1
|
Vlajic K, Bie W, Gilic MB, Tyner AL. Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice. Cell Death Dis 2024; 15:777. [PMID: 39461944 PMCID: PMC11513114 DOI: 10.1038/s41419-024-07149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.
Collapse
Affiliation(s)
- Katarina Vlajic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- University of Washington, Seattle, WA, USA
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Milica B Gilic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- St Jude Children's Hospital, Memphis, TN, USA
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
2
|
Xu C, Liu X, Yu L, Fang X, Yao L, Lau H, Vyas P, Pryke L, Xu B, Tang L, Jiang J, Chen X. CD147 monoclonal antibody attenuates abdominal aortic aneurysm formation in angiotensin II-Infused apoE -/- mice. Int Immunopharmacol 2023; 122:110526. [PMID: 37393837 DOI: 10.1016/j.intimp.2023.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a life threatening vascular disease. Our previous study reported the upregulation of CD147 expression in human aortic aneurysms. OBJECTIVE In this study, we injected apoE-/- mice intraperitoneally with CD147 monoclonal antibody or IgG control antibody to observe its effect on Angiotensin II (AngII) induced AAA formation. METHODS ApoE-/- mice were randomly divided into an AngⅡ+CD147 antibody group (n = 20) and an AngⅡ+IgG antibody group (n = 20). The Alzet osmotic minipump was implanted subcutaneously into the backs of mice to infuse AngII (1000 ng/kg/min) for 28 days and subsequently treated with CD147 monoclonal antibody or control IgG mAb (10 μg/mouse/day) beginning one day after surgery. Body weight, food intake, drinking volume and blood pressure were measured weekly throughout the study. After 4 weeks of injection, routine bloodwork measuring liver function, kidney function and lipid levels were recorded. Hematoxylin and eosin (H&E), Masson's trichrome, and Elastic van Gieson (EVG) staining were used to evaluate the pathological changes in blood vessels. In addition, Immunohistochemical assay was used to detect infiltration of inflammatory cells. Tandem mass tag (TMT)-based proteomic analysis was used to define differentially expressed proteins (DEPs) using a p-value < 0.05 and fold change > 1.2 or < 0.83 as the threshold. Subsequently, we conducted protein-protein interaction (PPI) network and GO enrichment analysis to determine the core biological function altered after CD147 antibody injection. RESULTS The CD147 monoclonal antibody suppresses Ang II-induced AAA formation in apoE-/- mice and reduced aortic expansion, elastic lamina degradation, and inflammatory cells accumulation. Bioinformatics analysis showed that Ptk6, Itch, Casp3, and Oas1a were the hub DEPs. These DEPs in the two group were mainly involved in collagen fibril organization, extracellular matrix organization, and muscle contraction. These data robustly demonstrated that CD147 monoclonal antibody suppresses Ang II-induced AAA formation through reduction of inflammatory response and regulation of the above defined hub proteins and biological processes. Thus, the CD147 monoclonal antibody might be a promising target in the treatment of abdominal aortic aneurysm.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, PR China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaoxin Fang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Lei Yao
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - HuiChong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA
| | - Punit Vyas
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Luke Pryke
- Internal medicine, Indiana University, Indianapolis, IN 46202
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, PR China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China; Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Jerin S, Harvey AJ, Lewis A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers (Basel) 2023; 15:3703. [PMID: 37509364 PMCID: PMC10377740 DOI: 10.3390/cancers15143703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
PTK6, a non-receptor tyrosine kinase, modulates the pathogenesis of breast and prostate cancers and is recognized as a biomarker of breast cancer prognosis. There are over 30 known substrates of PTK6, including signal transducers, transcription factors, and RNA-binding proteins. Many of these substrates are known drivers of other cancer types, such as colorectal cancer. Colon and rectal tumors also express higher levels of PTK6 than the normal intestine suggesting a potential role in tumorigenesis. However, the importance of PTK6 in colorectal cancer remains unclear. PTK6 inhibitors such as XMU-MP-2 and Tilfrinib have demonstrated potency and selectivity in breast cancer cells when used in combination with chemotherapy, indicating the potential for PTK6 targeted therapy in cancer. However, most of these inhibitors are yet to be tested in other cancer types. Here, we discuss the current understanding of the function of PTK6 in normal intestinal cells compared with colorectal cancer cells. We review existing PTK6 targeting therapeutics and explore the possibility of PTK6 inhibitory therapy for colorectal cancer.
Collapse
Affiliation(s)
- Samanta Jerin
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amanda J Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK
| | - Annabelle Lewis
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
4
|
Vilariño-García T, Guadix P, Dorado-Silva M, Sánchez-Martín P, Pérez-Pérez A, Sánchez-Margalet V. Decreased Expression of Sam68 Is Associated with Insulin Resistance in Granulosa Cells from PCOS Patients. Cells 2022; 11:cells11182821. [PMID: 36139396 PMCID: PMC9496917 DOI: 10.3390/cells11182821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, which leads to subfertility. PCOS is the most frequent metabolic disorder in women and the major cause of infertility. Susceptibility to developing PCOS is determined by a complex interaction between environmental and genetic factors. Although different mechanisms have been proposed to explain PCOS manifestations, defects in insulin actions or in the insulin signaling pathways are central in the pathogenesis of the syndrome. However, the mechanisms (molecular players and signaling pathways) underlying its primary origin still remain an unsolved issue. Current research is increasingly focusing on the discovery of novel biomarkers to further elucidate the complex pathophysiology of PCOS. Sam68, an RNA-binding protein, is recruited to insulin signaling, mediating different insulin actions. We aimed to investigate the role of Sam68 in insulin signaling and the possible implications of Sam68 in the insulin resistance in PCOS. MATERIALS AND METHODS Granulosa cells were taken from women with PCOS (n = 25) and healthy donors (n = 25) and, within the age range of 20 to 42 years, from GINEMED, Assisted Reproduction Centre, Seville, Spain. The Sam68 expression level was analyzed both by qPCR and immunoblot. Statistical significance was assessed by one-way ANOVA, followed by a post-hoc test. A p value of < 0.05 was considered statistically significant. RESULTS We found that insulin stimulation increases the phosphorylation and expression level of Sam68 in granulosa cells from normal donors. The downregulation of Sam68 expression resulted in a lower activation of both the MAPK and the PI3K pathways in response to insulin. Moreover, the granulosa cells from the women with PCOS presented a lower expression of Sam68, as well as insulin receptor and insulin receptor substrate-1 (IRS-1). In these cells, the overexpression of Sam68 resulted in an increased activation of both the MAPK and the PI3K pathways in response to insulin. CONCLUSIONS These results suggest the participation of Sam68 in insulin receptor signaling, mediating the insulin effect in granulosa cells, and they suggest the possible role of Sam68 in the insulin resistance of PCOS.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology and Immunology, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Pilar Guadix
- Obstetrics and Gynecology Department, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | | | | | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.P.-P.); (V.S.-M.); Tel.: +95-4559-850 (A.P.-P.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.P.-P.); (V.S.-M.); Tel.: +95-4559-850 (A.P.-P.)
| |
Collapse
|
5
|
Naro C, Bielli P, Sette C. Oncogenic dysregulation of pre-mRNA processing by protein kinases: challenges and therapeutic opportunities. FEBS J 2021; 288:6250-6272. [PMID: 34092037 PMCID: PMC8596628 DOI: 10.1111/febs.16057] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing and polyadenylation represent two major steps in pre-mRNA-processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes contributes to oncogenic programmes involved in the onset, progression and evolution of human cancers, which often result in the acquisition of resistance to existing therapies. On the other hand, cancer cells frequently increase their transcriptional rate and develop a transcriptional addiction, which imposes a high stress on the pre-mRNA-processing machinery and establishes a therapeutically exploitable vulnerability. A prominent role in fine-tuning pre-mRNA-processing mechanisms is played by three main families of protein kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK) and cyclin-dependent kinase (CDK). These kinases phosphorylate the RNA polymerase, splicing factors and regulatory proteins involved in cleavage and polyadenylation of the nascent transcripts. The activity of SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibition was shown to exert anticancer effects. In this review, we describe key findings that have been reported on these topics and discuss challenges and opportunities of developing therapeutic approaches targeting splicing factor kinases.
Collapse
Affiliation(s)
- Chiara Naro
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Pamela Bielli
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| | - Claudio Sette
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| |
Collapse
|
6
|
Targeting protein tyrosine kinase 6 in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188432. [PMID: 32956764 DOI: 10.1016/j.bbcan.2020.188432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) is the most well studied member of the PTK6 family of intracellular tyrosine kinases. While it is expressed at highest levels in differentiated cells in the regenerating epithelial linings of the gastrointestinal tract and skin, induction and activation of PTK6 is detected in several cancers, including breast and prostate cancer where high PTK6 expression correlates with worse outcome. PTK6 expression is regulated by hypoxia and cell stress, and its kinase activity is induced by several growth factor receptors implicated in cancer including members of the ERBB family, IGFR1 and MET. Activation of PTK6 at the plasma membrane has been associated with the epithelial mesenchymal transition and tumor metastasis. Several lines of evidence indicate that PTK6 has context dependent functions that depend on cell type, intracellular localization and kinase activation. Systemic disruption of PTK6 has been shown to reduce tumorigenesis in mouse models of breast and prostate cancer, and more recently small molecule inhibitors of PTK6 have exhibited efficacy in inhibiting tumor growth in animal models. Here we review data that suggest targeting PTK6 may have beneficial therapeutic outcomes in some cancers.
Collapse
|
7
|
Vilariño-García T, Pérez-Pérez A, Santamaría-López E, Prados N, Fernández-Sánchez M, Sánchez-Margalet V. Sam68 mediates leptin signaling and action in human granulosa cells: possible role in leptin resistance in PCOS. Endocr Connect 2020; 9:479-488. [PMID: 32375121 PMCID: PMC7354740 DOI: 10.1530/ec-20-0062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, that leads to subfertility. Sam68 is an RNA-binding protein with signaling functions that is ubiquitously expressed, including gonads. Sam68 is recruited to leptin signaling, mediating different leptin actions. OBJECTIVE We aimed to investigate the role of Sam68 in leptin signaling, mediating the effect on aromatase expression in granulosa cells and the posible implication of Sam68 in the leptin resistance in PCOS. MATERIALS AND METHODS Granulosa cells were from healthy donors (n = 25) and women with PCOS (n = 25), within the age range of 20 to 40 years, from Valencian Infertility Institute (IVI), Seville, Spain. Sam68 expression was inhibited by siRNA method and overexpressed by expression vector. Expression level was analysed by qPCR and immunoblot. Statistical significance was assessed by ANOVA followed by different post-hoc tests. A P value of <0.05 was considered statistically significant. RESULTS We have found that leptin stimulation increases phosphorylation and expression level of Sam68 and aromatase in granulosa cells from normal donors. Downregulation of Sam68 expression resulted in a lower activation of MAPK and PI3K pathways in response to leptin, whereas overexpression of Sam68 increased leptin stimulation of signaling, enhancing aromatase expression. Granulosa cells from women with PCOS presented lower expression of Sam68 and were resistant to the leptin effect on aromatase expression. CONCLUSIONS These results suggest the participation of Sam68 in leptin receptor signaling, mediating the leptin effect on aromatase expression in granulosa cells, and point to a new target in leptin resistance in PCOS.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Correspondence should be addressed to V Sánchez-Margalet:
| |
Collapse
|
8
|
Maticzka D, Ilik IA, Aktas T, Backofen R, Akhtar A. uvCLAP is a fast and non-radioactive method to identify in vivo targets of RNA-binding proteins. Nat Commun 2018; 9:1142. [PMID: 29559621 PMCID: PMC5861125 DOI: 10.1038/s41467-018-03575-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
RNA-binding proteins (RBPs) play important and essential roles in eukaryotic gene expression regulating splicing, localization, translation, and stability of mRNAs. We describe ultraviolet crosslinking and affinity purification (uvCLAP), an easy-to-use, robust, reproducible, and high-throughput method to determine in vivo targets of RBPs. uvCLAP is fast and does not rely on radioactive labeling of RNA. We investigate binding of 15 RBPs from fly, mouse, and human cells to test the method's performance and applicability. Multiplexing of signal and control libraries enables straightforward comparison of samples. Experiments for most proteins achieve high enrichment of signal over background. A point mutation and a natural splice isoform that change the RBP subcellular localization dramatically alter target selection without changing the targeted RNA motif, showing that compartmentalization of RBPs can be used as an elegant means to generate RNA target specificity.
Collapse
Affiliation(s)
- Daniel Maticzka
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110, Freiburg, Germany
| | - Ibrahim Avsar Ilik
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Tugce Aktas
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110, Freiburg, Germany.
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany.
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| |
Collapse
|
9
|
PTEN is a protein phosphatase that targets active PTK6 and inhibits PTK6 oncogenic signaling in prostate cancer. Nat Commun 2017; 8:1508. [PMID: 29142193 PMCID: PMC5688148 DOI: 10.1038/s41467-017-01574-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
PTEN activity is often lost in prostate cancer. We show that the tyrosine kinase PTK6 (BRK) is a PTEN substrate. Phosphorylation of PTK6 tyrosine 342 (PY342) promotes activation, while phosphorylation of tyrosine 447 (PY447) regulates auto-inhibition. Introduction of PTEN into a PTEN null prostate cancer cell line leads to dephosphorylation of PY342 but not PY447 and PTK6 inhibition. Conversely, PTEN knockdown promotes PTK6 activation in PTEN positive cells. Using a variety of PTEN mutant constructs, we show that protein phosphatase activity of PTEN targets PTK6, with efficiency similar to PTP1B, a phosphatase that directly dephosphorylates PTK6 Y342. Conditional disruption of Pten in the mouse prostate leads to tumorigenesis and increased phosphorylation of PTK6 Y342, and disruption of Ptk6 impairs tumorigenesis. In human prostate tumor tissue microarrays, loss of PTEN correlates with increased PTK6 PY342 and poor outcome. These data suggest PTK6 activation promotes invasive prostate cancer induced by PTEN loss. PTEN is often lost in prostate cancer. In this study, the authors show that PTEN can act as a protein phosphatase that targets active PTK6, thereby regulating its oncogenic signaling in prostate cancer progression.
Collapse
|
10
|
Wu Y, Zhu Y, Li S, Zeng M, Chu J, Hu P, Li J, Guo Q, Lv XB, Huang G. Terrein performs antitumor functions on esophageal cancer cells by inhibiting cell proliferation and synergistic interaction with cisplatin. Oncol Lett 2017; 13:2805-2810. [PMID: 28454470 DOI: 10.3892/ol.2017.5758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/16/2016] [Indexed: 01/22/2023] Open
Abstract
Terrein is a bioactive fungal metabolite isolated from Aspergillus terreus. Besides being a melanogenesis inhibitor, previous studies have revealed that terrein has antiproliferative effects on a number of types of cancer tumors. In the present study, the inhibitory effect of terrein on esophageal cancer was evaluated and the possible underlying mechanisms were investigated. The results revealed that terrein inhibited the proliferation of Eca109 esophageal cancer cells in a dose- and time-dependent manner. Mechanistically, terrein treatment led to the G2/M phase arrest of Eca109 cells by indirectly regulating cyclin B1 and phosphorylating the cell division cycle protein 2 genes. Notably, terrein exhibited a synergistic effect on Eca109 cells when combined with cisplatin, which is a commonly used chemotherapeutic drug. Taken together, these findings indicate that terrein suppresses the proliferation of esophageal cancer cells, and may prove to be a novel therapeutic approach for the treatment of esophageal cancer via inhibiting the proliferation of cancer cells.
Collapse
Affiliation(s)
- Yanqing Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Yinghua Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital affiliated to Sun Yat-Sen University, Guangzhou, Guangdong 51012, P.R. China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital affiliated to Sun Yat-Sen University, Guangzhou, Guangdong 51012, P.R. China
| | - Minhua Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital affiliated to Sun Yat-Sen University, Guangzhou, Guangdong 51012, P.R. China
| | - Junjun Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital affiliated to Sun Yat-Sen University, Guangzhou, Guangdong 51012, P.R. China
| | - Pengnan Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital affiliated to Sun Yat-Sen University, Guangzhou, Guangdong 51012, P.R. China
| | - Jingjing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital affiliated to Sun Yat-Sen University, Guangzhou, Guangdong 51012, P.R. China
| | - Qiannan Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital affiliated to Sun Yat-Sen University, Guangzhou, Guangdong 51012, P.R. China
| | - Xiao-Bin Lv
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
11
|
Thakur MK, Birudukota S, Swaminathan S, Battula SK, Vadivelu S, Tyagi R, Gosu R. Co-crystal structures of PTK6: With Dasatinib at 2.24 Å, with novel imidazo[1,2-a]pyrazin-8-amine derivative inhibitor at 1.70 Å resolution. Biochem Biophys Res Commun 2016; 482:1289-1295. [PMID: 27993680 DOI: 10.1016/j.bbrc.2016.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/03/2016] [Indexed: 12/29/2022]
Abstract
Human Protein tyrosine kinase 6 (PTK6)(EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed five-fold or more in human breast tumors and breast cancer cell lines but its expression being low or completely absent from normal mammary gland. There is a recent interest in targeting PTK6-positive breast cancer by developing small molecule inhibitor against PTK6. Novel imidazo[1,2-a]pyrazin-8-amines (IPA) derivative compounds and FDA approved drug, Dasatinib are reported to inhibit PTK6 kinase activity with IC50 in nM range. To understand binding mode of these compounds and key interactions that drive the potency against PTK6, one of the IPA compounds and Dasatinib were chosen to study through X-ray crystallography. The recombinant PTK6 kinase domain was purified and co-crystallized at room temperature by the sitting-drop vapor diffusion method, collected X-ray diffraction data at in-house and resolved co-crystal structure of PTK6-KD with Dasatinib at 2.24 Å and with IPA compound at 1.70 Å resolution. Both these structures are in DFG-in & αC-helix-out conformation with unambiguous electron density for Dasatinib or IPA compound bound at the ATP-binding pocket. Relative difference in potency between Dasatinib and IPA compound is delineated through the additional interactions derived from the occupation of additional pocket by Dasatinib at gatekeeper area. Refined crystallographic coordinates for the kinase domain of PTK6 in complex with IPA compound and Dasatinib have been submitted to Protein Data Bank under the accession number 5DA3 and 5H2U respectively.
Collapse
Affiliation(s)
- Manish Kumar Thakur
- Department of Biochemistry, University of Mysore, Mysore, 570005, India; Department of Structural Biology, Jubilant Biosys Ltd, Bangalore, 560022, India
| | | | | | | | - Sarvanan Vadivelu
- Department of Structural Biology, Jubilant Biosys Ltd, Bangalore, 560022, India
| | - Rajiv Tyagi
- Department of Structural Biology, Jubilant Biosys Ltd, Bangalore, 560022, India
| | - Ramachandraiah Gosu
- Department of Biochemistry, University of Mysore, Mysore, 570005, India; Department of Structural Biology, Jubilant Biosys Ltd, Bangalore, 560022, India.
| |
Collapse
|
12
|
Targeting BRK-Positive Breast Cancers with Small-Molecule Kinase Inhibitors. Cancer Res 2016; 77:175-186. [DOI: 10.1158/0008-5472.can-16-1038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
|
13
|
Thakur MK, Kumar A, Birudukota S, Swaminathan S, Tyagi R, Gosu R. Crystal structure of the kinase domain of human protein tyrosine kinase 6 (PTK6) at 2.33 Å resolution. Biochem Biophys Res Commun 2016; 478:637-42. [DOI: 10.1016/j.bbrc.2016.07.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022]
|
14
|
Wang XJ, Xiong Y, Ma ZB, Xia JC, Li YF. The expression and prognostic value of protein tyrosine kinase 6 in early-stage cervical squamous cell cancer. CHINESE JOURNAL OF CANCER 2016; 35:54. [PMID: 27311570 PMCID: PMC4910196 DOI: 10.1186/s40880-016-0114-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 03/04/2016] [Indexed: 01/17/2023]
Abstract
Background Protein tyrosine kinase 6 (PTK6) is overexpressed in many epithelial tumors and predicts poor prognosis. However, PTK6 expression status and its role in cervical squamous cell cancer are unknown. This study aimed to investigate the expression level and clinical significance of PTK6 in early-stage cervical squamous cell cancer. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting analysis were performed to detect PTK6 mRNA and protein expression levels in 10 freshly frozen, early-stage cervical squamous cell cancer specimens and adjacent non-tumorous cervical tissues. The expression of PTK6 was detected using immunohistochemical staining in 150 formalin-fixed, paraffin-embedded, early-stage cervical squamous cell cancer sections and 10 normal cervical tissue sections. Results The mRNA and protein levels of PTK6 in cancer tissues were higher than those in adjacent non-tumorous cervical tissues. Immunohistochemical analysis showed that PTK6 was not expressed in normal cervical tissues but was overexpressed in the cytoplasm of cervical squamous cell cancer cells. The level of PTK6 expression was significantly associated with tumor grade (P = 0.020). The 5-year overall survival rate of patients with high PTK6 expression was lower than that of patients with low PTK6 expression (81.3% vs. 96.2%, P = 0.008). Multivariate Cox regression analysis showed that the expression level of PTK6 in cervical squamous cell cancer was an independent prognostic factor for patient survival (hazard ratio = 5.999, 95% confidence interval 1.622–22.191, P < 0.05). Conclusions PTK6 is overexpressed in cervical squamous cell cancer. Increased PTK6 expression is associated with reduced 5-year overall survival. PTK6 expression is an independent prognostic predictor for cervical cancer.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.,Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Ying Xiong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.,Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Ze-Biao Ma
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.,Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Jian-Chuan Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Yan-Fang Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
15
|
Ito K, Park SH, Nayak A, Byerly JH, Irie HY. PTK6 Inhibition Suppresses Metastases of Triple-Negative Breast Cancer via SNAIL-Dependent E-Cadherin Regulation. Cancer Res 2016; 76:4406-17. [DOI: 10.1158/0008-5472.can-15-3445] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 11/16/2022]
|
16
|
Feracci M, Foot JN, Grellscheid SN, Danilenko M, Stehle R, Gonchar O, Kang HS, Dalgliesh C, Meyer NH, Liu Y, Lahat A, Sattler M, Eperon IC, Elliott DJ, Dominguez C. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68. Nat Commun 2016; 7:10355. [PMID: 26758068 PMCID: PMC4735526 DOI: 10.1038/ncomms10355] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/01/2015] [Indexed: 11/13/2022] Open
Abstract
Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. Sam68 and T-STAR are members of the STAR family of proteins, which regulate various aspects of RNA metabolism. Here, the authors reveal structural features required for alternative splicing regulation by these proteins.
Collapse
Affiliation(s)
- Mikael Feracci
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Jaelle N Foot
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Sushma N Grellscheid
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Ralf Stehle
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany
| | - Oksana Gonchar
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Hyun-Seo Kang
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - N Helge Meyer
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Albert Lahat
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Michael Sattler
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Ian C Eperon
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Cyril Dominguez
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
17
|
PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget 2015; 5:6038-48. [PMID: 25153721 PMCID: PMC4171611 DOI: 10.18632/oncotarget.2153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein Tyrosine kinase 6 (PTK6/BRK) is overexpressed in the majority of human breast tumors and breast tumor cell lines. It is also expressed in normal epithelial linings of the gastrointestinal tract, skin, and prostate. To date, expression of PTK6 has not been extensively examined in the normal human mammary gland. We detected PTK6 mRNA and protein expression in the immortalized normal MCF-10A human mammary gland epithelial cell line, and examined PTK6 expression and activation in a normal human breast tissue microarray, as well as in human breast tumors. Phosphorylation of tyrosine residue 342 in the PTK6 activation loop corresponds with its activation. Similar to findings in the prostate, we detect nuclear and cytoplasmic PTK6 in normal mammary gland epithelial cells, but no phosphorylation of tyrosine residue 342. However, in human breast tumors, striking PTK6 expression and phosphorylation of tyrosine 342 is observed at the plasma membrane. PTK6 is expressed in the normal human mammary gland, but does not appear to be active and may have kinase-independent functions that are distinct from its cancer promoting activities at the membrane. Understanding consequences of PTK6 activation at the plasma membrane may have implications for developing novel targeted therapies against this kinase.
Collapse
|
18
|
Park SH, Ito K, Olcott W, Katsyv I, Halstead-Nussloch G, Irie HY. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim. Breast Cancer Res 2015; 17:86. [PMID: 26084280 PMCID: PMC4496943 DOI: 10.1186/s13058-015-0594-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2+ (Her2+) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2+ breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2+ breast cancer, either intrinsically or acquired after continuous drug exposure. Methods To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2+ breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Results Lapatinib treatment of “sensitive” Her2+ cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively “resistant” Her2+ cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these “resistant” cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D MatrigelTM cultures, and also inhibits growth of Her2+ primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. Conclusions PTK6 downregulation induces apoptosis of Lapatinib-resistant Her2+ breast cancer cells by enhancing Bim expression via p38 activation. As Bim expression is a critical biomarker for response to many targeted therapies, PTK6 inhibition may offer a therapeutic approach to treating patients with Her2 targeted therapy-resistant breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0594-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun Hee Park
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - William Olcott
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Igor Katsyv
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Gwyneth Halstead-Nussloch
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| |
Collapse
|
19
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
20
|
Zhao S, Li J. Sphingosine-1-phosphate induces the migration of thyroid follicular carcinoma cells through the microRNA-17/PTK6/ERK1/2 pathway. PLoS One 2015; 10:e0119148. [PMID: 25748447 PMCID: PMC4351951 DOI: 10.1371/journal.pone.0119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/09/2015] [Indexed: 11/18/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid known to play a role in tumorigenesis and cancer progression. However, the molecular mechanisms of S1P regulated migration of papillary thyroid cancer cells are still unknown. In this study, we showed that S1P induced PTK6 mRNA and protein expression in two thyroid follicular cancer cell lines (ML-1 and FTC-133). Further studies demonstrated that induced PTK6 and its downstream signal component (ERK1/2) are involved in S1P-induced migration. Upon investigating the mechanisms behind this event, we found that miR-17 inhibited the expression of PTK6 through direct binding to its 3’-UTR. Through overexpression and knockdown studies, we found that miR-17 can significantly inhibit S1P-induced migration in thyroid follicular cancer cells. Interestingly, overexpression or knockdown of PTK6 or ERK1/2 effectively removed the inhibition of S1P-induced migration by miR-17. Furthermore, we showed that S1P decreased miR-17 expression levels. Meanwhile, in papillary thyroid cancers, miR-17 is downregulated and negatively associated with clinical staging, whereas PTK6 is upregulated and positively associated with clinical stages. Collectively, our work defines a novel signaling pathway implicated in the control of thyroid cancer migration.
Collapse
Affiliation(s)
- Shitao Zhao
- The Department of Breast and Thyroid Sugery, The First Affiliate Hospital of Liaoning Medical University. Jinzhou, Liaoning, China
| | - Jincheng Li
- The Department of Breast and Thyroid Sugery, The First Affiliate Hospital of Liaoning Medical University. Jinzhou, Liaoning, China
- * E-mail:
| |
Collapse
|
21
|
Protein tyrosine kinase 6 regulates mammary gland tumorigenesis in mouse models. Oncogenesis 2013; 2:e81. [PMID: 24323291 PMCID: PMC3940860 DOI: 10.1038/oncsis.2013.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in the majority of human breast tumors and breast cancer cell lines, but its expression has not been reported in normal mammary gland. To study functions of PTK6 in vivo, we generated and characterized several transgenic mouse lines with expression of human PTK6 under control of the mouse mammary tumor virus (MMTV) long terminal repeat. Ectopic active PTK6 was detected in luminal epithelial cells of mature transgenic mammary glands. Lines expressing the MMTV-PTK6 transgene exhibited more than a two-fold increase in mammary gland tumor formation compared with nontransgenic control animals. PTK6 activates signal transducer and activator of transcription 3 (STAT3), and active STAT3 was detected in PTK6-positive mammary gland epithelial cells. Endogenous mouse PTK6 was not detected in the normal mouse mammary gland, but it was induced in mouse mammary gland tumors of different origin, including spontaneous tumors that developed in control mice, and tumors that formed in PTK6, H-Ras, ERBB2 and PyMT transgenic models. MMTV-PTK6 and MMTV-ERBB2 transgenic mice were crossed to explore crosstalk between PTK6 and ERBB2 signaling in vivo. We found no significant increase in tumor incidence, size or metastasis in ERBB2/PTK6 double transgenic mice. Although we detected increased proliferation in ERBB2/PTK6 double transgenic tumors, an increase in apoptosis was also observed. MMTV-PTK6 clearly promotes mammary gland tumorigenesis in vivo, but its impact may be underrepresented in our transgenic models because of induction of endogenous PTK6 expression.
Collapse
|
22
|
Naro C, Sette C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int J Cell Biol 2013; 2013:151839. [PMID: 24069033 PMCID: PMC3771450 DOI: 10.1155/2013/151839] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the spliceosome, whose activity needs a fine regulation exerted by cis-acting RNA sequence elements and trans-acting RNA binding proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been implicated in the aberrant splicing events that characterize neoplastic transformation.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
23
|
Sernbo S, Borrebaeck CAK, Uhlén M, Jirström K, Ek S. Nuclear T-STAR protein expression correlates with HER2 status, hormone receptor negativity and prolonged recurrence free survival in primary breast cancer and decreased cancer cell growth in vitro. PLoS One 2013; 8:e70596. [PMID: 23923007 PMCID: PMC3726654 DOI: 10.1371/journal.pone.0070596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023] Open
Abstract
T-STAR (testis-signal transduction and activation of RNA) is an RNA binding protein, containing an SH3-binding domain and thus potentially playing a role in integration of cell signaling and RNA metabolism. The specific function of T-STAR is unknown and its implication in cancer is poorly characterized. Expression of T-STAR has been reported in human testis, muscle and brain tissues, and is associated with a growth-inhibitory role in immortalized fibroblasts. The aim of this paper was to investigate the functional role of T-STAR through (i) survival analysis of patients with primary invasive breast cancer and (ii) experimental evaluation of the effect of T-STAR on breast cancer cell growth. T-STAR protein expression was analysed by immunohistochemistry (IHC) in tissue microarrays with tumors from 289 patients with primary invasive breast cancer, and correlations to clinicopathological characteristics, recurrence-free and overall survival (RFS and OS) and established tumor markers such as HER2 and ER status were evaluated. In addition, the function of T-STAR was investigated using siRNA-mediated knock-down and overexpression of the gene in six breast cancer cell lines. Of the tumors analysed, 86% showed nuclear T-STAR expression, which was significantly associated with an improved RFS and strongly associated with positive HER2 status and negative hormone receptor status. Furthermore, experimental data showed that overexpression of T-STAR decreased cellular growth while knock-down increased it, as shown both by thymidine incorporation and metabolic activity. In summary, we demonstrate that T-STAR protein expression correlates with an improved RFS in primary breast cancer. This is supported by functional data, indicating that T-STAR regulation is of importance both for breast cancer biology and clinical outcome but future studies are needed to determine a potential role in patient stratification.
Collapse
Affiliation(s)
- Sandra Sernbo
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
| | | | - Mathias Uhlén
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
24
|
Liu LN, Huang PY, Lin ZR, Hu LJ, Liang JZ, Li MZ, Tang LQ, Zeng MS, Zhong Q, Zeng BH. Protein tyrosine kinase 6 is associated with nasopharyngeal carcinoma poor prognosis and metastasis. J Transl Med 2013; 11:140. [PMID: 23758975 PMCID: PMC3686693 DOI: 10.1186/1479-5876-11-140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/03/2013] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to analyze the expression of protein tyrosine kinase 6 (PTK6) in nasopharyngeal carcinoma (NPC) samples, and to identify whether PTK6 can serve as a biomarker for the diagnosis and prognosis of NPC. Methods We used quantitative RT-PCR and Western blotting analysis to detect mRNA and protein expression of PTK6 in NPC cell lines and immortalized nasopharyngeal epithelial cell lines. 31 NPC and 16 non-tumorous nasopharyngeal mucosa biopsies were collected to detect the difference in the expression of mRNA level of PTK6 by quantitative RT-PCR. We also collected 178 NPC and 10 normal nasopharyngeal epithelial cases with clinical follow-up data to investigate the expression of PTK6 by immunohistochemistry staining (IHC). PTK6 overexpression on cell growth and colony formation ability were measured by the method of cell proliferation assay and colony formation assay. Results The expression of PTK6 was higher in most of NPC cell lines at both mRNA and protein levels than in immortalized nasopharyngeal epithelial cell lines (NPECs) induced by Bmi-1 (Bmi-1/NPEC1, and Bmi-1/NPEC2). The mRNA level of PTK6 was high in NPC biopsies compared to non-tumorous nasopharyngeal mucosa biopsies. IHC results showed the expression of PTK6 was significantly correlated to tumor size (P<0.001), clinical stage (P<0.001), and metastasis (P=0.016). The patients with high-expression of PTK6 had a significantly poor prognosis compared to those of low-expression (47.8% versus 80.0%, P<0.001), especially in the patients at the advanced stages (42.2% versus 79.1%, P<0.001). Multivariate analysis indicated that the level of PTK6 expression was an independent prognostic factor for the overall survival of patients with NPC (P <0.001). Overexpression of PTK6 in HNE1 cells enhanced the ability of cell proliferation and colony formation. Conclusions Our results suggest that high-expression of PTK6 is an independent factor for NPC patients and it might serve as a potential prognostic biomarker for patients with NPC.
Collapse
Affiliation(s)
- Li-na Liu
- Department of Oncology, Second Affiliated Hospital of Guangzhou medical college, 250 Changgang Road East, Guangzhou 510260, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zheng Y, Tyner AL. Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. Eur J Clin Invest 2013; 43:397-404. [PMID: 23398121 PMCID: PMC3602132 DOI: 10.1111/eci.12050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to SRC family kinases. PTK6 is nuclear in normal prostate epithelia, but nuclear localization is lost in prostate tumours. Increased expression of PTK6 is detected in human prostate cancer, especially at metastatic stages, and in other types of cancers, including breast, colon, head and neck cancers, and serous carcinoma of the ovary. MATERIALS AND METHODS Potential novel substrates of PTK6 identified by mass spectrometry were validated in vitro. The significance of PTK6-induced phosphorylation of these substrates was addressed using human prostate cell lines by knockdown of endogenous PTK6 or overexpression of targeted PTK6 to different intracellular compartments. RESULTS We identified AKT, p130CAS and focal adhesion kinase (FAK) as novel PTK6 substrates and demonstrated their roles in promoting cell proliferation, migration and resistance to anoikis. In prostate cancer cells, active PTK6 is primarily associated with membrane compartments, although the majority of total PTK6 is localized within the cytoplasm. Ectopic expression of membrane-targeted PTK6 transforms immortalized fibroblasts. Knockdown of endogenous cytoplasmic PTK6 in PC3 prostate cancer cells impairs proliferation, migration and anoikis resistance. However, re-introduction of PTK6 into the nucleus significantly decreases cell proliferation, suggesting context-specific functions for nuclear PTK6. CONCLUSIONS In human prostate cancer, elevated PTK6 expression, translocation of PTK6 from the nucleus to the cytoplasm and its activation at the plasma membrane contribute to increased phosphorylation and activation of its substrates such as AKT, p130CAS and FAK, thereby promoting prostate cancer progression.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
26
|
Ai M, Liang K, Lu Y, Qiu S, Fan Z. Brk/PTK6 cooperates with HER2 and Src in regulating breast cancer cell survival and epithelial-to-mesenchymal transition. Cancer Biol Ther 2013; 14:237-45. [PMID: 23291984 DOI: 10.4161/cbt.23295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast tumor kinase (Brk)/protein tyrosine kinase-6 (PTK-6) is a nonreceptor PTK commonly expressed at high levels in breast cancer. Brk interacts closely with members of the human epidermal growth factor receptor (HER) family in breast cancer but the functional role of this interaction remains to be determined. Here, we provide novel mechanistic insights into the role of Brk in regulating cell survival and epithelial-to-mesenchymal transition (EMT) in the context of HER2-positive breast cancer cells. Overexpression of HER2 in MCF7 breast cancer cells (MCF7HER2) led to a higher level of Brk protein and concomitantly reduced Src Y416-phosphorylation, and the cells became mesenchymal in morphology. An in vivo selection of MCF7HER2 cells in nude mice resulted in a subline, termed EMT1, that exhibited not only mesenchymal morphology but also enhanced migration potential. Compared with MCF7HER2 cells, EMT1 cells maintained a similar level of HER2 protein but had much higher level of activated HER2, and the increase in Brk protein and the decrease in Src Y416-phosphorylation were less in EMT1 cells. EMT1 cells exhibited increased sensitivity to both pharmacological inhibition of HER2 and knockdown of Brk than did MCF7HER2 cells. Knockdown of Brk induced apoptosis and partially reversed the EMT phenotype in EMT1 cells. Overexpression of a constitutively active STAT3, a known substrate of Brk, overcame Brk knockdown-induced effects in EMT1 cells. Together, our findings support a new paradigm wherein Brk plays both a complementary and a counterbalancing role in cooperating with HER2 and Src to regulate breast cancer cell survival and EMT.
Collapse
Affiliation(s)
- Midan Ai
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
27
|
Zheng Y, Gierut J, Wang Z, Miao J, Asara JM, Tyner AL. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene 2012; 32:4304-12. [PMID: 23027128 PMCID: PMC3940264 DOI: 10.1038/onc.2012.427] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/24/2012] [Accepted: 08/04/2012] [Indexed: 01/18/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase expressed in epithelial cancers. Disruption of Ptk6 decreases AOM-induced colon tumorigenesis in mice by preventing STAT3 activation. Relocalization of PTK6 in prostate cancers contributes to increased growth. Although not expressed in normal breast or ovary, PTK6 promotes anchorage-independent survival of breast and ovarian tumor cells. We identified several potential PTK6 substrates in the human SW620 colon cancer cell line using mass spectrometry, including FAK (focal adhesion kinase). We show that FAK is a direct substrate of PTK6 in vitro and in vivo. Expression of membrane targeted active PTK6 (Palm-PTK6-YF) induces constitutive activation of FAK and cell morphology changes, which are independent of SRC family kinases in Src−/−, Yes−/−, Fyn−/− (SYF) mouse embryonic fibroblasts (MEFs). Palm-PTK6-YF expressing SYF cells are transformed and overcome contact inhibition, form colonies in transformation assays, proliferate in suspension, and form tumors in a xenograft model. Expression of FAK and Palm-PTK6-YF in Fak−/− MEFs synergistically activates AKT and protects cells against anoikis. However, expression of Palm-PTK6-YF in Akt1/2−/− MEFs fails to protect cells from anoikis, indicating AKT is critical in PTK6 and FAK mediated survival signaling. In a conditional Pten knockout murine prostate cancer model, we identify prostate epithelial cells with enhanced activation of endogenous PTK6 and FAK at the plasma membrane. Knockdown of PTK6 in the PC3 human prostate cancer cell line disrupts FAK and AKT activation and promotes anoikis, which can be rescued by exogenous expression of FAK. Our data reveal important roles for a PTK6-FAK-AKT signaling axis in promoting anchorage-independent cell survival.
Collapse
Affiliation(s)
- Y Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
28
|
Gierut JJ, Mathur PS, Bie W, Han J, Tyner AL. Targeting protein tyrosine kinase 6 enhances apoptosis of colon cancer cells following DNA damage. Mol Cancer Ther 2012; 11:2311-20. [PMID: 22989419 DOI: 10.1158/1535-7163.mct-12-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that has distinct functions in normal epithelia and cancer. It is expressed primarily in nondividing epithelial cells in the normal intestine, where it promotes differentiation. However, after DNA damage, PTK6 is induced in proliferating progenitor cells, where it contributes to apoptosis. We examined links between PTK6 and the tumor suppressor p53 in the isogenic p53(+/+) and p53(-/-) HCT116 colon tumor cell lines. We found that p53 promotes expression of PTK6 in HCT116 cells, and short hairpin RNA-mediated knockdown of PTK6 leads to reduced induction of the cyclin-dependent kinase inhibitor p21. Knockdown of PTK6 enhances apoptosis in HCT116 cells with wild-type p53, following treatment of cells with γ-radiation, doxorubicin, or 5-fluorouracil. No differences in the activation of AKT, ERK1/2, or ERK5, known PTK6-regulated prosurvival signaling proteins, were detected. However, activity of STAT3, a PTK6 substrate, was impaired in cells with knockdown of PTK6 following DNA damage. In contrast to its role in the normal epithelium following DNA damage, PTK6 promotes survival of cancer cells with wild-type p53 by promoting p21 expression and STAT3 activation. Targeting PTK6 in combination with use of chemotherapeutic drugs or radiation may enhance death of colon tumor cells with wild-type p53.
Collapse
Affiliation(s)
- Jessica J Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, M/C 669, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
29
|
Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Discov Oncol 2012; 3:14-25. [PMID: 22124844 DOI: 10.1007/s12672-011-0097-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Signal transduction pathways downstream of receptor tyrosine kinases (RTKs) are often deregulated during oncogenesis, tumor progression, and metastasis. In particular, the peptide growth factor hormone, hepatocyte growth factor (HGF), and its specific receptor, Met tyrosine kinase, regulate cancer cell migration, thereby conferring an aggressive phenotype (Nakamura et al., J Clin Invest 106(12):1511-1519, 2000; Huh et al., Proc Natl Acad Sci U S A 101:4477-4482, 2004). Additionally, overexpression of Met is associated with enhanced invasiveness of breast cancer cells (Edakuni et al., Pathol Int 51(3):172-178, 2001; Jin et al., Cancer 79(4):749-760, 1997; Tuck et al., Am J Pathol 148(1):225-232, 1996). Here, we review the regulation of recently identified novel downstream mediators of HGF/Met signaling, Breast tumor kinase (Brk/PTK6), and Src-associated substrate during mitosis of 68 kDa (Sam68), and discuss their relevance to mechanisms of breast cancer progression.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | |
Collapse
|
30
|
Gierut J, Zheng Y, Bie W, Carroll RE, Ball-Kell S, Haegebarth A, Tyner AL. Disruption of the mouse protein tyrosine kinase 6 gene prevents STAT3 activation and confers resistance to azoxymethane. Gastroenterology 2011; 141:1371-80, 1380.e1-2. [PMID: 21741923 PMCID: PMC3448944 DOI: 10.1053/j.gastro.2011.06.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/18/2011] [Accepted: 06/24/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Protein tyrosine kinase 6 (PTK6) is expressed throughout the gastrointestinal tract and is a negative regulator of proliferation that promotes differentiation and DNA-damage-induced apoptosis in the small intestine. PTK6 is not expressed in normal mammary gland, but is induced in most human breast tumors. Signal transducer and activator of transcription 3 (STAT3) mediates pathogenesis of colon cancer and is a substrate of PTK6. We investigated the role of PTK6 in colon tumorigenesis. METHODS Ptk6+/+ and Ptk6-/- mice were injected with azoxymethane alone or in combination with dextran sodium sulfate; formation of aberrant crypt foci and colon tumors was examined. Effects of disruption of Ptk6 on proliferation, apoptosis, and STAT3 activation were examined by immunoblot and immunohistochemical analyses. Regulation of STAT3 activation was examined in the HCT116 colon cancer cell line and young adult mouse colon cells. RESULTS Ptk6-/- mice developed fewer azoxymethane-induced aberrant crypt foci and tumors. Induction of PTK6 increased apoptosis, proliferation, and STAT3 activation in Ptk6+/+ mice injected with azoxymethane. Disruption of Ptk6 impaired STAT3 activation following azoxymethane injection, and reduced active STAT3 levels in Ptk6-/- tumors. Stable knockdown of PTK6 reduced basal levels of active STAT3, as well as activation of STAT3 by epidermal growth factor in HCT116 cells. Disruption of Ptk6 reduced activity of STAT3 in young adult mouse colon cells. CONCLUSIONS PTK6 promotes STAT3 activation in the colon following injection of the carcinogen azoxymethane and regulates STAT3 activity in mouse colon tumors and in the HCT116 and young adult mouse colon cell lines. Disruption of Ptk6 decreases azoxymethane-induced colon tumorigenesis in mice.
Collapse
Affiliation(s)
- Jessica Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Robert E. Carroll
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Susan Ball-Kell
- University of Illinois College of Veterinary Medicine Veterinary Diagnostic Laboratory Urbana, IL 61802
| | - Andrea Haegebarth
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
31
|
Zeng H, Belanger DB, Curran PJ, Shipps GW, Miao H, Bracken JB, Arshad Siddiqui M, Malkowski M, Wang Y. Discovery of novel imidazo[1,2-a]pyrazin-8-amines as Brk/PTK6 inhibitors. Bioorg Med Chem Lett 2011; 21:5870-5. [PMID: 21855335 DOI: 10.1016/j.bmcl.2011.07.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/05/2023]
Abstract
A series of substituted imidazo[1,2-a]pyrazin-8-amines were discovered as novel breast tumor kinase (Brk)/protein tyrosine kinase 6 (PTK6) inhibitors. Tool compounds with low-nanomolar Brk inhibition activity, high selectivity towards other kinases and desirable DMPK properties were achieved to enable the exploration of Brk as an oncology target.
Collapse
Affiliation(s)
- Hongbo Zeng
- Department of Chemistry, Merck Research Laboratories, 320 Bent Street, Cambridge, MA 02141, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. ACTA ACUST UNITED AC 2011; 33:309-37. [PMID: 21757510 DOI: 10.2164/jandrol.111.014167] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional status of messenger RNAs (mRNA) can be affected by many factors, most of which are RNA-binding proteins (RBP) that either bind mRNA in a nonspecific manner or through specific motifs, usually located in the 3' untranslated regions. RBPs can also be recruited by small noncoding RNAs (sncRNA), which have been shown to be involved in posttranscriptional regulations and transposon repression (eg, microRNAs or P-element-induced wimpy testis-interacting RNA) as components of the sncRNA effector complex. Non-sncRNA-binding RBPs have much more diverse effects on their target mRNAs. Some can cause degradation of their target transcripts and/or repression of translation, whereas others can stabilize and/or activate translation. The splicing and exportation of transcripts from the nucleus to the cytoplasm are often mediated by sequence-specific RBPs. The mechanisms by which RBPs regulate mRNA transcripts involve manipulating the 3' poly(A) tail, targeting the transcript to polysomes or to other ribonuclear protein particles, recruiting regulatory proteins, or competing with other RBPs. Here, we briefly review the known mechanisms of posttranscriptional regulation mediated by RBPs, with an emphasis on how these mechanisms might control spermatogenesis in general.
Collapse
Affiliation(s)
- R Keegan Idler
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
33
|
Brauer PM, Zheng Y, Evans MD, Dominguez-Brauer C, Peehl DM, Tyner AL. The alternative splice variant of protein tyrosine kinase 6 negatively regulates growth and enhances PTK6-mediated inhibition of β-catenin. PLoS One 2011; 6:e14789. [PMID: 21479203 PMCID: PMC3068133 DOI: 10.1371/journal.pone.0014789] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 03/01/2011] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6), also called breast tumor kinase (BRK), is expressed in epithelial cells of various tissues including the prostate. Previously it was shown that PTK6 is localized to epithelial cell nuclei in normal prostate, but becomes cytoplasmic in human prostate tumors. PTK6 is also primarily cytoplasmic in the PC3 prostate adenocarcinoma cell line. Sequencing revealed expression of wild type full-length PTK6 transcripts in addition to an alternative transcript lacking exon 2 in PC3 cells. The alternative transcript encodes a 134 amino acid protein, referred to here as ALT-PTK6, which shares the first 77 amino acid residues including the SH3 domain with full length PTK6. RT-PCR was used to show that ALT-PTK6 is coexpressed with full length PTK6 in established human prostate and colon cell lines, as well as in primary cell lines derived from human prostate tissue and tumors. Although interaction between full-length PTK6 and ALT-PTK6 was not detected, ALT-PTK6 associates with the known PTK6 substrates Sam68 and β-catenin in GST pull-down assays. Coexpression of PTK6 and ALT-PTK6 led to suppression of PTK6 activity and reduced association of PTK6 with tyrosine phosphorylated proteins. While ALT-PTK6 alone did not influence β-catenin/TCF transcriptional activity in a luciferase reporter assay, it enhanced PTK6-mediated inhibition of β-catenin/TCF transcription by promoting PTK6 nuclear functions. Ectopic expression of ALT-PTK6 led to reduced expression of the β-catenin/TCF targets Cyclin D1 and c-Myc in PC3 cells. Expression of tetracycline-inducible ALT-PTK6 blocked the proliferation and colony formation of PC3 cells. Our findings suggest that ALT-PTK6 is able to negatively regulate growth and modulate PTK6 activity, protein-protein associations and/or subcellular localization. Fully understanding functions of ALT-PTK6 and its impact on PTK6 signaling will be critical for development of therapeutic strategies that target PTK6 in cancer.
Collapse
Affiliation(s)
- Patrick M. Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Mark D. Evans
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Carmen Dominguez-Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sánchez-Jiménez F, Pérez-Pérez A, González-Yanes C, Najib S, Varone CL, Sánchez-Margalet V. Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells. Mol Cell Endocrinol 2011; 332:221-7. [PMID: 21035519 DOI: 10.1016/j.mce.2010.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/27/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Leptin is produced in placenta where it has been found to be an important autocrine signal for trophoblastic growth during pregnancy, promoting antiapoptotic and trophic effects. Leptin receptor is present in trophoblastic cells and leptin may fully activate signaling. We have previously implicated the RNA-binding protein Sam68 in leptin signal transduction in immune cells. In the present work, we have studied the possible role of Sam68 in leptin receptor signaling in trophoblastic cells (JEG-3 cells). Leptin dose-dependently stimulated Sam68 phosphorylation in JEG-3 cells, as assessed by immunoprecipitation and immunoblot with anti-phosphotyrosine antibodies. As previously observed in other systems, tyrosine phosphorylation of Sam68 in response to leptin inhibits its RNA binding capacity. Besides, leptin stimulation dose-dependently increases Sam68 expression in JEG-3 cells, as assessed by quantitative PCR. Consistently, the amount of Sam68 protein is increased after 24h of leptin stimulation of trophoblastic cells. In order to study the possible role of Sam68 on leptin receptor synthesis, we employed antisense strategy to knockdown the expression of Sam68. We have found that a decrease in Sam68 expression leads to a decrease in leptin receptor amount in JEG-3 cells, as assessed both by quantitative PCR and immunoblot. These results strongly suggest the participation of Sam68 in leptin receptor signaling in human trophoblastic cells, and therefore, Sam68 may mediate some of the leptin effects in placenta.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Av Dr Fedriani 3, Seville 41071, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Ostrander JH, Daniel AR, Lange CA. Brk/PTK6 signaling in normal and cancer cell models. Curr Opin Pharmacol 2010; 10:662-9. [PMID: 20832360 PMCID: PMC2981671 DOI: 10.1016/j.coph.2010.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 01/08/2023]
Abstract
Breast tumor kinase (Brk), also termed PTK6, is known to function in cell-type and context-dependent processes governing normal differentiation. However, in tumors in which Brk is overexpressed, this unusual soluble tyrosine kinase is emerging as a mediator of cancer cell phenotypes, including increased proliferation, survival, and migration. Nuclear and cytoplasmic substrates phosphorylated by Brk include a collection of regulatory RNA-binding proteins, adaptor molecules that link Brk to signaling pathways generally associated with the activation of growth factor receptors, and Signal Transducers and Activators of Transcription (STAT) molecules that are direct regulators of gene expression. Understanding Brk-dependent regulation of these key signaling pathways and how they influence cancer cell behavior is predicted to inform the development of improved 'targeted' cancer therapies and may provide insight into ways to avoid chemo-resistance to established treatments.
Collapse
Affiliation(s)
- Julie H. Ostrander
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710
| | - Andrea R. Daniel
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Women's Cancer Program, University of Minnesota Masonic Cancer Center, Minneapolis MN 55455
| | - Carol A. Lange
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Women's Cancer Program, University of Minnesota Masonic Cancer Center, Minneapolis MN 55455
| |
Collapse
|
36
|
Brauer PM, Zheng Y, Wang L, Tyner AL. Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells. Cell Cycle 2010; 9:4190-9. [PMID: 20953141 PMCID: PMC3055202 DOI: 10.4161/cc.9.20.13518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/12/2010] [Accepted: 08/30/2010] [Indexed: 01/10/2023] Open
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is nuclear in epithelial cells of the normal prostate, but cytoplasmic in prostate tumors and in the PC3 prostate tumor cell line. The impact of altered PTK6 intracellular localization in prostate tumor cells has not been extensively explored. Knockdown of endogenous cytoplasmic PTK6 resulted in decreased PC3 cell proliferation and colony formation, suggesting that cytoplasmic PTK6 stimulates oncogenic pathways. In contrast, reintroduction of PTK6 into nuclei of PC3 cells had a negative effect on growth. Enhanced tyrosine phosphorylation of the PTK6 substrate Sam68 was detected in cells expressing nuclear-targeted PTK6. We found that mechanisms regulating nuclear localization of PTK6 are intact in PC3 cells. Transiently overexpressed PTK6 readily enters the nucleus. Ectopic expression of ALT-PTK6, a catalytically inactive splice variant of PTK6, did not affect localization of endogenous PTK6 in PC3 cells. Using leptomycin B, we confirmed that cytoplasmic localization of endogenous PTK6 is not due to Crm-1/exportin-1 mediated nuclear export. In addition, overexpression of the PTK6 nuclear substrate Sam68 is not sufficient to bring PTK6 into the nucleus. While exogenous PTK6 was readily detected in the nucleus when transiently expressed at high levels, low-level expression of inducible wild type PTK6 in stable cell lines resulted in its cytoplasmic retention. Our results suggest that retention of PTK6 in the cytoplasm of prostate cancer cells disrupts its ability to regulate nuclear substrates and leads to aberrant growth. In prostate cancer, restoring PTK6 nuclear localization may have therapeutic advantages.
Collapse
Affiliation(s)
- Patrick M Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Castro NE, Lange CA. Breast tumor kinase and extracellular signal-regulated kinase 5 mediate Met receptor signaling to cell migration in breast cancer cells. Breast Cancer Res 2010; 12:R60. [PMID: 20687930 PMCID: PMC2949652 DOI: 10.1186/bcr2622] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/02/2010] [Accepted: 08/05/2010] [Indexed: 02/06/2023] Open
Abstract
Introduction Breast tumor kinase (Brk/protein tyrosine kinase 6 (PTK6)) is a nonreceptor, soluble tyrosine kinase overexpressed in the majority of breast tumors. Previous work has placed Brk downstream of epidermal growth factor receptor (ErbB) activation and upstream of extracellular signal-regulated kinase 5 (ERK5) and p38 mitogen-activated protein (MAP) kinases. Herein we investigate the regulation of Brk kinase activity and cell migration in response to treatment of keratinocytes (HaCaT cells) and breast cancer cell lines (MDA-MB-231 and T47D cells) with hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), peptide ligands for Met and Ron receptors, respectively. Methods In vitro kinase assays were performed to directly measure Brk kinase activity in response to MET and RON ligands. Transfection of Brk-targeted RNAi was used to knock down endogenous Brk or ERK5 in multiple cell lines. Kinase activities (downstream of MET signaling) were assayed by Western blotting using total and phospho-specific antibodies. Boyden chamber assays were used to measure cell migration in response to manipulation of Brk and downstream MET effectors. Rescue experiments were performed by knock down of endogenous Brk using RNAi (targeting the untranslated region (3′-UTR)) and transient transfection (re-expression) of either wild-type or kinase-inactive Brk. Results Brk gene silencing revealed that HGF, but not MSP, induced robust Brk-dependent cell migration. Brk and ERK5 copurified in HGF-induced protein complexes, and Brk/ERK5 complexes formed independently of Brk kinase activity. ERK5 was required for breast cancer cell but not keratinocyte cell migration, which became ERK1/2-dependent upon ERK5 knockdown. Notably, rescue experiments indicated that the kinase activity of Brk was not required for HGF-induced cell migration. Further, expression of either wild-type or kinase-inactive Brk in Brk-null MDA-MB-435 cells activated ERK5 and conferred increased HGF-induced cell migration. Conclusions These results have identified Brk and ERK5 as important downstream effectors of Met signaling to cell migration. Targeting ERK5 kinase activity or inhibiting the formation of Brk/ERK5 complexes may provide an additional means of blocking cell migration associated with breast cancer progression to metastasis.
Collapse
Affiliation(s)
- Nancy E Castro
- Department of Pharmacology, University of Minnesota, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
39
|
Brauer PM, Tyner AL. Building a better understanding of the intracellular tyrosine kinase PTK6 - BRK by BRK. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1806:66-73. [PMID: 20193745 PMCID: PMC2885473 DOI: 10.1016/j.bbcan.2010.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 01/21/2023]
Abstract
Protein tyrosine kinase 6 (PTK6), also referred to as breast tumor kinase BRK, is a member of a distinct family of kinases that is evolutionarily related to the SRC family of tyrosine kinases. While not expressed in the normal mammary gland, PTK6 expression is detected in a large proportion of human mammary gland tumors. In breast tumor cells, PTK6 promotes growth factor signaling and cell migration. PTK6 expression is also increased in a number of other epithelial tumors, including ovarian and colon cancer. In contrast, PTK6 is expressed in diverse normal epithelia, including the linings of the gastrointestinal tract, skin and prostate, where its expression correlates with cell cycle exit and differentiation. Disruption of the mouse Ptk6 gene leads to increased growth and impaired differentiation in the small intestine that is accompanied by increased AKT and Wnt signaling. Following total body irradiation, PTK6 expression is induced in proliferating progenitor cells of the intestine, where it plays an essential role in DNA-damage induced apoptosis. A distinguishing feature of PTK6 is its flexibility in intracellular localization, due to a lack of amino-terminal myristoylation/palmitoylation. Recently a number of substrates of PTK6 have been identified, including nuclear RNA-binding proteins and transcription factors. We discuss PTK6 signaling, its apparent conflicting roles in cancer and normal epithelia, and its potential as a therapeutic target in epithelial cancers.
Collapse
Affiliation(s)
- Patrick M. Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
40
|
Kang SA, Lee ES, Yoon HY, Randazzo PA, Lee ST. PTK6 inhibits down-regulation of EGF receptor through phosphorylation of ARAP1. J Biol Chem 2010; 285:26013-21. [PMID: 20554524 DOI: 10.1074/jbc.m109.088971] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PTK6 (also known as Brk) is a non-receptor-tyrosine kinase containing SH3, SH2, and catalytic domains, that is expressed in more than 60% of breast carcinomas but not in normal mammary tissues. To analyze PTK6-interacting proteins, we have expressed Flag-tagged PTK6 in HEK293 cells and performed co-immunoprecipitation assays with Flag antibody-conjugated agarose. A 164-kDa protein in the precipitated fraction was identified as ARAP1 (also known as centaurin delta-2) by MALDI-TOF mass analysis. ARAP1 associated with PTK6 in an EGF/EGF receptor (EGFR)-dependent manner. In addition, the SH2 domain of PTK6, particularly the Arg(105) residue that contacts the phosphate group of the tyrosine residue, was essential for the association. Moreover, PTK6 phosphorylated residue Tyr(231) in the N-terminal domain of ARAP1. Expression of ARAP1, but not of the Y231F mutant, inhibited the down-regulation of EGFR in HEK293 cells expressing PTK6. Silencing of endogenous PTK6 expression in breast carcinoma cells decreased EGFR levels. These results demonstrate that PTK6 enhances EGFR signaling by inhibition of EGFR down-regulation through phosphorylation of ARAP1 in breast cancer cells.
Collapse
Affiliation(s)
- Shin-Ae Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
41
|
Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, Schneider A, Richard S, Willemsen R, Elliott DJ, Hagerman PJ, Charlet-Berguerand N. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J 2010; 29:1248-61. [PMID: 20186122 DOI: 10.1038/emboj.2010.21] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 01/20/2010] [Indexed: 01/22/2023] Open
Abstract
Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder caused by expansion of 55-200 CGG repeats in the 5'-UTR of the FMR1 gene. FXTAS is characterized by action tremor, gait ataxia and impaired executive cognitive functioning. It has been proposed that FXTAS is caused by titration of RNA-binding proteins by the expanded CGG repeats. Sam68 is an RNA-binding protein involved in alternative splicing regulation and its ablation in mouse leads to motor coordination defects. Here, we report that mRNAs containing expanded CGG repeats form large and dynamic intranuclear RNA aggregates that recruit several RNA-binding proteins sequentially, first Sam68, then hnRNP-G and MBNL1. Importantly, Sam68 is sequestered by expanded CGG repeats and thereby loses its splicing-regulatory function. Consequently, Sam68-responsive splicing is altered in FXTAS patients. Finally, we found that regulation of Sam68 tyrosine phosphorylation modulates its localization within CGG aggregates and that tautomycin prevents both Sam68 and CGG RNA aggregate formation. Overall, these data support an RNA gain-of-function mechanism for FXTAS neuropathology, and suggest possible target routes for treatment options.
Collapse
Affiliation(s)
- Chantal Sellier
- Department of Neurobiology and Genetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Paronetto MP, Sette C. Role of RNA-binding proteins in mammalian spermatogenesis. INTERNATIONAL JOURNAL OF ANDROLOGY 2010; 33:2-12. [PMID: 19281489 DOI: 10.1111/j.1365-2605.2009.00959.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Spermatogenesis is a cell differentiation programme that allows a normally dividing diploid cell to become haploid and to acquire the morphological characteristics required to reach and to fertilize the female gamete. Many of the steps involved in this differentiation programme necessitate profound modifications of the genome, rendering it unable to play its template role for the synthesis of mRNAs. Therefore, de novo transcription is not a continuous process during germ cell differentiation and many mRNAs need to be synthesized and stored at specific times to be available during the transcriptionally inactive stages of spermatogenesis. Germ cells express high levels of RNA-binding proteins that assist these post-transcriptional events. The generation of mouse knockout models has highlighted the essential role played by many of these RNA-binding proteins for the correct progress of spermatogenesis and for the formation of a fertile male gamete. Herein, we review the major findings on the role of RNA-binding proteins in mammalian spermatogenesis.
Collapse
|
43
|
Ehrmann I, Elliott DJ. Expression and functions of the star proteins Sam68 and T-STAR in mammalian spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:67-81. [PMID: 21189686 DOI: 10.1007/978-1-4419-7005-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spermatogenesis is one of the few major developmental pathways which are still ongoing in the adult. In this chapter we review the properties of Sam68 and T-STAR, which are the STAR proteins functionally implicated in mammalian spermatogenesis. Sam68 is a ubiquitously expressed member of the STAR family, but has an essential role in spermatogenesis. Sam68 null mice are male infertile and at least in part this is due to a failure in important translational controls that operate during and after meiosis. The homologous T-STAR protein has a much more restricted anatomic expression pattern than Sam68, with highest levels seen in the testis and the developing brain. The focus of this chapter is the functional role of Sam68 and T-STAR proteins in male germ cell development. Since these proteins are known to have many cellular functions we extrapolate from other cell types and tissues to speculate on each of their likely functions within male germ cells, including control of alternative pre-mRNA splicing patterns in male germ cells.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, England
| | | |
Collapse
|
44
|
Sette C. Post-translational regulation of star proteins and effects on their biological functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:54-66. [PMID: 21189685 DOI: 10.1007/978-1-4419-7005-3_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
STAR (Signal Transduction and Activation of RNA) proteins owed their name to the presence in their structure ofa RNA-binding domain and several hallmarks of their involvement in signal transduction pathways. In many members of the family, the STAR RNA-binding domain (also named GSG, an acronym for GRP33/Sam68/ GLD-1) is flanked by regulatory regions containing proline-rich sequences, which serve as docking sites for proteins containing SH3 and WW domains and also a tyrosine-rich region at the C-terminus, which can mediateprotein-protein interactions with partners through SH2 domains. These regulatory regions contain consensus sequences for additional modifications, including serine/threonine phosphorylation, methylation, acetylation and sumoylation. Since their initial description, evidence has been gathered in different cell types and model organisms that STAR proteins can indeed integrate signals from external and internal cues with changes in transcription and processing of target RNAs. The most striking example of the high versatility of STAR proteins is provided by Sam68 (KHDRBS1), whose function, subcellular localization and affinity for RNA are strongly modulated by several signaling pathways through specific modifications. Moreover, the recent development of genetic knockout models has unveiled the physiological function of some STAR proteins, pointing to a crucial role of their post-translational modifications in the biological processes regulated by these RNA-binding proteins. This chapter offers an overview of the most updated literature on the regulation of STAR proteins by post-translational modifications and illustrates examples of how signal transduction pathways can modulate their activity and affect biological processes.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
45
|
Palka-Hamblin HL, Gierut JJ, Bie W, Brauer PM, Zheng Y, Asara JM, Tyner AL. Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6. J Cell Sci 2009; 123:236-45. [PMID: 20026641 DOI: 10.1242/jcs.053264] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Disruption of the gene encoding protein tyrosine kinase 6 (PTK6) leads to increased growth, impaired enterocyte differentiation and higher levels of nuclear beta-catenin in the mouse small intestine. Here, we demonstrate that PTK6 associates with nuclear and cytoplasmic beta-catenin and inhibits beta-catenin- and T-cell factor (TCF)-mediated transcription. PTK6 directly phosphorylates beta-catenin on Tyr64, Tyr142, Tyr331 and/or Tyr333, with the predominant site being Tyr64. However, mutation of these sites does not abrogate the ability of PTK6 to inhibit beta-catenin transcriptional activity. Outcomes of PTK6-mediated regulation appear to be dependent on its intracellular localization. In the SW620 colorectal adenocarcinoma cell line, nuclear-targeted PTK6 negatively regulates endogenous beta-catenin/TCF transcriptional activity, whereas membrane-targeted PTK6 enhances beta-catenin/TCF regulated transcription. Levels of TCF4 and the transcriptional co-repressor TLE/Groucho increase in SW620 cells expressing nuclear-targeted PTK6. Knockdown of PTK6 in SW620 cells leads to increased beta-catenin/TCF transcriptional activity and increased expression of beta-catenin/TCF target genes Myc and Survivin. Ptk6-null BAT-GAL mice, containing a beta-catenin-activated LacZ reporter transgene, have increased levels of beta-galactosidase expression in the gastrointestinal tract. The ability of PTK6 to negatively regulate beta-catenin/TCF transcription by modulating levels of TCF4 and TLE/Groucho could contribute to its growth-inhibitory activities in vivo.
Collapse
Affiliation(s)
- Helena L Palka-Hamblin
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Lukong KE, Huot MÉ, Richard S. BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cell Signal 2009; 21:1415-22. [DOI: 10.1016/j.cellsig.2009.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/30/2009] [Indexed: 11/29/2022]
|
47
|
Haegebarth A, Perekatt AO, Bie W, Gierut JJ, Tyner AL. Induction of protein tyrosine kinase 6 in mouse intestinal crypt epithelial cells promotes DNA damage-induced apoptosis. Gastroenterology 2009; 137:945-54. [PMID: 19501589 PMCID: PMC2767275 DOI: 10.1053/j.gastro.2009.05.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/20/2009] [Accepted: 05/27/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Protein tyrosine kinase 6 (PTK6) is expressed in epithelial linings of the gastrointestinal tract. PTK6 sensitizes the nontransformed Rat1a fibroblast cell line to apoptotic stimuli. The aim of this study was to determine if PTK6 regulates apoptosis in vivo after DNA damage in the small intestine. METHODS Wild-type and Ptk6(-/-) mice were subjected to gamma-irradiation; intestinal tissues were collected, protein was isolated, and samples were fixed for immunohistochemical analyses at 0, 6, and 72 hours after the mice were irradiated. Expression of PTK6 was examined in the small intestine before and after irradiation. Apoptosis and proliferation were compared between wild-type and Ptk6(-/-) mice. Expression and activation of prosurvival signaling proteins were assessed. RESULTS Irradiation induced PTK6 in crypt epithelial cells of the small intestine in wild-type mice. Induction of PTK6 corresponded with DNA damage-induced apoptosis in the wild-type small intestine. Following irradiation, the apoptotic response was impaired in the intestinal crypts of Ptk6(-/-) mice. Increased activation of AKT and extracellular signal-regulated kinase (ERK)1/2 and increased inhibitory phosphorylation of the proapoptotic protein BAD were detected in Ptk6(-/-) mice after irradiation. In response to the induction of apoptosis, compensatory proliferation increased in the small intestines of wild-type mice but not in Ptk6(-/-) mice at 6 hours after irradiation. CONCLUSIONS PTK6 is a stress-induced kinase that promotes apoptosis by inhibiting prosurvival signaling. After DNA damage, induction of PTK6 is required for efficient apoptosis and inhibition of AKT and ERK1/2.
Collapse
Affiliation(s)
| | - Ansu O. Perekatt
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| | - Wenjun Bie
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| | - Jessica J. Gierut
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| | - Angela L. Tyner
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| |
Collapse
|
48
|
Abstract
The Fyn related kinase FRK, originally called RAK, is a member of a small family of intracellular Src-related tyrosine kinases that includes PTK6 and Srms. These kinases share a conserved gene structure that is distinct from that of the Src family. Expression of FRK and PTK6 was originally identified in melanoma, breast cancer cells and normal intestinal epithelium, and both FRK and PTK6 have been implicated in the regulation of epithelial cell differentiation and apoptosis. Recently FRK was reported to phosphorylate the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10), a negative regulator of phosphatidylinositol 3 kinase (PI3K) signaling and AKT activation. FRK-mediated tyrosine phosphorylation of PTEN suppressed its association with NEDD4-1, an E3 ubiquitin ligase that may target it for polyubiquitination and proteosomal degradation. As a positive regulator of PTEN, FRK suppresses AKT signaling and inhibits breast cancer cell tumorgenicity in xenograft models. Both FRK and the related tyrosine kinase PTK6 appear to have multiple context-dependent functions, including the ability to regulate AKT. Although PTK6 negatively regulates AKT signaling in normal tissues in vivo, it may enhance AKT signaling in breast cancer cells. In contrast, FRK, which is expressed in the normal mammary gland but lost in some breast tumors, has tumor suppressor functions in mammary gland cells.
Collapse
Affiliation(s)
- Patrick M Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | | |
Collapse
|
49
|
Overexpression of PTK6 (breast tumor kinase) protein--a prognostic factor for long-term breast cancer survival--is not due to gene amplification. Virchows Arch 2009; 455:117-23. [PMID: 19621240 DOI: 10.1007/s00428-009-0809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/10/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
In a previous retrospective study, we demonstrated the prognostic value of protein tyrosine kinase 6 (PTK6) protein expression in breast carcinomas. Here, we analyzed PTK6 gene amplification using fluorescence in situ hybridization technique in a cohort of 426 invasive breast carcinomas and compared it with PTK6 expression level as well as with the clinical outcome of patients. Forty-five percent of tumors show increased PTK6 gene copy numbers when compared to normal tissue. Most of these, however, were related to chromosome 20 polysomy (30%), while gene amplification accounted for only 15%. Only "low level" amplification of the PTK6 gene, with up to eight signals per nucleus, was found. The PTK6 cytogenetic status (normal, gene amplification, polysomy 20) was not associated with histopathological parameters or with the protein expression of HER receptors. No statistical association was identified between PTK6 gene status and expression level. Further, the PTK6 gene status does not influence the disease-free survival of patients at > or = 240 months. Based on these results, we state that the PTK6 overexpression is not essentially attributed to gene amplification, and the PTK6 protein expression-but not gene status-is of prognostic value in breast carcinomas. PTK6 protein overexpression may result from polysomy 20 in a minority of the tumors. In a marked proportion of tumors, however, the overexpression is likely to be caused by posttranscriptional regulation mechanisms.
Collapse
|
50
|
Galarneau A, Richard S. The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs. BMC Mol Biol 2009; 10:47. [PMID: 19457263 PMCID: PMC2697983 DOI: 10.1186/1471-2199-10-47] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/20/2009] [Indexed: 11/29/2022] Open
Abstract
Background SAM68, SAM68-like mammalian protein 1 (SLM-1) and 2 (SLM-2) are members of the K homology (KH) and STAR (signal transduction activator of RNA metabolism) protein family. The function of these RNA binding proteins has been difficult to elucidate mainly because of lack of genetic data providing insights about their physiological RNA targets. In comparison, genetic studies in mice and C. elegans have provided evidence as to the physiological mRNA targets of QUAKING and GLD-1 proteins, two other members of the STAR protein family. The GLD-1 binding site is defined as a hexanucleotide sequence (NACUCA) that is found in many, but not all, physiological GLD-1 mRNA targets. Previously by using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we defined the QUAKING binding site as a hexanucleotide sequence with an additional half-site (UAAY). This sequence was identified in QKI mRNA targets including the mRNAs for myelin basic proteins. Results Herein we report using SELEX the identification of the SLM-2 RNA binding site as direct U(U/A)AA repeats. The bipartite nature of the consensus sequence was essential for SLM-2 high affinity RNA binding. The identification of a bipartite mRNA binding site for QKI and now SLM-2 prompted us to determine whether SAM68 and GLD-1 also bind bipartite direct repeats. Indeed SAM68 bound the SLM-2 consensus and required both U(U/A)AA motifs. We also confirmed that GLD-1 also binds a bipartite RNA sequence in vitro with a short RNA sequence from its tra-2 physiological mRNA target. Conclusion These data demonstrate that the STAR proteins QKI, GLD-1, SAM68 and SLM-2 recognize RNA with direct repeats as bipartite motifs. This information should help identify binding sites within physiological RNA targets.
Collapse
Affiliation(s)
- André Galarneau
- Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B, Davis Jewish General Hospital, and Department of Oncology, McGill University, Montréal, Québec, Canada.
| | | |
Collapse
|