1
|
Csordás G, Weaver D, Várnai P, Hajnóczky G. Supralinear Dependence of the IP 3 Receptor-to-Mitochondria Local Ca 2+ Transfer on the Endoplasmic Reticulum Ca 2+ Loading. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229273. [PMID: 38362008 PMCID: PMC10868505 DOI: 10.1177/25152564241229273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
A non-canonical role for pyruvate kinase M2 as a functional modulator of Ca 2+ signalling through IP 3 receptors. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119206. [PMID: 35026348 DOI: 10.1016/j.bbamcr.2021.119206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
Pyruvate kinase isoform M2 (PKM2) is a rate-limiting glycolytic enzyme that is widely expressed in embryonic tissues. The expression of PKM2 declines in some tissues following embryogenesis, while other pyruvate kinase isozymes are upregulated. However, PKM2 is highly expressed in cancer cells and is believed to play a role in supporting anabolic processes during tumour formation. In this study, PKM2 was identified as an inositol 1,4,5-trisphosphate receptor (IP3R)-interacting protein by mass spectrometry. The PKM2:IP3R interaction was further characterized by pull-down and co-immunoprecipitation assays, which showed that PKM2 interacted with all three IP3R isoforms. Moreover, fluorescence microscopy indicated that both IP3R and PKM2 localized at the endoplasmic reticulum. PKM2 binds to IP3R at a highly conserved 21-amino acid site (corresponding to amino acids 2078-2098 in mouse type 1 IP3R isoform). Synthetic peptides (denoted 'TAT-D5SD' and 'D5SD'), based on the amino acid sequence at this site, disrupted the PKM2:IP3R interaction and potentiated IP3R-mediated Ca2+ release both in intact cells (TAT-D5SD peptide) and in a unidirectional 45Ca2+ flux assay on permeabilized cells (D5SD peptide). The TAT-D5SD peptide did not affect the enzymatic activity of PKM2. Reducing PKM2 protein expression using siRNA increased IP3R-mediated Ca2+ signalling in intact cells without altering the ER Ca2+ content. These data identify PKM2 as an IP3R-interacting protein that inhibits intracellular Ca2+ signalling. The elevated expression of PKM2 in cancer cells is therefore not solely connected to its canonical role in glycolytic metabolism, rather PKM2 also has a novel non-canonical role in regulating intracellular signalling.
Collapse
|
3
|
Tan LJ, Li XH, Li GG, Hu Y, Chen XD, Deng HW. Identification of novel pleiotropic gene for bone mineral density and lean mass using the cFDR method. Ann Hum Genet 2021; 85:201-212. [PMID: 34115876 DOI: 10.1111/ahg.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022]
Abstract
Bone mineral density (BMD) and whole-body lean mass (WBLM) are two important phenotypes of osteoporosis and sarcopenia. Previous studies have shown that BMD and lean mass were phenotypically and genetically correlated. To identify the novel common genetic factors shared between BMD and WBLM, we performed the conditional false discovery rate (cFDR) analysis using summary data of the genome-wide association study of femoral neck BMD (n = 53,236) and WBLM (n = 38,292) from the Genetic Factors for Osteoporosis Consortium (GEFOS). We identified eight pleiotropic Single Nucleotide Polymorphism (SNPs) (PLCL1 rs11684176 and rs2880389, JAZF1 rs198, ADAMTSL3 rs10906982, RFTN2/MARS2 rs7340470, SH3GL3 rs1896797, ST7L rs10776755, ANKRD44/SF3B1 rs11888760) significantly associated with femoral neck BMD and WBLM (ccFDR < 0.05). Bayesian fine-mapping analysis showed that rs11888760, rs198, and rs1896797 were the possible functional variants in the ANKRD44/SF3B1, JAZF1i, and SH3GL3 loci, respectively. Functional annotation suggested that rs11888760 was likely to comprise a DNA regulatory element and linked to the expression of RFTN2 and PLCL1. PLCL1 showed differential expression in laryngeal posterior cricoarytenoid muscle between rats of 6 months and 30 months of age. Our findings, together with PLCL1's potential functional relevance to bone and skeletal muscle function, suggested that rs11888760 was the possible pleiotropic functional variants appearing to coregulate both bone and muscle metabolism through regulating the expression of PLCL1. The findings enhanced our knowledge of genetic associations between BMD and lean mass and provide a rationale for subsequent functional studies of the implicated genes in the pathophysiology of diseases, such as osteoporosis and sarcopenia.
Collapse
Affiliation(s)
- Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Gai-Gai Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yuan Hu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Modeling the role of endoplasmic reticulum-mitochondria microdomains in calcium dynamics. Sci Rep 2019; 9:17072. [PMID: 31745211 PMCID: PMC6864103 DOI: 10.1038/s41598-019-53440-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Upon inositol trisphosphate (IP3) stimulation of non-excitable cells, including vascular endothelial cells, calcium (Ca2+) shuttling between the endoplasmic reticulum (ER) and mitochondria, facilitated by complexes called Mitochondria-Associated ER Membranes (MAMs), is known to play an important role in the occurrence of cytosolic Ca2+ concentration ([Ca2+]Cyt) oscillations. A mathematical compartmental closed-cell model of Ca2+ dynamics was developed that accounts for ER-mitochondria Ca2+ microdomains as the µd compartment (besides the cytosol, ER and mitochondria), Ca2+ influx to/efflux from each compartment and Ca2+ buffering. Varying the distribution of functional receptors in MAMs vs. the rest of ER/mitochondrial membranes, a parameter called the channel connectivity coefficient (to the µd), allowed for generation of [Ca2+]Cytoscillations driven by distinct mechanisms at various levels of IP3 stimulation. Oscillations could be initiated by the transient opening of IP3 receptors facing either the cytosol or the µd, and subsequent refilling of the respective compartment by Ca2+ efflux from the ER and/or the mitochondria. Only under conditions where the µd became the oscillation-driving compartment, silencing the Mitochondrial Ca2+ Uniporter led to oscillation inhibition. Thus, the model predicts that alternative mechanisms can yield [Ca2+]Cyt oscillations in non-excitable cells, and, under certain conditions, the ER-mitochondria µd can play a regulatory role.
Collapse
|
5
|
Distelhorst CW, Bootman MD. Creating a New Cancer Therapeutic Agent by Targeting the Interaction between Bcl-2 and IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035196. [PMID: 31110129 DOI: 10.1101/cshperspect.a035196] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bcl-2 is a member of a family of proteins that regulate cell survival. Expression of Bcl-2 is aberrantly elevated in many types of cancer. Within cells of the immune system, Bcl-2 has a physiological role in regulating immune responses. However, in cancers arising from cells of the immune system Bcl-2 promotes cell survival and proliferation. This review summarizes discoveries over the past 30 years that have elucidated Bcl-2's role in the normal immune system, including its actions in regulating calcium (Ca2+) signals necessary for the immune response, and for Ca2+-mediated apoptosis at the end of an immune response. How Bcl-2 modulates the release of Ca2+ from intracellular stores via inositol 1,4,5-trisphosphate receptors (IP3R) is discussed, and in particular, the role of Bcl-2/IP3R interactions in promoting the survival of cancer cells by preventing Ca2+-mediated cell death. The development and usage of a peptide, referred to as TAT-Pep8, or more recently, BIRD-2, that induces death of cancer cells by inhibiting Bcl-2's control over IP3R-mediated Ca2+ elevation is discussed. Studies aimed at discovering a small molecule that mimics BIRD-2's anticancer mechanism of action are summarized, along with the prospect of such a compound becoming a novel therapeutic option for cancer.
Collapse
Affiliation(s)
- Clark W Distelhorst
- Departments of Medicine and Pharmacology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
| | - Martin D Bootman
- School of Life, Health, and Chemical Science, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
6
|
Positive association of genetic variations in the phospholipase C-like 1 gene with dermatomyositis in Chinese Han. Immunol Res 2016; 64:204-12. [PMID: 26603167 DOI: 10.1007/s12026-015-8738-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are autoimmune diseases with an underlying yet undefined genetic component. Recently, phospholipase C-like 1 (PLCL1) has been identified as a potential genetic susceptibility locus for dermatomyositis (DM) in patients of European ancestry. Here, association between PLCL1 polymorphisms and IIMs was investigated in Chinese Han. Genomic DNA was isolated from blood samples (2 mL) collected from Chinese Han (≥18 years) with polymyositis (PM, n = 286) or dermatomyositis (DM, n = 535) and ethnically matched controls (n = 968). Patients and controls were genotyped for five SNPs (rs938929, rs1518364, rs6738825, rs2117339, and rs7572733) previously associated with DM, with the Sequenom MassARRAY system. SNPs rs6738825 and rs7572733 were found to be associated with the development of DM in Chinese Han (P c = 0.015; P c = 0.025, respectively) as well as the risk A allele of rs938929 and T allele of rs1518364 (P c = 0.030; P c = 0.029). None of the five SNPs were associated with PM (all P c > 0.05). The frequency of the two haplotypes of these five SNPs was also significantly different between DM patients and healthy controls. In addition, conditional analysis with rs6738825 revealed that these SNPs were not independent factors contributing to DM. Finally, a novel association between rs6738825 and rs7572733 and DM with complicating interstitial lung disease was observed (ILD; P c = 0.040; P c = 0.030, respectively). A positive association between PLCL1 polymorphisms and DM patients and DM patients with ILD was observed, indicating that PLCL1 might be the susceptibility gene for DM patients in Chinese Han.
Collapse
|
7
|
Decrock E, De Bock M, Wang N, Bol M, Gadicherla AK, Leybaert L. Electroporation loading and flash photolysis to investigate intra- and intercellular Ca2+ signaling. Cold Spring Harb Protoc 2015; 2015:239-49. [PMID: 25734071 DOI: 10.1101/pdb.top066068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many cellular functions are driven by variations in the intracellular Ca(2+) concentration ([Ca(2+)]i), which may appear as a single-event transient [Ca(2+)]i elevation, repetitive [Ca(2+)]i increases known as Ca(2+) oscillations, or [Ca(2+)]i increases propagating in the cytoplasm as Ca(2+) waves. Additionally, [Ca(2+)]i changes can be communicated between cells as intercellular Ca(2+) waves (ICWs). ICWs are mediated by two possible mechanisms acting in parallel: one involving gap junctions that form channels directly linking the cytoplasm of adjacent cells and one involving a paracrine messenger, in most cases ATP, that is released into the extracellular space, leading to [Ca(2+)]i changes in neighboring cells. The intracellular messenger inositol 1,4,5-trisphosphate (IP3) that triggers Ca(2+) release from Ca(2+) stores is crucial in these two ICW propagation scenarios, and is also a potent trigger to initiate ICWs. Loading inactive, "caged" IP3 into cells followed by photolytic "uncaging" with UV light, thereby liberating IP3, is a well-established method to trigger [Ca(2+)]i changes in single cells that is also effective in initiating ICWs. We here describe a method to load cells with caged IP3 by local electroporation of monolayer cell cultures and to apply flash photolysis to increase intracellular IP3 and induce [Ca(2+)]i changes, or initiate ICWs. Moreover, the electroporation method allows loading of membrane-impermeable agents that interfere with IP3 and Ca(2+) signaling.
Collapse
Affiliation(s)
- Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Marijke De Bock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Ashish K Gadicherla
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Huang HM, Chen HL, Gibson GE. Interactions of endoplasmic reticulum and mitochondria Ca(2+) stores with capacitative calcium entry. Metab Brain Dis 2014; 29:1083-93. [PMID: 24748364 PMCID: PMC4206688 DOI: 10.1007/s11011-014-9541-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
Thiamine dependent enzymes are diminished in Alzheimer's disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer's Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca(2+) homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca(2+)-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca(2+) export (-60%) or import (-40%). Different aspects of mitochondrial Ca(2+) coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20-25%) by inhibition of mitochondrial Ca(2+) export, and inhibition of mitochondrial Ca(2+) uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca(2+) released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca(2+) modifies the depletion and refilling mechanism of ER Ca(2+) stores.
Collapse
Affiliation(s)
- Hsueh-Meei Huang
- Brain Mind Research Institute, Burke Medical Research Institute, Weill Medical College of Cornell University, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
| | | | | |
Collapse
|
9
|
Li H, Wang X, Zhang N, Gottipati MK, Parpura V, Ding S. Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium 2014; 56:457-66. [PMID: 25443655 DOI: 10.1016/j.ceca.2014.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/20/2022]
Abstract
Mitochondrial Ca(2+) plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca(2+) imaging is an important approach to understand mitochondrial Ca(2+) dynamics. Recently developed GCaMP genetically-encoded Ca(2+) indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca(2+) imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca(2+) dynamics in culture, revealing Ca(2+) uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca(2+) indicators, our results show that mitochondrial Ca(2+) uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca(2+) dynamics on cytosolic Ca(2+) changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca(2+) increase using mito-GCaMP5G and a synthetic organic Ca(2+) indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca(2+) signaling pathway, our results demonstrated that the mitochondrial Ca(2+) uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca(2+) dynamics as well as Ca(2+) interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.
Collapse
Affiliation(s)
- Hailong Li
- Dalton Cardiovascular Research Center, Columbia, MO 65211, United States; Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States
| | - Xiaowan Wang
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, Columbia, MO 65211, United States
| | - Manoj K Gottipati
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, United States; Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, MO 65211, United States; Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
10
|
Abstract
Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron-glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellular Ca2+ waves in astrocytes can be evoked by a variety of stimulations. In animal models of some brain disorders, astrocytes can exhibit enhanced Ca2+ excitability featured as regenerative intercellular Ca2+ waves. This review first briefly summarizes the astrocytic Ca2+ signaling pathway and the procedure of in vivo two-photon Ca2+ imaging of astrocytes. It subsequently summarizes in vivo astrocytic Ca2+ signaling in health and brain disorders from experimental studies of animal models, and discusses the possible mechanisms and therapeutic implications underlying the enhanced Ca2+ excitability in astrocytes in brain disorders. Finally, this review summarizes molecular genetic approaches used to selectively manipulate astrocyte function in vivo and their applications to study the role of astrocytes in synaptic plasticity and brain disorders.
Collapse
Affiliation(s)
- Shinghua Ding
- Dalton Cardiovascular Research Center, Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Hinds DA, McMahon G, Kiefer AK, Do CB, Eriksson N, Evans DM, St Pourcain B, Ring SM, Mountain JL, Francke U, Davey-Smith G, Timpson NJ, Tung JY. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet 2013; 45:907-11. [PMID: 23817569 PMCID: PMC3753407 DOI: 10.1038/ng.2686] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
Abstract
Allergic disease is very common and carries substantial public-health burdens. We conducted a meta-analysis of genome-wide associations with self-reported cat, dust-mite and pollen allergies in 53,862 individuals. We used generalized estimating equations to model shared and allergy-specific genetic effects. We identified 16 shared susceptibility loci with association P<5×10(-8), including 8 loci previously associated with asthma, as well as 4p14 near TLR1, TLR6 and TLR10 (rs2101521, P=5.3×10(-21)); 6p21.33 near HLA-C and MICA (rs9266772, P=3.2×10(-12)); 5p13.1 near PTGER4 (rs7720838, P=8.2×10(-11)); 2q33.1 in PLCL1 (rs10497813, P=6.1×10(-10)), 3q28 in LPP (rs9860547, P=1.2×10(-9)); 20q13.2 in NFATC2 (rs6021270, P=6.9×10(-9)), 4q27 in ADAD1 (rs17388568, P=3.9×10(-8)); and 14q21.1 near FOXA1 and TTC6 (rs1998359, P=4.8×10(-8)). We identified one locus with substantial evidence of differences in effects across allergies at 6p21.32 in the class II human leukocyte antigen (HLA) region (rs17533090, P=1.7×10(-12)), which was strongly associated with cat allergy. Our study sheds new light on the shared etiology of immune and autoimmune disease.
Collapse
|
12
|
Repele A, Lupi R, Eaton S, Urbani L, De Coppi P, Campanella M. Cell metabolism sets the differences between subpopulations of satellite cells (SCs). BMC Cell Biol 2013; 14:24. [PMID: 23641781 PMCID: PMC3689622 DOI: 10.1186/1471-2121-14-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/23/2013] [Indexed: 01/07/2023] Open
Abstract
Background We have recently characterized two distinct populations of Satellite Cells (SCs) that differ in proliferation, regenerative potential, and mitochondrial coupling efficiency and classified these in Low Proliferative Clones (LPC) and High Proliferative Clones (HPC). Herewith, we have investigated their cell metabolism and individuated features that remark an intrinsic difference in basal physiology but that are retrievable also at the initial phases of their cloning. Results Indeed, LPC and HPC can be distinguished for mitochondrial membrane potential (ΔΨm) just after isolation from the fiber. This is matched by mitochondrial redox state measured via NAD+/NADH analysis and alternative respiratory CO2 production in cloned cells. All these parameters are accountable for metabolic differences reflected indeed by alternative expression of the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3). Also Ca2+ handling by mitochondria is different together with the sensitivity to apoptosis triggered via this pathway. Finally, according to the above, we were able to determine which one among the clones represents the suitable stem cell. Conclusions These experimental observations report novel physiological features in the cell biology of SCs and refer to an intrinsic heterogeneity within which their stemness may reside.
Collapse
Affiliation(s)
- Andrea Repele
- Stem Cells and Regenerative Medicine Lab, Department of Woman and Child Health, University of Padua, Padua, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Rossi AM, Tovey SC, Rahman T, Prole DL, Taylor CW. Analysis of IP3 receptors in and out of cells. Biochim Biophys Acta Gen Subj 2011; 1820:1214-27. [PMID: 22033379 DOI: 10.1016/j.bbagen.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2+ channels. SCOPE OF THE REVIEW In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2+ signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling. MAJOR CONCLUSIONS All IP3R are regulated by both IP3 and Ca2+. This allows them to initiate and regeneratively propagate intracellular Ca2+ signals. The elementary Ca2+ release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2+-mediated interactions between them. The spatial organization of these Ca2+ signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution. GENERAL SIGNIFICANCE A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2+ signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
14
|
Friedrich M, Nozadze R, de Keijzer S, Steinmeyer R, Ermolayev V, Harms GS. Detection of Single Quantum Dots in Model Systems with Sheet Illumination Microscopy. J Fluoresc 2011; 28:29-39. [DOI: 10.1007/s10895-011-0966-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|
15
|
Xie Y, Wang T, Sun GY, Ding S. Specific disruption of astrocytic Ca2+ signaling pathway in vivo by adeno-associated viral transduction. Neuroscience 2010; 170:992-1003. [PMID: 20736051 PMCID: PMC2949456 DOI: 10.1016/j.neuroscience.2010.08.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
Astrocytes are the predominant glial-cell type in the CNS and they are known to play an active role in modulating neuronal function. Since many of the same molecules including G-protein coupled receptors (GPCRs) are expressed in both neurons and astrocytes, in vivo pharmacological manipulations to target astrocytes lack specificity. In this study, we investigated the effect of Pleckstrin Homology (PH) domain of Phospholipase C (PLC)-like protein p130 (p130PH) on Ca(2+) signaling in astrocytes in vivo. We used the serotype 2/5 recombinant adeno-associated virus (rAAV2/5) vectors to introduce p130PH fused with a tagged protein monomer red fluorescent protein at the N-terminal (i.e., transgene mRFP-p130PH). In order to selectively disrupt the Ca(2+) signaling pathway in astrocytes, the transgene was driven by a novel astrocyte-specific promoter gfaABC(1)D. Our results show that mRFP-p130PH is exclusively expressed in astrocytes with a high efficiency and a stable expression level. In vivo imaging using two-photon microscopy demonstrated reduced Ca(2+) signal in transduced astrocytes in response to ATP stimulation. As Ca(2+) signaling is a characteristic form of cellular excitability in astrocytes that can mediate chemical transmitter release and contribute to neuronal excitotoxicity, the current study provides an in vivo approach to better understand Ca(2+)-dependent gliotransmission and its involvement in glia-related diseases.
Collapse
Affiliation(s)
- Yicheng Xie
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
- Dept. of Biological Engineering, University of Missouri-Columbia, MO 65211
| | - Tiannan Wang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Grace Y. Sun
- Dept. of Biochemistry, University of Missouri-Columbia, MO 65211
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
- Dept. of Biological Engineering, University of Missouri-Columbia, MO 65211
| |
Collapse
|
16
|
Cauchi S, Byrjalsen I, Durand E, Karsdal MA, Froguel P. PLCL1 rs7595412 variation is not associated with hip bone size variation in postmenopausal Danish women. BMC MEDICAL GENETICS 2009; 10:145. [PMID: 20030815 PMCID: PMC2803169 DOI: 10.1186/1471-2350-10-145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 12/23/2009] [Indexed: 01/23/2023]
Abstract
BACKGROUND Bone size (BS) variation is under strong genetic control and plays an important role in determining bone strength and fracture risk. Recently, a genome-wide association study identified polymorphisms associated with hip BS variation in the PLCL1 (phospholipase c-like 1) locus. Carriers of the major A allele of the most significant polymorphism, rs7595412, have around 17% larger hip BS than non-carriers. We therefore hypothesized that this polymorphism may also influence postmenopausal complications. METHODS The effects of rs7595412 on hip BS, bone mineral density (BMD), vertebral fractures, serum Crosslaps and osteocalcin levels were analyzed in 1,191 postmenopausal Danish women. RESULTS This polymorphism had no influence on hip and spine BS as well as on femur and spine BMD. Women carrying at least one copy of the A allele had lower levels of serum osteocalcin as compared with those homozygous for the G allele (p = 0.03) whereas no effect on serum Crosslaps was detected. Furthermore, women homozygous for the A allele were more affected by vertebral fractures than those carrying at least one copy of the G allele (p = 0.04). CONCLUSIONS In postmenopausal women, our results suggest that the PLCL1 rs7595412 polymorphism has no obvious effect on hip BS or BMD but may be nominally associated with increased proportion of vertebral fracture and increased levels of osteocalcin.
Collapse
Affiliation(s)
- Stéphane Cauchi
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | | | | | | | | |
Collapse
|
17
|
Abstract
Rapid to moderately rapid changes in intracellular Ca2+ concentration, or Ca2+ signals, control a variety of critical cellular functions in the immune system. These signals are comprised of Ca2+ release from intracellular stores coordinated with Ca2+ influx across the plasma membrane. The most common mechanisms by which these two modes of signaling occur is through inositol 1,4,5-trisphosphate (IP3)-induced release of Ca2+ from the endoplasmic reticulum (ER) and store-operated Ca2+ entry across the plasma membrane. The latter process was postulated over 20 years ago, and in just the past few years, the key molecular players have been discovered: STIM proteins serve as sensors of Ca2+ within the ER which communicate with and activate plasma membrane store-operated channels composed of Orai subunits. The process of store-operated Ca2+ entry provides support for oscillating Ca2+ signals from the ER and also provides direct activator Ca2+ that signals to a variety of downstream effectors.
Collapse
Affiliation(s)
- James W Putney
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
18
|
Li Y, Santoso NG, Yu S, Woodward OM, Qian F, Guggino WB. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem 2009; 284:36431-36441. [PMID: 19854836 DOI: 10.1074/jbc.m109.068916] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The PKD1 or PKD2 genes encode polycystins (PC) 1 and 2, which are associated with polycystic kidney disease. Previously we demonstrated that PC2 interacts with the inositol 1,4,5-trisphosphate receptor (IP(3)R) to modulate Ca(2+) signaling. Here, we investigate whether PC1 also regulates IP(3)R. We generated a fragment encoding the last six transmembrane (TM) domains of PC1 and the C-terminal tail (QIF38), a section with the highest homology to PC2. Using a Xenopus oocyte Ca(2+) imaging system, we observed that expression of QIF38 significantly reduced the initial amplitude of IP(3)-induced Ca(2+) transients, whereas a mutation lacking the C-terminal tail did not. Thus, the C terminus is essential to QIF38 function. Co-immunoprecipitation assays demonstrated that through its C terminus, QIF38 associates with the IP(3)-binding domain of IP(3)R. A shorter PC1 fragment spanning only the last TM and the C-terminal tail also reduced IP(3)-induced Ca(2+) release, whereas another C-terminal fragment lacking any TM domain did not. Thus, only endoplasmic reticulum-localized PC1 can modulate IP(3)R. Finally, we show that in the polarized Madin-Darby canine kidney cells, heterologous expression of full-length PC1 resulted in a smaller IP(3)-induced Ca(2+) response. Overexpression of the IP(3)-binding domain of IP(3)R reversed the inhibitory effect of PC1, suggesting interaction of full-length PC1 (or its cleavage forms) with endogenous IP(3)R in Madin-Darby canine kidney cells. These results indicate that the behavior of full-length PC1 in mammalian cells is congruent with that of PC1 C-terminal fragments in the oocyte system. These data demonstrate that PC1 inhibits Ca(2+) release, perhaps opposing the effect of PC2, which facilitates Ca(2+) release through the IP(3)R.
Collapse
Affiliation(s)
- Yun Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Netty G Santoso
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shengqiang Yu
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Owen M Woodward
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Feng Qian
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - William B Guggino
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
19
|
Vicencio JM, Ortiz C, Criollo A, Jones AWE, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, Castedo M, Maiuri MC, Molgó J, Szabadkai G, Lavandero S, Kroemer G. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 2009; 16:1006-17. [PMID: 19325567 DOI: 10.1038/cdd.2009.34] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP(3)R) is a major regulator of apoptotic signaling. Through interactions with members of the Bcl-2 family of proteins, it drives calcium (Ca(2+)) transients from the endoplasmic reticulum (ER) to mitochondria, thereby establishing a functional and physical link between these organelles. Importantly, the IP(3)R also regulates autophagy, and in particular, its inhibition/depletion strongly induces macroautophagy. Here, we show that the IP(3)R antagonist xestospongin B induces autophagy by disrupting a molecular complex formed by the IP(3)R and Beclin 1, an interaction that is increased or inhibited by overexpression or knockdown of Bcl-2, respectively. An effect of Beclin 1 on Ca(2+) homeostasis was discarded as siRNA-mediated knockdown of Beclin 1 did not affect cytosolic or luminal ER Ca(2+) levels. Xestospongin B- or starvation-induced autophagy was inhibited by overexpression of the IP(3)R ligand-binding domain, which coimmunoprecipitated with Beclin 1. These results identify IP(3)R as a new regulator of the Beclin 1 complex that may bridge signals converging on the ER and initial phagophore formation.
Collapse
|
20
|
Steinmeyer R, Harms GS. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor. Microsc Res Tech 2009; 72:12-21. [DOI: 10.1002/jemt.20632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Pacher P, Sharma K, Csordás G, Zhu Y, Hajnóczky G. Uncoupling of ER-mitochondrial calcium communication by transforming growth factor-beta. Am J Physiol Renal Physiol 2008; 295:F1303-12. [PMID: 18653477 PMCID: PMC2584912 DOI: 10.1152/ajprenal.90343.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/21/2008] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) has been implicated as a key factor in mediating many cellular processes germane to disease pathogenesis, including diabetic vascular complications. TGF-beta alters cytosolic [Ca2+] ([Ca2+]c) signals, which in some cases may result from the downregulation of the IP3 receptor Ca2+ channels (IP3R). Ca2+ released by IP3Rs is effectively transferred from endoplasmic reticulum (ER) to the mitochondria to stimulate ATP production and to allow feedback control of the Ca2+ mobilization. To assess the effect of TGF-beta on the ER-mitochondrial Ca2+ transfer, we first studied the [Ca2+]c and mitochondrial matrix Ca2+ ([Ca2+]m) signals in single preglomerular afferent arteriolar smooth muscle cells (PGASMC). TGF-beta pretreatment (24 h) decreased both the [Ca2+]c and [Ca2+]m responses evoked by angiotensin II or endothelin. Strikingly, the [Ca2+]m signal was more depressed than the [Ca2+]c signal and was delayed. In permeabilized cells, TGF-beta pretreatment attenuated the rate but not the magnitude of the IP(3)-induced [Ca2+]c rise, yet caused massive depression of the [Ca2+]m responses. ER Ca2+ storage and mitochondrial uptake of added Ca2+ were not affected by TGF-beta. Also, TGF-beta had no effect on mitochondrial distribution and on the ER-mitochondrial contacts assessed by two-photon NAD(P)H imaging and electron microscopy. Downregulation of both IP3R1 and IP3R3 was found in TGF-beta-treated PGASMC. Thus, TGF-beta causes uncoupling of mitochondria from the ER Ca2+ release. The sole source of this would be suppression of the IP3R-mediated Ca2+ efflux, indicating that the ER-mitochondrial Ca2+ transfer depends on the maximal rate of Ca2+ release. The impaired ER-mitochondrial coupling may contribute to the vascular pathophysiology associated with TGF-beta production.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Cytosol/drug effects
- Cytosol/metabolism
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- Endothelins/pharmacology
- Fluorescent Dyes/metabolism
- Heterocyclic Compounds, 3-Ring/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/agonists
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kidney Glomerulus/blood supply
- Kidney Glomerulus/cytology
- Kinetics
- Male
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Sprague-Dawley
- Thapsigargin/pharmacology
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Pál Pacher
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
22
|
Liu YZ, Wilson SG, Wang L, Liu XG, Guo YF, Li J, Yan H, Deloukas P, Soranzo N, Chinnapen-Horsley U, Cervino A, Williams FM, Xiong DH, Zhang YP, Jin TB, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Spector TD, Deng HW. Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study. PLoS One 2008; 3:e3160. [PMID: 18776929 PMCID: PMC2522269 DOI: 10.1371/journal.pone.0003160] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF) that are associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS) of hip BS interrogating ∼380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1), that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72×10−7. The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62×10−3 and 2.44×10−3, respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10−5 in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only ∼0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412), achieved a p value of 7.66×10−3 (odds ratio = 0.26) for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate)-mediated calcium signaling, an important pathway regulating mechanical sensing of bone cells. Our findings suggest that PLCL1 is a novel gene associated with variation in hip BS, and provide new insights into the pathogenesis of HF.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Scott G. Wilson
- School of Medicine and Pharmacology, The University of Western Australia and Department of Endocrinology and Diabetes, Sir Charles Gairder Hospital, Nedlands, Western Australia
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Liang Wang
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiao-Gang Liu
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan-Fang Guo
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jian Li
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Han Yan
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Panos Deloukas
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Nicole Soranzo
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Alesandra Cervino
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Frances M. Williams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, United States of America
| | - Yin-Ping Zhang
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tian-Bo Jin
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shawn Levy
- Vanderbilt Microarray Shared Resource, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Christopher J. Papasian
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Betty M. Drees
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - James J. Hamilton
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Robert R. Recker
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, United States of America
| | - Tim D. Spector
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Hong-Wen Deng
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, United States of America
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Melkikh AV, Seleznev VD. Nonequilibrium statistical model of active transport of ions and ATP production in mitochondria. J Biol Phys 2008; 33:161-70. [PMID: 19669548 DOI: 10.1007/s10867-007-9053-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/24/2007] [Indexed: 11/28/2022] Open
Abstract
A model of the active transport of ions through internal membranes of mitochondria is proposed. If concentrations of ions in a cell are known, this model allows calculating concentrations of all main ions (H(+), Ca(+2), K(+), Mg(2+), Na(+), Cl(-)) in the mitochondrion matrix and the resting potential across the membrane. The theoretical values satisfactorily agree with available experimental data on the concentrations and the potentials, including different operating regimes of the adenosine triphosphate (ATP) synthetase (the main regime, short circuiting or ATP synthetase blocking). The active transport of Mg(2+) ions in exchange for protons was assumed. In accordance with the model, the ATP synthetase operation is possible only if the stoichiometric coefficient of protons is 3.
Collapse
|
24
|
Joseph SK, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 2008; 12:951-68. [PMID: 17294082 DOI: 10.1007/s10495-007-0719-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) serve to discharge Ca(2+) from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca(2+)-dependent apoptosis. In particular we focus on the regulation of IP(3)Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP(3)Rs in apoptosis may be independent of their ion-channel function. The role of IP(3)Rs in delivering Ca(2+) to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.
Collapse
Affiliation(s)
- Suresh K Joseph
- Department of Pathology & Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
25
|
Peng T, Shen E, Fan J, Zhang Y, Arnold JMO, Feng Q. Disruption of phospholipase C 1 signalling attenuates cardiac tumor necrosis factor- expression and improves myocardial function during endotoxemia. Cardiovasc Res 2007; 78:90-7. [DOI: 10.1093/cvr/cvm100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Várnai P, Balla T. Visualization and manipulation of phosphoinositide dynamics in live cells using engineered protein domains. Pflugers Arch 2007; 455:69-82. [PMID: 17473931 DOI: 10.1007/s00424-007-0270-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
There is hardly a membrane-associated molecular event that is not regulated by phosphoinositides, a minor but critically important class of phospholipids of cellular membranes. The rapid formation, elimination, and conversion of these lipids in specific membrane compartments are ensured by a wealthy number of inositol lipid kinases and phosphatases with unique localization and regulatory properties. The existence of multiple inositol lipid pools have been indicated by metabolic labeling studies, but the level of functional compartmentalization revealed by the identification of numerous protein effectors acted upon by phosphoinositides could not have been foreseen. The changing perception of inositides from just serving as lipid precursors of second messengers to becoming highly dynamic local membrane-bound regulators poses new challenges concerning the detection of their rapid localized changes. Moreover, it is increasingly evident that manipulation of lipids in highly defined compartments would be a highly superior approach to soaking the cells with a particular phosphoinositide when studying the local regulation of the lipid on any effectors. In this review, we will summarize our efforts to improve our tools in studying phosphoinositide dynamics and discuss our views on the values of these methods compared to other options currently used or being explored.
Collapse
Affiliation(s)
- Péter Várnai
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bldg 49, Rm 6A35, 49 Convent Drive, Bethesda, MD, USA.
| | | |
Collapse
|
27
|
Kaplan P, Jurkovicova D, Babusikova E, Hudecova S, Racay P, Sirova M, Lehotsky J, Drgova A, Dobrota D, Krizanova O. Effect of aging on the expression of intracellular Ca(2+) transport proteins in a rat heart. Mol Cell Biochem 2007; 301:219-26. [PMID: 17549608 DOI: 10.1007/s11010-007-9414-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Aging process is accompanied by various biological dysfunctions including altered calcium homeostasis. Modified calcium handling might be responsible for changed cardiac function and potential development of the pathological state. In the present study we compared the mRNA and protein levels of the intracellular Ca(2+)-handling proteins--inositol 1,4,5-trisphosphate receptor (IP(3)R), ryanodine receptor (RyR), sarcoplasmic reticulum Ca(2+) pump (SERCA2), and also transient receptor potential C (TRPC) channels in cardiac tissues of 5-, 15-, and 26-month-old rats. Aging was accompanied by significant increase in the mRNA levels of IP(3)R and TRPC channels in both ventricles and atria, but mRNA level of the type 2 RyR was unchanged. Protein content of the IP(3)R1 correlated with mRNA levels, in the left ventricle of 15- and 26-month-old rats the value was approximately 1.8 and 2.8-times higher compared to 5-month-old rats. No significant differences were observed in mRNA and protein levels of the SERCA2 among 5-month-old and aged rats. However, Ca(2+)-ATPase activity significantly decreased with age, activities in 5-, 15-, and 26-month-old rats were 421.2 +/- 13.7, 335.5 +/- 18.1 and 304.6 +/- 14.8 nmol P(i) min(-1) mg(-1). These results suggest that altered transporting activity and/or gene expression of Ca(2+)-handling proteins of intracellular Ca(2+) stores might affect cardiac function during aging.
Collapse
Affiliation(s)
- P Kaplan
- Department of Biochemistry, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, Martin, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 2006; 175:901-11. [PMID: 17178908 PMCID: PMC2064700 DOI: 10.1083/jcb.200608073] [Citation(s) in RCA: 1109] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/20/2006] [Indexed: 12/21/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane mediates metabolic flow, Ca(2+), and cell death signaling between the endoplasmic reticulum (ER) and mitochondrial networks. We demonstrate that VDAC1 is physically linked to the endoplasmic reticulum Ca(2+)-release channel inositol 1,4,5-trisphosphate receptor (IP(3)R) through the molecular chaperone glucose-regulated protein 75 (grp75). Functional interaction between the channels was shown by the recombinant expression of the ligand-binding domain of the IP(3)R on the ER or mitochondrial surface, which directly enhanced Ca(2+) accumulation in mitochondria. Knockdown of grp75 abolished the stimulatory effect, highlighting chaperone-mediated conformational coupling between the IP(3)R and the mitochondrial Ca(2+) uptake machinery. Because organelle Ca(2+) homeostasis influences fundamentally cellular functions and death signaling, the central location of grp75 may represent an important control point of cell fate and pathogenesis.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation, Emilia Romagna Laboratory for Genomics and Biotechnology, University of Ferrara, Ferrara 44100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006; 40:553-60. [PMID: 17074387 PMCID: PMC2692319 DOI: 10.1016/j.ceca.2006.08.016] [Citation(s) in RCA: 475] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 12/30/2022]
Abstract
Local Ca(2+) transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca(2+) release to activate mitochondrial Ca(2+) uptake and to evoke a matrix [Ca(2+)] ([Ca(2+)](m)) rise. [Ca(2+)](m) exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca(2+) release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca(2+) sensitivity of both the Ca(2+) release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca(2+) accumulation in various apoptotic paradigms, methods are available for buffering of [Ca(2+)], for dissipation of the driving force of the mitochondrial Ca(2+) uptake and for inhibition of the mitochondrial Ca(2+) transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca(2+) handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca(2+) uptake on cytosolic [Ca(2+)] and [Ca(2+)](m) in intact cultured cells.
Collapse
Affiliation(s)
- György Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Pokhilko AV, Ataullakhanov FI, Holmuhamedov EL. Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport. J Theor Biol 2006; 243:152-69. [PMID: 16859713 DOI: 10.1016/j.jtbi.2006.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Mitochondria play an important role in regulation of Ca2+ homeostasis in a cell. Here we present a mathematical model of mitochondrial ion transport and use this model to analyse different modes of Ca2+ uptake by mitochondria. The model includes transport of H+, Ca2+, K+, inorganic phosphate and oxidative substrates across the inner mitochondrial membrane harboring permeability transition pore (PTP). The detailed description of ion fluxes is based on the experimental ion kinetics in isolated mitochondria. Using the model we show that the kinetics of Ca2+ uptake by mitochondria is regulated by the total amount of Ca2+ in the system and the rate of Ca2+ infusion. Varying these parameters we find three different modes of ion transport. When the total amount of Ca2+ is below 140 nmol Ca2+/mg protein, all available Ca2+ is accumulated in the matrix without activation of the PTP. Between 140 and 160 nmol Ca2+/mg protein, accumulation of Ca2+ generates periodic opening and closure of the PTP and oscillations of ion fluxes. Higher levels of Ca2+ (> 160 nmol Ca2+/mg protein) result in a permanently open PTP, membrane depolarization and loss of small ions from the matrix. We show that in the intermediate range of Ca2+ concentrations the rate of Ca2+ infusion regulates the PTP state, so that slow Ca2+ infusion does not lead to PTP opening, while fast Ca2+ infusion results in an oscillatory state.
Collapse
Affiliation(s)
- Alexandra V Pokhilko
- National Scientific Center for Hematology, Novozykovsky proezd 4a, Moscow 125167, Russian Federeation.
| | | | | |
Collapse
|