1
|
Angelova N, Iliev I, Nemska V, Dzimbova T, Georgieva N, Danalev D, Naydenova E. Design, Synthesis, and Biological Evaluation of New Analogs of Aurein 1.2 Containing Non-Proteinogenic Amino Acids. Molecules 2025; 30:2050. [PMID: 40363855 PMCID: PMC12074479 DOI: 10.3390/molecules30092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. To combat this challenge, researchers have turned to the antimicrobial peptides (AMPs). Aurein 1.2 (GLFDIIKKIAESF-NH2) was demonstrated to have broad spectrum bi-functionality against bacterial and cancer cells. The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of new analogs of aurein 1.2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. The antibacterial activity was estimated against Gram-positive and Gram-negative bacteria using broth microdilution method in concentrations from 0 to 320 µg/mL to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The antiproliferative activity test shows that the peptide analog EH [Orn]8 has the highest activity (IC50 = 44 ± 38 μM) for the three cell lines studied (MCF-12F, MCF-7, and MDA-MB-231). The same compound exhibited good antimicrobial activity. The obtained results reveal that replacement of Lys with non-proteinogenic amino acids can increase both the potency and activity spectra of natural template peptides, making them suitable candidates for new drug development.
Collapse
Affiliation(s)
- Nora Angelova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria;
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Veronica Nemska
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (V.N.); (N.G.); (D.D.)
| | - Tatyana Dzimbova
- Department Sport, Faculty of Public Health, Health Care and Sport, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria;
| | - Nelly Georgieva
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (V.N.); (N.G.); (D.D.)
| | - Dancho Danalev
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (V.N.); (N.G.); (D.D.)
| | - Emilia Naydenova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria;
| |
Collapse
|
2
|
Dermawan D, Alotaiq N. Computational analysis of antimicrobial peptides targeting key receptors in infection-related cardiovascular diseases: molecular docking and dynamics insights. Sci Rep 2025; 15:8896. [PMID: 40087360 PMCID: PMC11909139 DOI: 10.1038/s41598-025-93683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Infection-related cardiovascular diseases (CVDs) pose a significant health challenge, driving the need for novel therapeutic strategies to target key receptors involved in inflammation and infection. Antimicrobial peptides (AMPs) show the potential to disrupt pathogenic processes and offer a promising approach to CVD treatment. This study investigates the binding potential of selected AMPs with critical receptors implicated in CVDs, aiming to explore their therapeutic potential. A comprehensive computational approach was employed to assess AMP interactions with CVD-related receptors, including ACE2, CRP, MMP9, NLRP3, and TLR4. Molecular docking studies identified AMPs with high binding affinities to these targets, notably Tachystatin, Pleurocidin, and Subtilisin A, which showed strong interactions with ACE2, CRP, and MMP9. Following docking, 100 ns molecular dynamics (MD) simulations confirmed the stability of AMP-receptor complexes, and MM/PBSA calculations provided quantitative insights into binding energies, underscoring the potential of these AMPs to modulate receptor activity in infection and inflammation contexts. The study highlights the therapeutic potential of Tachystatin, Pleurocidin, and Subtilisin A in targeting infection-related pathways in CVDs. These AMPs demonstrate promising receptor binding properties and stability in computational models. Future research should focus on in vitro and in vivo studies to confirm their efficacy and safety, paving the way for potential clinical applications in managing infection-related cardiovascular conditions.
Collapse
Affiliation(s)
- Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, 00-661, Poland
| | - Nasser Alotaiq
- Health Sciences Research Center (HSRC), Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia.
| |
Collapse
|
3
|
Yue J, Li T, Xu J, Chen Z, Li Y, Liang S, Liu Z, Wang Y. Discovery of anticancer peptides from natural and generated sequences using deep learning. Int J Biol Macromol 2025; 290:138880. [PMID: 39706427 DOI: 10.1016/j.ijbiomac.2024.138880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Anticancer peptides (ACPs) demonstrate significant potential in clinical cancer treatment due to their ability to selectively target and kill cancer cells. In recent years, numerous artificial intelligence (AI) algorithms have been developed. However, many predictive methods lack sufficient wet lab validation, thereby constraining the progress of models and impeding the discovery of novel ACPs. This study proposes a comprehensive research strategy by introducing CNBT-ACPred, an ACP prediction model based on a three-channel deep learning architecture, supported by extensive in vitro and in vivo experiments. CNBT-ACPred achieved an accuracy of 0.9554 and a Matthews Correlation Coefficient (MCC) of 0.8602. Compared to existing excellent models, CNBT-ACPred increased accuracy by at least 5 % and improved MCC by 15 %. Predictions were conducted on over 3.8 million sequences from Uniprot, along with 100,000 sequences generated by a deep generative model, ultimately identifying 37 out of 41 candidate peptides from >30 species that exhibited effective in vitro tumor inhibitory activity. Among these, tPep14 demonstrated significant anticancer effects in two mouse xenograft models without detectable toxicity. Finally, the study revealed correlations between the amino acid composition, structure, and function of the identified ACP candidates.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
4
|
Mechesso AF, Zhang W, Su Y, Xie J, Wang G. Segment-Based Peptide Design Reveals the Importance of N-Terminal High Cationicity for Antimicrobial Activity Against Gram-Negative Pathogens. Probiotics Antimicrob Proteins 2025; 17:15-34. [PMID: 39377976 DOI: 10.1007/s12602-024-10376-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 02/19/2025]
Abstract
Host defense antimicrobial peptides (AMPs) are recognized candidates to develop a new generation of peptide antibiotics. While high hydrophobicity can be deployed in peptides for eliminating Gram-positive bacteria, high cationicity is usually observed in AMPs against Gram-negative pathogen. This study investigates how the sequence distribution of basic amino acids affects peptide activity. For this purpose, we utilized human cathelicidin LL-37 as a template and designed four highly selective ultrashort peptides with similar length, net charge, and hydrophobic content. LL-10 + , RK-9 + , KR-8 + , and RIK-10 + showed similar activity against methicillin-resistant Staphylococcus aureus in vitro and comparable antibiofilm efficacy in a murine wound model. However, these peptides showed clear activity differences against Gram-negative pathogens with RIK-10 + (i.e., LL-37mini2) being the strongest and LL-10 + the weakest. To understand this activity difference, we characterized peptide toxicity; the effects of salts, pH, and serum on peptide activity; and the mechanism of action and determined the membrane-bound helical structure for RIK-10 + by two-dimensional NMR spectroscopy. By writing an R program, we generated charge density plots for these peptides and uncovered the importance of the N-terminal high-density basic charges for antimicrobial potency. To validate this finding, we reversed the sequences of two peptides. Interestingly, sequence reversal weakened the activity of RIK-10 + but increased the activity of LL-10 + especially against Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Those more active peptides with high cationicity at the N-terminus are also more hydrophobic based on HPLC retention times. A database search found numerous natural sequences that arrange basic amino acids primarily at the N-terminus. Combined, this study not only obtained novel peptide leads but also discovered one useful strategy for designing novel antimicrobials to control drug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Weiwei Zhang
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
5
|
Antony A, Purayil AK, Olakkaran S, Dhannura S, Shekh S, Gowd KH, Gurushankara HP. Antimicrobial and antitumor properties of anuran peptide temporin-SHf induce apoptosis in A549 lung cancer cells. Amino Acids 2024; 56:12. [PMID: 38319435 PMCID: PMC10847208 DOI: 10.1007/s00726-023-03373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
Temporin-SHf is a linear, ultra-short, hydrophobic, α-helix, and phe-rich cationic antimicrobial peptide. The antitumor activities and mechanism of temporin-SHf-induced cancer cell death are unknown. The temporin-SHf was synthesized by solid-phase Fmoc chemistry and antimicrobial and antitumor activities were investigated. Temporin-SHf was microbiocidal, non-hemolytic, and cytotoxic to human cancer cells but not to non-tumorigenic cells. It affected the cancer cells' lysosomal integrity and caused cell membrane damage. The temporin-SHf inhibited A549 cancer cell proliferation and migration. It is anti-angiogenic and causes cancer cell death through apoptosis. The molecular mechanism of action of temporin-SHf confirmed that it kills cancer cells by triggering caspase-dependent apoptosis through an intrinsic mitochondrial pathway. Owing to its short length and broad spectrum of antitumor activity, temporin-SHf is a promising candidate for developing a new class of anticancer drugs.
Collapse
Affiliation(s)
- Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Anupama Kizhakke Purayil
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Molecular Biology, Kannur University, Dr. Janakiammal Campus, Thalasserry, Palayad, Kerala, 670 661, India
| | - Shilpa Olakkaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | | |
Collapse
|
6
|
Wang G. The antimicrobial peptide database is 20 years old: Recent developments and future directions. Protein Sci 2023; 32:e4778. [PMID: 37695921 PMCID: PMC10535814 DOI: 10.1002/pro.4778] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
In 2023, the Antimicrobial Peptide Database (currently available at https://aps.unmc.edu) is 20-years-old. The timeline for the APD expansion in peptide entries, classification methods, search functions, post-translational modifications, binding targets, and mechanisms of action of antimicrobial peptides (AMPs) has been summarized in our previous Protein Science paper. This article highlights new database additions and findings. To facilitate antimicrobial development to combat drug-resistant pathogens, the APD has been re-annotating the data for antibacterial activity (active, inactive, and uncertain), toxicity (hemolytic and nonhemolytic AMPs), and salt tolerance (salt sensitive and insensitive). Comparison of the respective desired and undesired AMP groups produces new knowledge for peptide design. Our unification of AMPs from the six life kingdoms into "natural AMPs" enabled the first comparison with globular or transmembrane proteins. Due to the dominance of amphipathic helical and disulfide-linked peptides, cysteine, glycine, and lysine in natural AMPs are much more abundant than those in globular proteins. To include peptides predicted by machine learning, a new "predicted" group has been created. Remarkably, the averaged amino acid composition of predicted peptides is located between the lower bound of natural AMPs and the upper bound of synthetic peptides. Synthetic peptides in the current APD, with the highest cationic and hydrophobic amino acid percentages, are mostly designed with varying degrees of optimization. Hence, natural AMPs accumulated in the APD over 20 years have laid the foundation for machine learning prediction. We discuss future directions for peptide discovery. It is anticipated that the APD will continue to play a role in research and education.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
7
|
Wang C, Ma YH, Han X, Lu X. Re-Examining Interaction between Antimicrobial Peptide Aurein 1.2 and Model Cell Membranes via SFG. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:690-699. [PMID: 36576332 DOI: 10.1021/acs.langmuir.2c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aurein 1.2 (Aur), a highly efficient 13-residue antimicrobial peptide (AMP) with a broad-spectrum antibiotic activity originally derived from the Australian frog skin secretions, can nonspecifically disrupt bacterial membranes. To deeply understand the molecular-level detail of the antimicrobial mechanism, here, we artificially established comparative experimental models to investigate the interfacial interaction process between Aur and negatively charged model cell membranes via sum frequency generation vibrational spectroscopy. Sequencing the vibrational signals of phenyl, C-H, and amide groups from Aur has characteristically helped us differentiate between the initial adsorption and subsequent insertion steps upon mutual interaction between Aur and the charged lipids. The phenyl group at the terminal phenylalanine residue can act as an anchor in the adsorption process. The time-dependent signal intensity of α-helices showed a sharp rise once the Aur molecules came into contact with the negatively charged lipids, indicating that the adsorption process was ongoing. Insertion of Aur into the charged lipids then offered the detectable interfacial C-H signals from Aur. The achiral and chiral amide I signals suggest that Aur had formed β-folding-like aggregates after interacting with the charged lipids, along with the subsequent descending α-helical amide I signals. The above-mentioned experimental results provide the molecular-level detail on how the Aur molecules interact with the cell membranes, and such a mechanism study can offer the necessary support for the AMP design and later application.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Expanding the Landscape of Amino Acid-Rich Antimicrobial Peptides: Definition, Deployment in Nature, Implications for Peptide Design and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232112874. [PMID: 36361660 PMCID: PMC9658076 DOI: 10.3390/ijms232112874] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Unlike the α-helical and β-sheet antimicrobial peptides (AMPs), our knowledge on amino acid-rich AMPs is limited. This article conducts a systematic study of rich AMPs (>25%) from different life kingdoms based on the Antimicrobial Peptide Database (APD) using the program R. Of 3425 peptides, 724 rich AMPs were identified. Rich AMPs are more common in animals and bacteria than in plants. In different animal classes, a unique set of rich AMPs is deployed. While histidine, proline, and arginine-rich AMPs are abundant in mammals, alanine, glycine, and leucine-rich AMPs are common in amphibians. Ten amino acids (Ala, Cys, Gly, His, Ile, Lys, Leu, Pro, Arg, and Val) are frequently observed in rich AMPs, seven (Asp, Glu, Phe, Ser, Thr, Trp, and Tyr) are occasionally observed, and three (Met, Asn, and Gln) were not yet found. Leucine is much more frequent in forming rich AMPs than either valine or isoleucine. To date, no natural AMPs are simultaneously rich in leucine and lysine, while proline, tryptophan, and cysteine-rich peptides can simultaneously be rich in arginine. These findings can be utilized to guide peptide design. Since multiple candidates are potent against antibiotic-resistant bacteria, rich AMPs stand out as promising future antibiotics.
Collapse
|
9
|
Targeted Modification and Structure-Activity Study of GL-29, an Analogue of the Antimicrobial Peptide Palustrin-2ISb. Antibiotics (Basel) 2022; 11:antibiotics11081048. [PMID: 36009917 PMCID: PMC9405102 DOI: 10.3390/antibiotics11081048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are considered as promising antimicrobial agents due to their potent bioactivity. Palustrin-2 peptides were previously found to exhibit broad-spectrum antimicrobial activity with low haemolytic activity. Therefore, GL-29 was used as a template for further modification and study. Firstly, the truncated analogue, GL-22, was designed to examine the function of the ‘Rana box’, which was confirmed to have no impact on antimicrobial activity. The results of antimicrobial activity assessment against seven microorganisms demonstrated GL-22 to have a broad-spectrum antimicrobial activity, but weak potency against Candida albicans (C. albicans). These data were similar to those of GL-29, but GL-22 showed much lower haemolysis and lower cytotoxicity against HaCaT cells. Moreover, GL-22 exhibited potent in vivo activity at 4 × MIC against Staphylococcus aureus (S. aureus)-infected larvae. Several short analogues, from the C-terminus and N-terminus of GL-22, were modified to identify the shortest functional motif. However, the results demonstrated that the shorter peptides did not exhibit potent antimicrobial activity, and the factors that affect the bioactive potency of these short analogues need to be further studied.
Collapse
|
10
|
Wang G, Zietz CM, Mudgapalli A, Wang S, Wang Z. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. Protein Sci 2022; 31:92-106. [PMID: 34529321 PMCID: PMC8740828 DOI: 10.1002/pro.4185] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial peptide database (APD) has served the antimicrobial peptide field for 18 years. Because it is widely used in research and education, this article documents database milestones and key events that have transformed it into the current form. A comparison is made for the APD peptide statistics between 2010 and 2020, validating the major database findings to date. We also describe new additions ranging from peptide entries to search functions. Of note, the APD also contains antimicrobial peptides from host microbiota, which are important in shaping immune systems and could be linked to a variety of human diseases. Finally, the database has been re-programmed to the web branding and latest security compliance of the University of Nebraska Medical Center. The reprogrammed APD can be accessed at https://aps.unmc.edu.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and MicrobiologyCollege of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical CenterOmahaNebraskaUSA
| | - C. Michael Zietz
- Research Information Technology OfficeUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Ashok Mudgapalli
- Research Information Technology OfficeUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shuona Wang
- Department of Pathology and MicrobiologyCollege of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical CenterOmahaNebraskaUSA
| | - Zhe Wang
- Department of Pathology and MicrobiologyCollege of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
11
|
Hybrid Anticancer Peptides DN1 and DN4 Exert Selective Cytotoxicity Against Hepatocellular Carcinoma Cells by Inducing Both Intrinsic and Extrinsic Apoptotic Pathways. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Dang X, Wang G. Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019. Curr Top Med Chem 2021; 20:2984-2998. [PMID: 33092508 DOI: 10.2174/1568026620666201022143625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Antibiotic resistance is a global issue and new anti-microbials are required. INTRODUCTION Anti-microbial peptides are important players of host innate immune systems that prevent infections. Due to their ability to eliminate drug-resistant pathogens, AMPs are promising candidates for developing the next generation of anti-microbials. METHODS The anti-microbial peptide database provides a useful tool for searching, predicting, and designing new AMPs. In the period from 2015-2019, ~500 new natural peptides have been registered. RESULTS This article highlights a selected set of new AMP members with interesting properties. Teixobactin is a cell wall inhibiting peptide antibiotic, while darobactin inhibits a chaperone and translocator for outer membrane proteins. Remarkably, cOB1, a sex pheromone from commensal enterococci, restricts the growth of multidrug-resistant Enterococcus faecalis in the gut at a picomolar concentration. A novel proline-rich AMP has been found in the plant Brassica napus. A shrimp peptide MjPen- II comprises three different sequence domains: serine-rich, proline-rich, and cysteine-rich regions. Surprisingly, an amphibian peptide urumin specifically inhibits H1 hemagglutinin-bearing influenza A virus. Defensins are abundant and typically consist of three pairs of intramolecular disulfide bonds. However, rat rattusin dimerizes via forming five pairs of intermolecular disulfide bonds. While human LL-37 can be induced by vitamin D, vitamin A induces the expression of resistin-like molecule alpha (RELMα) in mice. The isolation and characterization of an alternative human cathelicidin peptide, TLN-58, substantiates the concept of one gene multiple peptides. The involvement of a fly AMP nemuri in sleep induction may promote the research on the relationship between sleep and infection control. CONCLUSION The functional roles of AMPs continue to grow and the general term "innate immune peptides" becomes useful. These discoveries widen our view on the anti-microbial peptides and may open new opportunities for developing novel peptide therapeutics for different applications.
Collapse
Affiliation(s)
- Xiangli Dang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| |
Collapse
|
13
|
Lakshmaiah Narayana J, Golla R, Mishra B, Wang X, Lushnikova T, Zhang Y, Verma A, Kumar V, Xie J, Wang G. Short and Robust Anti-Infective Lipopeptides Engineered Based on the Minimal Antimicrobial Peptide KR12 of Human LL-37. ACS Infect Dis 2021; 7:1795-1808. [PMID: 33890759 DOI: 10.1021/acsinfecdis.1c00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study aims to push the frontier of the engineering of human cathelicidin LL-37, a critical antimicrobial innate immune peptide that wards off invading pathogens. By sequential truncation of the smallest antibacterial peptide (KR12) of LL-37 and conjugation with fatty acids, with varying chain lengths, a library of lipopeptides is generated. These peptides are subjected to antibacterial activity and hemolytic assays. Candidates (including both forms made of l- and d-amino acids) with the optimal cell selectivity are subsequently fed to the second layer of in vitro filters, including salts, pH, serum, and media. These practices lead to the identification of a miniature LL-37 like peptide (d-form) with selectivity, stability, and robust antimicrobial activity in vitro against both Gram-positive and negative bacteria. Proteomic studies reveal far fewer serum proteins that bind to the d-form than the l-form peptide. C10-KR8d targets bacterial membranes to become helical, making it difficult for bacteria to develop resistance in a multiple passage experiment. In vivo, C10-KR8d is able to reduce bacterial burden of methicillin-resistant Staphylococcus aureus (MRSA) USA300 LAC in neutropenic mice. In addition, this designer peptide prevents bacterial biofilm formation in a catheter-associated mouse model. Meanwhile, C10-KR8d also recruits cytokines to the vicinity of catheters to clear infection. Thus, based on the antimicrobial region of LL-37, this study succeeds in identifying the smallest anti-infective peptide C10-KR8d with both robust antimicrobial, antibiofilm, and immune modulation activities.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Radha Golla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Xiuqing Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Yingxia Zhang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Atul Verma
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
14
|
Ricardo F, Pradilla D, Cruz JC, Alvarez O. Emerging Emulsifiers: Conceptual Basis for the Identification and Rational Design of Peptides with Surface Activity. Int J Mol Sci 2021; 22:4615. [PMID: 33924804 PMCID: PMC8124350 DOI: 10.3390/ijms22094615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Emulsifiers are gradually evolving from synthetic molecules of petrochemical origin to biomolecules mainly due to health and environmental concerns. Peptides represent a type of biomolecules whose molecular structure is composed of a sequence of amino acids that can be easily tailored to have specific properties. However, the lack of knowledge about emulsifier behavior, structure-performance relationships, and the implementation of different design routes have limited the application of these peptides. Some computational and experimental approaches have tried to close this knowledge gap, but restrictions in understanding the fundamental phenomena and the limited property data availability have made the performance prediction for emulsifier peptides an area of intensive research. This study provides the concepts necessary to understand the emulsifying behavior of peptides. Additionally, a straightforward description is given of how the molecular structure and conditions of the system directly impact the peptides' ability to stabilize emulsion droplets. Moreover, the routes to design and discover novel peptides with interfacial and emulsifying activity are also discussed, along with the strategies to address some of their major pitfalls and challenges. Finally, this contribution reviews methodologies to build and use data sets containing standard properties of emulsifying peptides by looking at successful applications in different fields.
Collapse
Affiliation(s)
- Fabian Ricardo
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (F.R.); (D.P.)
| | - Diego Pradilla
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (F.R.); (D.P.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Oscar Alvarez
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (F.R.); (D.P.)
| |
Collapse
|
15
|
Nielsen JE, Bjørnestad VA, Pipich V, Jenssen H, Lund R. Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. J Colloid Interface Sci 2021; 582:793-802. [DOI: 10.1016/j.jcis.2020.08.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
|
16
|
Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction. Antibiotics (Basel) 2020; 9:antibiotics9080491. [PMID: 32784626 PMCID: PMC7459754 DOI: 10.3390/antibiotics9080491] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Amphibians are widely distributed on different continents, except for the polar regions. They are important sources for the isolation, purification and characterization of natural compounds, including peptides with various functions. Innate immune antimicrobial peptides (AMPs) play a critical role in warding off invading pathogens, such as bacteria, fungi, parasites, and viruses. They may also have other biological functions such as endotoxin neutralization, chemotaxis, anti-inflammation, and wound healing. This article documents a bioinformatic analysis of over 1000 amphibian antimicrobial peptides registered in the Antimicrobial Peptide Database (APD) in the past 18 years. These anuran peptides were discovered in Africa, Asia, Australia, Europe, and America from 1985 to 2019. Genomic and peptidomic studies accelerated the discovery pace and underscored the necessity in establishing criteria for peptide entry into the APD. A total of 99.9% of the anuran antimicrobial peptides are less than 50 amino acids with an average length of 24 and a net charge of +2.5. Interestingly, the various amphibian peptide families (e.g., temporins, brevinins, esculentins) can be connected through multiple length-dependent relationships. With an increase in length, peptide net charge increases, while the hydrophobic content decreases. In addition, glycine, leucine, lysine, and proline all show linear correlations with peptide length. These correlations improve our understanding of amphibian peptides and may be useful for prediction and design of new linear peptides with potential applications in treating infectious diseases, cancer and diabetes.
Collapse
|
17
|
Abstract
Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design. When bound to membranes, these two short peptides with an identical amino acid composition can adopt two distinct amphipathic structures: A classic horizontal helix (horine) and a novel vertical spiral structure (verine). Their horizontal and vertical orientations on membranes were determined by solid-state 15N NMR data. While horine was potent primarily against gram-positive pathogens, verine showed broad-spectrum antimicrobial activity. Both peptides protected greater than 80% mice from infection-caused deaths. Moreover, horine and verine also displayed significant systemic efficacy in different murine models comparable to conventional antibiotics. In addition, they could eliminate resistant pathogens and preformed biofilms. Significantly, the peptides showed no nephrotoxicity to mice after intraperitoneal or intravenous administration for 1 wk. Our study underscores the significance of horine and verine in fighting drug-resistant pathogens.
Collapse
|
18
|
Migoń D, Jaśkiewicz M, Neubauer D, Bauer M, Sikorska E, Kamysz E, Kamysz W. Alanine Scanning Studies of the Antimicrobial Peptide Aurein 1.2. Probiotics Antimicrob Proteins 2020; 11:1042-1054. [PMID: 30569430 PMCID: PMC6695355 DOI: 10.1007/s12602-018-9501-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Antimicrobial peptides (AMPs) are compounds widely distributed in nature that display activity against a broad spectrum of pathogens. Amphibian skin, as an organ rich in pharmacologically active peptides, appears to be an interesting source of novel AMPs. Aurein 1.2 (GLFDIIKKIAESF-NH2) is a short 13-residue antimicrobial peptide primarily isolated from the skin secretions of Australian bell frogs. In this study, the alanine scan of aurein 1.2 was performed to investigate the effect of each amino acid residue on its biological and physico-chemical properties. The biological studies included determination of minimum inhibitory concentration, activity against biofilm, and inhibitory effect on its formation. Moreover, the hemolytic activity as well as serum stability was determined. The hydrophobicity of peptides and their self-assembly were investigated using reversed-phase chromatography. In addition, their helicity was calculated from circular dichroism spectra. The results not only provided information on structure-activity relationship of aurein 1.2 but also gave insights into design of novel analogs of AMPs in the future.
Collapse
Affiliation(s)
- Dorian Migoń
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland. .,Polpharma Biologics, Gdańsk, Poland.
| | - Maciej Jaśkiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | | | | | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
19
|
Bozelli JC, Yune J, Dang X, Narayana JL, Wang G, Epand RM. Membrane activity of two short Trp-rich amphipathic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183280. [PMID: 32220553 DOI: 10.1016/j.bbamem.2020.183280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Short linear antimicrobial peptides are attractive templates for developing new antibiotics. Here, it is described a study of the interaction between two short Trp-rich peptides, horine and verine-L, and model membranes. Isothermal titration calorimetry studies showed that the affinity of these peptides towards large unilamellar vesicles (LUV) having a lipid composition mimicking the lipid composition of S. aureus membranes is ca. 30-fold higher than that towards E. coli mimetics. The former interaction is driven by enthalpy and entropy, while the latter case is driven by entropy, suggesting differences in the forces that play a role in the binding to the two types of model membranes. Upon membrane binding the peptides acquired different conformations according to circular dichroism (CD) studies; however, in both cases CD studies indicated stacked W-residues. Peptide-induced membrane permeabilization, lipid flip-flop, molecular packing at the membrane-water interface, and lateral lipid segregation were observed in all cases. However, the extent of these peptide-induced changes on membrane properties was always higher in S. aureus than E. coli mimetics. Both peptides seem to act via a similar mechanism of membrane permeabilization of S. aureus membrane mimetics, while their mechanisms seem to differ in the case of E. coli. This may be the result of differences in both the peptides´ structure and the membrane lipid composition between both types of bacteria.
Collapse
Affiliation(s)
- José C Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Xiangli Dang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5990, USA
| | - Jayaram Lakshmaiah Narayana
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5990, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5990, USA
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
20
|
van den Bergen G, Stroet M, Caron B, Poger D, Mark AE. Curved or linear? Predicting the 3-dimensional structure of α-helical antimicrobial peptides in an amphipathic environment. FEBS Lett 2019; 594:1062-1080. [PMID: 31794050 DOI: 10.1002/1873-3468.13705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
α-Helical membrane-active antimicrobial peptides (AMPs) are known to act via a range of mechanisms, including the formation of barrel-stave and toroidal pores and the micellisation of the membrane (carpet mechanism). Different mechanisms imply that the peptides adopt different 3D structures when bound at the water-membrane interface, a highly amphipathic environment. Here, an evolutionary algorithm is used to predict the 3D structure of a range of α-helical membrane-active AMPs at the water-membrane interface by optimising amphipathicity. This amphipathic structure prediction (ASP) is capable of distinguishing between curved and linear peptides solved experimentally, potentially allowing the activity and mechanism of action of different membrane-active AMPs to be predicted. The ASP algorithm is accessible via a web interface at http://atb.uq.edu.au/asp/.
Collapse
Affiliation(s)
- Glen van den Bergen
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin Stroet
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Bertrand Caron
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David Poger
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Mark
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Pandidan S, Mechler A. Nano-viscosimetry analysis of the membrane disrupting action of the bee venom peptide melittin. Sci Rep 2019; 9:10841. [PMID: 31346251 PMCID: PMC6658469 DOI: 10.1038/s41598-019-47325-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Melittin is one of the most studied α-helical cationic membrane disrupting peptides. It is the main component of bee venom, however it is considered an antimicrobial peptide for its ability to kill bacteria. Melittin is believed to act by opening large toroidal pores in the plasma membrane of the targeted cells/bacteria, although this is questioned by some authors. Little is known, however, about the molecular mechanism leading to this activity. In this study the mechanism of action of melittin was studied by dye leakage and quartz crystal microbalance fingerprinting analysis in biomimetic model membranes. The results revealed the existence of multiple stages in the membrane disrupting action with characteristic differences between different membrane types. In bacterial-mimetic (charged) lipid mixtures the viscoelastic fingerprints suggest a surface-acting mechanism, whereas in mammalian-mimetic (neutral) membranes melittin appears to penetrate the bilayer already at low concentrations. In domain-forming mixed membranes melittin shows a preference for the domain containing predominantly zwitterionic lipids. The results confirm membrane poration but are inconsistent with the insertion-to-toroidal pore pathway. Therefore hypotheses of the two membrane disrupting pathways were developed, describing the membrane disruption as either surface tension modulation leading to toroidal pore formation, or linear aggregation leading to fissure formation in the membrane.
Collapse
Affiliation(s)
- Sara Pandidan
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| |
Collapse
|
22
|
Mishra B, Lakshmaiah Narayana J, Lushnikova T, Wang X, Wang G. Low cationicity is important for systemic in vivo efficacy of database-derived peptides against drug-resistant Gram-positive pathogens. Proc Natl Acad Sci U S A 2019; 116:13517-13522. [PMID: 31209048 PMCID: PMC6613076 DOI: 10.1073/pnas.1821410116] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As bacterial resistance to traditional antibiotics continues to emerge, new alternatives are urgently needed. Antimicrobial peptides (AMPs) are important candidates. However, how AMPs are designed with in vivo efficacy is poorly understood. Our study was designed to understand structural moieties of cationic peptides that would lead to their successful use as antibacterial agents. In contrast to the common perception, serum binding and peptide stability were not the major reasons for in vivo failure in our studies. Rather, our systematic study of a series of peptides with varying lysines revealed the significance of low cationicity for systemic in vivo efficacy against Gram-positive pathogens. We propose that peptides with biased amino acid compositions are not favored to associate with multiple host factors and are more likely to show in vivo efficacy. Thus, our results uncover a useful design strategy for developing potent peptides against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900
| | - Jayaram Lakshmaiah Narayana
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900
| | - Xiuqing Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900
- Department of Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, China
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900;
| |
Collapse
|
23
|
Poger D, Pöyry S, Mark AE. Could Cardiolipin Protect Membranes against the Action of Certain Antimicrobial Peptides? Aurein 1.2, a Case Study. ACS OMEGA 2018; 3:16453-16464. [PMID: 30613806 PMCID: PMC6312644 DOI: 10.1021/acsomega.8b02710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The activity of a host of antimicrobial peptides has been examined against a range of lipid bilayers mimicking bacterial and eukaryotic membranes. Despite this, the molecular mechanisms and the nature of the physicochemical properties underlying the peptide-lipid interactions that lead to membrane disruption are yet to be fully elucidated. In this study, the interaction of the short antimicrobial peptide aurein 1.2 was examined in the presence of an anionic cardiolipin-containing lipid bilayer using molecular dynamics simulations. Aurein 1.2 is known to interact strongly with anionic lipid membranes. In the simulations, the binding of aurein 1.2 was associated with buckling of the lipid bilayer, the degree of which varied with the peptide concentration. The simulations suggest that the intrinsic properties of cardiolipin, especially the fact that it promotes negative membrane curvature, may help protect membranes against the action of peptides such as aurein 1.2 by counteracting the tendency of the peptide to induce positive curvature in target membranes.
Collapse
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sanja Pöyry
- Department
of Physics, Tampere University of Technology, POB 692, F1-33720 Tampere, Finland
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
24
|
Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1–18) and its analogue mutBMAP18. J Struct Biol 2018; 204:435-448. [DOI: 10.1016/j.jsb.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
25
|
Lutz H, Jaeger V, Weidner T, de Groot BL. Interpretation of Interfacial Protein Spectra with Enhanced Molecular Simulation Ensembles. J Chem Theory Comput 2018; 15:698-707. [DOI: 10.1021/acs.jctc.8b00840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Helmut Lutz
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Vance Jaeger
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Tobias Weidner
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Bert L. de Groot
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
26
|
Jahangiri S, Jafari M, Arjomand M, Mehrnejad F. Molecular insights into the interactions of GF‐17 with the gram‐negative and gram‐positive bacterial lipid bilayers. J Cell Biochem 2018; 119:9205-9216. [DOI: 10.1002/jcb.27187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Samira Jahangiri
- Department of Chemical Engineering South Tehran Branch, Islamic Azad University Tehran Iran
| | - Majid Jafari
- Computational Nanobiotechnology Laboratory, Department of Life Sciences Engineering Faculty of New Sciences and Technologies, University of Tehran Tehran Iran
| | - Mehdi Arjomand
- Department of Chemical Engineering South Tehran Branch, Islamic Azad University Tehran Iran
| | - Faramarz Mehrnejad
- Computational Nanobiotechnology Laboratory, Department of Life Sciences Engineering Faculty of New Sciences and Technologies, University of Tehran Tehran Iran
| |
Collapse
|
27
|
Mishra B, Wang X, Lushnikova T, Zhang Y, Golla RM, Narayana JL, Wang C, McGuire TR, Wang G. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides 2018; 106:9-20. [PMID: 29842923 PMCID: PMC6063800 DOI: 10.1016/j.peptides.2018.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides are a special class of natural products with potential applications as novel therapeutics. This study focuses on six temporins (four with no activity data and two as positive controls). Using synthetic peptides, we report antibacterial, antifungal, and anticancer activities of temporins-CPa, CPb, 1Ga, 1Oc, 1Ola, and 1SPa. While temporin-1Ga and temporin-1OLa showed higher antifungal and anticancer activity, most of these peptides were active primarily against Gram-positive bacteria. Temporin-1OLa, with the highest cell selectivity index, could preferentially kill methicillin-resistant Staphylococcus aureus (MRSA), consistent with a reduced hemolysis in the presence of bacteria. Mechanistically, temporin-1OLa rapidly killed MRSA by damaging bacterial membranes. Using micelles as a membrane-mimetic model, we determined the three-dimensional structure of temporin-1OLa by NMR spectroscopy. The peptide adopted a two-domain structure where a hydrophobic patch is followed by a classic amphipathic helix covering residues P3-I12. Such a structure is responsible for anti-biofilm ability in vitro and in vivo protection of wax moths Galleria mellonella from staphylococcal infection. Finally, our bioinformatic analysis leads to a classification of temporins into six types and confers significance to this NMR structure since temporin-1OLa shares a sequence model with 62% of temporins. Collectively, our results indicate the potential of temporin-1OLa as a new anti-MRSA compound, which shows an even better anti-biofilm capability in combination with linezolid.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA; Department of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Yingxia Zhang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA; Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, Hainan, China
| | - Radha M Golla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Jayaram Lakshmaiah Narayana
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Chunfeng Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA; The First Affiliated Hospital of Zhengzhou University, 1 Mianfang Road, Zhengzhou 450052, Henan, China
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
28
|
Balatti GE, Martini MF, Pickholz M. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. J Mol Model 2018; 24:208. [PMID: 30019106 DOI: 10.1007/s00894-018-3747-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
In the present work we investigated the differential interactions of the antimicrobial peptides (AMPs) aurein 1.2 and maculatin 1.1 with a bilayer composed of a mixture of the lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We carried out molecular dynamics (MD) simulations using a coarse-grained approach within the MARTINI force field. The POPE/POPG mixture was used as a simple model of a bacterial (prokaryotic cell) membrane. The results were compared with our previous findings for structures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a representative lipid of mammalian cells. We started the simulations of the peptide-lipid system from two different initial conditions: peptides in water and peptides inside the hydrophobic core of the membrane, employing a pre-assembled lipid bilayer in both cases. Our results show similarities and differences regarding the molecular behavior of the peptides in POPE/POPG in comparison to their behavior in a POPC membrane. For instance, aurein 1.2 molecules can adopt similar pore-like structures on both POPG/POPE and POPC membranes, but the peptides are found deeper in the hydrophobic core in the former. Maculatin 1.1 molecules, in turn, achieve very similar structures in both kinds of bilayers: they have a strong tendency to form clusters and induce curvature. Therefore, the results of this study provide insight into the mechanisms of action of these two peptides in membrane leakage, which allows organisms to protect themselves against potentially harmful bacteria. Graphical Abstract Aurein pore structure (green) in a lipid bilayer composed by POPE (blue) and POPG (red) mixture. It is possible to see water beads (light blue) inside the pore.
Collapse
Affiliation(s)
- G E Balatti
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, IFIBA, C1428BFA, Buenos Aires, Argentina
| | - M F Martini
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, IQUIMEFA, C1113AA, Buenos Aires, Argentina
| | - M Pickholz
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, IFIBA, C1428BFA, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Porto WF, Fensterseifer ICM, Ribeiro SM, Franco OL. Joker: An algorithm to insert patterns into sequences for designing antimicrobial peptides. Biochim Biophys Acta Gen Subj 2018; 1862:2043-2052. [PMID: 29928920 DOI: 10.1016/j.bbagen.2018.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/26/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Innovative alternatives to control bacterial infections are need due to bacterial resistance rise. Antimicrobial peptides (AMPs) have been considered as the new generation of antimicrobial agents. Based on the fact that AMPs are sequence-dependent, a linguistic model for designing AMPs was previously developed, considering AMPs as a formal language with a grammar (patterns or motifs) and a vocabulary (amino acids). Albeit promising, that model has been poorly exploited mainly because thousands of sequences need to be generated, and the outcome has high similarity to already known AMPs. Here we present Joker, an innovative algorithm that improves the application of the linguistic model for rational design of antimicrobial peptides. We modelled the AMPs as a card game, where Joker combines the cards in the hand (patterns) with the cards in the table (sequence templates), generating a few variants. Our algorithm is capable of improving existing AMPs or even creating new AMPs from inactive peptides. A standalone version of Joker is available for download at <http://github.com/williamfp7/Joker> and requires a Linux 32-bit machine.
Collapse
Affiliation(s)
- William F Porto
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Isabel C M Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Suzana M Ribeiro
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Octavio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
30
|
Punekar AS, Samsudin F, Lloyd AJ, Dowson CG, Scott DJ, Khalid S, Roper DI. The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surf 2018; 2:54-66. [PMID: 30046666 PMCID: PMC6053601 DOI: 10.1016/j.tcsw.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial peptidoglycan glycosyltransferases (PGT) catalyse the essential polymerization of lipid II into linear glycan chains required for peptidoglycan biosynthesis. The PGT domain is composed of a large head subdomain and a smaller jaw subdomain and can be potently inhibited by the antibiotic moenomycin A (MoeA). We present an X-ray structure of the MoeA-bound Staphylococcus aureus monofunctional PGT enzyme, revealing electron density for a second MoeA bound to the jaw subdomain as well as the PGT donor site. Isothermal titration calorimetry confirms two drug-binding sites with markedly different affinities and positive cooperativity. Hydrophobic cluster analysis suggests that the membrane-interacting surface of the jaw subdomain has structural and physicochemical properties similar to amphipathic cationic α -helical antimicrobial peptides for lipid II recognition and binding. Furthermore, molecular dynamics simulations of the drug-free and -bound forms of the enzyme demonstrate the importance of the jaw subdomain movement for lipid II selection and polymerization process and provide molecular-level insights into the mechanism of peptidoglycan biosynthesis by PGTs.
Collapse
Affiliation(s)
- Avinash S. Punekar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
- ISIS Neutron and Muon Spallation Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
31
|
Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:347-356. [DOI: 10.1016/j.bbamem.2017.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
|
32
|
Phenylalanine residues act as membrane anchors in the antimicrobial action of Aurein 1.2. Biointerphases 2017; 12:05G605. [PMID: 29078702 DOI: 10.1116/1.4995674] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aurein 1.2 is a small cationic antimicrobial peptide, one of the shortest peptides that can exert antimicrobial activity at low micromolar concentrations. Aurein 1.2 is a surface acting peptide, following the "carpet" mechanism of thresholded membrane disruption. It is generally assumed that the activity of such cationic α-helical membrane disrupting peptides is charge driven. Here, the authors show that instead of charge interactions, aromatic phenylalanine residues of the Aurein 1.2 sequence facilitate the membrane binding. The activity of the wild type peptide was compared to mutants in which the Phe residues were substituted, singly and in tandem, with alanine. Measurements by quartz crystal microbalance, impedance spectroscopy, and dye leakage experiments demonstrated that single residue mutants retain a much-reduced activity whereas the deletion of both Phe residues prevents membrane disruption entirely. The single residue mutants exhibited an altered mechanism of action, permeabilizing but not dissolving the target membranes. These results offer a new design rule for membrane disrupting peptides with potential pharmacological applications.
Collapse
|
33
|
Zarena D, Mishra B, Lushnikova T, Wang F, Wang G. The π Configuration of the WWW Motif of a Short Trp-Rich Peptide Is Critical for Targeting Bacterial Membranes, Disrupting Preformed Biofilms, and Killing Methicillin-Resistant Staphylococcus aureus. Biochemistry 2017; 56:4039-4043. [PMID: 28731688 PMCID: PMC5603908 DOI: 10.1021/acs.biochem.7b00456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tryptophan-rich peptides, being short and suitable for large-scale chemical synthesis, are attractive candidates for developing a new generation of antimicrobials to combat antibiotic-resistant bacteria (superbugs). Although there are numerous pictures of the membrane-bound structure of a single tryptophan (W), how multiple Trp amino acids assemble themselves and interact with bacterial membranes is poorly understood. This communication presents the three-dimensional structure of an eight-residue Trp-rich peptide (WWWLRKIW-NH2 with 50% W) determined by the improved two-dimensional nuclear magnetic resonance method, which includes the measurements of 13C and 15N chemical shifts at natural abundance. This peptide forms the shortest two-turn helix with a distinct amphipathic feature. A unique structural arrangement is identified for the Trp triplet, WWW, that forms a π configuration with W2 as the horizontal bar and W1/W3 forming the two legs. An arginine scan reveals that the WWW motif is essential for killing methicillin-resistant Staphylococcus aureus USA300 and disrupting preformed bacterial biofilms. This unique π configuration for the WWW motif is stabilized by aromatic-aromatic interactions as evidenced by ring current shifts as well as nuclear Overhauser effects. Because the WWW motif is maintained, a change of I7 to R led to a potent antimicrobial and antibiofilm peptide with 4-fold improvement in cell selectivity. Collectively, this study elucidated the structural basis of antibiofilm activity of the peptide, identified a better peptide candidate via structure-activity relationship studies, and laid the foundation for engineering future antibiotics based on the WWW motif.
Collapse
Affiliation(s)
- D. Zarena
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Department of Physics, JNTUA College of Engineering, Anantapur 515002, India
| | - Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Fangyu Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
34
|
Abstract
Aurein 1.2 is a potent antimicrobial peptide secreted by frog Litoria aurea. As a short membrane-active peptide with only 13 amino acids in sequence, it has been found to be residing on the surface of lipid bilayer and permeabilizing bacterial membranes at high concentration. However, the detail at the molecular level is largely unknown. In this study, we investigated the action of Aurein 1.2 in charged lipid bilayers composed of DMPC/DMPG. Oriented Circular Dichroism results showed that the peptide was on the surface of lipid bilayer regardless of the charged lipid ratio. Only at a very high peptide-to-lipid ratio (~1/10), the peptide became perpendicular to the bilayer, however no pore was detected by neutron in-plane scattering. To further understand how it interacted with charged lipid bilayers, we employed Small Angle Neutron Scattering to probe lipid distribution across bilayer leaflets in lipid vesicles. The results showed that Aurein 1.2 interacted strongly with negatively charged DMPG, causing strong asymmetry in lipid bilayer. At high concentration, while the vesicles were intact, we found additional structure feature on the bilayer. Our study provides a glimpse into how Aurein 1.2 disturbs anionic lipid-containing membranes without pore formation.
Collapse
|
35
|
Wang X, Wang G. Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein Pept Lett 2017; 23:707-21. [PMID: 27165405 DOI: 10.2174/0929866523666160511151320] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 12/19/2022]
Abstract
The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider's and 63 scorpion's AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses.
Collapse
Affiliation(s)
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
36
|
Mishra B, Lushnikova T, Golla RM, Wang X, Wang G. Design and surface immobilization of short anti-biofilm peptides. Acta Biomater 2017; 49:316-328. [PMID: 27915018 PMCID: PMC5253077 DOI: 10.1016/j.actbio.2016.11.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 11/27/2022]
Abstract
Short antimicrobial peptides are essential to keep us healthy and their lasting potency can inspire the design of new types of antibiotics. This study reports the design of a family of eight-residue tryptophan-rich peptides (TetraF2W) obtained by converting the four phenylalanines in temporin-SHf to tryptophans. The temporin-SHf template was identified from the antimicrobial peptide database (http://aps.unmc.edu/AP). Remarkably, the double arginine variant (TetraF2W-RR) was more effective in killing methicillin-resistant Staphylococcus aureus (MRSA) USA300, but less cytotoxic to human skin HaCat and kidney HEK293 cells, than the lysine-containing dibasic combinations (KR, RK and KK). Killing kinetics and fluorescence spectroscopy suggest membrane targeting of TetraF2W-RR, making it more difficult for bacteria to develop resistance. Because established biofilms on medical devices are difficult to remove, we chose to covalently immobilize TetraF2W-RR onto the polyethylene terephthalate (PET) surface to prevent biofilm formation. The successful surface coating of the peptide is supported by FT-IR and XPS spectroscopies, chemical quantification, and antibacterial assays. This peptide-coated surface indeed prevented S. aureus biofilm formation with no cytotoxicity to human cells. In conclusion, TetraF2W-RR is a short Trp-rich peptide with demonstrated antimicrobial and anti-biofilm potency against MRSA in both the free and immobilized forms. Because these short peptides can be synthesized cost effectively, they may be developed into new antimicrobial agents or used as surface coating compounds. STATEMENT OF SIGNIFICANCE It is stunning that the total deaths due to methicillin-resistant Staphylococcus aureus (MRSA) infection are comparable to AIDS/HIV-1, making it urgent to explore new possibilities. This study deals with this problem by two strategies. First, we have designed a family of novel antimicrobial peptides with merely eight amino acids, making it cost effective for chemical synthesis. These peptides are potent against MRSA USA300. Our study uncovers that the high potency of the tryptophan-rich short peptide is coupled with arginines, whereas these Trp- and Arg-rich peptides are less toxic to select human cells than the lysine-containing analogs. Such a combination generates a more selective peptide. As a second strategy, we also demonstrate successful covalent immobilization of this short peptide to the polyethylene terephthalate (PET) surface by first using a chitosan linker, which is easy to obtain. Because biofilms on medical devices are difficult to remove by traditional antibiotics, we also show that the peptide coated surface can prevent biofilm formation. Although rarely demonstrated, we provide evidence that both the free and immobilized peptides target bacterial membranes, rendering it difficult for bacteria to develop resistance. Collectively, the significance of our study is the design of novel antimicrobial peptides provides a useful template for developing novel antimicrobials against MRSA. In addition, orientation-specific immobilization of the same short peptide can prevent biofilm formation on the PET surface, which is widely used in making prosthetic heart valves cuffs and other bio devices.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Radha M Golla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
37
|
Interaction of aurein 1.2 and its analogue with DPPC lipid bilayer. J Biol Phys 2017; 43:127-137. [PMID: 28130642 DOI: 10.1007/s10867-016-9438-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/14/2016] [Indexed: 01/17/2023] Open
Abstract
Antibacterial peptides have potential as novel therapeutic agents for bacterial infections. Aurein 1.2 is one of the smallest antibacterial peptides extracted from an anuran. LLAA is a more active analogue of aurein 1.2. Antibacterial peptides usually accomplish their function by interacting with bacterial membrane selectively. In this study, we tried to find the reasons for the stronger antibacterial activity of LLAA compared with aurein 1.2. For this purpose, the interaction of aurein 1.2 and LLAA with dipalmitoylphosphatidylcholine (DPPC) was investigated by molecular dynamics (MD) simulation. In addition, the structure of peptides and their antibacterial activity were investigated by circular dichroism (CD) and dilution test method, respectively. MD results showed that LLAA is more flexible compared with aurein 1.2. Furthermore, LLAA loses its structure more than aurein 1.2 in the DPPC bilayer. A higher amount of water molecules penetrate into bilayer in the presence of LLAA relative to aurein 1.2. According to the antibacterial result that indicated LLAA is remarkably more active than aurein 1.2, it can be concluded that flexibility of the peptide is a determining factor in antibacterial activity. Probably, flexibility of the peptides facilitates formation of effective pores in the lipid bilayer.
Collapse
|
38
|
Lee JTY, Wang G, Tam YT, Tam C. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-αβ Structure. Front Microbiol 2016; 7:1799. [PMID: 27891122 PMCID: PMC5105358 DOI: 10.3389/fmicb.2016.01799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics.
Collapse
Affiliation(s)
- Judy T Y Lee
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Yu Tong Tam
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison Madison, WI, USA
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
39
|
Effect of dimerization on the mechanism of action of aurein 1.2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1129-38. [DOI: 10.1016/j.bbamem.2016.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 11/20/2022]
|
40
|
Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep 2016; 6:26828. [PMID: 27225022 PMCID: PMC4881017 DOI: 10.1038/srep26828] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
In our previous studies, we generated a short 13 amino acid antimicrobial peptide (AMP), DM3, showing potent antipneumococcal activity in vitro and in vivo. Here we analyse the underlying mechanisms of action using Next-Generation transcriptome sequencing of penicillin (PEN)-resistant and PEN-susceptible pneumococci treated with DM3, PEN, and combination of DM3 and PEN (DM3PEN). DM3 induced differential expression in cell wall and cell membrane structural and transmembrane processes. Notably, DM3 altered the expression of competence-induction pathways by upregulating CelA, CelB, and CglA while downregulating Ccs16, ComF, and Ccs4 proteins. Capsular polysaccharide subunits were downregulated in DM3-treated cells, however, it was upregulated in PEN- and DM3PEN-treated groups. Additionally, DM3 altered the amino acids biosynthesis pathways, particularly targeting ribosomal rRNA subunits. Downregulation of cationic AMPs resistance pathway suggests that DM3 treatment could autoenhance pneumococci susceptibility to DM3. Gene enrichment analysis showed that unlike PEN and DM3PEN, DM3 treatment exerted no effect on DNA-binding RNA polymerase activity but observed downregulation of RpoD and RNA polymerase sigma factor. In contrast to DM3, DM3PEN altered the regulation of multiple purine/pyrimidine biosynthesis and metabolic pathways. Future studies based on in vitro experiments are proposed to investigate the key pathways leading to pneumococcal cell death caused by DM3.
Collapse
|
41
|
Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2015; 44:D1087-93. [PMID: 26602694 PMCID: PMC4702905 DOI: 10.1093/nar/gkv1278] [Citation(s) in RCA: 1532] [Impact Index Per Article: 153.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 11/14/2022] Open
Abstract
The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/) is an original database initially online in 2003. The APD2 (2009 version) has been regularly updated and further expanded into the APD3. This database currently focuses on natural antimicrobial peptides (AMPs) with defined sequence and activity. It includes a total of 2619 AMPs with 261 bacteriocins from bacteria, 4 AMPs from archaea, 7 from protists, 13 from fungi, 321 from plants and 1972 animal host defense peptides. The APD3 contains 2169 antibacterial, 172 antiviral, 105 anti-HIV, 959 antifungal, 80 antiparasitic and 185 anticancer peptides. Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties. We also describe other searchable annotations, including target pathogens, molecule-binding partners, post-translational modifications and animal models. Amino acid profiles or signatures of natural AMPs are important for peptide classification, prediction and design. Finally, we summarize various database applications in research and education.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xia Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Zhe Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
42
|
Shahmiri M, Enciso M, Mechler A. Controls and constrains of the membrane disrupting action of Aurein 1.2. Sci Rep 2015; 5:16378. [PMID: 26574052 PMCID: PMC4648102 DOI: 10.1038/srep16378] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022] Open
Abstract
Aurein 1.2 is a 13 residue antimicrobial peptide secreted by the Australian tree frog Litoria Aurea. It is a surface-acting membrane disrupting peptide that permeabilizes bacterial membranes via the carpet mechanism; the molecular details of this process are mostly unknown. Here the mechanism of action of Aurein 1.2 was investigated with an emphasis on the role of membrane charge and C-terminal amidation of the peptide. Using quartz crystal microbalance (QCM) fingerprinting it was found that the membrane charge correlates with membrane affinity of the peptide, however the binding and the membrane disrupting processes are not charge driven; increased membrane charge reduces the membrane disrupting activity. Coarse grain simulations revealed that phenylalanine residues act as membrane anchors. Accordingly Aurein 1.2 has the ability to bind to any membrane. Furthermore, bundling precludes membrane disruption in case of wild type peptides, while non C-terminal amidated peptides form random aggregates leading to detachment from the membrane. Hence C-terminal amidation is crucial for Aurein 1.2 action. Our results suggest that Aurein 1.2 acts via aggregation driven membrane penetration. The concomitant change in the tension of the outer leaflet imposes a spontaneous curvature on the membrane, leading to disintegration.
Collapse
Affiliation(s)
- Mahdi Shahmiri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora Vic 3086, Australia
| | - Marta Enciso
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora Vic 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora Vic 3086, Australia
| |
Collapse
|
43
|
In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin. Sci Rep 2015; 5:9761. [PMID: 25985150 PMCID: PMC4434909 DOI: 10.1038/srep09761] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising class of novel antimicrobial agents owing to their potent antimicrobial activity. In this study, two lead peptides from unrelated classes of AMPs were systematically hybridized into a series of five hybrid peptides (DM1- DM5) with conserved N- and C-termini. This approach allows sequence bridging of two highly dissimilar AMPs and enables sequence-activity relationship be detailed down to single amino acid level. Presence of specific amino acids and physicochemical properties were used to describe the antipneumococcal activity of these hybrids. Results obtained suggested that cell wall and/or membrane targeting could be the principal mechanism exerted by the hybrids leading to microbial cell killing. Moreover, the pneumocidal rate was greater than penicillin (PEN). Combination treatment with both DMs and PEN produced synergism. The hybrids were also broad spectrum against multiple common clinical bacteria. Sequence analysis showed that presence of specific residues has a major role in affecting the antimicrobial and cell toxicity of the hybrids than physicochemical properties. Future studies should continue to investigate the mechanisms of actions, in vivo therapeutic potential, and improve rational peptide design based on the current strategy.
Collapse
|
44
|
Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial peptides in 2014. Pharmaceuticals (Basel) 2015; 8:123-50. [PMID: 25806720 PMCID: PMC4381204 DOI: 10.3390/ph8010123] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | - Biswajit Mishra
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Kyle Lau
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Radha Golla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Institute of Clinical Laboratory, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
45
|
High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2160-72. [PMID: 24463069 DOI: 10.1016/j.bbamem.2014.01.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/26/2013] [Accepted: 01/10/2014] [Indexed: 01/07/2023]
Abstract
Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
|
46
|
Iannucci NB, Curto LM, Albericio F, Cascone O, Delfino JM. Structural glance into a novel anti-staphylococcal peptide. Biopolymers 2014; 102:49-57. [DOI: 10.1002/bip.22394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 11/11/2022]
Affiliation(s)
- N. B. Iannucci
- Department of Biological Chemistry and Institute of Biochemistry and Biophysics (IQUIFIB), School of Pharmacy and Biochemistry; University of Buenos Aires; Junín 956, C1113AAD Buenos Aires, Argentina
- Therapeutic Peptides Research and Development Laboratory; Chemo-Romikin, Carlos Villate 5148, B1605AXL, Buenos Aires; Argentina
| | - L. M. Curto
- Department of Biological Chemistry and Institute of Biochemistry and Biophysics (IQUIFIB), School of Pharmacy and Biochemistry; University of Buenos Aires; Junín 956, C1113AAD Buenos Aires, Argentina
| | - F. Albericio
- Institute for Research in Biomedicine; Barcelona Science Park, c/Baldiri Reixac 10, 08028; Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering; Biomaterials and Nanomedicine, Barcelona Science Park, c/Baldiri Reixac 10, 08028; Barcelona, Spain
- Department of Organic Chemistry, School of Chemistry; University of Barcelona, Martí i Franquès 1-11, 08028; Barcelona, Spain
- School of Chemistry and Physics; University of KwaZulu-Natal; Westville Campus, University Road, Westville, 4001-Durban South Africa
| | - O. Cascone
- Department of Biological Chemistry and Institute of Biochemistry and Biophysics (IQUIFIB), School of Pharmacy and Biochemistry; University of Buenos Aires; Junín 956, C1113AAD Buenos Aires, Argentina
| | - J. M. Delfino
- Department of Biological Chemistry and Institute of Biochemistry and Biophysics (IQUIFIB), School of Pharmacy and Biochemistry; University of Buenos Aires; Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
47
|
Karagiannis ED, Urbanska AM, Sahay G, Pelet JM, Jhunjhunwala S, Langer R, Anderson DG. Rational design of a biomimetic cell penetrating peptide library. ACS NANO 2013; 7:8616-8626. [PMID: 24047542 PMCID: PMC3898733 DOI: 10.1021/nn4027382] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cell penetrating peptides have demonstrated potential to facilitate the cellular delivery of therapeutic molecules. Here we develop a set of 50 cell penetrating peptide based formulations with potential to deliver small interfering RNAs intercellularly. The transfection efficacy of siRNA containing lipid-like nanoparticles decorated with different peptides was evaluated both in vitro and in vivo and correlated with the peptide physical and chemical properties. In vitro, these particles were internalized primarily through macropinocytosis. When the peptides were presented to bone marrow-derived dendritic cells, they induce low immunoactivation relative to control cell penetrating peptides including the antennapedia homeodomain and TAT, as quantified by the expression of activation specific surface proteins like CD80, CD86, and major histocompatibility complex class II. In vivo, peptide decorated nanoparticles primarily accumulated in the lungs and the liver. Three human peptides derived from surfactant protein B (a lung surfactant protein), orexin (a neuropeptide hormone, and lactoferricin (a globular glycoprotein) that exist in many physiological fluids facilitated the in vivo delivery of siRNA and induce significant knock down (90%) of a hepatocyte expressed protein, coagulation Factor VII.
Collapse
Affiliation(s)
- Emmanouil D Karagiannis
- David H. Koch Institute for Integrative Cancer Research, ‡Department of Chemical Engineering, and §Division of Health Science and Technology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs. Pharmaceuticals (Basel) 2013; 6:728-58. [PMID: 24276259 PMCID: PMC3816732 DOI: 10.3390/ph6060728] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.
Collapse
|
49
|
Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, Holanda HHS, Silva RSP, Dias SC, Costa MP, Costa CR, Silva MR, Rezende TMB, Franco OL. Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. Biopolymers 2013. [PMID: 23193596 DOI: 10.1002/bip.22071] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as components of the innate immune system. Recently, it was demonstrated that a single AMP can perform various functions; this ability is known as "peptide promiscuity." However, little is known about promiscuity in plant AMPs without disulfide bonds. This study was carried out to evaluate the promiscuity of Cn-AMP1: a promising disulfide-free plant peptide with reduced size and cationic and hydrophobic properties. Its activity against human pathogenic bacteria and fungal pathogens, as well as its in vitro immunostimulatory activity and effects on cancerous and healthy mammalian cell proliferation were studied here. Cn-AMP1 exerts antimicrobial effects against Gram-positive bacteria, Gram-negative bacteria, and fungi. Moreover, tumor cell viability activity in Caco-2 cells, as well as immunostimulatory activity by evaluating upregulated inflammatory-cytokine secretion by monocytes was also positively observed. Cn-AMP1 does not exhibit a well-defined conformation in aqueous solution and probably undergoes a 3(10)-helix transition in hydrophobic environments. The experimental results support the promiscuous activity of Cn-AMP1, presenting a wide range of activities, including antibacterial, antifungal, and immunostimulatory activity. In the future, Cn-AMP1 should be used in the development of novel biopharmaceuticals, mainly due to its reduced size and broad spectrum of activity.
Collapse
Affiliation(s)
- Osmar N Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mishra B, Epand RF, Epand RM, Wang G. Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37. RSC Adv 2013. [PMID: 24307932 DOI: 10.1039/c3ra42599a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cationic antimicrobial peptides are recognized templates for developing a new generation of antimicrobials to combat superbugs. Human cathelicidin LL-37 is an essential host defense molecule in human innate immunity. Previously, we identified KR-12 as the smallest antibacterial peptide of LL-37. KR-12 has a narrow activity spectrum since it is active against Gram-negative Escherichia coli but not Gram-positive Staphylococcus aureus. The functional roles of the basic amino acids of KR-12, however, have not yet been elucidated. An alanine scan of cationic amino acids of KR-12 provided evidence for their distinct roles in the activities of the peptides. Bacterial killing and membrane permeation experiments indicate that the R23A and K25A mutants, as well as the lysine-to-arginine mutant, were more potent than KR-12. Another three cationic residues (K18, R19, and R29) of KR-12, which are located in the hydrophilic face of the amphiphathic helix, appeared to be more important in clustering anionic lipids or hemolysis than R23 and K25 in the interfacial region. While the loss of interfacial R23 or K25 reduced peptide helicity, underscoring its important role in membrane binding, the overall increase in peptide activity of KR-12 could be ascribed to the increased peptide hydrophobicity that outweighed the role of basic charge in this case. In contrast, the mutations of interfacial R23 or K25 reduced peptide bactericidal activity of GF-17, an overlapping, more hydrophobic and potent peptide also derived from LL-37. Thus, the hydrophobic context of the peptide determines whether an alanine substitution of an interfacial basic residue increases or decreases membrane permeation and peptide activity.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Raquel F Epand
- Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| | - Richard M Epand
- Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|