroblasts to mPT and permeability transition pore opening in a p53- and CypD-dependent manner. We propose a mechanism by which the influx of unfolded p53 into the mitochondrial matrix in response to oxidative stress indirectly activates the normally inhibited CypD by displacing it from Trap1 complexes. This activates CypD's isomerase activity. Liberated CypD then isomerizes multiple proteins including p53 (causing p53 aggregation) and the structural components of the mPTP pore, inducing pore opening. This working model can now be tested in the future.
Collapse
Affiliation(s)
- Ivan Lebedev
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachariah H Foda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maja Kornaj
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Tong
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
47
|
Geng Y, Zhao Y, Schuster LC, Feng B, Lynn DA, Austin KM, Stoklosa JD, Morrison JD. A Chemical Biology Study of Human Pluripotent Stem Cells Unveils HSPA8 as a Key Regulator of Pluripotency. Stem Cell Reports 2015; 5:1143-1154. [PMID: 26549849 PMCID: PMC4682066 DOI: 10.1016/j.stemcr.2015.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/06/2023] Open
Abstract
Chemical biology methods such as high-throughput screening (HTS) and affinity-based target identification can be used to probe biological systems on a biomacromolecule level, providing valuable insights into the molecular mechanisms of those systems. Here, by establishing a human embryonal carcinoma cell-based HTS platform, we screened 171,077 small molecules for regulators of pluripotency and identified a small molecule, Displurigen, that potently disrupts hESC pluripotency by targeting heat shock 70-kDa protein 8 (HSPA8), the constitutively expressed member of the 70-kDa heat shock protein family, as elucidated using affinity-based target identification techniques and confirmed by loss-of-function and gain-of-function assays. We demonstrated that HSPA8 maintains pluripotency by binding to the master pluripotency regulator OCT4 and facilitating its DNA-binding activity.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yongfeng Zhao
- Stem Cell Center, Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Lisa Corinna Schuster
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bradley Feng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dana A Lynn
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katherine M Austin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jason Daniel Stoklosa
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph D Morrison
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
49
|
Berges C, Bedke T, Stuehler C, Khanna N, Zehnter S, Kruhm M, Winter N, Bargou RC, Topp MS, Einsele H, Chatterjee M. Combined PI3K/Akt and Hsp90 targeting synergistically suppresses essential functions of alloreactive T cells and increases Tregs. J Leukoc Biol 2015; 98:1091-105. [PMID: 26265781 DOI: 10.1189/jlb.5a0814-413r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 07/23/2015] [Indexed: 12/24/2022] Open
Abstract
Acute graft-versus-host disease is still a major cause of transplant-related mortality after allogeneic stem cell transplantation. It requires immunosuppressive treatments that broadly abrogate T cell responses, including beneficial ones directed against tumor cells or infective pathogens. Inhibition of the heat shock protein of 90 kDa has been demonstrated to eliminate tumor cells, as well as alloreactive T cells while preserving antiviral T cell immunity. Here, we show that the suppressive effects of heat shock protein of 90 kDa inhibition on alloreactive T cells were synergistically enhanced by concomitant inhibition of the PI3K/Akt signaling pathway, which is also strongly activated upon allogeneic stimulation. Molecular analyses revealed that this antiproliferative effect was mainly mediated by induction of cell-cycle arrest and apoptosis. In addition, we observed an increased proportion of activated regulatory T cells, which critically contribute to acute graft-versus-host disease control, upon combined heat shock protein of 90 kDa/Akt isoforms 1 and 2 or heat shock protein of 90 kDa/PI3K/p110δ isoform inhibition. Moreover, antiviral T cell immunity was functionally preserved after combined heat shock protein of 90 kDa/Akt isoforms 1 and 2 inhibition. Taken together, our data suggest that the combined heat shock protein of 90 kDa/PI3K/Akt inhibition approach represents a reasonable dual strategy to suppress residual tumor growth and efficiently deplete alloreactive T cells and thus, provide a rationale to prevent and treat acute graft-versus-host disease selectively without impairing pathogen-specific T cell immunity.
Collapse
Affiliation(s)
- Carsten Berges
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Tanja Bedke
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Claudia Stuehler
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Nina Khanna
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Sarah Zehnter
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Michaela Kruhm
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Nadine Winter
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ralf C Bargou
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Max S Topp
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Hermann Einsele
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Manik Chatterjee
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
50
|
Imrichova D, Messingerova L, Seres M, Kavcova H, Pavlikova L, Coculova M, Breier A, Sulova Z. Selection of resistant acute myeloid leukemia SKM-1 and MOLM-13 cells by vincristine-, mitoxantrone- and lenalidomide-induced upregulation of P-glycoprotein activity and downregulation of CD33 cell surface exposure. Eur J Pharm Sci 2015; 77:29-39. [PMID: 26002042 DOI: 10.1016/j.ejps.2015.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
Bone marrow cells and peripheral blood mononuclear cells obtained from both acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients contain upregulated levels of cell surface antigen CD33 compared with healthy controls. This difference enables the use of humanized anti-CD33 antibody conjugated to cytotoxic agents for CD33 targeted immunotherapy. However, the expression of the membrane-bound drug transporter P-glycoprotein (P-gp) has been shown to be critical for resistance against the cytotoxicity of a humanized anti-CD33 antibody conjugated to maytansine-derivative DM4. The aim of the present study was to examine whether the expression of P-gp in AML cell lines is associated with changes in CD33 expression. For this purpose, we established drug resistant variants of SKM-1 and MOLM-13 AML cell lines via the selection of parental cells for resistance to vincristine, mitoxantrone and lenalidomide. All three substances induced a multidrug resistance (MDR) phenotype in SKM-1 cells associated with strong upregulation of P-gp and downregulation of CD33. However, in MOLM-13 cells, the upregulation of P-gp and downregulation of CD33 were present only in cells selected for resistance to vincristine and mitoxantrone but not lenalidomide. Inverse expression of P-gp and CD33 were observed in all resistant variants of SKM-1 and MOLM-13 cells. The MDR phenotype of resistant variants of SKM-1 and MOLM-13 cells was associated with alterations in apoptotic regulatory proteins and downregulation of the multidrug resistance associated protein 1 and breast cancer resistance protein.
Collapse
Affiliation(s)
- D Imrichova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - L Messingerova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic; Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovak Republic
| | - M Seres
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - H Kavcova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - L Pavlikova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - M Coculova
- Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovak Republic
| | - A Breier
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic; Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovak Republic.
| | - Z Sulova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic.
| |
Collapse
|