1
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Han Z, Benlagha K, Lee P, Park CS, Filatov A, Byazrova MG, Miller H, Yang L, Liu C. The function of serine/threonine-specific protein kinases in B cells. Front Immunol 2024; 15:1459527. [PMID: 39445011 PMCID: PMC11496051 DOI: 10.3389/fimmu.2024.1459527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
The serine/threonine-specific protein kinases (STKs) are important for cell survival, proliferation, differentiation, and apoptosis. In B cells, these kinases play indispensable roles in regulating important cellular functions. Multiple studies on human and other animal cells have shown that multiple STKs are involved in different stages of B cell development and antibody production. However, how STKs affect B cell development and function is still not completely understood. Considering that B cells are clinically important in immunity and diseases, our understanding of STKs' roles in B cells is in great need of investigation with current technologies. Investigating serine/threonine kinases will not only deepen our insight into B cell-related disorders but also facilitate the identification of more effective drug targets for conditions like lymphoma and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Zhennan Han
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Cuenca-Zamora EJ, Guijarro-Carrillo PJ, López-Poveda MJ, Morales ML, Lozano ML, Gonzalez-Conejero R, Martínez C, Teruel-Montoya R, Ferrer-Marín F. miR-146a -/- mice model reveals that NF-κB inhibition reverts inflammation-driven myelofibrosis-like phenotype. Am J Hematol 2024; 99:1326-1337. [PMID: 38646919 DOI: 10.1002/ajh.27322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Emerging evidence shows the crucial role of inflammation (particularly NF-κB pathway) in the development and progression of myelofibrosis (MF), becoming a promising therapeutic target. Furthermore, tailoring treatment with currently available JAK inhibitors (such as ruxolitinib or fedratinib) does not modify the natural history of the disease and has important limitations, including cytopenias. Since recent studies have highlighted the role of miR-146a, a negative regulator of the NF-κB pathway, in the pathogenesis of MF; here we used miR-146a-/- (KO) mice, a MF-like model lacking driver mutations, to investigate whether pharmacological inhibition of JAK/STAT and/or NF-κB pathways may reverse the myelofibrotic phenotype of these mice. Specifically, we tested the JAK1/2 inhibitor, ruxolitinib; the NF-κB inhibitor via IKKα/β, BMS-345541; both inhibitors in combination; or a dual inhibitor of both pathways (JAK2/IRAK1), pacritinib. Although all treatments decreased spleen size and partially recovered its architecture, only NF-κB inhibition, either using BMS-345541 (alone or in combination) or pacritinib, resulted in a reduction of extramedullary hematopoiesis, bone marrow (BM) fibrosis and osteosclerosis, along with an attenuation of the exacerbated inflammatory state (via IL-1β and TNFα). However, although dual inhibitor improved anemia and reversed thrombocytopenia, the combined therapy worsened anemia by inducing BM hypoplasia. Both therapeutic options reduced NF-κB and JAK/STAT signaling in a context of JAK2V617F-driven clonal hematopoiesis. Additionally, combined treatment reduced both COL1A1 and IL-6 production in an in vitro model mimicking JAK2-driven fibrosis. In conclusion, NF-κB inhibition reduces, in vitro and in vivo, disease burden and BM fibrosis, which could provide benefits in myelofibrosis patients.
Collapse
Affiliation(s)
- Ernesto José Cuenca-Zamora
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Pedro J Guijarro-Carrillo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | | | - María Luz Morales
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - María Luisa Lozano
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Rocío Gonzalez-Conejero
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Constantino Martínez
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Raúl Teruel-Montoya
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Francisca Ferrer-Marín
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
- Universidad Católica San Antonio (UCAM), Murcia, Spain
| |
Collapse
|
4
|
Standing D, Dandawate P, Gunewardena S, Covarrubias-Zambrano O, Roby KF, Khabele D, Jewell A, Tawfik O, Bossmann SH, Godwin AK, Weir SJ, Jensen RA, Anant S. Selective targeting of IRAK1 attenuates low molecular weight hyaluronic acid-induced stemness and non-canonical STAT3 activation in epithelial ovarian cancer. Cell Death Dis 2024; 15:362. [PMID: 38796478 PMCID: PMC11127949 DOI: 10.1038/s41419-024-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Katherine F Roby
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Jewell
- Department of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pharmacology and Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
6
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
7
|
Mascarenhas J, Gleitz HFE, Chifotides HT, Harrison CN, Verstovsek S, Vannucchi AM, Rampal RK, Kiladjian JJ, Vainchenker W, Hoffman R, Schneider RK, List AF. Biological drivers of clinical phenotype in myelofibrosis. Leukemia 2023; 37:255-264. [PMID: 36434065 PMCID: PMC9898039 DOI: 10.1038/s41375-022-01767-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Myelofibrosis (MF) is a myeloproliferative disorder that exhibits considerable biological and clinical heterogeneity. At the two ends of the disease spectrum are the myelodepletive or cytopenic phenotype and the myeloproliferative phenotype. The cytopenic phenotype has a high prevalence in primary MF (PMF) and is characterized by low blood counts. The myeloproliferative phenotype is typically associated with secondary MF (SMF), mild anemia, minimal need for transfusion support, and normal to mild thrombocytopenia. Differences in somatic driver mutations and allelic burden, as well as the acquisition of non-driver mutations further influences these phenotypic differences, prognosis, and response to therapies such as JAK2 inhibitors. The outcome of patients with the cytopenic phenotype are comparatively worse and frequently pose a challenge to treat given the inherent exacerbation of cytopenias. Recent data indicate that an innate immune deregulated state that hinges on the myddosome-IRAK-NFκB axis favors the cytopenic myelofibrosis phenotype and offers opportunity for novel treatment approaches. We will review the biological and clinical features of the MF disease spectrum and associated treatment considerations.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hélène F E Gleitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Helen T Chifotides
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Raajit K Rampal
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebekka K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | |
Collapse
|
8
|
Phowira J, Ahmed FW, Bakhashab S, Weaver JU. Upregulated miR-18a-5p in Colony Forming Unit-Hill’s in Subclinical Cardiovascular Disease and Metformin Therapy; MERIT Study. Biomedicines 2022; 10:biomedicines10092136. [PMID: 36140236 PMCID: PMC9496122 DOI: 10.3390/biomedicines10092136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Colony forming unit-Hill’s (CFU-Hill’s) colonies are hematopoietic-derived cells that participate in neovasculogenesis and serve as a biomarker for vascular health. In animals, overexpression of miR-18a-5p was shown to be pro-atherogenic. We had shown that well-controlled type 1 diabetes mellitus (T1DM) is characterized by an inflammatory state, endothelial dysfunction, and reduced number of CFU-Hill’s, a model of subclinical cardiovascular disease (CVD). MERIT study explored the role of miR-18a-5p expression in CFU-Hill’s colonies in T1DM, and the cardioprotective effect of metformin in subclinical CVD. In T1DM, miR-18a-5p was significantly upregulated whereas metformin reduced it to HC levels. MiR-18a-5p was inversely correlated with CFU-Hill’s colonies, CD34+, CD34+CD133+ cells, and positively with IL-10, C-reactive protein, vascular endothelial growth factor-D (VEGF-D), and thrombomodulin. The receiver operating characteristic curve demonstrated, miR-18a-5p as a biomarker of T1DM, and upregulated miR-18a-5p defining subclinical CVD at HbA1c of 44.5 mmol/mol (pre-diabetes). Ingenuity pathway analysis documented miR-18a-5p inhibiting mRNA expression of insulin-like growth factor-1, estrogen receptor-1, hypoxia-inducible factor-1α cellular communication network factor-2, and protein inhibitor of activated STAT 3, whilst metformin upregulated these mRNAs via transforming growth factor beta-1 and VEGF. We confirmed the pro-atherogenic effect of miR-18a-5p in subclinical CVD and identified several target genes for future CVD therapies.
Collapse
Affiliation(s)
- Jason Phowira
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Fahad W. Ahmed
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Department of Medical Oncology, King Faisal Specialist Hospital and Research Centre, Madinah 42522, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: ; Tel.: +44-191-445-2181
| |
Collapse
|
9
|
Mascarenhas J. Pacritinib for the treatment of patients with myelofibrosis and thrombocytopenia. Expert Rev Hematol 2022; 15:671-684. [PMID: 35983661 DOI: 10.1080/17474086.2022.2112565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Myelofibrosis (MF) is a rare myeloproliferative neoplasm characterized by a complex symptom profile, cytopenias, splenomegaly, and potential for leukemic progression. Severe thrombocytopenia is common in patients with MF and correlates with poor prognosis; however, until recently, treatment options for these patients were limited. Pacritinib, a potent Janus kinase (JAK) 2/interleukin-1 receptor-associated kinase 1 (IRAK1) inhibitor, has demonstrated significant reduction in splenomegaly, improved symptom control, and a manageable safety profile in patients with MF regardless of the severity of thrombocytopenia. AREAS COVERED : This review will outline the pacritinib drug profile and summarize key efficacy and safety data, focusing on the 200 mg twice daily dose from phase 2 and 3 studies that formed the basis for the recent US Food and Drug Administration approval of pacritinib in patients with MF and severe thrombocytopenia (platelet counts <50 x 109/L). EXPERT OPINION Pacritinib, with its unique mechanism of action targeting both JAK2 and IRAK1, offers patients with MF and severe thrombocytopenia a new treatment option, providing consistent disease and symptom control. Adverse events are easily manageable. Further analyses to identify ideal patient characteristics for pacritinib and other JAK inhibitors along with studies of pacritinib combinations are warranted, including in related myeloid malignancies.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Division of Hematology/Oncology Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
10
|
SIGIRR Mutation in Human Necrotizing Enterocolitis (NEC) Disrupts STAT3-Dependent microRNA Expression in Neonatal Gut. Cell Mol Gastroenterol Hepatol 2021; 13:425-440. [PMID: 34563711 PMCID: PMC8688179 DOI: 10.1016/j.jcmgh.2021.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Single immunoglobulin interleukin-1-related receptor (SIGIRR) is a major inhibitor of Toll-like receptor signaling. Our laboratory identified a novel SIGIRR stop mutation (p.Y168X) in an infant who died of severe necrotizing enterocolitis (NEC). Herein, we investigated the mechanisms by which SIGIRR mutations induce Toll-like receptor hyper-responsiveness in the neonatal gut, disrupting postnatal intestinal adaptation. METHODS Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was used to generate transgenic mice encoding the SIGIRR p.Y168X mutation. Ileal lysates, mouse intestinal epithelial cell (IEC) lysates, and intestinal sections were used to assess inflammation, signal transducer and activator of transcription 3 (STAT3) phosphorylation, microRNA (miRNA), and interleukin-1-related-associated kinase 1 (IRAK1) expression. Western blot, quantitative reverse-transcription polymerase chain reaction(qRT-PCR), and luciferase assays were performed to investigate SIGIRR-STAT3 signaling in human intestinal epithelial cells (HIEC) expressing wild-type or SIGIRR (p.Y168X) plasmids. RESULTS SigirrTg mice showed increased intestinal inflammation and nuclear factor-κB activation concomitant with decreased IEC expression of miR-146a and miR-155. Mechanistic studies in HIECs showed that although SIGIRR induced STAT3-mediated expression of miR-146a and miR-155, the p.Y168X mutation disrupted SIGIRR-mediated STAT3-dependent miRNA expression. Chromatin immunoprecipitation and luciferase assays showed that SIGIRR activation of STAT3-induced miRNA expression is dependent on IRAK1. Both in HIECs and in the mouse intestine, decreased expression of miR-146a observed with the p.Y168X mutation increased expression of IRAK1, a protein whose down-regulation is important for postnatal gut adaptation. CONCLUSIONS Our results uncover a novel pathway (SIGIRR-STAT3-miRNA-IRAK1 repression) by which SIGIRR regulates postnatal intestine adaptation, which is disrupted by a SIGIRR mutation identified in human NEC. These data provide new insights into how human genetic mutations in SIGIRR identified in NEC result in loss of postnatal intestinal immune tolerance.
Collapse
|
11
|
Yang F, Lin J, Chen W. Post-translational modifications in T cells in systemic erythematosus lupus. Rheumatology (Oxford) 2021; 60:2502-2516. [PMID: 33512488 DOI: 10.1093/rheumatology/keab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic erythematosus lupus (SLE) is a classic autoimmune disease characterized by multiple autoantibodies and immune-mediated tissue damage. The aetiology of this disease is still unclear. A new drug, belimumab, which acts against the B-lymphocyte stimulator (BLyS), can effectively improve the condition of SLE patients, but it cannot resolve all SLE symptoms. The discovery of novel, precise therapeutic targets is urgently needed. It is well known that abnormal T-cell function is one of the most crucial factors contributing to the pathogenesis of SLE. Protein post-translational modifications (PTMs), including phosphorylation, glycosylation, acetylation, methylation, ubiquitination and SUMOylation have been emphasized for their roles in activating protein activity, maintaining structural stability, regulating protein-protein interactions and mediating signalling pathways, in addition to other biological functions. Summarizing the latest data in this area, this review focuses on the potential roles of diverse PTMs in regulating T-cell function and signalling pathways in SLE pathogenesis, with the goal of identifying new targets for SLE therapy.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jin Lin
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiqian Chen
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Yang YC, Chen SN, Gan Z, Huang L, Nie P. Cloning and functional characterization of IRAK1 from rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103780. [PMID: 32745481 DOI: 10.1016/j.dci.2020.103780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
As a key molecule in innate immune signalling pathway, interleukin (IL)-1 receptor-associated kinase 1 (IRAK1) mediates downstream signalling cascades in immune response. In the present study, an IRAK1 orthologue was characterized from rainbow trout (Oncorhynchus mykiss), with a 2115 bp open reading frame (ORF), encoding a protein of 704 amino acids (aa). Multiple alignments showed that IRAK1 contains highly conserved features among different species, with a conservative N-terminal death domain (DD) and a C-terminal conserved serine/threonine protein kinase (STKc) domain. Expression analysis indicated that IRAK1 was widely expressed in examined organs/tissues, with the highest level observed in muscle and lowest in stomach. In RTG-2 cell line, the induced expression of IRAK1 was observed following the stimulation by the fish bacterial pathogen Flavobacterium columnare. Luciferase activity assays revealed that IRAK1 induced significantly the activity of NF-κB in Human embryonic kidney 293T (HEK293T) cell line; but after co-transfected with rainbow trout IL-1 receptor-associated kinase 4 (IRAK4), the induction was significantly down-regulated when compared with the expression of IRAK1 alone. Co-immunoprecipitation (Co-IP) assays indicated that IRAK1 was associated with rainbow trout myeloid differentiation factor 88 (MyD88), IRAK4 and TNF receptor associated factor 6 (TRAF6) in transfected HEK293T cells, and may form a complex with MyD88, IRAK4 and TRAF6 during the signalling pathway.
Collapse
Affiliation(s)
- Yue Cong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
13
|
Xie X, Xu K, Mao H, Lv Y, Weng P, Chang K, Lin G, Hu C. Grass carp (Ctenopharyngodon idella) IRAK1 and STAT3 up-regulate synergistically the transcription of IL-10. FISH & SHELLFISH IMMUNOLOGY 2020; 102:28-35. [PMID: 32278837 DOI: 10.1016/j.fsi.2020.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
In vertebrates, IL-10 is an anti-inflammatory factor that serves as a key inhibitory role in a wide range of immune responses. IRAK1 (IL-1 receptor-associated kinase 1), a key molecule in the inflammatory signal of IL-1R/TLR, plays an important pivotal role in regulating the autoimmunity of body. STAT3 (Signal transducer and activator of transcription 3) activated by IRAK1 participates in inflammation, tumorigenesis, metabolic disorders and immune response. Under the stimulation of LPS, IRAK1 enters the nucleus to form a dimer with STAT3 and regulates the expression of IL-10. However, the relationship between fish IRAK1 and STAT3 has not been reported. To explain the anti-inflammation in fish, we amplified and identified the complete open reading frame of grass carp IRAK1 (CiIRAK1) and STAT3 (CiSTAT3) based on the existing sequences. The expression of CiIRAK1 and CiSTAT3 were up-regulated significantly under the stimulation of LPS. This result suggests that both CiIRAK1 and CiSTAT3 may be involved in LPS-induced TLR4 pathway. The subcellular localization experiment revealed that CiIRAK1 is distributed in cytoplasm and enters nucleus after LPS stimulation. CiSTAT3 is distributed in both cytoplasm and nucleus with or without LPS stimulation. Immunoprecipitation assay revealed that CiIRAK1 interacted with CiSTAT3 under LPS stimulation. However in absence of LPS stimulation, CiIRAK1 and CiSTAT3 cannot interact with each other. Subsequently, immunofluorescence colocalization experiment further proved the interaction of CiIRAK1 and CiSTAT3 in nucleus under LPS stimulation. The dual luciferase reporter assays indicated that the binding of CiIRAK1 and CiSTAT3 synergistically enhanced the activity of CiIL-10 promoter.
Collapse
Affiliation(s)
- Xiaofen Xie
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kang Xu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Yangfeng Lv
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Panwei Weng
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
14
|
Modeling the Bistable Dynamics of the Innate Immune System. Bull Math Biol 2018; 81:256-276. [PMID: 30387078 DOI: 10.1007/s11538-018-0527-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
The size of primary challenge with lipopolysaccharide induces changes in the innate immune cells phenotype between pro-inflammatory and pro-tolerant states when facing a secondary lipopolysaccharide challenge. To determine the molecular mechanisms governing this differential response, we propose a mathematical model for the interaction between three proteins involved in the immune cell decision making: IRAK-1, PI3K, and RelB. The mutual inhibition of IRAK-1 and PI3K in the model leads to bistable dynamics. By using the levels of RelB as indicative of strength of the immune responses, we connect the size of different primary lipopolysaccharide doses to the differential phenotypical outcomes following a secondary challenge. We further predict under what circumstances the primary LPS dose does not influence the response to a secondary challenge. Our results can be used to guide treatments for patients with either autoimmune disease or compromised immune system.
Collapse
|
15
|
Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018; 9:33416-33439. [PMID: 30279971 PMCID: PMC6161786 DOI: 10.18632/oncotarget.26058] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Angela Fleischman
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | - John O. Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, SG, Singapore
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
16
|
Doebbeler M, Koenig C, Krzyzak L, Seitz C, Wild A, Ulas T, Baßler K, Kopelyanskiy D, Butterhof A, Kuhnt C, Kreiser S, Stich L, Zinser E, Knippertz I, Wirtz S, Riegel C, Hoffmann P, Edinger M, Nitschke L, Winkler T, Schultze JL, Steinkasserer A, Lechmann M. CD83 expression is essential for Treg cell differentiation and stability. JCI Insight 2018; 3:99712. [PMID: 29875316 PMCID: PMC6124443 DOI: 10.1172/jci.insight.99712] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Foxp3-positive regulatory T cells (Tregs) are crucial for the maintenance of immune homeostasis and keep immune responses in check. Upon activation, Tregs are transferred into an effector state expressing transcripts essential for their suppressive activity, migration, and survival. However, it is not completely understood how different intrinsic and environmental factors control differentiation. Here, we present for the first time to our knowledge data suggesting that Treg-intrinsic expression of CD83 is essential for Treg differentiation upon activation. Interestingly, mice with Treg-intrinsic CD83 deficiency are characterized by a proinflammatory phenotype. Furthermore, the loss of CD83 expression by Tregs leads to the downregulation of Treg-specific differentiation markers and the induction of an inflammatory profile. In addition, Treg-specific conditional knockout mice showed aggravated autoimmunity and an impaired resolution of inflammation. Altogether, our results show that CD83 expression in Tregs is an essential factor for the development and function of effector Tregs upon activation. Since Tregs play a crucial role in the maintenance of immune tolerance and thus prevention of autoimmune disorders, our findings are also clinically relevant.
Collapse
Affiliation(s)
- Marina Doebbeler
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christina Koenig
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lena Krzyzak
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christine Seitz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Wild
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Thomas Ulas
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Kevin Baßler
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Dmitry Kopelyanskiy
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Alina Butterhof
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Simon Kreiser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Christin Riegel
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Winkler
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim L. Schultze
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Lechmann
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
17
|
Zhou Z, Tian Z, Zhang M, Zhang Y, Ni B, Hao F. Upregulated IL-1 Receptor-associated Kinase 1 (IRAK1) in Systemic Lupus Erythematosus: IRAK1 Inhibition Represses Th17 Differentiation with Therapeutic Potential. Immunol Invest 2018; 47:468-483. [PMID: 29611775 DOI: 10.1080/08820139.2018.1458105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhou Zhou
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Mengjie Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuxun Zhang
- College of Liberal Arts and Sciences, University of lowa, lowa City, USA
| | - Bing Ni
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Fei Hao
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Spolarics Z, Peña G, Qin Y, Donnelly RJ, Livingston DH. Inherent X-Linked Genetic Variability and Cellular Mosaicism Unique to Females Contribute to Sex-Related Differences in the Innate Immune Response. Front Immunol 2017; 8:1455. [PMID: 29180997 PMCID: PMC5694032 DOI: 10.3389/fimmu.2017.01455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Females have a longer lifespan and better general health than males. Considerable number of studies also demonstrated that, after trauma and sepsis, females present better outcomes as compared to males indicating sex-related differences in the innate immune response. The current notion is that differences in the immuno-modulatory effects of sex hormones are the underlying causative mechanism. However, the field remains controversial and the exclusive role of sex hormones has been challenged. Here, we propose that polymorphic X-linked immune competent genes, which are abundant in the population are important players in sex-based immuno-modulation and play a key role in causing sex-related outcome differences following trauma or sepsis. We describe the differences in X chromosome (ChrX) regulation between males and females and its consequences in the context of common X-linked polymorphisms at the individual as well as population level. We also discuss the potential pathophysiological and immune-modulatory aspects of ChrX cellular mosaicism, which is unique to females and how this may contribute to sex-biased immune-modulation. The potential confounding effects of ChrX skewing of cell progenitors at the bone marrow is also presented together with aspects of acute trauma-induced de novo ChrX skewing at the periphery. In support of the hypothesis, novel observations indicating ChrX skewing in a female trauma cohort as well as case studies depicting the temporal relationship between trauma-induced cellular skewing and the clinical course are also described. Finally, we list and discuss a selected set of polymorphic X-linked genes, which are frequent in the population and have key regulatory or metabolic functions in the innate immune response and, therefore, are primary candidates for mediating sex-biased immune responses. We conclude that sex-related differences in a variety of disease processes including the innate inflammatory response to injury and infection may be related to the abundance of X-linked polymorphic immune-competent genes, differences in ChrX regulation, and inheritance patterns between the sexes and the presence of X-linked cellular mosaicism, which is unique to females.
Collapse
Affiliation(s)
- Zoltan Spolarics
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Geber Peña
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Yong Qin
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Robert J Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - David H Livingston
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
19
|
Della Mina E, Borghesi A, Zhou H, Bougarn S, Boughorbel S, Israel L, Meloni I, Chrabieh M, Ling Y, Itan Y, Renieri A, Mazzucchelli I, Basso S, Pavone P, Falsaperla R, Ciccone R, Cerbo RM, Stronati M, Picard C, Zuffardi O, Abel L, Chaussabel D, Marr N, Li X, Casanova JL, Puel A. Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc Natl Acad Sci U S A 2017; 114:E514-E523. [PMID: 28069966 PMCID: PMC5278481 DOI: 10.1073/pnas.1620139114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM2CSK4, LTA, FSL-1), TLR1/2 (PAM3CSK4), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1β. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1β. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.
Collapse
Affiliation(s)
- Erika Della Mina
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Hospital Foundation, 27100 Pavia, Italy
- Laboratory of Neonatal Immunology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | | | | | - Laura Israel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Ilaria Meloni
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Yun Ling
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Medical Genetics, University Hospital of Siena, 53100 Siena, Italy
| | - Iolanda Mazzucchelli
- Laboratory of Neonatal Immunology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Basso
- Laboratory of Transplant Immunology/Cell Factory, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Piero Pavone
- General Paediatrics Operative Unit, Vittorio Emanuele University Hospital, University of Catania, 95100 Catania, Italy
| | - Raffaele Falsaperla
- General Paediatrics Operative Unit, Vittorio Emanuele University Hospital, University of Catania, 95100 Catania, Italy
| | - Roberto Ciccone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Rosa Maria Cerbo
- Neonatal Intensive Care Unit, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Mauro Stronati
- Neonatal Intensive Care Unit, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Hospital Foundation, 27100 Pavia, Italy
- Laboratory of Neonatal Immunology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, 75015 Paris, France
- Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, 75015 Paris, France
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | | | - Nico Marr
- Sidra Medical and Research Center, Doha, Qatar
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France;
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10065
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France;
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| |
Collapse
|
20
|
Viral microRNAs Target a Gene Network, Inhibit STAT Activation, and Suppress Interferon Responses. Sci Rep 2017; 7:40813. [PMID: 28102325 PMCID: PMC5244407 DOI: 10.1038/srep40813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs during latency that are processed to yield ~25 mature microRNAs (miRNAs). We were interested in identifying cellular networks that were targeted by KSHV-miRNAs and employed network building strategies using validated KSHV miRNA targets. Here, we report the identification of a gene network centering on the transcription factor- signal transducer and activator of transcription 3 (STAT3) that is targeted by KSHV miRNAs. KSHV miRNAs suppressed STAT3 and STAT5 activation and inhibited STAT3-dependent reporter activation upon IL6-treatment. KSHV miRNAs also repressed the induction of antiviral interferon-stimulated genes upon IFNα- treatment. Finally, we observed increased lytic reactivation of KSHV from latently infected cells upon STAT3 repression with siRNAs or a small molecule inhibitor. Our data suggest that treatment of infected cells with a STAT3 inhibitor and a viral replication inhibitor, ganciclovir, represents a possible strategy to eliminate latently infected cells without increasing virion production. Together, we show that KSHV miRNAs suppress a network of targets associated with STAT3, deregulate cytokine-mediated gene activation, suppress an interferon response, and influence the transition into the lytic phase of viral replication.
Collapse
|
21
|
Talreja J, Talwar H, Ahmad N, Rastogi R, Samavati L. Dual Inhibition of Rip2 and IRAK1/4 Regulates IL-1β and IL-6 in Sarcoidosis Alveolar Macrophages and Peripheral Blood Mononuclear Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1368-78. [PMID: 27402699 DOI: 10.4049/jimmunol.1600258] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Sarcoidosis is a multisystem granulomatous disease of unknown etiology that primarily affects the lungs. Our previous work indicates that activation of p38 plays a pivotal role in sarcoidosis inflammatory response. Therefore, we investigated the upstream kinase responsible for activation of p38 in sarcoidosis alveolar macrophages (AMs) and PBMCs. We identified that sustained p38 phosphorylation in sarcoidosis AMs and PBMCs is associated with active MAPK kinase 4 but not with MAPK kinase 3/6. Additionally, we found that sarcoidosis AMs exhibit a higher expression of IRAK1, IRAK-M, and receptor interacting protein 2 (Rip2). Surprisingly, ex vivo treatment of sarcoidosis AMs or PBMCs with IRAK1/4 inhibitor led to a significant increase in IL-1β mRNA expression both spontaneously and in response to TLR2 ligand. However, a combination of Rip2 and IRAK-1/4 inhibitors significantly decreased both IL-1β and IL-6 production in sarcoidosis PBMCs and moderately in AMs. Importantly, a combination of Rip2 and IRAK-1/4 inhibitors led to decreased IFN-γ and IL-6 and decreased percentage of activated CD4(+)CD25(+) cells in PBMCs. These data suggest that in sarcoidosis, both pathways, namely IRAK and Rip2, are deregulated. Targeted modulation of Rip2 and IRAK pathways may prove to be a novel treatment for sarcoidosis.
Collapse
Affiliation(s)
- Jaya Talreja
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Harvinder Talwar
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Nisar Ahmad
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Ruchi Rastogi
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Lobelia Samavati
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
22
|
IRAK regulates macrophage foam cell formation by modulating genes involved in cholesterol uptake and efflux. Bioessays 2016; 38:591-604. [DOI: 10.1002/bies.201600085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Kamaly N, Fredman G, Fojas JJR, Subramanian M, Choi W, Zepeda K, Vilos C, Yu M, Gadde S, Wu J, Milton J, Leitao RC, Fernandes LR, Hasan M, Gao H, Nguyen V, Harris J, Tabas I, Farokhzad OC. Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis. ACS NANO 2016; 10:5280-92. [PMID: 27100066 PMCID: PMC5199136 DOI: 10.1021/acsnano.6b01114] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inflammation is an essential protective biological response involving a coordinated cascade of signals between cytokines and immune signaling molecules that facilitate return to tissue homeostasis after acute injury or infection. However, inflammation is not effectively resolved in chronic inflammatory diseases such as atherosclerosis and can lead to tissue damage and exacerbation of the underlying condition. Therapeutics that dampen inflammation and enhance resolution are currently of considerable interest, in particular those that temper inflammation with minimal host collateral damage. Here we present the development and efficacy investigations of controlled-release polymeric nanoparticles incorporating the anti-inflammatory cytokine interleukin 10 (IL-10) for targeted delivery to atherosclerotic plaques. Nanoparticles were nanoengineered via self-assembly of biodegradable polyester polymers by nanoprecipitation using a rapid micromixer chip capable of producing nanoparticles with retained IL-10 bioactivity post-exposure to organic solvent. A systematic combinatorial approach was taken to screen nanoparticles, resulting in an optimal bioactive formulation from in vitro and ex vivo studies. The most potent nanoparticle termed Col-IV IL-10 NP22 significantly tempered acute inflammation in a self-limited peritonitis model and was shown to be more potent than native IL-10. Furthermore, the Col-IV IL-10 nanoparticles prevented vulnerable plaque formation by increasing fibrous cap thickness and decreasing necrotic cores in advanced lesions of high fat-fed LDLr(-/-) mice. These results demonstrate the efficacy and pro-resolving potential of this engineered nanoparticle for controlled delivery of the potent IL-10 cytokine for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Gabrielle Fredman
- Departments of Medicine, Pathology and Cell Biology, and Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, United States
| | - Jhalique Jane R. Fojas
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Manikandan Subramanian
- Departments of Medicine, Pathology and Cell Biology, and Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, United States
| | - Won Choi
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinj-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Katherine Zepeda
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Cristian Vilos
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Facultad de Medicina, Center for Integrative and Innovative Science, Universidad Andres Bello, Echaurren 183, Santiago 8370071, Chile
| | - Mikyung Yu
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Suresh Gadde
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Jaclyn Milton
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Renata Carvalho Leitao
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Livia Rosa Fernandes
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Moaraj Hasan
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Huayi Gao
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Vance Nguyen
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Jordan Harris
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Ira Tabas
- Departments of Medicine, Pathology and Cell Biology, and Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, United States
- Corresponding Authors: .
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding Authors: .
| |
Collapse
|
24
|
Heiseke AF, Jeuk BH, Markota A, Straub T, Lehr HA, Reindl W, Krug AB. IRAK1 Drives Intestinal Inflammation by Promoting the Generation of Effector Th Cells with Optimal Gut-Homing Capacity. THE JOURNAL OF IMMUNOLOGY 2015; 195:5787-94. [DOI: 10.4049/jimmunol.1501874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
|
25
|
Wee ZN, Yatim SMJM, Kohlbauer VK, Feng M, Goh JY, Bao Y, Yi B, Lee PL, Zhang S, Wang PP, Lim E, Tam WL, Cai Y, Ditzel HJ, Hoon DSB, Tan EY, Yu Q. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel. Nat Commun 2015; 6:8746. [PMID: 26503059 PMCID: PMC4640083 DOI: 10.1038/ncomms9746] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022] Open
Abstract
Metastatic tumour recurrence due to failed treatments remains a major challenge of breast cancer clinical management. Here we report that interleukin-1 receptor-associated kinase 1 (IRAK1) is overexpressed in a subset of breast cancers, in particular triple-negative breast cancer (TNBC), where it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance. Triple negative breast cancer (TNBC) patients often acquire resistant to chemotherapy. In this study, the authors identify the IRAK1 as the crucial driver of NF-κB-related cytokine secretion involved in TNBC metastasis and therapy resistance.
Collapse
Affiliation(s)
- Zhen Ning Wee
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Siti Maryam J M Yatim
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Vera K Kohlbauer
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Min Feng
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Jian Yuan Goh
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Yi Bao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Bao Yi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Puay Leng Lee
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Songjing Zhang
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore
| | - Pan Pan Wang
- First Affiliated Hospital, Jinan University, Guangzhou 510632, China.,Cancer Research Institute, Jinan University, Guangzhou 510632, China
| | - Elgene Lim
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Wai Leong Tam
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore.,Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Yu Cai
- Cancer Research Institute, Jinan University, Guangzhou 510632, China.,School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Oncology, Odense University Hospital, Odense 5000, Denmark
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California 90404, USA
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 02-01, Biopolis 138672, Singapore.,Cancer Research Institute, Jinan University, Guangzhou 510632, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore
| |
Collapse
|
26
|
Affiliation(s)
- Makoto Inoue
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Mari L Shinohara
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
27
|
Shan SJ, Liu DZ, Wang L, Zhu YY, Zhang FM, Li T, An LG, Yang GW. Identification and expression analysis of irak1 gene in common carp Cyprinus carpio L.: indications for a role of antibacterial and antiviral immunity. JOURNAL OF FISH BIOLOGY 2015; 87:241-255. [PMID: 26099328 DOI: 10.1111/jfb.12714] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
In this study, the full-length complementary (c)DNA of interleukin-1 receptor-associated kinase 1 gene (irak1) was cloned from common carp Cyprinus carpio. The complete open reading frame of irak1 contained 2109 bp encoding a protein of 702 amino acid residues that comprised a death domain, a ProST region, a serine-threonine-specific protein kinase catalytic domain and a C-terminal domain. The amino-acid sequence of C. carpio Irak1 protein shared sequence homology with grass carp Ctenopharyngodon idellus (84.5%). The phylogenetic tree of IRAKs separated the polypeptides into four clades, comprising IRAK1s, IRAK2s, IRAK3s and IRAK4s. Cyprinus carpio Irak1 fell into the cluster with previously reported IRAK1s including teleost Irak1s. The irak1 gene was highly expressed in gills, followed by brain, skin, hindgut, buccal epithelium, spleen, foregut, head kidney and liver, and was expressed at lowest levels in gonad and muscle. The irak1 messenger (m)RNA expression was up-regulated in liver, spleen, head kidney, foregut, hindgut, gills and skin after stimulation with Vibrio anguillarum and poly(I:C), and significantly high up-regulated expression was observed in liver and spleen. These results implied that irak1 might participate in antibacterial and antiviral innate immunity. These findings gave the indications that irak1 may participate in antibacterial and antiviral immunity.
Collapse
Affiliation(s)
- S J Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - D Z Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - L Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Y Y Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - F M Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - T Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - L G An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - G W Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
28
|
Morris MC, Gilliam EA, Li L. Innate immune programing by endotoxin and its pathological consequences. Front Immunol 2015; 5:680. [PMID: 25610440 PMCID: PMC4285116 DOI: 10.3389/fimmu.2014.00680] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022] Open
Abstract
Monocytes and macrophages play pivotal roles in inflammation and homeostasis. Recent studies suggest that dynamic programing of macrophages and monocytes may give rise to distinct "memory" states. Lipopolysaccharide (LPS), a classical pattern recognition molecule, dynamically programs innate immune responses. Emerging studies have revealed complex dynamics of cellular responses to LPS, with high doses causing acute, resolving inflammation, while lower doses are associated with low-grade and chronic non-resolving inflammation. These phenomena hint at dynamic complexities of intra-cellular signaling circuits downstream of the Toll-like receptor 4 (TLR4). In this review, we examine pathological effects of varying LPS doses with respect to the dynamics of innate immune responses and key molecular regulatory circuits responsible for these effects.
Collapse
Affiliation(s)
- Matthew C. Morris
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth A. Gilliam
- Virginia Tech Carillion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
29
|
Abstract
Innate immune signalling has an essential role in inflammation, and the dysregulation of signalling components of this pathway is increasingly being recognised as an important mediator in cancer initiation and progression. In some malignancies, dysregulation of inflammatory toll-like receptor (TLR) and interleukin-1 receptor (IL1R) signalling is typified by increased NF-κB activity, and it occurs through somatic mutations, chromosomal deletions, and/or transcriptional deregulation. Interleukin-1 receptor-associated kinase (IRAK) family members are mediators of TLR/IL1R superfamily signalling, and mounting evidence implicates these kinases as viable cancer targets. Although there have been previous efforts aimed at the development of IRAK kinase inhibitors, this is currently an area of renewed interest for cancer drug development.
Collapse
|
30
|
Abstract
Interleukin-1 receptor-associated kinase (IRAK1) is a key regulatory protein in TLR/IL1R-mediated cell activation during inflammatory response. Studies indicated that pending on the nature of the used inflammatory model, downregulation of IRAK1 may be beneficial or detrimental. However, the role of IRAK1 in affecting outcome in polymicrobial sepsis is unknown. We tested this question using an IRAK1-deficient mouse strain and cecal ligation and puncture (CLP) procedure, which is a clinically relevant rodent septic model. Sepsis-induced mortality was markedly lower in IRAK1-deficient mice (35 %) compared to WT (85 %). Sepsis-induced increases in blood IL-6 and IL-10 levels were blunted at 6 h post-CLP in IRAK1 deficiency compared to WT, but cytokine levels were similar at 20 h post-CLP. Sepsis-induced blood granulocytosis and depletion of splenic B cells were also blunted in IRAK1-deficient mice as compared to WT. Analysis of TLR-mediated cytokine responses by IRAK1-deficient and WT macrophages ex vivo indicated a TLR4-dependent downregulation of IL-6 and IL1β in IRAK1 deficiency, whereas TLR2-dependent responses were unaffected. TLR7/8-mediated IL-6, IL1β, and IL-10 production was also blunted in IRAK1 macrophages as compared to WT. The study shows that IRAK1 deficiency impacts multiple TLR-dependent pathways and decreases early cytokine responses following polymicrobial sepsis. The delayed inflammatory response caused by the lack of IRAK1 expression is beneficial, as it manifests a marked increased chance of survival after polymicrobial sepsis.
Collapse
|
31
|
|
32
|
T cells down-regulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A 2014; 111:5295-300. [PMID: 24706909 DOI: 10.1073/pnas.1321427111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endotoxemia is caused by excessive inflammation, but the immune system has various mechanisms to avoid collateral organ damage in endotoxemia. A handful of reports have shown that innate immune responses are suppressed by the adaptive immune system. However, the molecular mechanism by which adaptive immune cells suppress innate inflammatory responses is not clear. Here, we report that T cells are shown to interact with macrophages at the early stage of enodotoxemia and to prolong survival of mice through controlling TNF and IL-10 levels by macrophage CD40 stimulation. The cross-talk between CD40 and toll-like receptor (TLR4) signaling first mediates IL-1 receptor-associated kinase 1 (IRAK1) nuclear translocation and its binding to the IL-10 gene promoter in macrophages, without interfering with the NFκB pathway. IL-10 is then detected by macrophages in an autocrine fashion to destabilize Tnfa mRNA. To induce IRAK1-mediated IL-10 expression, signals from both CD40 and TLR4 are essential. CD40 signaling induces IRAK1 sumoylation in the presence of TNF receptor-associated factor 2 (TRAF2) and intracellular isoform of osteopontin (iOPN) whereas TLR4 signaling provides IFN regulatory factor 5 (IRF5) as a chaperone for sumoylated IRAK1 nuclear translocation. Interaction of T cells with macrophages was observed in the spleen in vivo after endotoxemia induction with LPS injection. Our study demonstrates a mechanistic basis for the immunosuppressive role of macrophage CD40 in LPS endotoxemia.
Collapse
|
33
|
Stürner KH, Verse N, Yousef S, Martin R, Sospedra M. Boswellic acids reduce Th17 differentiation via blockade of IL-1β-mediated IRAK1 signaling. Eur J Immunol 2014; 44:1200-12. [PMID: 24469975 DOI: 10.1002/eji.201343629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 12/19/2013] [Accepted: 01/20/2014] [Indexed: 01/29/2023]
Abstract
Interferon-gamma producing CD4(+) T (Th1) cells and IL-17-producing CD4(+) T (Th17) cells are involved in the pathogenesis of several autoimmune diseases including multiple sclerosis. Therefore, the development of treatment strategies controlling the generation and expansion of these effector cells is of high interest. Frankincense, the resin from trees of the genus Boswellia, and particularly its prominent bioactive compound acetyl-11-keto-β-boswellic acid (AKBA), have potent anti-inflammatory properties. Here, we demonstrate that AKBA is able to reduce the differentiation of human CD4(+) T cells to Th17 cells, while slightly increasing Th2- and Treg-cell differentiation. Furthermore, AKBA reduces the IL-1β-triggered IL-17A release of memory Th17 cells. AKBA may affect IL-1β signaling by preventing IL-1 receptor-associated kinase 1 phosphorylation and subsequently decreasing STAT3 phosphorylation at Ser727, which is required for Th17-cell differentiation. The effects of AKBA on Th17 differentiation and IL-17A release make the compound a good candidate for potential treatment of Th17-driven diseases.
Collapse
Affiliation(s)
- Klarissa Hanja Stürner
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (INIMS) and Clinic for Neurology, Center for Molecular Neurobiology, Universitätsklinikum Hamburg Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Role of Ca2+/calmodulin-dependent kinase II-IRAK1 interaction in LMP1-induced NF-κB activation. Mol Cell Biol 2013; 34:325-34. [PMID: 24248603 DOI: 10.1128/mcb.00912-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously reported that interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is essential for Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1)-induced p65/RelA serine 536 phosphorylation and NF-κB activation but not for IκB kinase α (IKKα) or IKKβ activation (Y. J. Song, K. Y. Jen, V. Soni, E. Kieff, and E. Cahir-McFarland, Proc. Natl. Acad. Sci. U. S. A. 103:2689-2694, 2006, doi:10.1073/pnas.0511096103). Since the kinase activity of IRAK1 is not required for LMP1-induced NF-κB activation, IRAK1 is proposed to function as a scaffold protein to recruit a p65/RelA serine 536 kinase(s) to enhance NF-κB-dependent transcriptional activity. We now report that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) interacts with IRAK1 and is critical for LMP1-induced p65/RelA serine 536 phosphorylation and NF-κB activation. CaMKII bound the death domain of IRAK1 and directly phosphorylated p65/RelA at serine 536 in vitro. Downregulation of CaMKII activity or expression significantly reduced LMP1-induced p65/RelA serine 536 phosphorylation and NF-κB activation. Furthermore, LMP1-induced CaMKII activation and p65/RelA serine 536 phosphorylation were significantly reduced in IRAK1 knockout (KO) mouse embryonic fibroblasts (MEFs). Thus, IRAK1 may recruit and activate CaMKII, which phosphorylates p65/RelA serine 536 to enhance the transactivation potential of NF-κB in LMP1-induced NF-κB activation pathway.
Collapse
|
35
|
Chandra R, Federici S, Németh ZH, Csóka B, Thomas JA, Donnelly R, Spolarics Z. Cellular mosaicism for X-linked polymorphisms and IRAK1 expression presents a distinct phenotype and improves survival following sepsis. J Leukoc Biol 2013; 95:497-507. [PMID: 24193737 DOI: 10.1189/jlb.0713397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ChrX cellular mosaicism for X-linked genetic polymorphisms in females versus the single ChrX representation in males denotes a genetic difference, which may contribute to gender bias in the inflammatory response. This hypothesis was tested in female F1 offspring of consomic mice (BL6J-ChrX(A/J)/NaJ) that were homokaryotic or mosaic for the active BL6 and AJ ChrXs or for IRAK1 deficiency linked to the BL6 ChrX. Sepsis was initiated by CLP. IRAK1-deficient and IRAK1-mosaic mice showed similar protection from sepsis-induced mortality and reduced IL-6 and IL-10 release compared with WT. BM cellularity and blood B cell counts were increased in naive IRAK1-mosaic mice compared with WT-mosaic or IRAK1-deficient animals. Sepsis-induced BM cell depletion was greater in IRAK1-mosaic mice compared with WT-mosaic or IRAK1-deficient subjects, whereas splenic B and T cell depletion was less in IRAK1-mosaic and IRAK1-deficient than WT-mosaic mice. Skewing toward AJ or BL6-ChrX-expressing cells was assessed by testing allele-specific expression of strain-variant Xkrx and BTK genes. In naive IRAK1-mosaic mice, BM and blood cells with the active BL6-ChrX, were greater than cells expressing the AJ-ChrX (cell ratio 2.5 in IRAK1-mosaic; 1.5 in WT-mosaic mice). Sepsis decreased cell ratios more in IRAK1-mosaic than in WT-mosaic mice. The study reveals functional variability in cellular mosaicism for IRAK1 expression and natural X-linked polymorphisms during sepsis. Mosaicism for IRAK1 expression is accompanied by skewing toward deficient immune cell populations, producing a phenotype that is preconditioned for improved sepsis outcome similar to that observed in IRAK1 deficiency.
Collapse
Affiliation(s)
- Rachna Chandra
- 1.Rutgers New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ 07103, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rosenfeld ME. Inflammation and atherosclerosis: direct versus indirect mechanisms. Curr Opin Pharmacol 2013; 13:154-60. [PMID: 23357128 DOI: 10.1016/j.coph.2013.01.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 12/15/2022]
Abstract
It is now widely accepted that the development of atherosclerotic lesions involves a chronic inflammatory response that includes both innate and adaptive immune mechanisms. However, it is still unclear precisely what induces the inflammatory response. Furthermore, inflammation within the blood vessel can be divided into direct mechanisms where the primary inflammatory events occur within the intima of the blood vessel and contribute to both the initiation and progression of the plaques and indirect mechanisms where inflammation at nonvascular sites can contribute to the progression of the lesions. The direct mechanisms include lipid deposition and modification, influx of lipoprotein associated factors and microparticles derived from many different cell types, and possibly bacterial and viral infection of vascular cells. Indirect mechanisms derive from inflammation related to autoimmune diseases, smoking, respiratory infection, and pollution exposure, and possibly periodontal disease and gastric infection. The mechanisms include secretion of cytokines and other inflammatory factors into the circulation with subsequent uptake into the plaques, egress and recruitment of activated inflammatory cells, formation of dysfunctional HDL and crossreactive autoantibodies.
Collapse
|
37
|
Huang R, Lv J, Luo D, Liao L, Zhu Z, Wang Y. Identification, characterization and the interaction of Tollip and IRAK-1 in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2012; 33:459-467. [PMID: 22659441 DOI: 10.1016/j.fsi.2012.05.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Tollip and IRAK-1 are key components of the TLR/IL-1R signaling pathway in mammals, which play crucial roles as mediators of the TLR/IL-1R signal transduction pathways. Although several TLRs have been found in fish, molecular associations, protein-protein interactions or the role of the TLR signaling pathway in infection-induced immunity in fish has received little attention. In this study, Tollip and IRAK-1 sequences of grass carp were isolated from a head kidney cDNA library. Full length transcripts and sequences of promoter regions were obtained by 3' and 5' RACE and genome walking, respectively. Reporter gene-promoter constructs and real-time RT-PCR analysis was used to determine grass carp Tollip and IRAK-1 transcription pattern in tissues. Recombinant proteins were used for antibodies production. Phylogenetically, the grass carp loci clustered with previously reported Tollip and IRAK-1genes, respectively, and their sequences shared the highest identity with the genes of zebrafish (Danio rerio). The promoter region of grass carp Tollip and IRAK-1 proved to be active. After viral infection transcript levels of both loci were upregulated in most immune-related tissues in a time-dependent manner. Using antibodies produced in this study, immunofluorescence analysis indicated that Tollip and IRAK-1 were uniformly distributed and co-localized in the cytoplasm of CIK cells. After viral infection, however, Tollip and IRAK-1 both trended toward the cell membrane. Our results demonstrate the existence of Tollip and IRAK-1 proteins in teleost species, and suggest that Tollip-IRAK-1 complexes are being recruited to receptor complexes after stimulation with virus. These results provide novel insights into the role of the TLR signaling pathway in teleosts, especially the action of teleost Tollip and IRAK-1 and the interaction of these molecules as part of this pathway.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No 7 Donghu South Road, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
38
|
Cleavage and nuclear localization of the rice XA21 immune receptor. Nat Commun 2012; 3:920. [PMID: 22735448 PMCID: PMC3621455 DOI: 10.1038/ncomms1932] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/28/2012] [Indexed: 01/18/2023] Open
Abstract
Plants and animals carry specific receptors that recognize invading pathogens and respond by activating an immune response. The rice XA21 receptor confers broad-spectrum immunity to the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae upon recognition of a small protein, Ax21, that is conserved in all Xanthomonas species and related genera. Here we demonstrate that XA21 is cleaved to release the intracellular kinase domain and that this intracellular domain carries a functional nuclear localization sequence. Bimolecular fluorescence complementation assays indicate that the XA21 intracellular domain interacts with the OsWRKY62 transcriptional regulator exclusively in the nucleus of rice protoplasts. In vivo cleavage of XA21 and translocalization of the intracellular kinase domain to the nucleus is required for the XA21-mediated immune response. These results suggest a new model for immune receptor function: on receptor recognition of conserved microbial signatures, the associated kinase translocates to the nucleus where it directly interacts with transcriptional regulators. The rice pattern recognition receptor—XA21—confers immunity against the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae. This study shows that the intracellular kinase domain of XA21 translocates to the nucleus and that this translocation is essential for the XA21-mediated immune response.
Collapse
|
39
|
Zhang H, Pu J, Wang X, Shen L, Zhao G, Zhuang C, Liu R. IRAK1 rs3027898 C/A polymorphism is associated with risk of rheumatoid arthritis. Rheumatol Int 2012; 33:369-75. [DOI: 10.1007/s00296-012-2379-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/11/2012] [Indexed: 01/05/2023]
|
40
|
Yang Y, Yu T, Jang HJ, Byeon SE, Song SY, Lee BH, Rhee MH, Kim TW, Lee J, Hong S, Cho JY. In vitro and in vivo anti-inflammatory activities of Polygonum hydropiper methanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:616-625. [PMID: 22182430 DOI: 10.1016/j.jep.2011.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/29/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum hydropiper L. (Polygonaceae) has been traditionally used to treat various inflammatory diseases such as rheumatoid arthritis. However, no systematic studies on the anti-inflammatory actions of Polygonum hydropiper and its inhibitory mechanisms have been reported. This study is therefore aimed at exploring the anti-inflammatory effects of 99% methanol extracts (Ph-ME) of this plant. MATERIALS AND METHODS The effects of Ph-ME on the production of inflammatory mediators in RAW264.7 cells and peritoneal macrophages were investigated. Molecular mechanisms underlying the effects, especially inhibitory effects, were elucidated by analyzing the activation of transcription factors and their upstream signalling, and by evaluating the kinase activities of target enzymes. Additionally, a dextran sulphate sodium (DSS)-induced colitis model was employed to see whether this extract can be used as an orally available drug. RESULTS Ph-ME dose-dependently suppressed the release of nitric oxide (NO), tumour necrosis factor (TNF)-α, and prostaglandin (PG)E(2), in RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Ph-ME inhibited mRNA expression of pro-inflammatory genes such as inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and TNF-α by suppressing the activation of nuclear factor (NF)-κB, activator protein (AP-1), and cAMP responsive element binding protein (CREB), and simultaneously inhibited its upstream inflammatory signalling cascades, including cascades involving Syk, Src, and IRAK1. Consistent with these findings, the extract strongly suppressed the kinase activities of Src and Syk. Based on HPLC analysis, quercetin, which inhibits NO and PGE(2) activities, was found as one of the active ingredients in Ph-ME. CONCLUSION Ph-ME exerts strong anti-inflammatory activity by suppressing Src/Syk/NF-κB and IRAK/AP-1/CREB pathways, which contribute to its major ethno-pharmacological role as an anti-gastritis remedy.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang WS, Park YC, Kim JH, Kim HR, Yu T, Byeon SE, Unsworth LD, Lee J, Cho JY. Nanostructured, self-assembling peptide K5 blocks TNF-α and PGE₂ production by suppression of the AP-1/p38 pathway. Mediators Inflamm 2012; 2012:489810. [PMID: 22315508 PMCID: PMC3270444 DOI: 10.1155/2012/489810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/17/2011] [Indexed: 02/06/2023] Open
Abstract
Nanostructured, self-assembling peptides hold promise for a variety of regenerative medical applications such as 3D cell culture systems, accelerated wound healing, and nerve repair. The aim of this study was to determine whether the self-assembling peptide K5 can be applied as a carrier of anti-inflammatory drugs. First, we examined whether the K5 self-assembling peptide itself can modulate various cellular inflammatory responses. We found that peptide K5 significantly suppressed the release of tumor-necrosis-factor- (TNF-) α and prostaglandin E₂ (PGE₂) from RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Similarly, there was inhibition of cyclooxygenase- (COX-) 2 mRNA expression assessed by real-time PCR, indicating that the inhibition is at the transcriptional level. In agreement with this finding, peptide K5 suppressed the translocation of the transcription factors activator protein (AP-1) and c-Jun and inhibited upstream inflammatory effectors including mitogen activated protein kinase (MAPK), p38, and mitogen-activated protein kinase kinase 3/6 (MKK 3/6). Whether this peptide exerts its effects via a transmembrane or cytoplasmic receptor is not clear. However, our data strongly suggest that the nanostructured, self-assembling peptide K5 may possess significant anti-inflammatory activity via suppression of the p38/AP-1 pathway.
Collapse
Affiliation(s)
- Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yung Chul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hye Ri Kim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Se Eun Byeon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G6
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
42
|
Tollip: a multitasking protein in innate immunity and protein trafficking. Microbes Infect 2011; 14:140-7. [PMID: 21930231 DOI: 10.1016/j.micinf.2011.08.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/28/2011] [Accepted: 08/29/2011] [Indexed: 11/23/2022]
Abstract
The Toll-interacting protein (Tollip) is a critical regulator of Toll-like receptor (TLR)-mediated innate immune responses. Tollip modulates TLR signaling and membrane trafficking processes through its interaction with both proteins and phosphoinositides. Here, I discuss the multitasking role of Tollip associated with its modular architecture.
Collapse
|
43
|
Paulino AD, Ubhi K, Rockenstein E, Adame A, Crews L, Letendre S, Ellis R, Everall IP, Grant I, Masliah E. Neurotoxic effects of the HCV core protein are mediated by sustained activation of ERK via TLR2 signaling. J Neurovirol 2011; 17:327-40. [PMID: 21660601 PMCID: PMC3919659 DOI: 10.1007/s13365-011-0039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/26/2011] [Accepted: 05/18/2011] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) infection is a serious problem among those co-infected with human immunodeficiency virus; however, its impact in the central nervous system (CNS) remains unclear. This study aimed to investigate the mechanisms underlying HCV core protein-mediated neurodegeneration. Analysis of human HCV seropositive cases demonstrated widespread damage to neuronal dendritic processes and sustained activation of extracellular signal-related kinase (ERK); analogous pathologies were observed in wild type injected with HCV core protein into the hippocampus. In vitro analysis in neuronal cells exposed to HCV core demonstrated retraction of the neuronal processes in an ERK/Signal Transducer and Activator of Transcription 3 (STAT3)-dependent manner dependent on toll-like receptor 2 (TLR2) signaling activation. These results indicate that HCV core protein neurotoxicity may be mediated by the sustained activation of ERK/STAT3 via TLR2-IRAK1 signaling pathway. These pathways provide novel targets for development of neuroprotective treatments for HCV involvement of the CNS.
Collapse
Affiliation(s)
- Amy D. Paulino
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Kiren Ubhi
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Leslie Crews
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ronald Ellis
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Ian P. Everall
- Department of Psychiatry and the HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, CA, USA
| | - Igor Grant
- Department of Psychiatry and the HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, CA, USA; Veterans Affairs Healthcare System, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
44
|
Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011; 351:197-205. [PMID: 21249428 DOI: 10.1007/s11010-011-0727-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes patients exhibit subclinical inflammation but the regulatory mechanisms are poorly understood. We sought to evaluate the role of miR-146a expression along with its downstream proinflammatory signals in relation to glycemic control and insulin resistance. Study subjects (n = 20 each) comprised of clinically well characterized Type 2 diabetes patients and control non-diabetic subjects. miRNA and mRNA expression levels were probed in peripheral blood mononuclear cells (PBMC) by Real-time RT-PCR and plasma levels of TNFα and IL-6 were measured by ELISA. The miR-146a expression levels were significantly decreased in PBMCs from patients with Type 2 diabetes compared to control subjects. Among the target genes of miR-146a, TRAF-6 mRNA expression was significantly increased in patients with Type 2 diabetes while there was no significant difference in the mRNA levels of IRAK1 in the study groups. In contrast, there were significantly increased levels of NFκB expression in patients with Type 2 diabetes. There was an increased trend in the levels of TNFα and IL-6 mRNA in patients with type 2 diabetes. While SOCS-3 mRNA levels increased, plasma TNFα and IL-6 levels were also significantly higher in patients with type 2 diabetes. miR-146a expression was negatively correlated to glycated hemoglobin, insulin resistance, TRAF6, and NFκB mRNA levels and circulatory levels of TNFα and IL-6. Reduced miR-146a levels are associated with insulin resistance, poor glycemic control, and several proinflammatory cytokine genes and circulatory levels of TNFα and IL-6 in Asian Indian Type 2 diabetic patients.
Collapse
|
45
|
Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond) 2010; 119:395-405. [PMID: 20524934 DOI: 10.1042/cs20100003] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The TLR4 (Toll-like receptor 4) signal plays an important role in immunity in CAD (coronary artery disease). miR-146a/b (where miR is microRNA) regulates the TLR4 downstream molecules IRAK1 (interleukin-1-receptor-associated kinase 1) and TRAF6 (tumour-necrosis-factor-receptor-associated factor 6). It has also been reported that statins and RAS (renin-angiotensin system) inhibition and have anti-atherosclerotic properties. In the present study, we have investigated whether miR-146a/b was expressed with the TLR4 signal in CAD patients, and whether combined treatment with a statin and RAS inhibition might affect these levels. A total of 66 patients with CAD and 33 subjects without CAD (non-CAD) were enrolled. Patients with CAD were randomized to 12 months of combined treatment with atorvastatin and telmisartan [an ARB (angiotensin II receptor blocker)] or atorvastatin and enalapril [an ACEI (angiotensin-converting enzyme inhibitor)]. PBMCs (peripheral blood mononuclear cells) were obtained from peripheral blood at baseline and after 12 months. Levels of miR-146a/b, IRAK1 mRNA, TRAF6 mRNA and TLR4 mRNA/TLR4 protein were significantly higher in the CAD group than in the non-CAD group (all P<0.01). Levels of miR-146a/b were positively correlated with IRAK1 mRNA and TRAF6 mRNA levels. After 12 months of treatment, these levels were markedly decreased in the ARB and ACEI groups, with the decrease in the ARB group being greater than that in the ACEI group (all P<0.05). In our 12-month follow-up study, high levels of miR-146a and TLR4 mRNA/TLR4 protein at baseline were independent predictors of cardiac events. The present study demonstrates that combined treatment with an ARB and a statin decreases miR-146a/b and the TLR4 signal in CAD patients, possibly contributing to the anti-atherogenic effects of ARBs and statins in this disorder.
Collapse
|
46
|
The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem Pharmacol 2010; 80:1981-91. [PMID: 20599782 DOI: 10.1016/j.bcp.2010.06.020] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/31/2023]
Abstract
The interleukin receptor-associated kinase (IRAK) family are involved in regulating Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways. TLRs are pattern recognition receptors of the innate immune response that are responsible for sensing pathogens and initiating immunity, while IL-1 is one of the key cytokines that mediates inflammation. As such, IL-1/TLR signalling pathways and the IRAK family are critical in anti-pathogen responses, inflammation and autoimmunity. The family comprises of four members, IRAK-1, IRAK-2, IRAK-M (IRAK-3) and IRAK-4, and has a role in both positive and negative regulation of signal transduction. While it was once thought that the family displayed some redundancy, each member of the family is emerging as a distinct and vital contributor to IL-1/TLR signalling mechanisms. Knockout mouse studies have explored the relative contribution of each of the IRAKs in IL-1/TLR signalling, while the recent generation of kinase-inactive knock-in IRAK-4 mice have revealed which of IRAK-4 functions require its kinase activity. IRAK-2, previously thought of as a pseudokinase, has recently been proposed to have kinase activity that is essential for TLR signalling. Not surprisingly given their critical role in IL-1/TLR signalling, the IRAK family members have been implicated in certain disease models including human immunodeficiencies. Thus the potential targeting of these essential protein kinases therapeutically is also discussed.
Collapse
|
47
|
Arginine-enriched total parenteral nutrition improves survival in peritonitis by normalizing NFkappaB activation in peritoneal resident and exudative leukocytes. Ann Surg 2010; 251:959-65. [PMID: 20395852 DOI: 10.1097/sla.0b013e3181d775ea] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Enteral nutrition maintains peritoneal defense more effectively than parenteral nutrition, at least partly by preserving NFkappaB activation in peritoneal cells. We hypothesized that arginine (ARG)-enriched parenteral nutrition would normalize NFkappaB activation in peritoneal leukocytes, thereby improving the survival of peritonitis models. METHODS A total of 105 ICR mice were randomized to chow (n=33), IV feeding of a standard (STD) total parenteral nutrition (STD-TPN) solution (ARG 0.3%) (n=35), or 1% ARG-TPN solution (n=37), and fed accordingly for 5 days.Experiment 1: Thirty mice were used for intranuclear NFkappaB measurement in peritoneal resident cells (PRCs). After incubation with lipopolysaccharide (LPS: 0, 1, 10 microg/mL) for 30 minutes, intranuclear NFkappaB activity was examined by laser scanning cytometry.Experiment 2: Fifty-one mice were injected with 2 mL of 1% glycogen intraperitoneally. Peritoneal exudative cells (PECs) were obtained at 2 or 4 hours after glycogen administration for NFkappaB measurement. Cytokine (TNFalpha, IL-10) levels in peritoneal lavage fluid were also determined by ELISA.Experiment 3: After 5 days of feeding, 24 mice underwent cecal ligation and puncture. Survival was observed up to 5 days. RESULTS Experiment 1: Intranuclear NFkappaB levels in the ARG-TPN and chow groups increased dose-dependently after LPS stimulation, while the level in the STD-TPN group was unchanged.Experiment 2: Intranuclear NFkappaB level was significantly higher at 2 hours in the chow than in the STD-TPN group, whereas in the ARG-TPN mice the level was midway between those of the chow and STD-TPN groups. TNFalpha and IL-10 levels of the chow group were significantly higher than those of STD-TPN mice at 2 hours. TNFalpha was significantly higher in the ARG-TPN group than in the STD-TPN group, but the IL-10 level showed no recovery.Experiment 3: Survival times were significantly reduced in the STD-TPN as compared with the chow group, though ARG-TPN improved survival. CONCLUSION ARG-enriched TPN is a surrogate for enteral feeding which maintains peritoneal defense by preserving NFkappaB activation in peritoneal resident and exudative leukocytes.
Collapse
|
48
|
Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, Morrice N, O'Neill LAJ. IRAK1 and IRAK4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal). J Biol Chem 2010; 285:18276-82. [PMID: 20400509 DOI: 10.1074/jbc.m109.098137] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Signal transduction by Toll-like receptor 2 (TLR2) and TLR4 requires the adaptors MyD88 and Mal (MyD88 adaptor-like) and serine/threonine kinases, interleukin-1 receptor-associated kinases IRAK1 and IRAK4. We have found that both IRAK1 and IRAK4 can directly phosphorylate Mal. In addition, co-expression of Mal with either IRAK resulted in depletion of Mal from cell lysates. This is likely to be due to Mal phosphorylation by the IRAKs because kinase-inactive forms of either IRAK had no effect. Furthermore, lipopolysaccharide stimulation resulted in ubiquitination and degradation of Mal, which was inhibited using an IRAK1/4 inhibitor or by knocking down expression of IRAK1 and IRAK4. MyD88 is not a substrate for either IRAK and did not undergo degradation. We therefore conclude that Mal is a substrate for IRAK1 and IRAK4 with phosphorylation promoting ubiquitination and degradation of Mal. This process may serve to negatively regulate signaling by TLR2 and TLR4.
Collapse
Affiliation(s)
- Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Goswami S, Bose A, Sarkar K, Roy S, Chakraborty T, Sanyal U, Baral R. Neem leaf glycoprotein matures myeloid derived dendritic cells and optimizes anti-tumor T cell functions. Vaccine 2010; 28:1241-52. [DOI: 10.1016/j.vaccine.2009.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/21/2009] [Accepted: 11/08/2009] [Indexed: 11/30/2022]
|
50
|
Maitra U, Singh N, Gan L, Ringwood L, Li L. IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. J Biol Chem 2010; 284:35403-11. [PMID: 19850916 DOI: 10.1074/jbc.m109.059501] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inflammatory stimulants such as bacterial endotoxin (lipopolysaccharide (LPS)) are known to induce tissue damage and injury partly through the induction of reactive oxygen species (ROS). Although it is recognized that the induction of ROS in macrophages by LPS depends upon the expression and activation of NADPH oxidase, as well as the suppression of antioxidative enzymes involved in ROS clearance, the underlying molecular mechanisms are poorly defined. In this study, we examined the contribution of the interleukin-1 receptor-associated kinase 1 (IRAK-1) to LPS-induced generation of ROS. We observed that LPS induced significantly less ROS in IRAK-1(-/-) macrophages, indicating that IRAK-1 is critically involved in the induction of ROS. Mechanistically, we observed that IRAK-1 is required for LPS-induced expression of NOX-1, a key component of NADPH oxidase, via multiple transcription factors, including p65/RelA, C/EBPbeta, and C/EBPdelta. On the other hand, we demonstrated that IRAK-1 associated with and activated small GTPase Rac1, a known activator of NOX-1 oxidase enzymatic activity. IRAK-1 forms a close complex with Rac1 via a novel LWPPPP motif within the variable region of IRAK-1. On the other hand, we also observed that IRAK-1 is required for LPS-mediated suppression of peroxisome proliferator-activated receptor alpha and PGC-1alpha, nuclear factors essential for the expression of antioxidative enzymes such as GPX3 and catalase. Consequently, injection of LPS causes significantly less plasma lipid peroxidation in IRAK-1(-/-) mice compared with wild type mice. Taken together, our study reveals IRAK-1 as a novel component involved in the generation of ROS induced by LPS.
Collapse
Affiliation(s)
- Urmila Maitra
- Departments of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|