1
|
Fotopoulou A, Angelopoulou MT, Pratsinis H, Mavrogonatou E, Kletsas D. A subset of human dermal fibroblasts overexpressing Cockayne syndrome group B protein resist UVB radiation-mediated premature senescence. Aging Cell 2025; 24:e14422. [PMID: 39698891 PMCID: PMC11896172 DOI: 10.1111/acel.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period. Here, we found that repetitive exposures to non-cytotoxic UVB radiation doses after several days lead to mixed cultures, containing both senescent cells and fibroblasts resisting senescence. "Resistant" fibroblasts were more resilient to a novel intense UVB radiation stimulus. RNA-seq analysis revealed that ERCC6, encoding Cockayne syndrome group B (CSB) protein, is up-regulated in resistant HDFs compared to young and senescent cells. CSB was found to be a key molecule conferring protection toward UVB-induced cytotoxicity and senescence, as siRNA-mediated CSB loss-of-expression rendered HDFs significantly more susceptible to a high UVB radiation dose, while cells from a CSB-deficient patient were found to be more sensitive to UVB-mediated toxicity, as well as senescence. UVB-resistant HDFs remained normal (able to undergo replicative senescence) and non-tumorigenic. Even though they formed a distinct population in-between young and senescent cells, resistant HDFs retained numerous tissue-impairing characteristics of the senescence-associated secretory phenotype, including increased matrix metalloprotease activity and promotion of epidermoid tumor xenografts in immunodeficient mice. Collectively, here we describe a novel subpopulation of HDFs showing increased resistance to UVB-mediated premature senescence while retaining undesirable traits that may negatively affect skin homeostasis.
Collapse
Affiliation(s)
- Asimina Fotopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
- Department of ChemistryUniversity of PatrasPatrasGreece
| | - Maria T. Angelopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| |
Collapse
|
2
|
Antariksa N, Di Antonio M. The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization. Acc Chem Res 2024; 57:3397-3406. [PMID: 39555660 PMCID: PMC11618987 DOI: 10.1021/acs.accounts.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
The ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation. In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites. Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.
Collapse
Affiliation(s)
- Naura
Fakhira Antariksa
- Imperial
College London, Department of Chemistry,
Molecular Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Marco Di Antonio
- Imperial
College London, Department of Chemistry,
Molecular Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
- Institute
of Chemical Biology, Molecular Sciences
Research Hub, 82 Wood
Lane, London W12 0BZ, U.K.
| |
Collapse
|
3
|
Abstract
In anaphase, any unresolved DNA entanglements between the segregating sister chromatids can give rise to chromatin bridges. To prevent genome instability, chromatin bridges must be resolved prior to cytokinesis. The SNF2 protein PICH has been proposed to play a direct role in this process through the remodeling of nucleosomes. However, direct evidence of nucleosome remodeling by PICH has remained elusive. Here, we present an in vitro single-molecule assay that mimics chromatin under tension, as is found in anaphase chromatin bridges. Applying a combination of dual-trap optical tweezers and fluorescence imaging of PICH and histones bound to a nucleosome-array construct, we show that PICH is a tension- and ATP-dependent nucleosome remodeler that facilitates nucleosome unwrapping and then subsequently slides remaining histones along the DNA. This work elucidates the role of PICH in chromatin-bridge dissolution, and might provide molecular insights into the mechanisms of related SNF2 proteins.
Collapse
|
4
|
Whole-exome sequencing revealed a novel ERCC6 variant in a Vietnamese patient with Cockayne syndrome. Hum Genome Var 2022; 9:21. [PMID: 35668072 PMCID: PMC9170721 DOI: 10.1038/s41439-022-00200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/11/2023] Open
Abstract
We describe a case of Cockayne syndrome without photosensitivity in a Vietnamese family. This lack of photosensitivity prevented the establishment of a confirmed medical clinical diagnosis for 16 years. Whole-exome sequencing (WES) identified a novel missense variant combined with a known nonsense variant in the ERCC6 gene, NM_000124.4: c.[2839C>T;2936A>G], p.[R947*;K979R]. This case emphasizes the importance of WES in investigating the etiology of a disease when patients do not present the complete clinical phenotypes of Cockayne syndrome.
Collapse
|
5
|
CSA Antisense Targeting Enhances Anticancer Drug Sensitivity in Breast Cancer Cells, including the Triple-Negative Subtype. Cancers (Basel) 2022; 14:cancers14071687. [PMID: 35406459 PMCID: PMC8997023 DOI: 10.3390/cancers14071687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer (BC), the most frequent malignancy in woman, shows a high rate of cancer recurrence and resistance to treatment, particularly in Triple-Negative Breast Cancer (TNBC) subtype. Starting from the observation that different subtypes of BC cells, including the TNBC one, display an increased expression of Cockayne Syndrome group A (CSA) protein, which is involved in multiple functions such as DNA repair, transcription and in conferring cell robustness when it is up-regulated, we demonstrated that CSA ablation by AntiSense Oligonucleotides (ASOs) drastically impairs tumorigenicity of BC cells by hampering their survival and proliferative capabilities without affecting normal breast cells. Suppression of CSA does result in lowering the IC50 value of Oxaliplatin and Paclitaxel, two commonly used chemotherapeutic agents in breast cancer treatment, allowing the use of a very low dose of chemotherapeutic that is non-toxic to the normal breast cell line. Finally, CSA ablation restores drug sensitivity in oxaliplatin-resistant cells. Based on these findings, we can conclude that CSA may be a very attractive target for the development of new specific anticancer therapies. Abstract Breast cancer (BC) is the most common cancer with the highest frequency of death among women. BC is highly heterogenic at the genetic, biological, and clinical level. Despite the significant improvements in diagnosis and treatments of BC, the high rate of cancer recurrence and resistance to treatment remains a major challenge in clinical practice. This issue is particularly relevant in Triple-Negative Breast Cancer (TNBC) subtype, for which chemotherapy remains the main standard therapeutic approach. Here, we observed that BC cells, belonging to different subtypes, including the TNBC, display an increased expression of Cockayne Syndrome group A (CSA) protein, which is involved in multiple functions such as DNA repair, transcription, mitochondrial homeostasis, and cell division and that recently was found to confer cell robustness when it is up-regulated. We demonstrated that CSA ablation by AntiSense Oligonucleotides (ASOs) drastically impairs tumorigenicity of BC cells by hampering their survival and proliferative capabilities without damaging normal cells. Moreover, suppression of CSA dramatically sensitizes BC cells to platinum and taxane derivatives, which are commonly used for BC first-line therapy, even at very low doses not harmful to normal cells. Finally, CSA ablation restores drug sensitivity in oxaliplatin-resistant cells. Based on these results, we conclude that CSA might be a very attractive target for the development of more effective anticancer therapies.
Collapse
|
6
|
Liano D, Monti L, Chowdhury S, Raguseo F, Di Antonio M. Long-range DNA interactions: inter-molecular G-quadruplexes and their potential biological relevance. Chem Commun (Camb) 2022; 58:12753-12762. [PMID: 36281554 PMCID: PMC9671097 DOI: 10.1039/d2cc04872h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Guanine-rich DNA sequences are known to fold into secondary structures called G-quadruplexes (G4s), which can form from either individual DNA strands (intra-molecular) or multiple DNA strands (inter-molecular, iG4s). Intra-molecular G4s have been the object of extensive biological investigation due to their enrichment in gene-promoters and telomers. On the other hand, iG4s have never been considered in biological contexts, as the interaction between distal sequences of DNA to form an iG4 in cells was always deemed as highly unlikely. In this feature article, we challenge this dogma by presenting our recent discovery of the first human protein (CSB) displaying astonishing picomolar affinity and binding selectivity for iG4s. These findings suggest potential for iG4 structures to form in cells and highlight the need of further studies to unravel the fundamental biological roles of these inter-molecular DNA structures. Furthermore, we discuss how the potential for formation of iG4s in neuronal cells, triggered by repeat expansions in the C9orf72 gene, can lead to the formation of nucleic-acids based pathological aggregates in neurodegenerative diseases like ALS and FTD. Finally, based on our recent work on short LNA-modified probes, we provide a prespective on how the rational design of G4-selective chemical tools can be leveraged to further elucidate the biological relevance of iG4 structures in the context of ageing-related diseases. Intermolecular G-quadruplex structures can form within distal region of genomic DNA, contributing to chromatin looping. Herein, we discuss recent evidence supporting formation of iG4s in living cells and their potential biological function.![]()
Collapse
Affiliation(s)
- Denise Liano
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| | - Ludovica Monti
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Souroprobho Chowdhury
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| | - Federica Raguseo
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ, London, UK
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
- The Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, W12 0BZ, London, UK
| |
Collapse
|
7
|
Neuroblastoma Cells Depend on CSB for Faithful Execution of Cytokinesis and Survival. Int J Mol Sci 2021; 22:ijms221810070. [PMID: 34576232 PMCID: PMC8465547 DOI: 10.3390/ijms221810070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma, the most common extra-cranial solid tumor of early childhood, is one of the major therapeutic challenges in child oncology: it is highly heterogenic at a genetic, biological, and clinical level. The high-risk cases have one of the least favorable outcomes amongst pediatric tumors, and the mortality rate is still high, regardless of the use of intensive multimodality therapies. Here, we observed that neuroblastoma cells display an increased expression of Cockayne Syndrome group B (CSB), a pleiotropic protein involved in multiple functions such as DNA repair, transcription, mitochondrial homeostasis, and cell division, and were recently found to confer cell robustness when they are up-regulated. In this study, we demonstrated that RNAi-mediated suppression of CSB drastically impairs tumorigenicity of neuroblastoma cells by hampering their proliferative, clonogenic, and invasive capabilities. In particular, we observed that CSB ablation induces cytokinesis failure, leading to caspases 9 and 3 activation and, subsequently, to massive apoptotic cell death. Worthy of note, a new frontier in cancer treatment, already proved to be successful, is cytokinesis-failure-induced cell death. In this context, CSB ablation seems to be a new and promising anticancer strategy for neuroblastoma therapy.
Collapse
|
8
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
9
|
Cockayne Syndrome Group B (CSB): The Regulatory Framework Governing the Multifunctional Protein and Its Plausible Role in Cancer. Cells 2021; 10:cells10040866. [PMID: 33920220 PMCID: PMC8068816 DOI: 10.3390/cells10040866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a DNA repair syndrome characterized by a broad spectrum of clinical manifestations such as neurodegeneration, premature aging, developmental impairment, photosensitivity and other symptoms. Mutations in Cockayne syndrome protein B (CSB) are present in the vast majority of CS patients and in other DNA repair-related pathologies. In the literature, the role of CSB in different DNA repair pathways has been highlighted, however, new CSB functions have been identified in DNA transcription, mitochondrial biology, telomere maintenance and p53 regulation. Herein, we present an overview of identified structural elements and processes that impact on CSB activity and its post-translational modifications, known to balance the different roles of the protein not only during normal conditions but most importantly in stress situations. Moreover, since CSB has been found to be overexpressed in a number of different tumors, its role in cancer is presented and possible therapeutic targeting is discussed.
Collapse
|
10
|
Tiwari V, Baptiste BA, Okur MN, Bohr VA. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Res 2021; 49:2418-2434. [PMID: 33590097 DOI: 10.1093/nar/gkab085] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Zhao X, Kumari D, Miller CJ, Kim GY, Hayward B, Vitalo AG, Pinto RM, Usdin K. Modifiers of Somatic Repeat Instability in Mouse Models of Friedreich Ataxia and the Fragile X-Related Disorders: Implications for the Mechanism of Somatic Expansion in Huntington's Disease. J Huntingtons Dis 2021; 10:149-163. [PMID: 33579860 PMCID: PMC7990428 DOI: 10.3233/jhd-200423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is one of a large group of human disorders that are caused by expanded DNA repeats. These repeat expansion disorders can have repeat units of different size and sequence that can be located in any part of the gene and, while the pathological consequences of the expansion can differ widely, there is evidence to suggest that the underlying mutational mechanism may be similar. In the case of HD, the expanded repeat unit is a CAG trinucleotide located in exon 1 of the huntingtin (HTT) gene, resulting in an expanded polyglutamine tract in the huntingtin protein. Expansion results in neuronal cell death, particularly in the striatum. Emerging evidence suggests that somatic CAG expansion, specifically expansion occurring in the brain during the lifetime of an individual, contributes to an earlier disease onset and increased severity. In this review we will discuss mouse models of two non-CAG repeat expansion diseases, specifically the Fragile X-related disorders (FXDs) and Friedreich ataxia (FRDA). We will compare and contrast these models with mouse and patient-derived cell models of various other repeat expansion disorders and the relevance of these findings for somatic expansion in HD. We will also describe additional genetic factors and pathways that modify somatic expansion in the FXD mouse model for which no comparable data yet exists in HD mice or humans. These additional factors expand the potential druggable space for diseases like HD where somatic expansion is a significant contributor to disease impact.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carson J Miller
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geum-Yi Kim
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bruce Hayward
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Antonia G Vitalo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ricardo Mouro Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Xu J, Wang W, Xu L, Chen JY, Chong J, Oh J, Leschziner AE, Fu XD, Wang D. Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers. Proc Natl Acad Sci U S A 2020; 117:25486-25493. [PMID: 32989164 PMCID: PMC7568279 DOI: 10.1073/pnas.2013379117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While loss-of-function mutations in Cockayne syndrome group B protein (CSB) cause neurological diseases, this unique member of the SWI2/SNF2 family of chromatin remodelers has been broadly implicated in transcription elongation and transcription-coupled DNA damage repair, yet its mechanism remains largely elusive. Here, we use a reconstituted in vitro transcription system with purified polymerase II (Pol II) and Rad26, a yeast ortholog of CSB, to study the role of CSB in transcription elongation through nucleosome barriers. We show that CSB forms a stable complex with Pol II and acts as an ATP-dependent processivity factor that helps Pol II across a nucleosome barrier. This noncanonical mechanism is distinct from the canonical modes of chromatin remodelers that directly engage and remodel nucleosomes or transcription elongation factors that facilitate Pol II nucleosome bypass without hydrolyzing ATP. We propose a model where CSB facilitates gene expression by helping Pol II bypass chromatin obstacles while maintaining their structures.
Collapse
Affiliation(s)
- Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Wei Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Liang Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093;
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
13
|
Lee JH, Kim EW, Croteau DL, Bohr VA. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 2020; 52:1466-1474. [PMID: 32887933 PMCID: PMC8080806 DOI: 10.1038/s12276-020-00497-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is an inevitable process of life. Defined by progressive physiological and functional loss of tissues and organs, aging increases the risk of mortality for the organism. The aging process is affected by various factors, including genetic and epigenetic ones. Here, we review the chromatin-specific epigenetic changes that occur during normal (chronological) aging and in premature aging diseases. Taking advantage of the reversible nature of epigenetic modifications, we will also discuss possible lifespan expansion strategies through epigenetic modulation, which was considered irreversible until recently.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward W Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA. .,Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Dynamic human MutSα-MutLα complexes compact mismatched DNA. Proc Natl Acad Sci U S A 2020; 117:16302-16312. [PMID: 32586954 DOI: 10.1073/pnas.1918519117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure-function properties of these obligate MutSα-MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα-MutLα-DNA complexes. We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS-MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.
Collapse
|
15
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
16
|
Apostolou Z, Chatzinikolaou G, Stratigi K, Garinis GA. Nucleotide Excision Repair and Transcription-Associated Genome Instability. Bioessays 2019; 41:e1800201. [PMID: 30919497 DOI: 10.1002/bies.201800201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription is a potential threat to genome integrity, and transcription-associated DNA damage must be repaired for proper messenger RNA (mRNA) synthesis and for cells to transmit their genome intact into progeny. For a wide range of structurally diverse DNA lesions, cells employ the highly conserved nucleotide excision repair (NER) pathway to restore their genome back to its native form. Recent evidence suggests that NER factors function, in addition to the canonical DNA repair mechanism, in processes that facilitate mRNA synthesis or shape the 3D chromatin architecture. Here, these findings are critically discussed and a working model that explains the puzzling clinical heterogeneity of NER syndromes highlighting the relevance of physiological, transcription-associated DNA damage to mammalian development and disease is proposed.
Collapse
Affiliation(s)
- Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| |
Collapse
|
17
|
Abstract
The physiological impact of the aberrant oxidation products on genomic DNA were demonstrated by embryonic lethality or the cancer susceptibility and/or neurological symptoms of animal impaired in the base excision repair (BER); the major pathway to maintain genomic integrity against non-bulky DNA oxidation. However, growing evidence suggests that other DNA repair pathways or factors that are not primarily associated with the classical BER pathway are also actively involved in the mitigation of oxidative assaults on the genomic DNA, according to the corresponding types of DNA oxidation. Among others, factors dedicated to lesion recognition in the nucleotide excision repair (NER) pathway have been shown to play eminent roles in the process of lesion recognition and stimulation of the enzyme activity of some sets of BER factors. Besides, substantial bulky DNA oxidation can be preferentially removed by a canonical NER mechanism; therefore, loss of function in the NER pathway shares common features arising from BER defects, including cancer predisposition and neurological disorders, although NER defects generally are nonlethal. Here we discuss recent achievements for delineating newly arising roles of NER lesion recognition factors to facilitate the BER process, and cooperative works of BER and NER pathways in response to the genotoxic oxidative stress.
Collapse
|
18
|
Lee JH, Demarest TG, Babbar M, Kim EW, Okur MN, De S, Croteau DL, Bohr VA. Cockayne syndrome group B deficiency reduces H3K9me3 chromatin remodeler SETDB1 and exacerbates cellular aging. Nucleic Acids Res 2019; 47:8548-8562. [PMID: 31276581 DOI: 10.1093/nar/gkz568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/09/2019] [Accepted: 06/29/2019] [Indexed: 12/30/2022] Open
Abstract
Cockayne syndrome is an accelerated aging disorder, caused by mutations in the CSA or CSB genes. In CSB-deficient cells, poly (ADP ribose) polymerase (PARP) is persistently activated by unrepaired DNA damage and consumes and depletes cellular nicotinamide adenine dinucleotide, which leads to mitochondrial dysfunction. Here, the distribution of poly (ADP ribose) (PAR) was determined in CSB-deficient cells using ADPr-ChAP (ADP ribose-chromatin affinity purification), and the results show striking enrichment of PAR at transcription start sites, depletion of heterochromatin and downregulation of H3K9me3-specific methyltransferases SUV39H1 and SETDB1. Induced-expression of SETDB1 in CSB-deficient cells downregulated PAR and normalized mitochondrial function. The results suggest that defects in CSB are strongly associated with loss of heterochromatin, downregulation of SETDB1, increased PAR in highly-transcribed regions, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Edward W Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
19
|
Yang Z, Liu C, Wu H, Xie Y, Gao H, Zhang X. CSB affected on the sensitivity of lung cancer cells to platinum-based drugs through the global decrease of let-7 and miR-29. BMC Cancer 2019; 19:948. [PMID: 31615563 PMCID: PMC6792260 DOI: 10.1186/s12885-019-6194-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Background Transcription-coupled nucleotide excision repair (TC-NER) plays a prominent role in the removal of DNA adducts induced by platinum-based chemotherapy reagents. Cockayne syndrome protein B (CSB), the master sensor of TCR, is also involved in the platinum resistant. Let-7 and miR-29 binding sites are highly conserved in the proximal 3′UTR of CSB. Methods We conducted immunohistochemisty to examine the expression of CSB in NSCLC. To determine whether let-7 family and miR-29 family directly interact with the putative target sites in the 3′UTR of CSB, we used luciferase reporter gene analysis. To detect the sensitivity of non-small cell lung cancer (NSCLC) cells to platinum-based drugs, CCK analysis and apoptosis analysis were performed. Results We found that let-7 and miR-29 negatively regulate the expression of CSB by directly targeting to the 3′UTR of CSB. The endogenous CSB expression could be suppressed by let-7 and miR-29 in lung cancer cells. The suppression of CSB activity by endogenous let-7 and miR-29 can be robustly reversed by their sponges. Down-regulation of CSB induced apoptosis and increased the sensitivity of NSCLC cells to cisplatin and carboplatin drugs. Let-7 and miR-29 directly effect on cisplatin and carboplatin sensitivity in NSCLC. Conclusions In conclusion, the platinum-based drug resistant of lung cancer cells may involve in the regulation of let-7 and miR-29 to CSB.
Collapse
Affiliation(s)
- Zhenbang Yang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Hebei Key Laboratory of Basic Medicine for Chronic Disease, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Chunling Liu
- Department of Pathology, Affiliated Tangshan Renmin Hospital North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Yuning Xie
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Institute of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hui Gao
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Institute of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
20
|
Boetefuer EL, Lake RJ, Fan HY. Mechanistic insights into the regulation of transcription and transcription-coupled DNA repair by Cockayne syndrome protein B. Nucleic Acids Res 2019; 46:7471-7479. [PMID: 30032309 PMCID: PMC6125617 DOI: 10.1093/nar/gky660] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Cockayne syndrome protein B (CSB) is a member of the SNF2/SWI2 ATPase family and is essential for transcription-coupled nucleotide excision DNA repair (TC-NER). CSB also plays critical roles in transcription regulation. CSB can hydrolyze ATP in a DNA-dependent manner, alter protein-DNA contacts and anneal DNA strands. How the different biochemical activities of CSB are utilized in these cellular processes have only begun to become clear in recent years. Mutations in the gene encoding CSB account for majority of the Cockayne syndrome cases, which result in extreme sun sensitivity, premature aging features and/or abnormalities in neurology and development. Here, we summarize and integrate recent biochemical, structural, single-molecule and somatic cell genetic studies that have advanced our understanding of CSB. First, we review studies on the mechanisms that regulate the different biochemical activities of CSB. Next, we summarize how CSB is targeted to regulate transcription under different growth conditions. We then discuss recent advances in our understanding of how CSB regulates transcription mechanistically. Lastly, we summarize the various roles that CSB plays in the different steps of TC-NER, integrating the results of different studies and proposing a model as to how CSB facilitates TC-NER.
Collapse
Affiliation(s)
- Erica L Boetefuer
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lake
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Seoane M, Buhs S, Iglesias P, Strauss J, Puller AC, Müller J, Gerull H, Feldhaus S, Alawi M, Brandner JM, Eggert D, Du J, Thomale J, Wild PJ, Zimmermann M, Sternsdorf T, Schumacher U, Nollau P, Fisher DE, Horstmann MA. Lineage-specific control of TFIIH by MITF determines transcriptional homeostasis and DNA repair. Oncogene 2019; 38:3616-3635. [PMID: 30651597 PMCID: PMC6756118 DOI: 10.1038/s41388-018-0661-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/05/2018] [Indexed: 11/15/2022]
Abstract
The melanocytic lineage, which is prominently exposed to ultraviolet radiation (UVR) and radiation-independent oxidative damage, requires specific DNA-damage response mechanisms to maintain genomic and transcriptional homeostasis. The coordinate lineage-specific regulation of intricately intertwined DNA repair and transcription is incompletely understood. Here we demonstrate that the Microphthalmia-associated transcription factor (MITF) directly controls general transcription and UVR-induced nucleotide excision repair by transactivation of GTF2H1 as a core element of TFIIH. Thus, MITF ensures the rapid resumption of transcription after completion of strand repair and maintains transcriptional output, which is indispensable for survival of the melanocytic lineage including melanoma in vitro and in vivo. Moreover, MITF controls c-MYC implicated in general transcription by transactivation of far upstream binding protein 2 (FUBP2/KSHRP), which induces c-MYC pulse regulation through TFIIH, and experimental depletion of MITF results in consecutive loss of CDK7 in the TFIIH-CAK subcomplex. Targeted for proteasomal degradation, CDK7 is dependent on transactivation by MITF or c-MYC to maintain a steady state. The dependence of TFIIH-CAK on sequence-specific MITF and c-MYC constitutes a previously unrecognized mechanism feeding into super-enhancer-driven or other oncogenic transcriptional circuitries, which supports the concept of a transcription-directed therapeutic intervention in melanoma.
Collapse
Affiliation(s)
- Marcos Seoane
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Sophia Buhs
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Pablo Iglesias
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Julia Strauss
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Ann-Christin Puller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Jürgen Müller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Helwe Gerull
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg, Hamburg, 20246, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany
| | - Johanna M Brandner
- Department of Dermatology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Dennis Eggert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany.,Max-Planck-Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Jinyan Du
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Merrimack Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Jürgen Thomale
- Institute of Cell Biology, University Duisburg-Essen, Essen, 45122, Germany
| | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zürich, Zürich, 8091, Switzerland
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, 30625, Germany
| | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin A Horstmann
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany. .,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany.
| |
Collapse
|
22
|
Pisano S, Gilson E. Analysis of DNA-Protein Complexes by Atomic Force Microscopy Imaging: The Case of TRF2-Telomeric DNA Wrapping. Methods Mol Biol 2019; 1886:75-97. [PMID: 30374863 DOI: 10.1007/978-1-4939-8894-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) is a non-optical microscopy that enables the acquisition at the nanoscale level of a 3D topographical image of the sample. For 30 years, AFM has been a valuable tool in life sciences to study biological samples in the field of tissue, cellular and molecular imaging, of mechanical properties and of force spectroscopy. Since the early beginnings of the technique, AFM has been extensively exploited as an imaging tool for structural studies of nucleic acids and nucleoprotein complexes. The morphometric analysis performed on the images can unveil specific structural and functional aspects of the sample, such as the multimerization state of proteins bound to DNA, or DNA conformational changes led by the DNA-binding proteins. Herein, a method for analyzing a complex formed by a telomeric DNA sequence wrapped around the TRF2 binding protein is presented. The described procedure could be applied to the study of any type of DNA-protein complex.
Collapse
Affiliation(s)
- Sabrina Pisano
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France.
| | - Eric Gilson
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France
- International Laboratory in Hematology and Cancer, Pôle Sino-Français de Recherche en Sciences du Vivant et Génomique, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/INSERM/Nice University, Shanghai, China
- Department of Genetics, CHU Nice, Université Côte d'Azur, Nice, France
| |
Collapse
|
23
|
Abstract
Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nm resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.
Collapse
|
24
|
Lee JY, Lake RJ, Kirk J, Bohr VA, Fan HY, Hohng S. NAP1L1 accelerates activation and decreases pausing to enhance nucleosome remodeling by CSB. Nucleic Acids Res 2017; 45:4696-4707. [PMID: 28369616 PMCID: PMC5416873 DOI: 10.1093/nar/gkx188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/16/2017] [Indexed: 11/22/2022] Open
Abstract
Cockayne syndrome protein B (CSB) belongs to the SWI2/SNF2 ATP-dependent chromatin remodeler family, and CSB is the only ATP-dependent chromatin remodeler essential for transcription-coupled nucleotide excision DNA repair. CSB alone remodels nucleosomes ∼10-fold slower than the ACF remodeling complex. Strikingly, NAP1-like histone chaperones interact with CSB and greatly enhance CSB-mediated chromatin remodeling. While chromatin remodeling by CSB and NAP1-like proteins is crucial for efficient transcription-coupled DNA repair, the mechanism by which NAP1-like proteins enhance chromatin remodeling by CSB remains unknown. Here we studied CSB's DNA-binding and nucleosome-remodeling activities at the single molecule level in real time. We also determined how the NAP1L1 chaperone modulates these activities. We found that CSB interacts with DNA in two principle ways: by simple binding and a more complex association that involves gross DNA distortion. Remarkably, NAP1L1 suppresses both these interactions. Additionally, we demonstrate that nucleosome remodeling by CSB consists of three distinct phases: activation, translocation and pausing, similar to ACF. Importantly, we found that NAP1L1 promotes CSB-mediated remodeling by accelerating both activation and translocation. Additionally, NAP1L1 increases CSB processivity by decreasing the pausing probability during translocation. Our study, therefore, uncovers the different steps of CSB-mediated chromatin remodeling that can be regulated by NAP1L1.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.,National Center of Creative Research Initiatives, Seoul National University, Seoul 08826, Republic of Korea
| | - Robert J Lake
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaewon Kirk
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.,National Center of Creative Research Initiatives, Seoul National University, Seoul 08826, Republic of Korea
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hua-Ying Fan
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sungchul Hohng
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.,National Center of Creative Research Initiatives, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Abstract
Transcription-coupled DNA repair (TCR) acts on lesions in the transcribed strand of active genes. Helix distorting adducts and other forms of DNA damage often interfere with the progression of the transcription apparatus. Prolonged stalling of RNA polymerase can promote genome instability and also induce cell cycle arrest and apoptosis. These generally unfavorable events are counteracted by RNA polymerase-mediated recruitment of specific proteins to the sites of DNA damage to perform TCR and eventually restore transcription. In this perspective we discuss the decision-making process to employ TCR and we elucidate the intricate biochemical pathways leading to TCR in E. coli and human cells.
Collapse
Affiliation(s)
- Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
26
|
Yew YW, Giordano CN, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: Photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol 2017; 75:873-882. [PMID: 27745642 DOI: 10.1016/j.jaad.2016.03.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 11/17/2022]
Abstract
Photodermatoses associated with defective DNA repair are a group of photosensitive hereditary skin disorders. In this review, we focus on diseases and syndromes with defective nucleotide excision repair that are not accompanied by an increased risk of cutaneous malignancies despite having photosensitivity. Specifically, the gene mutations and transcription defects, epidemiology, and clinical features of Cockayne syndrome, cerebro-oculo-facial-skeletal syndrome, ultraviolet-sensitive syndrome, and trichothiodystrophy will be discussed. These conditions may also have other extracutaneous involvement affecting the neurologic system and growth and development. Rigorous photoprotection remains an important component of the management of these inherited DNA repair-deficiency photodermatoses.
Collapse
Affiliation(s)
- Yik Weng Yew
- Department of Dermatology, National Skin Centre, Singapore
| | | | - Graciela Spivak
- Department of Biology, Stanford University, Stanford, California
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan.
| |
Collapse
|
27
|
Steurer B, Marteijn JA. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. J Mol Biol 2016; 429:3146-3155. [PMID: 27851891 DOI: 10.1016/j.jmb.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
28
|
Abstract
Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
29
|
Abstract
The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, Stanford, CA 94305-5020,USA.
| |
Collapse
|
30
|
Abstract
Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes.
Collapse
|
31
|
Iyama T, Lee SY, Berquist BR, Gileadi O, Bohr VA, Seidman MM, McHugh PJ, Wilson DM. CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res 2014; 43:247-58. [PMID: 25505141 PMCID: PMC4288174 DOI: 10.1093/nar/gku1279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cockayne syndrome (CS) is a premature aging disorder characterized by photosensitivity, impaired development and multisystem progressive degeneration, and consists of two strict complementation groups, A and B. Using a yeast two-hybrid approach, we identified the 5′-3′ exonuclease SNM1A as one of four strong interacting partners of CSB. This direct interaction was confirmed using purified recombinant proteins—with CSB able to modulate the exonuclease activity of SNM1A on oligonucleotide substrates in vitro—and the two proteins were shown to exist in a common complex in human cell extracts. CSB and SNM1A were also found, using fluorescently tagged proteins in combination with confocal microscopy and laser microirradiation, to be recruited to localized trioxsalen-induced ICL damage in human cells, with accumulation being suppressed by transcription inhibition. Moreover, SNM1A recruitment was significantly reduced in CSB-deficient cells, suggesting coordination between the two proteins in vivo. CSB-deficient neural cells exhibited increased sensitivity to DNA crosslinking agents, particularly, in a non-cycling, differentiated state, as well as delayed ICL processing as revealed by a modified Comet assay and γ-H2AX foci persistence. The results indicate that CSB coordinates the resolution of ICLs, possibly in a transcription-associated repair mechanism involving SNM1A, and that defects in the process could contribute to the post-mitotic degenerative pathologies associated with CS.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sook Y Lee
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | - Opher Gileadi
- The Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
32
|
Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014; 15:465-81. [PMID: 24954209 DOI: 10.1038/nrm3822] [Citation(s) in RCA: 828] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype-phenotype correlations of transcription-coupled repair disorders.
Collapse
|
33
|
Abstract
A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| | - Ann K Ganesan
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| |
Collapse
|
34
|
Lake RJ, Boetefuer EL, Tsai PF, Jeong J, Choi I, Won KJ, Fan HY. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure. PLoS Genet 2014; 10:e1004284. [PMID: 24743307 PMCID: PMC3990521 DOI: 10.1371/journal.pgen.1004284] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome. Cockayne syndrome is a devastating inherited disease, in which patients appear to age prematurely, have sun sensitivity and suffer from profound neurological and developmental defects. Mutations in the CSB gene account for the majority of Cockayne syndrome cases. CSB is an ATP-dependent chromatin remodeler, and these proteins can use energy from ATP-hydrolysis to alter contacts between DNA and histones of a nucleosome, the basic units of chromatin structure. CSB functions in DNA repair, but accumulating evidence reveals that CSB also functions in transcription regulation. Here, we determined the genomic localization of CSB to identify its gene targets and found that CSB occupancy displays high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, CSB is enriched at genomic regions containing the binding site for the c-Jun transcription factor, and we found that these two proteins interact, uncovering a new targeting mechanism for CSB. We also demonstrate that CSB can influence gene expression in the vicinity of its binding sites and alter local chromatin structure. Together, this study supports the hypothesis that defects in the regulation of gene expression and chromatin structure by CSB might contribute to the diverse clinical features of Cockayne syndrome.
Collapse
Affiliation(s)
- Robert J. Lake
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erica L. Boetefuer
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Biology Graduate Program, Graduate School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pei-Fang Tsai
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jieun Jeong
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Inchan Choi
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kyoung-Jae Won
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hua-Ying Fan
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Huidobro C, Fernandez AF, Fraga MF. The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 2013; 70:1543-73. [PMID: 23474979 PMCID: PMC11113764 DOI: 10.1007/s00018-013-1296-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein-Taybi syndrome, Coffin-Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
36
|
Cho I, Tsai PF, Lake RJ, Basheer A, Fan HY. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet 2013; 9:e1003407. [PMID: 23637612 PMCID: PMC3630089 DOI: 10.1371/journal.pgen.1003407] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
The Cockayne syndrome complementation group B (CSB) protein is essential for transcription-coupled DNA repair, and mutations in CSB are associated with Cockayne syndrome—a devastating disease with complex clinical features, including the appearance of premature aging, sun sensitivity, and numerous neurological and developmental defects. CSB belongs to the SWI2/SNF2 ATP–dependent chromatin remodeler family, but the extent to which CSB remodels chromatin and whether this activity is utilized in DNA repair is unknown. Here, we show that CSB repositions nucleosomes in an ATP–dependent manner in vitro and that this activity is greatly enhanced by the NAP1-like histone chaperones, which we identify as new CSB–binding partners. By mapping functional domains and analyzing CSB derivatives, we demonstrate that chromatin remodeling by the combined activities of CSB and the NAP1-like chaperones is required for efficient transcription-coupled DNA repair. Moreover, we show that chromatin remodeling and repair protein recruitment mediated by CSB are separable activities. The collaboration that we observed between CSB and the NAP1-like histone chaperones adds a new dimension to our understanding of the ways in which ATP–dependent chromatin remodelers and histone chaperones can regulate chromatin structure. Taken together, the results of this study offer new insights into the functions of chromatin remodeling by CSB in transcription-coupled DNA repair as well as the underlying mechanisms of Cockayne syndrome. Cockayne syndrome is a devastating inherited disease; the average life span of those afflicted is 12 years. Cockayne syndrome patients have features of premature aging, are highly sensitive to sunlight, and suffer from numerous developmental and neurological disorders. The majority of Cockayne syndrome patients have mutations in the CSB protein; however, how these mutations can lead to Cockayne syndrome is largely unknown. CSB is essential for transcription-coupled DNA repair—a process that preferentially removes bulky DNA lesions that stall transcription, such as those created by ultraviolet light. In eukaryotes, DNA is packaged into nucleosomes, which consists of DNA wrapped around a set of core histone proteins, and nucleosomes can create barriers to the DNA repair process. In this study, we found that CSB can slide histones along DNA. We also found that histone chaperones, proteins that accept and donate histones, greatly facilitate this process. Importantly, we show that CSB derivatives that are unable to move nucleosomes or collaborate with histone chaperones cannot repair UV-induced DNA lesions. Our study reveals that nucleosome remodeling by CSB is important for transcription-coupled DNA repair and suggests that an inability to efficiently mobilize nucleosomes might contribute to the underlying mechanism of Cockayne syndrome.
Collapse
Affiliation(s)
- Iltaeg Cho
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pei-Fang Tsai
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert J. Lake
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Asjad Basheer
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hua-Ying Fan
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Aamann MD, Muftuoglu M, Bohr VA, Stevnsner T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech Ageing Dev 2013; 134:212-24. [PMID: 23583689 DOI: 10.1016/j.mad.2013.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022]
Abstract
Cockayne syndrome (CS) is characterized by progressive multisystem degeneration and is classified as a segmental premature aging syndrome. The majority of CS cases are caused by defects in the CS complementation group B (CSB) protein and the rest are mainly caused by defects in the CS complementation group A (CSA) protein. Cells from CS patients are sensitive to UV light and a number of other DNA damaging agents including various types of oxidative stress. The cells also display transcription deficiencies, abnormal apoptotic response to DNA damage, and DNA repair deficiencies. Herein we have critically reviewed the current knowledge about known protein interactions of the CS proteins. The review focuses on the participation of the CSB and CSA proteins in many different protein interactions and complexes, and how these interactions inform us about pathways that are defective in the disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
38
|
Lanzafame M, Vaz B, Nardo T, Botta E, Orioli D, Stefanini M. From laboratory tests to functional characterisation of Cockayne syndrome. Mech Ageing Dev 2013; 134:171-9. [PMID: 23567079 DOI: 10.1016/j.mad.2013.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 03/15/2013] [Accepted: 03/28/2013] [Indexed: 11/26/2022]
Abstract
The significant progress made over the last few years on the pathogenesis of Cockayne syndrome (CS) greatly improved our knowledge on several aspects crucial for development and ageing, demonstrating that this disorder, even if rare, represents a valuable tool to clarify key aspects of human health. Primary cells from patients have been instrumental to elucidate the multiple roles of CS proteins and to approach the dissection of the complex interplay between repair and transcription that is central to the CS clinical phenotype. Here we discuss the results of the cellular assays applied for confirmation of the clinical diagnosis as well as the results of genetic and molecular studies in DNA repair defective patients. Furthermore, we provide a general overview of recent in vivo and in vitro studies indicating that both CSA and CSB proteins are involved in distinct aspects of the cellular responses to UV and oxidative stress, transcription and regulation of gene expression, chromatin remodelling, redox balance and cellular bioenergetics. In light of the literature data, we will finally discuss how inactivation of specific functional roles of CS proteins may differentially affect the phenotype, thus explaining the wide range in type and severity of symptoms reported in CS patients.
Collapse
Affiliation(s)
- Manuela Lanzafame
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
39
|
AFM volumetric methods for the characterization of proteins and nucleic acids. Methods 2013; 60:113-21. [DOI: 10.1016/j.ymeth.2013.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
|
40
|
Conceptual developments in the causes of Cockayne syndrome. Mech Ageing Dev 2013; 134:284-90. [PMID: 23428417 DOI: 10.1016/j.mad.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 11/23/2022]
Abstract
Cockayne syndrome is an autosomal recessive disease that covers a wide range of symptoms, from mild photosensitivity to severe neonatal lethal disorder. The pathology of Cockayne syndrome may be caused by several mechanisms such as a DNA repair deficiency, transcription dysregulation, altered redox balance and mitochondrial dysfunction. Conceivably each of these mechanisms participates during a different stage in life of a Cockayne syndrome patient. Endogenous reactive oxygen is considered as an ultimate cause of DNA damage that contributes to Cockayne syndrome pathology. Here we demonstrate that mitochondrial reactive oxygen does not cause detectable nuclear DNA damage. This observation implies that a significant component of Cockayne syndrome pathology may be due to abnormal mitochondrial function independent of nuclear DNA damage. The source of nuclear DNA damage to central nervous system tissue most likely occurs from extrinsic neurotransmitter signaling.
Collapse
|
41
|
Caputo M, Frontini M, Velez-Cruz R, Nicolai S, Prantera G, Proietti-De-Santis L. The CSB repair factor is overexpressed in cancer cells, increases apoptotic resistance, and promotes tumor growth. DNA Repair (Amst) 2013; 12:293-9. [PMID: 23419237 PMCID: PMC3610032 DOI: 10.1016/j.dnarep.2013.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 12/21/2022]
Abstract
In the present study we show that a number of cancer cell lines from different tissues display dramatically increased expression of the Cockayne Syndrome group B (CSB) protein, a DNA repair factor, that has recently been shown to be involved in cell robustness. Furthermore, we demonstrated that ablation of this protein by antisense technology causes devastating effects on tumor cells through a drastic reduction of cell proliferation and massive induction of apoptosis, while non-transformed cells remain unaffected. Finally, suppression of CSB in cancer cells makes these cells hypersensitive to a variety of commonly used cancer chemotherapeutic agents. Based on these results, we conclude that cancer cells overexpress CSB protein in order to enhance their anti-apoptotic capacity. The fact that CSB suppression specifically affects only cancerous cells, without harming healthy cells, suggests that CSB may be a very attractive target for the development of new anticancer therapies.
Collapse
Affiliation(s)
- Manuela Caputo
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Lake RJ, Fan HY. Structure, function and regulation of CSB: a multi-talented gymnast. Mech Ageing Dev 2013; 134:202-11. [PMID: 23422418 DOI: 10.1016/j.mad.2013.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/26/2013] [Accepted: 02/08/2013] [Indexed: 11/29/2022]
Abstract
The Cockayne syndrome complementation group B protein, CSB, plays pivotal roles in transcription regulation and DNA repair. CSB belongs to the SNF2/SWI2 ATP-dependent chromatin remodeling protein family, and studies from many laboratories have revealed that CSB has multiple activities and modes of regulation. To understand the underlying mechanisms of Cockayne syndrome, it is necessary to understand how the biochemical activities of CSB are used to carry out its biological functions. In this review, we summarize our current knowledge of the structure, function and regulation of CSB, and discuss how these properties can impact the biological functions of this chromatin remodeler.
Collapse
Affiliation(s)
- Robert J Lake
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
43
|
Gaillard H, Aguilera A. Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:141-50. [PMID: 23046879 DOI: 10.1016/j.bbagrm.2012.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 01/13/2023]
Abstract
During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Throughout transcription elongation, RNA polymerases frequently deal with a number of obstacles that need to be removed for transcription resumption. One important type of hindrance consists of helix-distorting DNA lesions. Transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair, ensures a fast repair of such transcription-blocking lesions. While the nucleotide excision repair reaction is fairly well understood, its regulation and the way it deals with DNA transcription remains largely unknown. In this review, we update our current understanding of the factors involved in TC-NER and discuss their functional interplay with the processes of transcription elongation and mRNP biogenesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
44
|
García J, Cordeiro TN, Prieto MJ, Pons M. Oligomerization and DNA binding of Ler, a master regulator of pathogenicity of enterohemorrhagic and enteropathogenic Escherichia coli. Nucleic Acids Res 2012; 40:10254-62. [PMID: 22965122 PMCID: PMC3488262 DOI: 10.1093/nar/gks846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ler is a DNA-binding, oligomerizable protein that regulates pathogenicity islands in enterohemorrhagic and enteropathogenic Escherichia coli strains. Ler counteracts the transcriptional silencing effect of H-NS, another oligomerizable nucleoid-associated protein. We studied the oligomerization of Ler in the absence and presence of DNA by atomic force microscopy. Ler forms compact particles with a multimodal size distribution corresponding to multiples of 3–5 units of Ler. DNA wraps around Ler particles that contain more than 15–16 Ler monomers. The resulting shortening of the DNA contour length is in agreement with previous measurements of the length of DNA protected by Ler in footprinting assays. We propose that the repetition unit corresponds to the number of monomers per turn of a tight helical Ler oligomer. While the repressor (H-NS) and anti-repressor (Ler) have similar DNA-binding domains, their oligomerization domains are unrelated. We suggest that the different oligomerization behavior of the two proteins explains the opposite results of their interaction with the same or proximal regions of DNA.
Collapse
Affiliation(s)
- Jesús García
- Structural and Computational Biology, Institute for Research in Biomedicine, Department of Microbiology, University of Barcelona, Barcelona 08028, Spain.
| | | | | | | |
Collapse
|
45
|
Fei J, Chen J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J Biol Chem 2012; 287:35118-35126. [PMID: 22902626 DOI: 10.1074/jbc.m112.398131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription-coupled repair (TCR) is the major pathway involved in the removal of UV-induced photolesions from the transcribed strand of active genes. Two Cockayne syndrome (CS) complementation group proteins, CSA and CSB, are important for TCR repair. The molecular mechanisms by which CS proteins regulate TCR remain elusive. Here, we report the characterization of KIAA1530, an evolutionarily conserved protein that participates in this pathway through its interaction with CSA and the TFIIH complex. We found that UV irradiation led to the recruitment of KIAA1530 onto chromatin in a CSA-dependent manner. Cells lacking KIAA1530 were highly sensitive to UV irradiation and displayed deficiency in TCR. In addition, KIAA1530 depletion abrogated stability of the CSB protein following UV irradiation. More excitingly, we found that a unique CSA mutant (W361C), which was previously identified in a patient with UV(s)S syndrome, showed defective KIAA1530 binding and resulted in a failure of recruiting KIAA1530 and stabilizing CSB after UV treatment. Together, our data not only reveal that KIAA1530 is an important player in TCR but also lead to a better understanding of the molecular mechanism underlying UV(s)S syndrome.
Collapse
Affiliation(s)
- Jia Fei
- Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Junjie Chen
- Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
46
|
Frontini M, Proietti-De-Santis L. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging. Aging (Albany NY) 2012; 4:89-97. [PMID: 22383384 PMCID: PMC3314171 DOI: 10.18632/aging.100439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.
Collapse
Affiliation(s)
- Mattia Frontini
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge, United Kingdom
| | | |
Collapse
|
47
|
Berquist BR, Canugovi C, Sykora P, Wilson DM, Bohr VA. Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation. Nucleic Acids Res 2012; 40:8392-405. [PMID: 22743267 PMCID: PMC3458532 DOI: 10.1093/nar/gks565] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cockayne syndrome (CS) is a rare human disorder characterized by pathologies of premature aging, neurological abnormalities, sensorineural hearing loss and cachectic dwarfism. With recent data identifying CS proteins as physical components of mitochondria, we sought to identify protein partners and roles for Cockayne syndrome group B (CSB) protein in this organelle. CSB was found to physically interact with and modulate the DNA-binding activity of the major mitochondrial nucleoid, DNA replication and transcription protein TFAM. Components of the mitochondrial transcription apparatus (mitochondrial RNA polymerase, transcription factor 2B and TFAM) all functionally interacted with CSB and stimulated its double-stranded DNA-dependent adenosine triphosphatase activity. Moreover, we found that patient-derived CSB-deficient cells exhibited a defect in efficient mitochondrial transcript production and that CSB specifically promoted elongation by the mitochondrial RNA polymerase in vitro. These observations provide strong evidence for the importance of CSB in maintaining mitochondrial function and argue that the pathologies associated with CS are in part, a direct result of the roles that CSB plays in mitochondria.
Collapse
Affiliation(s)
- Brian R Berquist
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
48
|
Bailey AD, Gray LT, Pavelitz T, Newman JC, Horibata K, Tanaka K, Weiner AM. The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells. DNA Repair (Amst) 2012; 11:488-501. [PMID: 22483866 PMCID: PMC3340519 DOI: 10.1016/j.dnarep.2012.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 01/24/2023]
Abstract
Cockayne syndrome is a segmental progeria most often caused by mutations in the CSB gene encoding a SWI/SNF-like ATPase required for transcription-coupled DNA repair (TCR). Over 43Mya before marmosets diverged from humans, a piggyBac3 (PGBD3) transposable element integrated into intron 5 of the CSB gene. As a result, primate CSB genes now generate both CSB protein and a conserved CSB-PGBD3 fusion protein in which the first 5 exons of CSB are alternatively spliced to the PGBD3 transposase. Using a host cell reactivation assay, we show that the fusion protein inhibits TCR of oxidative damage but facilitates TCR of UV damage. We also show by microarray analysis that expression of the fusion protein alone in CSB-null UV-sensitive syndrome (UVSS) cells induces an interferon-like response that resembles both the innate antiviral response and the prolonged interferon response normally maintained by unphosphorylated STAT1 (U-STAT1); moreover, as might be expected based on conservation of the fusion protein, this potentially cytotoxic interferon-like response is largely reversed by coexpression of functional CSB protein. Interestingly, expression of CSB and the CSB-PGBD3 fusion protein together, but neither alone, upregulates the insulin growth factor binding protein IGFBP5 and downregulates IGFBP7, suggesting that the fusion protein may also confer a metabolic advantage, perhaps in the presence of DNA damage. Finally, we show that the fusion protein binds in vitro to members of a dispersed family of 900 internally deleted piggyBac elements known as MER85s, providing a potential mechanism by which the fusion protein could exert widespread effects on gene expression. Our data suggest that the CSB-PGBD3 fusion protein is important in both health and disease, and could play a role in Cockayne syndrome.
Collapse
Affiliation(s)
- Arnold D. Bailey
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA
| | - Lucas T. Gray
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA
| | - Thomas Pavelitz
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA
| | - John C. Newman
- Department of Internal Medicine, University of California, 505 Parnassus Avenue, San Francisco, CA 94122
| | - Katsuyoshi Horibata
- Laboratories of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Kiyoji Tanaka
- Laboratories of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Alan M. Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA
| |
Collapse
|
49
|
Fuentes-Perez ME, Gwynn EJ, Dillingham MS, Moreno-Herrero F. Using DNA as a fiducial marker to study SMC complex interactions with the atomic force microscope. Biophys J 2012; 102:839-48. [PMID: 22385855 DOI: 10.1016/j.bpj.2012.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 01/21/2023] Open
Abstract
Atomic force microscopy can potentially provide information on protein volumes, shapes, and interactions but is susceptible to variable tip-induced artifacts. In this study, we present an atomic force microscopy approach that can measure volumes of nonglobular polypeptides such as structural maintenance of chromosomes (SMC) proteins, and use it to study the interactions that occur within and between SMC complexes. Together with the protein of interest, we coadsorb a DNA molecule and use it as a fiducial marker to account for tip-induced artifacts that affect both protein and DNA, allowing normalization of protein volumes from images taken on different days and with different tips. This approach significantly reduced the error associated with volume analysis, and allowed determination of the oligomeric states and architecture of the Bacillus subtilis SMC complex, formed by the SMC protein, and by the smaller ScpA and ScpB subunits. This work reveals that SMC and ScpB are dimers and that ScpA is a stable monomer. Moreover, whereas ScpA binds directly to SMC, ScpB only binds to SMC in the presence of ScpA. Notably, the presence of both ScpA and ScpB favored the formation of higher-order structures of SMC complexes, suggesting a role for these subunits in the organization of SMC oligomers.
Collapse
Affiliation(s)
- M E Fuentes-Perez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Lagerwerf S, Vrouwe MG, Overmeer RM, Fousteri MI, Mullenders LHF. DNA damage response and transcription. DNA Repair (Amst) 2011; 10:743-50. [PMID: 21622031 DOI: 10.1016/j.dnarep.2011.04.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A network of DNA damage surveillance systems is triggered by sensing of DNA lesions and the initiation of a signal transduction cascade that activates genome-protection pathways including nucleotide excision repair (NER). NER operates through coordinated assembly of repair factors into pre- and post-incision complexes. Recent work identifies RPA as a key regulator of the transition from dual incision to repair-synthesis in UV-irradiated non-cycling cells, thereby averting the generation of unprocessed repair intermediates. These intermediates could lead to recombinogenic events and trigger a persistent ATR-dependent checkpoint signaling. It is now evident that DNA damage signaling is not limited to NER proficient cells. ATR-dependent checkpoint activation also occurs in UV-exposed non-cycling repair deficient cells coinciding with the formation of endonuclease APE1-mediated DNA strand breaks. In addition, the encounter of elongating RNA polymerase II (RNAPIIo) with DNA damage lesions and its persistent stalling provides a strong DNA damage signaling leading to cell cycle arrest, apoptosis and increased mutagenesis. The mechanism underlying the strong and strand specific induction of UV-induced mutations in NER deficient cells has been recently resolved by the finding that gene transcription itself increases UV-induced mutagenesis in a strand specific manner via increased deamination of cytosines. The cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER) without displacement of the DNA damage stalled RNAPIIo. Deficiency in TC-NER associates with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). CSB functions as a repair coupling factor to attract NER proteins, chromatin remodelers and the CSA-E3-ubiquitin ligase complex to the stalled RNAPIIo; CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The molecular mechanisms by which these proteins bring about efficient TC-NER and trigger signaling after transcription arrest remain elusive; particularly the role of chromatin remodeling in TC-NER needs to be clarified in the context of anticipated structural changes that allow repair and transcription restart.
Collapse
Affiliation(s)
- Saskia Lagerwerf
- Department of Toxicogenetics, Leiden University Medical Center, 2333 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|