1
|
Abouzeid HM, Hashad IM, Rady M, Abdel-Maksoud SM. Anti-Mullerian Hormone Induces Foxo1 and Sirt1 Genes Expression in Mouse Ovary. Curr Pharm Biotechnol 2025; 26:872-877. [PMID: 39328137 DOI: 10.2174/0113892010293250240917143811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Anti-Mullerian hormone (AMH) plays a pivotal role in follicular growth and atresia. Recent studies highlighted the role of AMH in attenuating granulosa cell apoptosis and subsequent follicular atresia. Despite the raising understanding of the role of AMH in folliculogenesis, and its contribution to the pathophysiology of certain diseases such as polycystic ovary syndrome, the effect of AMH on the expression of genes regulating folliculogenesis is stills limited. OBJECTIVE This study aims to gain insights into the effect of AMH on atresia regulating genes. METHOD In vivo study was performed on C57BL/6J mice injected with AMH for one month. Thereafter, relative gene expression quantification of Foxo1, Sirt1, p53, Bim, and Bax genes were performed using RT-PCR. RESULTS In this study, AMH significantly enhanced the expression of Foxo1 and Sirt1 gene compared to the control group. On the contrary, AMH did not modulate the expression of p53, Bim, or Bax genes. AMH was also found to increase serum FSH and LH levels in a dosedependent manner. CONCLUSION This study demonstrated the capability of AMH to induce Foxo1 and Sirt1 genes. Moreover, our study revealed the role of AMH in elevating LH serum level which is a main contributor to the pathophysiology of polycystic ovary syndrome, opening new avenues for the study of AMH as a main contributor to the stalled follicular atresia and growth associated with the disease.
Collapse
Affiliation(s)
- Hoda M Abouzeid
- Biochemistry Department, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ingy M Hashad
- Biochemistry Department, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, Egypt
- Faculty of Biotechnology, German International University, New Administrative Capital, New Cairo, Egypt
| | - Sahar M Abdel-Maksoud
- Biochemistry Department, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
2
|
Zhou Z, Lv Y, Li L, Yuan X, Zhou X, Li J. FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1. Animals (Basel) 2024; 14:3514. [PMID: 39682478 DOI: 10.3390/ani14233514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
It is well known that the function of granulosa cells (GCs) is closely related to follicular development, and FoxO1 and histone methylation have been implicated in follicular development. However, the specific mechanisms by which FoxO1 and histone methylation regulate follicular development are still largely unknown. To explore the specific mechanism of FoxO1 in regulating follicular development, in this study, we showed that the expression of FoxO1 in immature ovaries and small follicles was significantly higher than in mature ovaries and large follicles of sows, respectively. FoxO1 was found to inhibit the secretion of testosterone and proliferation of porcine GCs and promote the secretion of progesterone and apoptosis of porcine GCs. Furthermore, H3K27me3, as a transcriptional inhibitor, can inhibit the transcription of FoxO1. FoxO1 could promote the transcription of CYP1A1, and CYP1A1 was found to inhibit the proliferation and facilitate the ferroptosis of porcine GCs. Collectively, our results revealed that the H3K27me3-FoxO1-CYP1A1 pathway might participate in follicular development, and these findings could provide potential targets for improving follicular development in sows.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanyuan Lv
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liying Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Liu W, Chen C, Gao Y, Cui X, Zhang Y, Gu L, He Y, Li J, Gao S, Gao R, Jiang C. Transcriptome Dynamics and Cell Dialogs Between Oocytes and Granulosa Cells in Mouse Follicle Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad001. [PMID: 38955498 PMCID: PMC11423849 DOI: 10.1093/gpbjnl/qzad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 07/04/2024]
Abstract
The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-β signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Chuan Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xinyu Cui
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuhan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuanlin He
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Nakamura M, Kyoda T, Yoshida H, Takebayashi-Suzuki K, Koike R, Takahashi E, Moriyama Y, Wlizla M, Horb ME, Suzuki A. Injury-induced cooperation of InhibinβA and JunB is essential for cell proliferation in Xenopus tadpole tail regeneration. Sci Rep 2024; 14:3679. [PMID: 38355764 PMCID: PMC10867027 DOI: 10.1038/s41598-024-54280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
In animal species that have the capability of regenerating tissues and limbs, cell proliferation is enhanced after wound healing and is essential for the reconstruction of injured tissue. Although the ability to induce cell proliferation is a common feature of such species, the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Here, we show that upon injury, InhibinβA and JunB cooperatively function for this transition during Xenopus tadpole tail regeneration. We found that the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb) is induced by injury-activated TGF-β/Smad and MEK/ERK signaling in regenerating tails. Similarly to junb knockout (KO) tadpoles, inhba KO tadpoles show a delay in tail regeneration, and inhba/junb double KO (DKO) tadpoles exhibit severe impairment of tail regeneration compared with either inhba KO or junb KO tadpoles. Importantly, this impairment is associated with a significant reduction of cell proliferation in regenerating tissue. Moreover, JunB regulates tail regeneration via FGF signaling, while InhibinβA likely acts through different mechanisms. These results demonstrate that the cooperation of injury-induced InhibinβA and JunB is critical for regenerative cell proliferation, which is necessary for re-outgrowth of regenerating Xenopus tadpole tails.
Collapse
Affiliation(s)
- Makoto Nakamura
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Tatsuya Kyoda
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hitoshi Yoshida
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryota Koike
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Eri Takahashi
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yuka Moriyama
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Embryology, Charles River Laboratories, Wilmington, MA, 01887, USA
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
5
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
6
|
Jiang Y, Gao X, Liu Y, Yan X, Shi H, Zhao R, Chen ZJ, Gao F, Zhao H, Zhao S. Cellular atlases of ovarian microenvironment alterations by diet and genetically-induced obesity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:51-66. [PMID: 37721638 DOI: 10.1007/s11427-023-2360-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023]
Abstract
Obesity, which can arise from genetic or environmental factors, has been shown to cause serious damages to the reproductive system. The ovary, as one of the primary regulators of female fertility, is a complex organ comprised of heterogeneous cell types that work together to maintain a normal ovarian microenvironment (OME). Despite its importance, the effect of obesity on the entire ovary remains poorly documented. In this study, we performed ovary single-cell and nanoscale spatial RNA sequencing to investigate how the OME changed under different kinds of obesity, including high-fat diet (HFD) induced obesity and Leptin ablation induced obesity (OB). Our results demonstrate that OB, but not HFD, dramatically altered the proportion of ovarian granulosa cells, theca-interstitial cells, luteal cells, and endothelial cells. Furthermore, based on the spatial dynamics of follicular development, we defined four subpopulations of granulosa cell and found that obesity drastically disrupted the differentiation of mural granulosa cells from small to large antral follicles. Functionally, HFD enhanced follicle-stimulating hormone (FSH) sensitivity and hormone conversion, while OB caused decreased sensitivity, inadequate steroid hormone conversion, and impaired follicular development. These differences can be explained by the differential expression pattern of the transcription factor Foxo1. Overall, our study provides a powerful and high-resolution resource for profiling obesity-induced OME and offers insights into the diverse effects of obesity on female reproductive disorders.
Collapse
Affiliation(s)
- Yonghui Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Xueying Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Center for reproductive medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
| | - Yue Liu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xueqi Yan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Huangcong Shi
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- Center for reproductive medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China.
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
7
|
Whiley PAF, Nathaniel B, Stanton PG, Hobbs RM, Loveland KL. Spermatogonial fate in mice with increased activin A bioactivity and testicular somatic cell tumours. Front Cell Dev Biol 2023; 11:1237273. [PMID: 37564373 PMCID: PMC10409995 DOI: 10.3389/fcell.2023.1237273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Adult male fertility depends on spermatogonial stem cells (SSCs) which undergo either self-renewal or differentiation in response to microenvironmental signals. Activin A acts on Sertoli and Leydig cells to regulate key aspects of testis development and function throughout life, including steroid production. Recognising that activin A levels are elevated in many pathophysiological conditions, this study investigates effects of this growth factor on the niche that determines spermatogonial fate. Although activin A can promote differentiation of isolated spermatogonia in vitro, its impacts on SSC and spermatogonial function in vivo are unknown. To assess this, we examined testes of Inha KO mice, which feature elevated activin A levels and bioactivity, and develop gonadal stromal cell tumours as adults. The GFRA1+ SSC-enriched population was more abundant and proliferative in Inha KO compared to wildtype controls, suggesting that chronic elevation of activin A promotes a niche which supports SSC self-renewal. Intriguingly, clusters of GFRA1+/EOMES+/LIN28A- cells, resembling a primitive SSC subset, were frequently observed in tubules adjacent to tumour regions. Transcriptional analyses of Inha KO tumours, tubules adjacent to tumours, and tubules distant from tumour regions revealed disrupted gene expression in each KO group increased in parallel with tumour proximity. Modest transcriptional changes were documented in Inha KO tubules with complete spermatogenesis. Importantly, tumours displaying upregulation of activin responsive genes were also enriched for factors that promote SSC self-renewal, including Gdnf, Igf1, and Fgf2, indicating the tumours generate a supportive microenvironment for SSCs. Tumour cells featured some characteristics of adult Sertoli cells but lacked consistent SOX9 expression and exhibited an enhanced steroidogenic phenotype, which could arise from maintenance or acquisition of a fetal cell identity or acquisition of another somatic phenotype. Tumour regions were also heavily infiltrated with endothelial, peritubular myoid and immune cells, which may contribute to adjacent SSC support. Our data show for the first time that chronically elevated activin A affects SSC fate in vivo. The discovery that testis stromal tumours in the Inha KO mouse create a microenvironment that supports SSC self-renewal but not differentiation offers a strategy for identifying pathways that improve spermatogonial propagation in vitro.
Collapse
Affiliation(s)
- Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Benedict Nathaniel
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Peter G. Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M. Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Yu S, Luan Y, Tang S, Abazarikia A, Dong R, Caffrey TC, Hollingsworth MA, Oupicky D, Kim S. Uncovering Tumor-Promoting Roles of Activin A in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207010. [PMID: 37083240 PMCID: PMC10238186 DOI: 10.1002/advs.202207010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with high incidence rates of metastasis and cachexia. High circulating activin A, a homodimer of inhibin βA subunits that are encoded by INHBA gene, predicts poor survival among PDAC patients. However, it still raises the question of whether activin A suppression renders favorable PDAC outcomes. Here, the authors demonstrate that activin A is abundantly detected in tumor and stromal cells on PDAC tissue microarray and mouse PDAC sections. In orthotopic male mice, activin A suppression, which is acquired by tumor-targeted Inhba siRNA using cholesterol-modified polymeric nanoparticles, retards tumor growth/metastasis and cachexia and improves survival when compared to scramble siRNA-treated group. Histologically, activin A suppression coincides with decreased expression of proliferation marker Ki67 but increased accumulation of α-SMAhigh fibroblasts and cytotoxic T cells in the tumors. In vitro data demonstrate that activin A promotes KPC cell proliferation and induces the downregulation of α-SMA and upregulation of IL-6 in pancreatic stellate cells (PSC) in the SMAD3-dependent mechanism. Moreover, conditioned media from activin A-stimulated PSC promoted KPC cell growth. Collectively, our data provide a mechanistic basis for tumor-promoting roles of activin A and support therapeutic potentials of tumor activin A suppression for PDAC.
Collapse
Affiliation(s)
- Seok‐Yeong Yu
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Yi Luan
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Siyuan Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Amirhossein Abazarikia
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Rosemary Dong
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Thomas C. Caffrey
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - David Oupicky
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - So‐Youn Kim
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
9
|
Bai K, Hao E, Huang CX, Yue QX, Wang DH, Shi L, Chen YF, Chen H, Huang RL. Melatonin alleviates ovarian function damage and oxidative stress induced by dexamethasone in the laying hens through FOXO1 signaling pathway. Poult Sci 2023; 102:102745. [PMID: 37302326 PMCID: PMC10276286 DOI: 10.1016/j.psj.2023.102745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress can trigger follicular atresia, and decrease follicles quantity in each development stage, thereby alleviating reproductive activity. The induction of oxidative stress in chickens through intraperitoneal injection of dexamethasone is a reliable and stable method. Melatonin has been shown to mitigate oxidative stress in this model, but the underlying mechanism remains unclear. Therefore, this study aimed to investigate whether melatonin can recover aberrant antioxidant status induced by dexamethasone and the specific mechanism behind melatonin-dependent protection. A total of 150 healthy 40-wk-old Dawu Jinfeng laying hens with similar body weights and laying rates were randomly divided into three groups, with five replicates per group and 10 hens per replicate. The hens in the control group (NS) received intraperitoneal injections of normal saline for 30 d, the dexamethasone group (Dex+NS) received 20 mg/kg dose of dexamethasone for the first 15 d, followed by the 15 d of normal saline treatment. While in the melatonin group (Dex+Mel), dexamethasone (20 mg/kg dose) was injected intraperitoneally in the first 15 d, and melatonin (20 mg/kg/d) was injected in the last 15 d. The results showed that dexamethasone treatment significantly enhanced oxidative stress (P < 0.05), while melatonin not only inhibited the oxidative stress but also notably enhanced the antioxidant enzymes superoxide dismutase (SOD), catalase activity (CAT), glutathione peroxidase (GSH-Px), and antioxidant genes CAT, superoxide dismutase 1 (SOD1), glutathione peroxidase 3 (GPX3), and recombinant peroxiredoxin 3 (PRDX3) expression (P < 0.05). Melatonin treatment also markedly reduced 8-hydroxy deoxyguanosine (8-OHdG), malondialdehyde (MDA), and reactive oxygen species (ROS) levels (P < 0.05) and apoptotic genes Caspase-3, Bim, and Bax in the follicle. In the Dex+Mel group, the Bcl-2 and SOD1 protein levels were also increased (P < 0.05). Melatonin inhibited the forkhead Box Protein O1 (FOXO1) gene and its protein expression (P < 0.05). In general, this investigation revealed that melatonin might decrease oxidative stress and ROS by enhancing antioxidant enzymes and genes, activating the antiapoptotic genes, and inhibiting the FOXO1 pathway in laying hens.
Collapse
Affiliation(s)
- Kang Bai
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Chen-Xuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China; Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - Qiao-Xian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China; Department of Animal Breeding and Genetics, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Yi-Fan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China.
| | - Ren-Lu Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| |
Collapse
|
10
|
Wiesehöfer M, Raczinski BBG, Wiesehöfer C, Dankert JT, Czyrnik ED, Spahn M, Kruithof-de Julio M, Wennemuth G. Epiregulin expression and secretion is increased in castration-resistant prostate cancer. Front Oncol 2023; 13:1107021. [PMID: 36994208 PMCID: PMC10040687 DOI: 10.3389/fonc.2023.1107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionIn prostate cancer, long-term treatment directed against androgens often leads to the development of metastatic castration-resistant prostate cancer, which is more aggressive and not curatively treatable. Androgen deprivation results in elevated epiregulin expression in LNCaP cells which is a ligand of EGFR. This study aims to reveal the expression and regulation of epiregulin in different prostate cancer stages enabling a more specific molecular characterization of different prostate carcinoma types.MethodsFive different prostate carcinoma cell lines were used to characterize the epiregulin expression on the RNA and protein levels. Epiregulin expression and its correlation with different patient conditions were further analyzed using clinical prostate cancer tissue samples. Additionally, the regulation of epiregulin biosynthesis was examined at transcriptional, post-transcriptional and release level.ResultsAn increased epiregulin secretion is detected in castration-resistant prostate cancer cell lines and prostate cancer tissue samples indicating a correlation of epiregulin expression with tumor recurrence, metastasis and increased grading. Analysis regarding the activity of different transcription factors suggests the involvement of SMAD2/3 in the regulation of epiregulin expression. In addition, miR-19a, -19b, and -20b are involved in post-transcriptional epiregulin regulation. The release of mature epiregulin occurs via proteolytic cleavage by ADAM17, MMP2, and MMP9 which are increased in castration-resistant prostate cancer cells.DiscussionThe results demonstrate epiregulin regulation by different mechanism and suggest a potential role as a diagnostic tool to detect molecular alterations in prostate cancer progression. Additionally, although EGFR inhibitors false in prostate cancer, epiregulin could be a therapeutic target for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | - Martin Spahn
- Department of Urology, Lindenhofspital Bern, Bern, Switzerland
- Department of Urology, University Duisburg-Essen, Essen, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Translation Organoid Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, Essen, Germany
- *Correspondence: Gunther Wennemuth,
| |
Collapse
|
11
|
Wei X, Zheng L, Tian Y, Wang H, Su Y, Feng G, Wang C, Lu Z. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling. J Mol Cell Biol 2022; 14:6674768. [PMID: 36002018 PMCID: PMC9764209 DOI: 10.1093/jmcb/mjac048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 08/17/2022] [Indexed: 01/14/2023] Open
Abstract
In mammals, the growth and maturation of oocytes within growing follicles largely depends on ovarian granulosa cells (GCs) in response to gonadotropin stimulation. Many signals have been shown to regulate GC proliferation and apoptosis. However, whether the tyrosine phosphatase SHP2 is involved remains unclear. In this study, we identified the crucial roles of SHP2 in modulating GC proliferation and apoptosis. The production of both mature oocytes and pups was increased in mice with Shp2 specifically deleted in ovarian GCs via Fshr-Cre. Shp2 deletion simultaneously promoted GC proliferation and inhibited GC apoptosis. Furthermore, Shp2 deficiency promoted, while Shp2 overexpression inhibited, the proliferation of cultured primary mouse ovarian GCs and the human ovarian granulosa-like tumor cell line KGN in vitro. Shp2 deficiency promoted follicule-stimulating hormone (FSH)-activated phosphorylation of AKT in vivo. SHP2 deficiency reversed the inhibitory effect of hydrogen peroxide (H2O2) on AKT activation in KGN cells. H2O2 treatment promoted the interaction between SHP2 and the p85 subunit of PI3K in KGN cells. Therefore, SHP2 in GCs may act as a negative modulator to balance follicular development by suppressing PI3K/AKT signaling. The novel function of SHP2 in modulating proliferation and apoptosis of GCs provides a potential therapeutic target for the clinical treatment of follicle developmental dysfunction.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Lanping Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Youqiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao Wang
- Correspondence to: Chao Wang, E-mail:
| | | |
Collapse
|
12
|
Xue W, Xue F, Jia T, Hao A. Research and experimental verification of the molecular mechanism of berberine in improving premature ovarian failure based on network pharmacology. Bioengineered 2022; 13:9885-9900. [PMID: 35420511 PMCID: PMC9161839 DOI: 10.1080/21655979.2022.2062104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Based on the research methods of network pharmacology, this study analyzed the improvement effect of berberine (BBR) on premature ovarian failure (POF) and its molecular mechanism. Carry out GO and KEGG enrichment analysis by R language to obtain the potential targets and pathways of BBR in the improvement of POF. Use SD rats and ovarian granulosa cells (GCs) for experimental verification. ELISA was used to measure the content of related hormones in the serum, CCK-8 was used to measure cell viability, western blot was used to measure the content of the target protein in the ovaries and GCs, and q-RT-PCR was used to detect the expression of the target genes in the ovaries and GCs. Predicted by network pharmacology: PTEN, AKT1, FoxO1, FasL, and Bim are the targets with the highest relative correlation between BBR and POF. The results of experiments show that the treatment of low and medium doses of BBR can increase the ovarian index of rats; BBR can increase the levels of Estradiol (E2) and Anti-Mullerian hormone (AMH) in the serum of rats and reduce the levels of Follicle stimulating hormone (FSH) and Luteinizing hormone (LH). BBR can increase the cell viability of GCs; BBR can inhibit the PTEN/AKT1/FoxO1 signaling pathway and its phosphorylation level and reduce the expression of Fas/FasL and Bim mRNA. Overall, BBR can promote the ovarian to maintain normal hormone levels, protect GCs, and enhance the function of POF.
Collapse
Affiliation(s)
- Wu Xue
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China.,Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Fan Xue
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tao Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ai Hao
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China.,Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
13
|
Zhou S, Zhao A, Wu Y, Mi Y, Zhang C. Protective Effect of Grape Seed Proanthocyanidins on Oxidative Damage of Chicken Follicular Granulosa Cells by Inhibiting FoxO1-Mediated Autophagy. Front Cell Dev Biol 2022; 10:762228. [PMID: 35242756 PMCID: PMC8886245 DOI: 10.3389/fcell.2022.762228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
A significant decrease in poultry egg production occurs due to ovarian aging and autophagy is one of the important factors of ovarian aging that is induced predominantly by oxidative stress. Increasing evidence showed potential roles of plant-derived grape seed proanthocyanidin (GSPs) in protecting ovarian granulosa cells (GCs) from oxidative damage, although the underlying mechanism is still unclear. Here we investigated the possible functions of autophagy involved in the preventive effect of GSPs on oxidative stress in the GCs of ovarian hierarchical follicles of laying chickens. The results showed that increased autophagy was observed in the aging hens (580-day-old, D580) compared with the peak-lay hens (D280). Treatment of GSPs significantly restored the elevated autophagy and decreased viability of cultured D280 chicken GCs that were elicited by hydrogen peroxide. GSPs also suppressed the increased autophagy in the natural aging hens. Similar to the effect of GSPs on GC viability, inhibition of autophagy also showed a protective effect on the decreased viability of GCs under oxidative damage. However, GSPs were not able to provide further protection in GCs that were pretreated with 3-methyladenine (an autophagy inhibitor). In addition to its promoting action on antioxidant capacity, treatment with GSPs increased survival of GCs from autophagy that was caused by oxidative stress through the FoxO1-related pathway. Inhibition of FoxO1 or activation of PI3K-Akt pathway by GSPs increased the confrontation of GCs to oxidative damage and decreased autophagy in GCs. In addition, activation of the SIRT1 signal inhibited the GCs autophagy that was caused by oxidative stress via GSPs-induced deacetylation of FoxO1. These results revealed a new mechanism of GSPs against oxidative stress of GCs via inhibiting FoxO1, which was probably a possible target for alleviating ovarian aging in laying poultry.
Collapse
Affiliation(s)
- Shuo Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - An Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yangyang Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Luo X, Xu J, Zhao R, Qin J, Wang X, Yan Y, Wang LJ, Wang G, Yang X. The Role of Inactivated NF-κB in Premature Ovarian Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:468-483. [PMID: 34971586 DOI: 10.1016/j.ajpath.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Premature ovarian failure (POF) is defined as deployment of amenorrhea due to the cessation of ovarian function in a woman younger than 40 years old. The pathologic mechanism of POF is not yet well understood, although genetic aberrations, autoimmune damage, and environmental factors have been identified. The current study demonstrated that NF-κB inactivation is closely associated with the development of POF based on the data from literature and cyclophosphamide (Cytoxan)-induced POF mouse model. In the successfully established NF-κB-inactivated mouse model, the results showed the reduced expression of nuclear p65 and the increased expression of IκBα in ovarian granulosa cells; the reduced numbers of antral follicles; the reduction of Ki-67/proliferating cell nuclear antigen-labeled cell proliferation and enhanced Fas/FasL-dependent apoptosis in granulosa cells; the reduced level of E2 and anti-Müllerian hormone; the decreased expression of follicle-stimulating hormone receptor and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in granulosa cells, which was reversed in the context of blocking NF-κB signaling with BAY 11-7082; and the decreased expressions of glucose-regulated protein 78 (GRP78), activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1 in granulosa cells. Dual-luciferase reporter assay demonstrated that p50 stimulated the transcription of GRP78, and NF-κB affected the expression of follicle-stimulating hormone receptor and promoted granulosa cell proliferation through GRP78-mediated endoplasmic reticulum stress. Taken together, these data indicate, for the first time, that the inactivation of NF-κB signaling plays an important role in POF.
Collapse
Affiliation(s)
- Xin Luo
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Junjie Xu
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Ran Zhao
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jiajia Qin
- Gynecology, Chinese Medicine College, Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yu Yan
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Li-Jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
16
|
Cannarella R, Mancuso F, Arato I, Lilli C, Bellucci C, Gargaro M, Curto R, Aglietti MC, La Vignera S, Condorelli RA, Luca G, Calogero AE. Sperm-carried IGF2 downregulated the expression of mitogens produced by Sertoli cells: A paracrine mechanism for regulating spermatogenesis? Front Endocrinol (Lausanne) 2022; 13:1010796. [PMID: 36523595 PMCID: PMC9744929 DOI: 10.3389/fendo.2022.1010796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor 2 (IGF2) mRNA has been found in human and mouse spermatozoa. It is currently unknown whether the IGF2 protein is expressed in human spermatozoa and, if so, its possible role in the cross-talk between germ and Sertoli cells (SCs) during spermatogenesis. METHODS To accomplish this, we analyzed sperm samples from four consecutive Caucasian men. Furthermore, to understand its role during the spermatogenetic process, porcine SCs were incubated with increasing concentrations (0.33, 3.33, and 10 ng/mL) of recombinant human IGF2 (rhIGF2) for 48 hours. Subsequently, the experiments were repeated by pre-incubating SCs with the non-competitive insulin-like growth factor 1 receptor (IGF1R) inhibitor NVP-AEW541. The following outcomes were evaluated: 1) Gene expression of the glial cell-line derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and stem cell factor (SCF) mitogens; 2) gene and protein expression of follicle-stimulating hormone receptor (FSHR), anti-Müllerian hormone (AMH), and inhibin B; 3) SC proliferation. RESULTS We found that the IGF2 protein was present in each of the sperm samples. IGF2 appeared as a cytoplasmic protein localized in the equatorial and post-acrosomal segment and with a varying degree of expression in each cell. In SCs, IGF2 significantly downregulated GDNF gene expression in a concentration-dependent manner. FGF2 and SCF were downregulated only by the highest concentration of IGF2. Similarly, IGF2 downregulated the FSHR gene and FSHR, AMH, and inhibin B protein expression. Finally, IGF2 significantly suppressed the SC proliferation rate. All these findings were reversed by pre-incubation with NVP-AEW541, suggesting an effect mediated by the interaction of IGF2 with the IGFR. CONCLUSION In conclusion, sperm IGF2 seems to downregulate the expression of mitogens, which are known to be physiologically released by the SCs to promote gonocyte proliferation and spermatogonial fate adoption. These findings suggest the presence of paracrine regulatory mechanisms acting on the seminiferous epithelium during spermatogenesis, by which germ cells can influence the amount of mitogens released by the SCs, their sensitivity to FSH, and their rate of proliferation.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- *Correspondence: Rossella Cannarella,
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria C. Aglietti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovani Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Yao W, Pan Z, Du X, Zhang J, Liu H, Li Q. NORHA, a novel follicular atresia-related lncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and FoxO1 axis. J Anim Sci Biotechnol 2021; 12:103. [PMID: 34615552 PMCID: PMC8495971 DOI: 10.1186/s40104-021-00626-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Follicular atresia has been shown to be strongly associated with a low follicle utilization rate and female infertility, which are regulated by many factors such as microRNAs (miRNAs), which constitute a class of noncoding RNAs (ncRNAs). However, little is known about long noncoding RNAs (lncRNAs), which constitute another ncRNA family that regulate follicular atresia. RESULTS A total of 77 differentially expressed lncRNAs, including 67 upregulated and 10 downregulated lncRNAs, were identified in early atretic follicles compared to healthy follicles by RNA-Sequencing. We characterized a noncoding RNA that was highly expressed in atretic follicles (NORHA). As an intergenic lncRNA, NORHA was one of the upregulated lncRNAs identified in the atretic follicles. To determine NORHA function, RT-PCR, flow cytometry and western blotting were performed, and the results showed that NORHA was involved in follicular atresia by influencing GC apoptosis with or without oxidative stress. To determine the mechanism of action, bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation assay were performed, and the results showed that NORHA acted as a 'sponge', that directly bound to the miR-183-96-182 cluster, and thus prevented its targeted inhibition of FoxO1, a major sensor and effector of oxidative stress. CONCLUSIONS We provide a comprehensive perspective of lncRNA regulation of follicular atresia, and demonstrate that NORHA, a novel lncRNA related to follicular atresia, induces GC apoptosis by influencing the activities of the miR-183-96-182 cluster and FoxO1 axis.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Lee EB, Chakravarthi VP, Wolfe MW, Rumi MAK. ERβ Regulation of Gonadotropin Responses during Folliculogenesis. Int J Mol Sci 2021; 22:ijms221910348. [PMID: 34638689 PMCID: PMC8508937 DOI: 10.3390/ijms221910348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Gonadotropins are essential for regulating ovarian development, steroidogenesis, and gametogenesis. While follicle stimulating hormone (FSH) promotes the development of ovarian follicles, luteinizing hormone (LH) regulates preovulatory maturation of oocytes, ovulation, and formation of corpus luteum. Cognate receptors of FSH and LH are G-protein coupled receptors that predominantly signal through cAMP-dependent and cAMP-independent mechanisms that activate protein kinases. Subsequent vital steps in response to gonadotropins are mediated through activation or inhibition of transcription factors required for follicular gene expression. Estrogen receptors, classical ligand-activated transcriptional regulators, play crucial roles in regulating gonadotropin secretion from the hypothalamic-pituitary axis as well as gonadotropin function in the target organs. In this review, we discuss the role of estrogen receptor β (ERβ) regulating gonadotropin response during folliculogenesis. Ovarian follicles in Erβ knockout (ErβKO) mutant female mice and rats cannot develop beyond the antral state, lack oocyte maturation, and fail to ovulate. Theca cells (TCs) in ovarian follicles express LH receptor, whereas granulosa cells (GCs) express both FSH receptor (FSHR) and LH receptor (LHCGR). As oocytes do not express the gonadotropin receptors, the somatic cells play a crucial role during gonadotropin induced oocyte maturation. Somatic cells also express high levels of estrogen receptors; while TCs express ERα and are involved in steroidogenesis, GCs express ERβ and are involved in both steroidogenesis and folliculogenesis. GCs are the primary site of ERβ-regulated gene expression. We observed that a subset of gonadotropin-induced genes in GCs, which are essential for ovarian follicle development, oocyte maturation and ovulation, are dependent on ERβ. Thus, ERβ plays a vital role in regulating the gonadotropin responses in ovary.
Collapse
Affiliation(s)
- Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-913-588-8059
| |
Collapse
|
19
|
El-Derany MO, Said RS, El-Demerdash E. Bone Marrow-Derived Mesenchymal Stem Cells Reverse Radiotherapy-Induced Premature Ovarian Failure: Emphasis on Signal Integration of TGF-β, Wnt/β-Catenin and Hippo Pathways. Stem Cell Rev Rep 2021; 17:1429-1445. [PMID: 33594662 DOI: 10.1007/s12015-021-10135-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Radiotherapy is an indispensable cancer treatment approach. However, it is associated with hazardous consequences on multiple organs characterized by insidious worsening severity over time. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) in radiation-induced premature ovarian failure (POF). Exposing female rats to 3.2 Gy whole-body ϒ-rays successfully induced POF. One week later, a single intravenous injection of BM-MSCs (2*106) cells was administered. BM-MSCs perfectly home to the damaged ovaries, enhanced ovarian follicle pool, and preserved the ovarian function manifested by restoring serum estradiol and follicle stimulating hormone levels, besides, rescuing the fertility outcomes of irradiated rats. These events have been associated with inhibiting ovarian apoptosis (Bax/Bcl2, caspase 3) and enhancing proliferation (PCNA). Interestingly, BM-MSCs reversed the inhibition of ovarian FOXO3 expression induced by radiation which resulted in increased primordial follicles stock. Moreover, BM-MSCs recovered the suppressed folliculogenesis process induced by radiation through upregulating FOXO1, GDF-9, and Fst genes expression accompanied by downregulating TGF-β which enhanced granulosa cells proliferation and secondary follicle development. Mechanistically, BM-MSCs miRNAs epigenetically upregulate Wnt/β-catenin and Hippo signaling pathways which are implicated in ovarian follicles growth and maturation. Therefore, BM-MSCs presented a ray of hope in the treatment of radiation-associated POF through genetic and epigenetic modulation of the integrated TGF-β, Wnt/β-catenin, and Hippo pathways which control apoptosis, proliferation, and differentiation of ovarian follicles.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
20
|
Nikhil Kumar Tej J, Johnson P, Krishna K, Kaushik K, Gupta PSP, Nandi S, Mondal S. Copper and Selenium stimulates CYP19A1 expression in caprine ovarian granulosa cells: possible involvement of AKT and WNT signalling pathways. Mol Biol Rep 2021; 48:3515-3527. [PMID: 33881728 DOI: 10.1007/s11033-021-06346-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
The role of copper and selenium on activation of estradiol synthesis pathways viz. PKA/AKT/WNT is not clearly elucidated. On this background we attempt to elcuiated the role of copper and selenium on mRNA expression of genes associated with estradiol synthesis in caprine ovarian granulose cell models. Ovarian granulosa cells from medium (3-5 mm) sized follicles were aspirated and distributed separately to different groups. Group I: control, Group II: cupric chloride (Cu: 0.5 mM), Group III: sodium selenite (Se: 100 ng/ml), Group IV: Cu + Se. The cells (105/well) were cultured in 96 well plate in the base culture medium of MEMα comprising of nonessential amino acids (1.1 mM), FSH (10 ng/mL), transferrin (5 µg/mL), IGF-I (2 ng/mL), androstenedione (10-6 M), penicillin (100 IU/mL), streptomycin (0.1 mg/mL) and fungizone (0.625 µl/mL) and insulin (1 ng/mL). The cells were incubated in a carbondioxide incubator (38 °C, 5% CO2, 95% RH). The medium was changed on alternate days and cells were harvested on day 6. Day 6 media was used for estimation of estradiol. The RNA isolated form harvested cells was used for qPCR assay. There was no significant (p > 0.05) difference in estradiol concentration between groups. The mRNA expression of AKT1, CYP19A1, WNT2 & 4, FZD6 and APC2 were significantly (p < 0.05) higher in Cu and Cu + Se groups compared to control. Whereas, the mRNA transcript of DVL1 and CSNK1 was significantly (p < 0.05) higher in Cu + Se group compared to control. Incontrast, no significant difference in mRNA expression of PRKAR1A and CTNNB1 was noticed. Our study support a key role of copper and selenium in activation of AKT and WNT signalling pathway that further lead to increase in the mRNA expression of CYP19A1.
Collapse
Affiliation(s)
- J Nikhil Kumar Tej
- ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India.
| | - P Johnson
- Animal Biotechnology Lab, ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, India
| | - Kavya Krishna
- Animal Biotechnology Lab, ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, India
| | - Kalpana Kaushik
- Animal Biotechnology Lab, ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, India
| | - P S P Gupta
- Animal Biotechnology Lab, ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, India
| | - S Nandi
- Animal Biotechnology Lab, ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, India
| | - S Mondal
- Animal Biotechnology Lab, ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, India
| |
Collapse
|
21
|
Paradiso E, Lazzaretti C, Sperduti S, Antoniani F, Fornari G, Brigante G, Di Rocco G, Tagliavini S, Trenti T, Morini D, Falbo AI, Villani MT, Nofer JR, Simoni M, Potì F, Casarini L. Sphingosine-1 phosphate induces cAMP/PKA-independent phosphorylation of the cAMP response element-binding protein (CREB) in granulosa cells. Mol Cell Endocrinol 2021; 520:111082. [PMID: 33189864 DOI: 10.1016/j.mce.2020.111082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Sphingosine-1 phosphate (S1P) is a lysosphingolipid present in the ovarian follicular fluid. The role of the lysosphingolipid in gonads of the female is widely unclear. At nanomolar concentrations, S1P binds and activates five specific G protein-coupled receptors (GPCRs), known as S1P1-5, modulating different signaling pathways. S1P1 and S1P3 are highly expressed in human primary granulosa lutein cells (hGLC), as well as in the immortalized human primary granulosa cell line hGL5. In this study, we evaluated the signaling cascade activated by S1P and its synthetic analogues in hGLC and hGL5 cells, exploring the biological relevance of S1PR-stimulation in this context. METHODS AND RESULTS hGLC and hGL5 cells were treated with a fixed dose (0.1 μM) of S1P, or by S1P1- and S1P3-specific agonists SEW2871 and CYM5541. In granulosa cells, S1P and, at a lesser extent, SEW2871 and CYM5541, potently induced CREB phosphorylation. No cAMP production was detected and pCREB activation occurred even in the presence of the PKA inhibitor H-89. Moreover, S1P-dependent CREB phosphorylation was dampened by the mitogen-activate protein kinase (MEK) inhibitor U0126 and by the L-type Ca2+ channel blocker verapamil. The complete inhibition of CREB phosphorylation occurred by blocking either S1P2 or S1P3 with the specific receptor antagonists JTE-013 and TY52156, or under PLC/PI3K depletion. S1P-dependent CREB phosphorylation induced FOXO1 and the EGF-like epiregulin-encoding gene (EREG), confirming the exclusive role of gonadotropins and interleukins in this process, but did not affect steroidogenesis. However, S1P or agonists did not modulate granulosa cell viability and proliferation in our conditions. CONCLUSIONS This study demonstrates for the first time that S1P may induce a cAMP-independent activation of pCREB in granulosa cells, although this is not sufficient to induce intracellular steroidogenic signals and progesterone synthesis. S1P-induced FOXO1 and EREG gene expression suggests that the activation of S1P-S1PR axis may cooperate with gonadotropins in modulating follicle development.
Collapse
Affiliation(s)
- Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Antoniani
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Fornari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero-Universitaria di Modena, NOCSAE, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero-Universitaria di Modena, NOCSAE, Modena, Italy
| | - Daria Morini
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Angela Immacolata Falbo
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Jerzy-Roch Nofer
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; PR China, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Francesco Potì
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Liu X, Zhang P, Li Y, Zhao N, Han H. The AMPK-mTOR axis requires increased MALAT1 expression for promoting granulosa cell proliferation in endometriosis. Exp Ther Med 2021; 21:21. [PMID: 33235630 PMCID: PMC7678598 DOI: 10.3892/etm.2020.9453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common reproductive disorder in women, with a global prevalence of 10-15%. Long noncoding RNAs (lncRNAs) are critical to gene transcription, cell cycle modulation and immune response. The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) reportedly mediates autophagy of endometrial stromal cells in endometriosis. The present study aimed to evaluate the role and mechanism of MALAT1 in granulosa cells (GCs) in endometriosis. Consequently, MALAT1 expression was upregulated in GCs obtained from patients with endometriosis and in the steroidogenic human granulosa-like tumor cell line KGN. However, MALAT1 knockdown consequently decreased the proliferation and viability of these cells, as determined by MTT and 5-ethynyl-2'-deoxyuridine staining assays. Both Annexin V-fluorescein isothiocyanate/propidium iodide flow cytometry and western blotting performed to detect proapoptotic factors indicated that MALAT1 depletion might promote KGN cell apoptosis. Furthermore, MALAT1 knockdown increased GC autophagy, as evidenced by microtubule-associated protein 1A/1B-light chain 3 (LC3) cleavage upregulation and p62 degradation. In addition, although 5'-AMP-activated protein kinase (AMPK) mRNA expression and protein levels decreased in GCs obtained from patients with endometriosis and KGN cells, MALAT1 knockdown restored AMPK levels. However, addition of BML-275 (MALAT1 inhibitor) to MALAT1-knockdown KGN cells recovered their viability and proliferative capacity and simultaneously reduced their apoptotic and autophagic capacity. Therefore, MALAT1 may regulate GC proliferation via AMPK-mTOR-mediated cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Xuejie Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ping Zhang
- Department of Obstetrics, Zhucheng People's Hospital, Zhucheng, Shandong 262200, P.R. China
| | - Yanmin Li
- Department of Obstetrics and Gynecology, Liaocheng Second People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Na Zhao
- Department of Obstetrics and Gynecology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Haiyan Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
23
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
24
|
Lu H, Zhao C, Zhu B, Zhang Z, Ge W. Loss of Inhibin Advances Follicle Activation and Female Puberty Onset but Blocks Oocyte Maturation in Zebrafish. Endocrinology 2020; 161:5921142. [PMID: 33045050 DOI: 10.1210/endocr/bqaa184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Inhibin was first characterized in mammals as a gonadal dimeric protein that inhibited pituitary follicle-stimulating hormone (FSH) secretion. As in mammals, the inhibin-specific α subunit (INHA/Inha/inha) has also been characterized in teleosts; however, its functions and physiological importance in fish reproduction remain unknown. Using CRISPR/Cas9 method, we generated an inha-deficient zebrafish line and analyzed its reproductive performance. As expected, pituitary expression of fshb increased significantly in both the young and the adult inha mutant. The expression of lhb also increased in the mutant, but only in sexually mature adults. Interestingly, the expression of activin βA (inhbaa) increased significantly in both the ovary and the testis of inha mutant, and the expression of ovarian aromatase (cyp19a1a) also increased dramatically in the mutant ovary. The juvenile female mutant showed clear signs of early follicle activation or precocious puberty onset. However, the adult female mutant was infertile with follicles arrested at the full-grown stage without final oocyte maturation and ovulation. Although follicle growth was normal overall in the mutant, the size and distribution of yolk granules in oocytes were distinct and some follicles showed granulosa cell hypertrophy. In contrast to females, inha-null males showed normal spermatogenesis and fertility. As reported in mammals, we also found sporadic tumor formation in inha mutants. Taken together, our study not only confirmed some conserved roles of inhibin across vertebrates, such as inhibition of FSH biosynthesis and tumor formation, but also revealed novel aspects of inhibin functions such as disruption of folliculogenesis and female infertility but no obvious involvement in spermatogenesis in fish.
Collapse
Affiliation(s)
- Huijie Lu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Zhao
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
25
|
Effects of FOXO1 on the proliferation and cell cycle-, apoptosis- and steroidogenesis-related genes expression in sheep granulosa cells. Anim Reprod Sci 2020; 221:106604. [PMID: 32980650 DOI: 10.1016/j.anireprosci.2020.106604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Forkhead boxO (FOXO) transcription factors regulate diverse biological processes, including cellular metabolism, cell apoptosis, and the cell cycle. Results from several studies indicate FOXO1 regulates different granulosa cell (GC) pathways involved in proliferation, survival and differentiation. Functions and mechanisms of FOXO1 regulation of sheep GCs remain unclear. This study was conducted to analyze the function of FOXO1 in regulation of sheep GCs. In this study, the 1827 bp sheep FOXO1 coding sequence was cloned from sheep GCs. Multiple sequence alignment and phylogenetic analysis indicated that the FOXO1 protein sequence is highly homologous to FOXO1 protein sequences from other species. The results obtained from using CCK-8 assays indicated sheep GC proliferation increased when there was suppression of FOXO1 gene expression. When there was induced expression of the FOXO1 gene in sheep GCs, there was a resulting increased abundance of P21 and P27 mRNA transcript, whereas suppression of the FOXO1 gene expression had the opposite effect. Furthermore, the relative abundance in vitro of apoptosis-related protein mRNA transcripts (caspase3, caspase8, caspase9, Bax/Bcl-2) was markedly increased or decreased when there was induction or suppression of FOXO1 gene expression, respectively,(P < 0.05). Induction of FOXO1 gene expression resulted in an increase in abundance of steroidogenic protein mRNA transcripts (CYP11A1, 3β-HSD), while suppression of FOXO1 gene expresion resulted in a decrease abundance of the CYP11A1, STAR mRNA transcripts. Results from the present study indicated that FOXO1 inhibited the proliferation of sheep GCs and affected mRNA transcript abundance for proteins involved in regulation of apoptosis, the cell cycle and steroidogenesis.
Collapse
|
26
|
Yang L, Lv Q, Liu J, Qi S, Fu D. miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway. J Reprod Dev 2020; 66:231-239. [PMID: 32051352 PMCID: PMC7297634 DOI: 10.1262/jrd.2019-155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the functions of granulosa cells by interacting with their target mRNAs. Insulin receptor substrate 2 (IRS2) is one of the targets of miR-431 and can be regulated by ovarian hormones. However, the role of miR-431 and the associated signal transduction pathway in ovarian development has not been studied previously. In this study, we first analyzed the expression of miR-431 and IRS2 following stimulation with pregnant mare serum gonadotropin (PMSG) during the estrous cycle or different stages of ovarian development in mice. Subsequently, we investigated the role, function, and signaling pathway of miR-431 in the human granulosa cell line, COV434. The results showed that follicle stimulating hormone (FSH) gradually decreased miR-431 levels, induced IRS2, and promoted pAKT expression. Moreover, miR-431 overexpression and IRS2 knockdown attenuated AKT activation, inhibited cell proliferation, and decreased estradiol (E2) and progesterone (P4) synthesis. Further, luciferase reporter assay demonstrated that IRS2 was a direct target of miR-431. In conclusion, this study demonstrated that miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Guangxi 537000, PR China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, PR China
| | - Jianyun Liu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Shikai Qi
- College of Electric Engineering, Jiujiang University, Jiujiang 332000, PR China
| | - Denggang Fu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| |
Collapse
|
27
|
Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, Brigante G, Santi D, Simoni M. FSH for the Treatment of Male Infertility. Int J Mol Sci 2020; 21:ijms21072270. [PMID: 32218314 PMCID: PMC7177393 DOI: 10.3390/ijms21072270] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Follicle-stimulating hormone (FSH) supports spermatogenesis acting via its receptor (FSHR), which activates trophic effects in gonadal Sertoli cells. These pathways are targeted by hormonal drugs used for clinical treatment of infertile men, mainly belonging to sub-groups defined as hypogonadotropic hypogonadism or idiopathic infertility. While, in the first case, fertility may be efficiently restored by specific treatments, such as pulsatile gonadotropin releasing hormone (GnRH) or choriogonadotropin (hCG) alone or in combination with FSH, less is known about the efficacy of FSH in supporting the treatment of male idiopathic infertility. This review focuses on the role of FSH in the clinical approach to male reproduction, addressing the state-of-the-art from the little data available and discussing the pharmacological evidence. New compounds, such as allosteric ligands, dually active, chimeric gonadotropins and immunoglobulins, may represent interesting avenues for future personalized, pharmacological approaches to male infertility.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0593961705; Fax: +39-0593962018
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
28
|
Expression profiling of primary cultured buffalo granulosa cells from different follicular size in comparison with their in vivo counterpart. ZYGOTE 2020; 28:233-240. [PMID: 32151301 DOI: 10.1017/s0967199420000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to: (i) characterize cultured granulosa cells (GCs) from different follicle sizes morphologically and molecularly; and (ii) select a suitable model according to follicular size that maintained GC function during culture. Buffalo ovaries were collected from a slaughterhouse and follicles were classified morphologically into: first group ≤ 4 mm, second group 5-8 mm, third group 9-15 mm and fourth group 16-20 mm diameter. GC pellets were divided into two portions. The first portion served as the control fresh pellet, and the secondwas used for 1 week for GC culture. Total RNA was isolated, and qRT-PCR was performed to test for follicle-stimulating hormone receptor (FSHR), cytochrome P450 19 (CYP19), luteinizing hormone/choriogonadotropin receptor (LHCGR), proliferating cell nuclear antigen (PCNA), apoptosis-related cysteine peptidase (CASP3), anti-Müllerian hormone (AMH), and phospholipase A2 group III (PLA2G3) mRNAs. Estradiol (E2) and progesterone (P4) levels in the culture supernatant and in follicular fluids were measured using enzyme-linked immunosorbent assay (ELISA). Basic DMEM-F12 medium maintained the morphological appearance of cultured GCs. The relative abundance of FSHR, CYP19, and LHCGR mRNAs was 0.001 ≤ P ≤ 0.01 and decreased at the end of culture compared with the fresh pellet. There was a fine balance between expression patterns of the proliferation marker gene (PCNA) and the proapoptotic marker gene (CASP3). AMH mRNA was significantly increased (P < 0.001) in cultured GCs from small follicles, while cultured GCs from other three categories (5-8 mm, 9-15 mm and 16-20 mm) showed a clear reduction (P < 0.001). Interestingly, the relative abundance of PLA2G3 mRNA was significantly (P < 0.001) increased in all cultured GCs. E2 and P4 concentrations were significantly (P < 0.001) decreased in all cultured groups. Primary cultured GCs from small follicles could be a good model for better understanding follicular development in Egyptian buffaloes.
Collapse
|
29
|
Belli M, Secchi C, Stupack D, Shimasaki S. FOXO1 Negates the Cooperative Action of FOXL2 C134W and SMAD3 in CYP19 Expression in HGrC1 Cells by Sequestering SMAD3. J Endocr Soc 2019; 3:2064-2081. [PMID: 31701078 PMCID: PMC6797057 DOI: 10.1210/js.2019-00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Adult granulosa cell tumor (aGCT) is a rare type of ovarian cancer characterized by estrogen excess. Interestingly, only the single somatic mutation FOXL2 C134W was found across virtually all aGCTs. We previously reported that FOXL2C134W stimulates CYP19 transcription synergistically with SMAD3, leading to elevated estradiol synthesis in a human granulosa cell line (HGrC1). This finding suggested a key role for FOXL2C134W in causing the typical estrogen overload in patients with aGCTs. We have now investigated the effect of FOXO1, a tumor suppressor, on CYP19 activation by FOXL2C134W in the presence of SMAD3. Intriguingly, FOXO1 antagonized the positive, synergistic effect of FOXL2C134W and SMAD3 on CYP19 transcription. Similar to FOXL2C134W, FOXO1 binds SMAD3 but not the proximal FOXL2C134W binding site (-199 bp) of the CYP19 promoter identified in our earlier studies. The results of a competitive binding assay suggested a possible underlying mechanism in which FOXO1 sequesters SMAD3 away from FOXL2C134W, thereby negating the cooperative action of FOXL2C134W and SMAD3 in inducing CYP19 expression. To our knowledge, this study is the first to demonstrate the ability of FOXO1 to restore an altered CYP19 expression by FOXL2C134W and SMAD3 and provides insight as to why FOXO1 deficiency promotes GCT development in mice.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Christian Secchi
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
30
|
FOXO3 Is Expressed in Ovarian Tissues and Acts as an Apoptosis Initiator in Granulosa Cells of Chickens. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6902906. [PMID: 31380433 PMCID: PMC6657628 DOI: 10.1155/2019/6902906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Accepted: 07/02/2019] [Indexed: 11/18/2022]
Abstract
FOXO3, which encodes the transcription factor forkhead box O-3 (FoxO3), is a member of the FOXO subfamily of the forkhead box (FOX) family. FOXO3 can be negatively regulated by its phosphorylation by the PI3K/Akt signaling pathway and ultimately drives apoptosis when activated. In mammalian ovaries, the FOXO3 protein regulates atresia and follicle growth by promoting apoptosis of ovarian granulosa cells. Nonetheless, the specific effects of the FOXO3 protein on granulosa apoptosis of avian ovaries have not been elucidated. Therefore, we studied FOXO3 expression in follicles with different organization and at all hierarchical levels of chicken follicles. Via an immunofluorescence assay, the chicken follicular theca at all hierarchical levels were found to be strongly stained with an anti-FOXO3 antibody. In chicken primary ovarian granulosa cells, mRNA levels of proapoptotic factors BNIP3 and BCL2L11 decreased in the absence of FOXO3, and so did PARP-1 and cleaved caspase 3 protein levels. After treatment with a recombinant FOXO3 protein, PARP-1 and caspase 3 protein levels increased, along with mRNA levels of Bnip3 and BCL2L11 (significantly, p<0.05). In addition, FOXO3 was downregulated in chicken granulosa cells when different estradiol or FSH concentrations were applied. In conclusion, FOXO3 is expressed in chicken reproductive tissues, including follicles and ovarian granulosa cells, and promotes apoptosis of chicken ovarian granulosa cells.
Collapse
|
31
|
Xu J, Wang G, Luo X, Wang L, Bao Y, Yang X. Role of nuclear factor‐κB pathway in the transition of mouse secondary follicles to antral follicles. J Cell Physiol 2019; 234:22565-22580. [DOI: 10.1002/jcp.28822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jun‐Jie Xu
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| | - Xin Luo
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| | - Li‐Jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University Guangzhou China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia Norwich UK
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| |
Collapse
|
32
|
SMAD3 directly regulates cell cycle genes to maintain arrest in granulosa cells of mouse primordial follicles. Sci Rep 2019; 9:6513. [PMID: 31015579 PMCID: PMC6478827 DOI: 10.1038/s41598-019-42878-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/09/2019] [Indexed: 01/05/2023] Open
Abstract
Primordial follicles, consisting of granulosa cell (GC)-enveloped oocytes are maintained in a state of developmental arrest until activated to grow. The mechanism that operates to maintain this arrested state in GCs is currently unknown. Here, we show the TGFβ-activated transcription factor SMAD3 is expressed in primordial GC nuclei alongside the cell cycle proteins, cyclin D2 (CCND2) and P27. Using neonatal C57/Bl6 mouse ovaries densely populated with primordial follicles, CCND2 protein co-localised and was detected in complex with P27 by immunofluorescence and co-immunoprecipitation, respectively. In the same tissue, SMAD3 co-precipitated with DNA sequences upstream of Ccnd2 and Myc transcription start sites implicating both as direct SMAD3 targets. In older ovaries follicle growth was associated with nuclear exclusion of SMAD3 and reduced P27 and CCND2 in GCs, alongside elevated Myc expression. Brief (2 H) exposure of neonatal ovaries to TGFβ1 (10 ng/ml) in vitro led to immediate dissociation of SMAD3 from the Ccnd2 and Myc promoters. This coincided with elevated Myc and phospho-S6, an indicator of mTOR signalling, followed by a small increase in mean primordial GC number after 48 H. These findings highlight a concentration-dependent role for TGFβ signalling in the maintenance and activation of primordial follicles, through SMAD-dependent and independent signalling pathways, respectively.
Collapse
|
33
|
Abstract
The glycoprotein follicle-stimulating hormone (FSH) acts on gonadal target cells, hence regulating gametogenesis. The transduction of the hormone-induced signal is mediated by the FSH-specific G protein-coupled receptor (FSHR), of which the action relies on the interaction with a number of intracellular effectors. The stimulatory Gαs protein is a long-time known transducer of FSH signaling, mainly leading to intracellular cAMP increase and protein kinase A (PKA) activation, the latter acting as a master regulator of cell metabolism and sex steroid production. While in vivo data clearly demonstrate the relevance of PKA activation in mediating gametogenesis by triggering proliferative signals, some in vitro data suggest that pro-apoptotic pathways may be awakened as a "dark side" of cAMP/PKA-dependent steroidogenesis, in certain conditions. P38 mitogen-activated protein kinases (MAPK) are players of death signals in steroidogenic cells, involving downstream p53 and caspases. Although it could be hypothesized that pro-apoptotic signals, if relevant, may be required for regulating atresia of non-dominant ovarian follicles, they should be transient and counterbalanced by mitogenic signals upon FSHR interaction with opposing transducers, such as Gαi proteins and β-arrestins. These molecules modulate the steroidogenic pathway via extracellular-regulated kinases (ERK1/2), phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3K)/protein kinase B (AKT), calcium signaling and other intracellular signaling effectors, resulting in a complex and dynamic signaling network characterizing sex- and stage-specific gamete maturation. Even if the FSH-mediated signaling network is not yet entirely deciphered, its full comprehension is of high physiological and clinical relevance due to the crucial role covered by the hormone in regulating human development and reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini
| | - Pascale Crépieux
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| |
Collapse
|
34
|
Shen M, Cao Y, Jiang Y, Wei Y, Liu H. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism. Redox Biol 2018; 18:138-157. [PMID: 30014903 PMCID: PMC6068202 DOI: 10.1016/j.redox.2018.07.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/24/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been described as a prime driver of granulosa cell (GCs) death during follicular atresia. Increasing evidence suggests potential roles of melatonin in protecting GCs from oxidative injury, though the underlying mechanisms remain largely undetermined. Here we first proposed that the inhibition of autophagy through some novel regulators contributes to melatonin-mediated GCs survival under conditions of oxidative stress. Oxidant-induced loss of GCs viability was significantly reduced after melatonin administration, which was correlated with attenuated autophagic signals upon oxidative stimulation both in vivo and in vitro. Compared with melatonin treatment, suppression of autophagy displayed similar preventive effect on GCs death during oxidative stress, but melatonin provided no additional protection in GCs pretreated with autophagy inhibitors. Notably, we found that melatonin-directed regulation of autophagic death was independent of its antioxidation/radical scavenging ability. Further investigations identified FOXO1 as a critical downstream effector of melatonin in promoting GCs survival from oxidative stress-induced autophagy. Specifically, suppression of FOXO1 via the melatonin-phosphatidylinositol 3-kinase (PI3K)-AKT axis not only improved GCs resistance to oxidative stress, but also abolished the autophagic response, from genes expression to the formation of autophagic vacuoles. Moreover, the activation of SIRT1 signaling was required for melatonin-mediated deacetylation of FOXO1 and its interaction with ATG proteins, as well as the inhibition of autophagic death in GCs suffering oxidative stress. These findings reveal a brand new mechanism of melatonin in defense against oxidative damage to GCs by repressing FOXO1, which may be a potential therapeutic target for anovulatory disorders. Melatonin inhibits oxidative damage in GC without scavenging oxidative stress itself. Melatonin protects GC from oxidative damage via inhibiting autophagic cell death. Inhibition of FOXO1-dependent autophagy by melatonin reduces oxidative damage in GC. Suppression of autophagy through melatonin-PI3K-AKT-FOXO1 axis improves GC survival. Melatonin reduces oxidative injury by inhibiting SIRT1-FOXO1-ATG7-dependent autophagy.
Collapse
Affiliation(s)
- Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinghui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Landry DA, Sirard MA. Follicle capacitation: a meta-analysis to investigate the transcriptome dynamics following follicle-stimulating hormone decline in bovine granulosa cells†. Biol Reprod 2018; 99:877-887. [DOI: 10.1093/biolre/ioy090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- David A Landry
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Canada
| |
Collapse
|
36
|
Yamamoto H, Yamashita Y, Saito N, Hayashi A, Hayashi M, Terai Y, Ohmichi M. Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility. J Obstet Gynaecol Res 2018. [PMID: 28621049 DOI: 10.1111/jog.13307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. METHODS Thirty-one patients aged <40 years (13 with unexplained infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. RESULTS FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. CONCLUSION A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer.
Collapse
Affiliation(s)
- Hikaru Yamamoto
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yoshiki Yamashita
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan.,Umeda Fertility Clinic, Osaka, Japan
| | - Natsuho Saito
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Atsushi Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
37
|
Prasasya RD, Mayo KE. Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells. Endocrinology 2018; 159:184-198. [PMID: 29126263 PMCID: PMC5761600 DOI: 10.1210/en.2017-00677] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chorionic Gonadotropin/pharmacology
- Estradiol/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Genes, Reporter/drug effects
- Gonadotropins, Equine/pharmacology
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/antagonists & inhibitors
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Jagged-1 Protein/antagonists & inhibitors
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred Strains
- Mice, Transgenic
- Progesterone/metabolism
- RNA Interference
- Receptor, Notch2/agonists
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/agonists
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rexxi D. Prasasya
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | - Kelly E. Mayo
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
38
|
Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured in vitro. Theriogenology 2017; 110:44-51. [PMID: 29331831 DOI: 10.1016/j.theriogenology.2017.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
Abstract
This study evaluated the effect of bone morphogenetic proteins 2 (BMP2) and 4 (BMP2) on follicle development and mRNA expression for GDF9, Cyclin B1, BMPR1A, BMPR1B, BMPRII, FSHR and SMAD1 in bovine secondary follicles cultured in vitro. Isolated secondary follicles were cultured for 18 days in TCM199+ medium alone or supplemented with BMP2 (10 ng/mL), BMP4 (100 ng/mL) or combination of both BMP2 and 4. Real-time PCR was used to analyze mRNA levels in fresh and cultured follicles. After 18 days of culture, follicles cultured with BMP2 alone or with BMP4 alone had larger diameters when compared to control (P < .05). In addition, all treatments promoted antrum formation and maintained a high viability rate through the growing period. The presence of BMP2, BMP4 or both together did not influence mRNA expression for the tested genes. However, the in vitro culture induces down-regulation for mRNA expression of BMPR1A. In conclusion, the addition of BMP2 or BMP4 alone in cultured medium promotes follicular growth and antrum formation in bovine follicles after 18 days of in vitro culture.
Collapse
|
39
|
Anastácio A, Rodriguez-Wallberg KA, Chardonnet S, Pionneau C, Fédérici C, Almeida Santos T, Poirot C. Protein profile of mouse ovarian follicles grown in vitro. Mol Hum Reprod 2017; 23:827-841. [PMID: 29069483 PMCID: PMC5909860 DOI: 10.1093/molehr/gax056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? SUMMARY ANSWER From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. WHAT IS KNOWN ALREADY The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. STUDY DESIGN, SIZE, DURATION The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. PARTICIPANTS/MATERIALS, SETTING, METHODS SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to emphasize proteins with different expression profiles between the three follicular stages. Supplementary western blot analysis (using new biological replicates) was performed to confirm the expression variations of three proteins during follicle development in vitro. MAIN RESULTS AND THE ROLE OF CHANCE It was found that 609 out of 1401 identified proteins were common to the three follicle developmental stages investigated. Some proteins were identified uniquely at one stage: 71 of the 775 identified proteins in SF, 181 of 1092 in SMR and 192 of 1100 in AF. Additional qualitative and quantitative analysis highlighted 44 biological processes over-represented in our samples compared to the Mus musculus gene database. In particular, it was possible to identify proteins implicated in the cell cycle, calcium ion binding and glycolysis, with specific expressions and abundance, throughout in vitro follicle development. LARGE SCALE DATA Data are available via ProteomeXchange with identifier PXD006227. LIMITATIONS, REASONS FOR CAUTION The proteome analyses described in this study were performed after in vitro development. Despite fractionation of the samples before LC-MS/MS, proteomic approaches are not exhaustive, thus proteins that are not identified in a group are not necessarily absent from that group, although they are likely to be less abundant. WIDER IMPLICATIONS OF THE FINDINGS This study allowed a general view of proteins implicated in follicle development in vitro and it represents the most complete catalog of the whole follicle proteome available so far. Not only were well known proteins of the oocyte identified but also proteins that are probably expressed only in granulosa cells. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Portuguese Foundation for Science and Technology, FCT (PhD fellowship SFRH/BD/65299/2009 to A.A.), the Swedish Childhood Cancer Foundation (PR 2014-0144 to K.A.R-.W.) and Stockholm County Council to K.A.R-.W. The authors of the study have no conflict of interest to report.
Collapse
Affiliation(s)
- Amandine Anastácio
- Université Paris VI (UPMC), Paris, France
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
- Reproductive Medicine, Department of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| | - Solenne Chardonnet
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | - Cédric Pionneau
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | | | - Teresa Almeida Santos
- Department of Human Reproduction, University Hospital of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catherine Poirot
- Université Paris VI (UPMC), Paris, France
- Service d’Hématologie-Unité AJA, Hôpital Saint Louis, Paris, France
| |
Collapse
|
40
|
Chowdhury I, Branch A, Mehrabi S, Ford BD, Thompson WE. Gonadotropin-Dependent Neuregulin-1 Signaling Regulates Female Rat Ovarian Granulosa Cell Survival. Endocrinology 2017; 158:3647-3660. [PMID: 28938399 PMCID: PMC5659703 DOI: 10.1210/en.2017-00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
Abstract
Mammalian ovarian follicular development and maturation of an oocyte competent to be fertilized and develop into an embryo depends on tightly regulated, spatiotemporally orchestrated crosstalk among cell death, survival, and differentiation signals through extra- and intraovarian signals, as well as on a permissive ovarian follicular microenvironment. Neuregulin-1 (NRG1) is a member of the epidermal growth factor-like factor family that mediates its effects by binding to a member of the erythroblastoma (ErbB) family. Our experimental results suggest gonadotropins promote differential expression of NRG1 and erbB receptors in granulosa cells (GCs), and NRG1 in theca cells during follicular development, and promote NRG1 secretions in the follicular fluid (FF) of rat ovaries. During the estrous cycle of rat, NRG1 and erbB receptors are differentially expressed in GCs and correlate positively with serum gonadotropins and steroid hormones. Moreover, in vitro experimental studies suggest that the protein kinase C inhibitor staurosporine (STS) causes the physical destruction of GCs by the activation of caspase-3. Exogenous NRG1 treatment of GCs delayed onset of STS-induced apoptosis and inhibited cleaved caspase-3 expressions. Moreover, exogenous NRG1 treatment of GCs alters STS-induced death by maintaining the expression of ErbB2, ErbB3, pAkt, Bcl2, and BclxL proteins. Taken together, these studies demonstrate that NRG1 is gonadotropin dependent, differentially regulated in GCs and theca cells, and secreted in ovarian FF as an intracellular survival factor that may govern follicular maturation.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Alicia Branch
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Sharifeh Mehrabi
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Byron D. Ford
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, California 92521
| | - Winston E. Thompson
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
41
|
Chen H, Chan HC. Amplification of FSH signalling by CFTR and nuclear soluble adenylyl cyclase in the ovary. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:78-85. [PMID: 28345252 DOI: 10.1111/1440-1681.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is one of the most important signalling pathways widely distributed in most eukaryotic cells. The activation of the canonical cAMP/PKA pathway depends on transmembrane adenylyl cyclase (tmAC). Recently, soluble adenylyl cyclase (sAC), which is activated by HCO3- or Ca2+ , emerges to provide an alternative way to activate cAMP/PKA pathway with the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- /HCO3- -conducting anion channel, as a key player. This review summarizes new progress in the investigation of the CFTR/HCO3- -dependent sAC signalling and its essential role in various reproductive processes, particularly in ovarian functions. We present the evidence for a CFTR/HCO3- -dependent nuclear sAC signalling cascade that amplifies the FSH-stimulated cAMP/PKA pathway, traditionally thought to involve tmAC, in granulosa for the regulation of oestrogen production and granulosa cell proliferation. The implication of the CFTR/HCO3- /sAC pathway in amplifying other receptor-activated cAMP/PKA signalling in a wide variety of cell types and pathophysiological processes, including aging, is also discussed.
Collapse
Affiliation(s)
- Hui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| |
Collapse
|
42
|
Färkkilä A, Haltia UM, Tapper J, McConechy MK, Huntsman DG, Heikinheimo M. Pathogenesis and treatment of adult-type granulosa cell tumor of the ovary. Ann Med 2017; 49:435-447. [PMID: 28276867 DOI: 10.1080/07853890.2017.1294760] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adult-type granulosa cell tumor is a clinically and molecularly unique subtype of ovarian cancer. These tumors originate from the sex cord stromal cells of the ovary and represent 3-5% of all ovarian cancers. The majority of adult-type granulosa cell tumors are diagnosed at an early stage with an indolent prognosis. Surgery is the cornerstone for the treatment of both primary and relapsed tumor, while chemotherapy is applied only for advanced or non-resectable cases. Tumor stage is the only factor consistently associated with prognosis. However, every third of the patients relapse, typically in 4-7 years from diagnosis, leading to death in 50% of these patients. Anti-Müllerian Hormone and inhibin B are currently the most accurate circulating biomarkers. Adult-type granulosa cell tumors are molecularly characterized by a pathognomonic somatic missense point mutation 402C->G (C134W) in the transcription factor FOXL2. The FOXL2 402C->G mutation leads to increased proliferation and survival of granulosa cells, and promotes hormonal changes. Histological diagnosis of adult-type granulosa cell tumor is challenging, therefore testing for the FOXL2 mutation is crucial for differential diagnosis. Large international collaborations utilizing molecularly defined cohorts are essential to improve and validate new treatment strategies for patients with high-risk or relapsed adult-type granulosa cell tumor. Key Messages: Adult-type granulosa cell tumor is a unique ovarian cancer with an indolent, albeit unpredictable disease course. Adult-type granulosa cell tumors harbor a pathognomonic somatic missense mutation in transcription factor FOXL2. The key challenges in the treatment of patients with adult-type granulosa cell tumor lie in the identification and management of patients with high-risk or relapsed disease.
Collapse
Affiliation(s)
- Anniina Färkkilä
- a Department of Obstetrics and Gynecology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland.,b Children's Hospital , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Ulla-Maija Haltia
- a Department of Obstetrics and Gynecology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland.,b Children's Hospital , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Johanna Tapper
- a Department of Obstetrics and Gynecology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Melissa K McConechy
- c Department of Human Genetics , Research Institute of the McGill University Health Centre, McGill University , Montreal , Canada
| | - David G Huntsman
- d Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , Canada.,e Department of Molecular Oncology , British Columbia Cancer Agency , Vancouver , Canada
| | - Markku Heikinheimo
- b Children's Hospital , University of Helsinki and Helsinki University Hospital , Helsinki , Finland.,f Department of Pediatrics , Washington University School of Medicine, St. Louis Children's Hospital , St. Louis , MO , USA
| |
Collapse
|
43
|
Law NC, Donaubauer EM, Zeleznik AJ, Hunzicker-Dunn M. How Protein Kinase A Activates Canonical Tyrosine Kinase Signaling Pathways To Promote Granulosa Cell Differentiation. Endocrinology 2017; 158:2043-2051. [PMID: 28460125 PMCID: PMC5505220 DOI: 10.1210/en.2017-00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
Protein kinase A (PKA) has recently been shown to mimic the actions of follicle-stimulating hormone (FSH) by activating signaling pathways that promote granulosa cell (GC) differentiation, such as phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We sought to elucidate the mechanism by which PKA, a Ser/Thr kinase, intersected the PI3K/AKT and MAPK/ERK pathways that are canonically activated by receptor tyrosine kinases (RTKs). Our results show that for both of these pathways, the RTK is active in the absence of FSH yet signaling down the pathways to commence transcriptional responses requires FSH-stimulated PKA activation. For both pathways, PKA initiates signaling by regulating the activity of a protein phosphatase (PP). For the PI3K/AKT pathway, PKA activates the Ser/Thr PP1 complexed with the insulinlike growth factor 1 receptor (IGF-1R) and insulin receptor substrate 1 (IRS1) to dephosphorylate Ser residues on IRS1, authorizing phosphorylation of IRS1 by the IGF-1R to activate PI3K. Treatment of GCs with FSH and exogenous IGF-1 initiates synergistic IRS1 Tyr phosphorylation and resulting gene activation. The mechanism by which PKA activates PI3K is conserved in preovulatory GCs, MCF7 breast cancer cells, and FRTL thyroid cells. For the MAPK/ERK pathway, PKA promotes inactivation of the MAPK phosphatase (MKP) dual specificity phosphatase (DUSP) MKP3/DUSP6 to permit MEK-phosphorylated ERK to accumulate downstream of the epidermal growth factor receptor. Thus, for the two central signaling pathways that regulate gene expression in GCs, FSH via PKA intersects canonical RTK-regulated signaling by modulating the activity of PPs.
Collapse
Affiliation(s)
- Nathan C. Law
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Elyse M. Donaubauer
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Anthony J. Zeleznik
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mary Hunzicker-Dunn
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| |
Collapse
|
44
|
Shen M, Jiang Y, Guan Z, Cao Y, Li L, Liu H, Sun SC. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 2017; 13:1364-1385. [PMID: 28598230 DOI: 10.1080/15548627.2017.1327941] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress-induced granulosa cell (GCs) death represents a common reason for follicular atresia. Follicle-stimulating hormone (FSH) has been shown to prevent GCs from oxidative injury, although the underlying mechanism remains to be elucidated. Here we first report that the suppression of autophagic cell death via some novel signaling effectors is engaged in FSH-mediated GCs protection against oxidative damage. The decline in GCs viability caused by oxidant injury was remarkably reduced following FSH treatment, along with impaired macroautophagic/autophagic flux under conditions of oxidative stress both in vivo and in vitro. Blocking of autophagy displayed similar levels of suppression in oxidant-induced cell death compared with FSH treatment, but FSH did not further improve survival of GCs pretreated with autophagy inhibitors. Further investigations revealed that activation of the phosphoinositide 3-kinase (PI3K)-AKT-MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling pathway was required for FSH-mediated GCs survival from oxidative stress-induced autophagy. Additionally, the FSH-PI3K-AKT axis also downregulated the autophagic response by targeting FOXO1, whereas constitutive activation of FOXO1 in GCs not only abolished the protection from FSH, but also emancipated the autophagic process, from the protein level of MAP1LC3B-II to autophagic gene expression. Furthermore, FSH inhibited the production of acetylated FOXO1 and its interaction with Atg proteins, followed by a decreased level of autophagic cell death upon oxidative stress. Taken together, our findings suggest a new mechanism involving FSH-FOXO1 signaling in defense against oxidative damage to GCs by restraining autophagy, which may be a potential avenue for the clinical treatment of anovulatory disorders.
Collapse
Affiliation(s)
- Ming Shen
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yi Jiang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Zhiqiang Guan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yan Cao
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Liechuan Li
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Honglin Liu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
45
|
Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions. Cell Tissue Res 2017; 368:397-403. [PMID: 28154936 PMCID: PMC5397658 DOI: 10.1007/s00441-017-2571-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.
Collapse
|
46
|
Law NC, White MF, Hunzicker-Dunn ME. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway. J Biol Chem 2016; 291:27160-27169. [PMID: 27856640 DOI: 10.1074/jbc.m116.763235] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser318, Ser346, Ser612, and Ser789, and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.
Collapse
Affiliation(s)
- Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| | - Morris F White
- the Division of Endocrinology, Dept. of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| |
Collapse
|
47
|
Herndon MK, Law NC, Donaubauer EM, Kyriss B, Hunzicker-Dunn M. Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol Cell Endocrinol 2016; 434:116-26. [PMID: 27328024 PMCID: PMC4983523 DOI: 10.1016/j.mce.2016.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 01/11/2023]
Abstract
FSH promotes maturation of ovarian follicles. One pathway activated by FSH in granulosa cells (GCs) is phosphatidylinositol-3 kinase/AKT. The AKT target FOXO1 is reported to function primarily as a repressor of FSH genes, including Ccnd2 and Inha. Based on its broad functions in other tissues, we hypothesized that FOXO1 may regulate many more GC genes. We transduced GCs with empty adenovirus or constitutively active FOXO1 followed by treatment with FSH for 24 h, and conducted RNA deep sequencing. Results show that FSH regulates 3772 genes ≥2.0-fold; 60% of these genes are activated or repressed by FOXO1. Pathway Studio Analysis revealed enrichment of genes repressed by FOXO1 in metabolism, signaling, transport, development, and activated by FOXO1 in signaling, cytoskeletal functions, and apoptosis. Gene regulation was verified by q-PCR (eight genes) and ChIP analysis (two genes). We conclude that FOXO1 regulates the majority of FSH target genes in GCs.
Collapse
Affiliation(s)
- Maria K Herndon
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman WA 99163, USA.
| | - Nathan C Law
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman WA 99163, USA.
| | - Elyse M Donaubauer
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman WA 99163, USA.
| | - Brandon Kyriss
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman WA 99163, USA.
| | - Mary Hunzicker-Dunn
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman WA 99163, USA.
| |
Collapse
|
48
|
Donaubauer EM, Law NC, Hunzicker-Dunn ME. Follicle-Stimulating Hormone (FSH)-dependent Regulation of Extracellular Regulated Kinase (ERK) Phosphorylation by the Mitogen-activated Protein (MAP) Kinase Phosphatase MKP3. J Biol Chem 2016; 291:19701-12. [PMID: 27422819 DOI: 10.1074/jbc.m116.733972] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 01/11/2023] Open
Abstract
Within the ovarian follicle, granulosa cells (GCs) surround and support immature oocytes. FSH promotes the differentiation and proliferation of GCs and is essential for fertility. We recently reported that ERK activation is necessary for FSH to induce key genes that define the preovulatory GC. This research focused on the phosphoregulation by FSH of ERK within GCs. FSH-stimulated ERK phosphorylation on Thr(202)/Tyr(204) was PKA-dependent, but MEK(Ser(217)/Ser(221)) phosphorylation was not regulated; rather, MEK was already active. However, treatment of GCs with the EGF receptor inhibitor AG1478, a dominant-negative RAS, an Src homology 2 domain-containing Tyr phosphatase inhibitor (NSC 87877), or the MEK inhibitor PD98059 blocked FSH-dependent ERK(Thr(202)/Tyr(204)) phosphorylation, demonstrating the requirement for upstream pathway components. We hypothesized that FSH via PKA enhances ERK phosphorylation by inhibiting the activity of a protein phosphatase that constitutively dephosphorylates ERK in the absence of FSH, allowing MEK-phosphorylated ERK to accumulate in the presence of FSH because of inactivation of the phosphatase. GCs treated with different phosphatase inhibitors permitted elimination of both Ser/Thr and Tyr phosphatases and implicated dual specificity phosphatases (DUSPs) in the dephosphorylation of ERK. Treatment with MAP kinase phosphatase (MKP3, DUSP6) inhibitors increased ERK(Thr(202)/Tyr(204)) phosphorylation in the absence of FSH to levels comparable with ERK phosphorylated in the presence of FSH. ERK co-immunoprecipitated with Myc-FLAG-tagged MKP3(DUSP6). GCs treated with MKP3(DUSP6) inhibitors blocked and PKA inhibitors enhanced dephosphorylation of recombinant ERK2-GST in an in vitro phosphatase assay. Together, these results suggest that FSH-stimulated ERK activation in GCs requires the PKA-dependent inactivation of MKP3(DUSP6).
Collapse
Affiliation(s)
- Elyse M Donaubauer
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
49
|
Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation. Sci Rep 2016; 6:28132. [PMID: 27324437 PMCID: PMC4914995 DOI: 10.1038/srep28132] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/01/2016] [Indexed: 12/16/2022] Open
Abstract
Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation.
Collapse
|
50
|
Yenuganti VR, Viergutz T, Vanselow J. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells. Gen Comp Endocrinol 2016; 232:134-44. [PMID: 27118706 DOI: 10.1016/j.ygcen.2016.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/22/2016] [Accepted: 04/22/2016] [Indexed: 01/22/2023]
Abstract
After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation.
Collapse
Affiliation(s)
- Vengala Rao Yenuganti
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|