1
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Feng Y, Chang SK, Portnoy DA. The major role of Listeria monocytogenes folic acid metabolism during infection is the generation of N-formylmethionine. mBio 2023; 14:e0107423. [PMID: 37695058 PMCID: PMC10653936 DOI: 10.1128/mbio.01074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/12/2023] Open
Abstract
IMPORTANCE Folic acid is an essential vitamin for bacteria, plants, and animals. The lack of folic acid leads to various consequences such as a shortage of amino acids and nucleotides that are fundamental building blocks for life. Though antifolate drugs are widely used for antimicrobial treatments, the underlying mechanism of bacterial folate deficiency during infection is unclear. This study compares the requirements of different folic acid end-products during the infection of Listeria monocytogenes, a facultative intracellular pathogen of animals and humans. The results reveal the critical importance of N-formylmethionine, the amino acid used by bacteria to initiate protein synthesis. This work extends the current understanding of folic acid metabolism in pathogens and potentially provides new insights into antifolate drug development in the future.
Collapse
Affiliation(s)
- Ying Feng
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Shannon K. Chang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Wang Y, Yang X, Zhang S, Ai J, Wang J, Chen J, Zhao L, Wang W, You H. Comparative proteomics unveils the bacteriostatic mechanisms of Ga(III) on the regulation of metabolic pathways in Pseudomonas aeruginosa. J Proteomics 2023; 289:105011. [PMID: 37776994 DOI: 10.1016/j.jprot.2023.105011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Gallium has a long history as a chemotherapeutic agent. The mechanisms of action of Ga(III)-based anti-infectives are different from conventional antibiotics, which primarily result from the chemical similarities of Ga(III) with Fe(III) and substitution of gallium into iron-dependent biological pathways. However, more aspects of the molecular mechanisms of Ga(III) against human pathogens, especially the effects on bacterial metabolic processes, remain to be understood. Herein, by using conventional quantitative proteomics, we identified the protein changes of Pseudomonas aeruginosa (P. aeruginosa) in response to Ga(NO3)3 treatment. We show that Ga(III) exhibits bacteriostatic mode of action against P. aeruginosa through affecting the expressions of a number of key enzymes in the main metabolic pathways, including glycolysis, TCA cycle, amino acid metabolism, and protein and nucleic acid biosynthesis. In addition, decreased expressions of proteins associated with pathogenesis and virulence of P. aeruginosa were also identified. Moreover, the correlations between protein expressions and metabolome changes in P. aeruginosa upon Ga(III) treatment were identified and discussed. Our findings thus expand the understanding on the antimicrobial mechanisms of Ga(III) that shed light on enhanced therapeutic strategies. BIOLOGICAL SIGNIFICANCE: Mounting evidence suggest that the efficacy and resistance of clinical antibiotics are closely related to the metabolic homeostasis in bacterial pathogens. Ga(III)-based compounds have been repurposed as antibacterial therapeutic candidates against antibiotics resistant pathogens, and represent a safe and promising treatment for clinical human infections, while more thorough understandings of how bacteria respond to Ga(III) treatment are needed. In the present study, we provide evidences at the proteome level that indicate Ga(III)-induced metabolic perturbations in P. aeruginosa. We identified and discussed the interference of Ga(III) on the expressions and activities of enzymes in the main metabolic pathways in P. aeruginosa. In view of our previous report that the antimicrobial efficacy of Ga(III) could be modulated according to Ga(III)-induced metabolome changes in P. aeruginosa, our current analyses may provide theoretical basis at the proteome level for the development of efficient gallium-based therapies by exploiting bacterial metabolic mechanisms.
Collapse
Affiliation(s)
- Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China.
| | - Xue Yang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Jiayi Ai
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Junteng Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Junxin Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Wanying Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Haoxin You
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| |
Collapse
|
4
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
5
|
Liu X, Wang J, Chen M, Che R, Ding W, Yu F, Zhou Y, Cui W, Xiaoxu X, God'spower BO, Li Y. Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress. BMC Vet Res 2019; 15:224. [PMID: 31266490 PMCID: PMC6604186 DOI: 10.1186/s12917-019-1959-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background As a kind of opportunist pathogen, Staphylococcus xylosus (S. xylosus) can cause mastitis. Antibiotics are widely used for treating infected animals and tylosin is a member of such group. Thus, the continuous use of antibiotics in dairy livestock enterprise will go a long way in increasing tylosin resistance. However, the mechanism of tylosin-resistant S. xylosus is not clear. Here, isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods was used to find resistance-related proteins. Results We compared the differential expression of S. xylosus in response to tylosin stress by iTRAQ. A total of 155 proteins (59 up-regulated, 96 down-regulated) with the fold-change of >1.2 or <0.8 (p value ≤0.05) were observed between the S. xylosus treated with 1/2 MIC (0.25 μg/mL) tylosin and the untreated S. xylosus. Bioinformatic analysis revealed that these proteins play important roles in stress-response and transcription. Then, in order to verify the relationship between the above changed proteins and mechanism of tylosin-resistant S. xylosus, we induced the tylosin-resistant S. xylosus, and performed quantitative PCR analysis to verify the changes in the transcription proteins and the stress-response proteins in tylosin-resistant S. xylosus at the mRNA level. The data displayed that ribosomal protein L23 (rplw), thioredoxin(trxA) and Aldehyde dehydrogenase A(aldA-1) are up-regulated in the tylosin-resistant S. xylosus, compared with the tylosin-sensitive strains. Conclusion Our findings demonstrate the important of stress-response and transcription in the tylosin resistance of S. xylosus and provide an insight into the prevention of this resistance, which would aid in finding new medicines . Electronic supplementary material The online version of this article (10.1186/s12917-019-1959-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Jinpeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Mo Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Ruixiang Che
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Wenya Ding
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Fei Yu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Wenqiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Xing Xiaoxu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Bello-Onaghise God'spower
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China.
| |
Collapse
|
6
|
Piatkov KI, Vu TTM, Hwang CS, Varshavsky A. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 2:376-393. [PMID: 26866044 PMCID: PMC4745127 DOI: 10.15698/mic2015.10.231] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023]
Abstract
In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N-terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt-formylation in bacteria. We addressed this hypothesis about fMet-based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N-degrons, in contrast to the cotranslational design of analogous Ac/N-degrons in eukaryotes.
Collapse
Affiliation(s)
- Konstantin I. Piatkov
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Tri T. M. Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Wang J, Caban K, Gonzalez RL. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J Mol Biol 2015; 427:1819-34. [PMID: 25596426 DOI: 10.1016/j.jmb.2014.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.
Collapse
Affiliation(s)
- Jiangning Wang
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA.
| |
Collapse
|
8
|
The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 2014; 80:6976-91. [PMID: 25192989 DOI: 10.1128/aem.01576-14] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state.
Collapse
|
9
|
Zorzet A, Andersen JM, Nilsson AI, Møller NF, Andersson DI. Compensatory mutations in agrC partly restore fitness in vitro to peptide deformylase inhibitor-resistant Staphylococcus aureus. J Antimicrob Chemother 2012; 67:1835-42. [PMID: 22577101 DOI: 10.1093/jac/dks168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine how the fitness cost of deformylase inhibitor resistance conferred by fmt mutations can be genetically compensated. METHODS Resistant mutants were isolated and characterized with regard to their growth rates in vitro and in neutropenic mice, MIC and DNA sequence. Faster-growing compensated mutants were isolated by serial passage in culture medium, and for a subset of the resistant and compensated mutants whole-genome sequencing was performed. RESULTS Staphylococcus aureus mutants resistant to the peptide deformylase inhibitor actinonin had mutations in the fmt gene that conferred high-level actinonin resistance and reduced bacterial growth rate. Compensated mutants that remained fully resistant to actinonin and showed increased growth rates appeared within 30-60 generations of growth. Whole-genome sequencing and localized DNA sequencing of mutated candidate genes showed that alterations in the gene agrC were present in the majority of compensated strains. Resistant and compensated mutants grew at similar rates as the wild-type in a mouse thigh infection model. CONCLUSIONS Resistance to deformylase inhibitors due to fmt mutations reduces bacterial growth rates, but these costs can be reduced by mutations in the agrC gene. Mutants defective in fmt (with or without compensatory agrC mutations) grew well in an animal model, implying that they can also cause infection in a host.
Collapse
Affiliation(s)
- Anna Zorzet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
10
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
11
|
Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO J 2010; 30:289-301. [PMID: 21151095 DOI: 10.1038/emboj.2010.328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/17/2010] [Indexed: 11/08/2022] Open
Abstract
We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases.
Collapse
|
12
|
Petrova OE, Sauer K. The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol 2010; 192:5275-88. [PMID: 20656909 PMCID: PMC2950493 DOI: 10.1128/jb.00387-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/14/2010] [Indexed: 11/20/2022] Open
Abstract
The formation of biofilms by the opportunistic pathogen Pseudomonas aeruginosa is a developmental process governed by a novel signal transduction system composed of three two-component regulatory systems (TCSs), BfiSR, BfmSR, and MifSR. Here, we show that BfiSR-dependent arrest of biofilm formation coincided with reduced expression of genes involved in virulence, posttranslational/transcriptional modification, and Rhl quorum sensing but increased expression of rhlAB and the small regulatory RNAs rsmYZ. Overexpression of rsmZ, but not rsmY, coincided with impaired biofilm development similar to inactivation of bfiS and retS. We furthermore show that BfiR binds to the 5' untranslated region of cafA encoding RNase G. Lack of cafA expression coincided with impaired biofilm development and increased rsmYZ levels during biofilm growth compared to the wild type. Overexpression of cafA restored ΔbfiS biofilm formation to wild-type levels and reduced rsmZ abundance. Moreover, inactivation of bfiS resulted in reduced virulence, as revealed by two plant models of infection. This work describes the regulation of a committed biofilm developmental step following attachment by the novel TCS BfiSR through the suppression of sRNA rsmZ via the direct regulation of RNase G in a biofilm-specific manner, thus underscoring the importance of posttranscriptional mechanisms in controlling biofilm development and virulence.
Collapse
Affiliation(s)
- Olga E. Petrova
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902
| |
Collapse
|
13
|
Morita Y, Narita SI, Tomida J, Tokuda H, Kawamura Y. Application of an inducible system to engineer unmarked conditional mutants of essential genes of Pseudomonas aeruginosa. J Microbiol Methods 2010; 82:205-13. [PMID: 20538017 DOI: 10.1016/j.mimet.2010.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 12/31/2022]
Abstract
The Phi CTX-based integration vector pYM101 harboring a tightly controlled modified phage T7 early gene promoter/LacI(q) repressor (T7/LacI) system was constructed for the generation of unmarked conditional mutants in Pseudomonas aeruginosa. Promoter activity of the T7/LacI system was demonstrated to be dependent on the presence of the inducer isopropyl -beta-D-1-thiogalactopyranoside (IPTG), as evaluated by measuring beta-galactosidase activity. In the absence of the inducer, the promoter was silent as its activity was lower than those of a promoter-less lacZ control. Unmarked conditional mutants of four predicted essential genes (lolCDE (PA2988-86), lpxC (PA4406), rho (PA5239), and def (PA0019)) were successfully constructed using this recombination system. In the absence of IPTG, the growth of all mutants was repressed; however, the addition of either 0.1 or 1mM IPTG restored growth rates to levels nearly identical to wild-type cells. It was therefore demonstrated that the inducible integration vector pYM101 is suitable for the creation of unmarked conditional mutants of P. aeruginosa, and is particularly useful for examining the function of essential genes.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
14
|
Zorzet A, Pavlov MY, Nilsson AI, Ehrenberg M, Andersson DI. Error-prone initiation factor 2 mutations reduce the fitness cost of antibiotic resistance. Mol Microbiol 2010; 75:1299-313. [PMID: 20132454 PMCID: PMC2859245 DOI: 10.1111/j.1365-2958.2010.07057.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 11/27/2022]
Abstract
Mutations in the fmt gene (encoding formyl methionine transferase) that eliminate formylation of initiator tRNA (Met-tRNA(i)) confer resistance to the novel antibiotic class of peptide deformylase inhibitors (PDFIs) while concomitantly reducing bacterial fitness. Here we show in Salmonella typhimurium that novel mutations in initiation factor 2 (IF2) located outside the initiator tRNA binding domain can partly restore fitness of fmt mutants without loss of antibiotic resistance. Analysis of initiation of protein synthesis in vitro showed that with non-formylated Met-tRNA(i) IF2 mutants initiated much faster than wild-type IF2, whereas with formylated fMet-tRNA(i) the initiation rates were similar. Moreover, the increase in initiation rates with Met-tRNA(i) conferred by IF2 mutations in vitro correlated well with the increase in growth rate conferred by the same mutations in vivo, suggesting that the mutations in IF2 compensate formylation deficiency by increasing the rate of in vivo initiation with Met-tRNA(i). IF2 mutants had also a high propensity for erroneous initiation with elongator tRNAs in vitro, which could account for their reduced fitness in vivo in a formylation-proficient strain. More generally, our results suggest that bacterial protein synthesis is mRNA-limited and that compensatory mutations in IF2 could increase the persistence of PDFI-resistant bacteria in clinical settings.
Collapse
Affiliation(s)
- Anna Zorzet
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityBox 582, SE-751 23 Uppsala, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Uppsala UniversityBox 596, SE-751 24 Uppsala, Sweden
| | - Annika I Nilsson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityBox 582, SE-751 23 Uppsala, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala UniversityBox 596, SE-751 24 Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityBox 582, SE-751 23 Uppsala, Sweden
| |
Collapse
|
15
|
András CD, Csajági C, Orbán CK, Albert C, Ábrahám B, Miklóssy I. A possible explanation of the germicide effect of carbon dioxide in supercritical state based on molecular-biological evidence. Med Hypotheses 2010; 74:325-9. [DOI: 10.1016/j.mehy.2009.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 12/01/2022]
|
16
|
Mutations in three distinct loci cause resistance to peptide deformylase inhibitors in Bacillus subtilis. Antimicrob Agents Chemother 2009; 53:1673-8. [PMID: 19171795 DOI: 10.1128/aac.01340-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis mutants with resistance against peptide deformylase inhibitors were isolated. All showed a bypass of the pathway through mutations in three genes required for formylation of Met-tRNA(fMet), fmt, folD, and glyA. glyA corresponds to a yet uncharacterized locus inducing resistance. The bypass of formylation caused robust fitness reduction but was not accompanied by alterations of the transcription profile. A subtle adaptation of the enzymes of the intermediary metabolism was observed.
Collapse
|
17
|
Abstract
The genomes of several species of mycoplasma have been sequenced. Most of these species rely on the glycolytic pathway for energy production, with the one exception of Ureaplasma, a species that breaks down urea as its principle source of acquiring energy. Several species, including as Mycoplasma arthritidis, are nonglycolytic and can use arginine as their source of energy. Described here are the genome sequence and a transposon library of M. arthritidis. The genome of 820,453 bp is typical in size for a mycoplasma and contains two large families of genes that are predicted to code for phase-variable proteins. The transposon library was constructed using a minitransposon that inserts stably into the mycoplasma genome. Of the 635 predicted coding regions, 218 were disrupted in a library of 1,100 members. Dispensable genes included the gene coding for the MAM superantigen and genes coding for ribosomal proteins S15, S18, and L15.
Collapse
|
18
|
Dean CR, Narayan S, Richards J, Daigle DM, Esterow S, Leeds JA, Kamp H, Puyang X, Wiedmann B, Mueller D, Voshol H, van Oostrum J, Wall D, Koehn J, Dzink-Fox J, Ryder NS. Reduced susceptibility of Haemophilus influenzae to the peptide deformylase inhibitor LBM415 can result from target protein overexpression due to amplified chromosomal def gene copy number. Antimicrob Agents Chemother 2007; 51:1004-10. [PMID: 17220413 PMCID: PMC1803149 DOI: 10.1128/aac.01103-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous genetic analysis of Haemophilus influenzae revealed two mechanisms associated with decreased susceptibility to the novel peptide deformylase inhibitor LBM415: AcrAB-TolC-mediated efflux and Fmt bypass, resulting from mutations in the pump repressor gene acrR and in the fmt gene, respectively. We have isolated an additional mutant, CDS23 (LBM415 MIC, 64 microg/ml versus 4 microg/ml against the parent strain NB65044) that lacks mutations in the acrR or fmt structural genes or in the gene encoding Def, the intracellular target of LBM415. Western immunoblot analysis, two-dimensional gel electrophoresis, and tryptic digestion combined with mass spectrometric identification showed that the Def protein was highly overexpressed in the mutant strain. Consistent with this, real-time reverse transcription-PCR revealed a significant increase in def transcript titer. No mutations were found in the region upstream of def that might account for altered expression; however, pulsed-field gel electrophoresis suggested that a genetic rearrangement of the region containing def had occurred. Using a combination of PCR, sequencing, and Southern blot analyses, it was determined that the def gene had undergone copy number amplification, explaining the high level of target protein expression. Inactivation of the AcrAB-TolC efflux pump in this mutant increased susceptibility 16-fold, highlighting the role of efflux in exacerbating the overall reduced susceptibility resulting from target overexpression.
Collapse
Affiliation(s)
- Charles R Dean
- Infectious Diseases, Novartis Institutes for BioMedical Research, 500 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Garofalo C, Kramer G, Appling DR. Characterization of the C2 subdomain of yeast mitochondrial initiation factor 2. Arch Biochem Biophys 2005; 439:113-20. [PMID: 15935987 DOI: 10.1016/j.abb.2005.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/26/2005] [Accepted: 05/02/2005] [Indexed: 11/20/2022]
Abstract
The COOH-terminal part of the yeast mitochondrial initiation factor 2 (ymIF2), containing the C2 subdomain, was expressed and purified as a histidine-tagged polypeptide of 137 amino acids. Like the recombinant full-length protein, the C2 subdomain binds both formyl-Met-tRNA(f)(Met) and unformylated Met-tRNA(f)(Met) with only a small preference for the former species. Formation of a binary complex between the C2 subdomain or the full-length ymIF2 and initiator tRNA was also assessed by fluorescence measurements. The binding of coumarin-Met-tRNA(f) to either protein caused a blue shift of the coumarin emission spectrum and an increase in anisotropy. Full-length ymIF2 is functionally competent in forming an initiation complex and supporting formation of the first peptide bond on Escherichia coli ribosomes. The results demonstrate that ymIF2 has the same domain structure and biochemical properties of a typical IF2 species as found in bacteria or mammalian mitochondria--but with enhanced ability to bind unformylated initiator Met-tRNA.
Collapse
Affiliation(s)
- Cristiana Garofalo
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
20
|
Vasconcelos ATR, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO, Pinto PM, Almeida DF, Almeida LGP, Almeida R, Alves-Filho L, Assunção EN, Azevedo VAC, Bogo MR, Brigido MM, Brocchi M, Burity HA, Camargo AA, Camargo SS, Carepo MS, Carraro DM, de Mattos Cascardo JC, Castro LA, Cavalcanti G, Chemale G, Collevatti RG, Cunha CW, Dallagiovanna B, Dambrós BP, Dellagostin OA, Falcão C, Fantinatti-Garboggini F, Felipe MSS, Fiorentin L, Franco GR, Freitas NSA, Frías D, Grangeiro TB, Grisard EC, Guimarães CT, Hungria M, Jardim SN, Krieger MA, Laurino JP, Lima LFA, Lopes MI, Loreto ELS, Madeira HMF, Manfio GP, Maranhão AQ, Martinkovics CT, Medeiros SRB, Moreira MAM, Neiva M, Ramalho-Neto CE, Nicolás MF, Oliveira SC, Paixão RFC, Pedrosa FO, Pena SDJ, Pereira M, Pereira-Ferrari L, Piffer I, Pinto LS, Potrich DP, Salim ACM, Santos FR, Schmitt R, Schneider MPC, Schrank A, Schrank IS, Schuck AF, Seuanez HN, Silva DW, Silva R, Silva SC, Soares CMA, Souza KRL, Souza RC, Staats CC, Steffens MBR, Teixeira SMR, Urmenyi TP, Vainstein MH, Zuccherato LW, Simpson AJG, Zaha A. Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol 2005; 187:5568-77. [PMID: 16077101 PMCID: PMC1196056 DOI: 10.1128/jb.187.16.5568-5577.2005] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 05/19/2005] [Indexed: 11/20/2022] Open
Abstract
This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.
Collapse
Affiliation(s)
- Ana Tereza R Vasconcelos
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Prédio 43421, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Charrière F, Tan THP, Schneider A. Mitochondrial initiation factor 2 of Trypanosoma brucei binds imported formylated elongator-type tRNA(Met). J Biol Chem 2005; 280:15659-65. [PMID: 15731104 DOI: 10.1074/jbc.m411581200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Its translation system therefore depends on the import of nucleus-encoded tRNAs. Thus, except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The only tRNA(Met) present in T. brucei mitochondria is therefore the one which, in the cytosol, is involved in translation elongation. Mitochondrial translation initiation depends on an initiator tRNA(Met) carrying a formylated methionine. This tRNA is then recognized by initiation factor 2, which brings it to the ribosome. To guarantee mitochondrial translation initiation, T. brucei has an unusual methionyl-tRNA formyltransferase that formylates elongator tRNA(Met). In the present study, we have identified initiation factor 2 of T. brucei and shown that its carboxyl-terminal domain specifically binds formylated trypanosomal elongator tRNA(Met). Furthermore, the protein also recognizes the structurally very different Escherichia coli initiator tRNA(Met), suggesting that the main determinant recognized is the formylated methionine. In vivo studies using stable RNA interference cell lines showed that knock-down of initiation factor 2, depending on which construct was used, causes slow growth or even growth arrest. Moreover, concomitantly with ablation of the protein, a loss of oxidative phosphorylation was observed. Finally, although ablation of the methionyl-tRNA formyltransferase on its own did not impair growth, a complete growth arrest was observed when it was combined with the initiation factor 2 RNA interference cell line showing the slow growth phenotype. Thus, these experiments illustrate the importance of mitochondrial translation initiation for growth of procyclic T. brucei.
Collapse
Affiliation(s)
- Fabien Charrière
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|