1
|
Fenstermaker TK, Petruk S, Mazo A. An emerging paradigm in epigenetic marking: coordination of transcription and replication. Transcription 2024; 15:22-37. [PMID: 38378467 PMCID: PMC11093037 DOI: 10.1080/21541264.2024.2316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.
Collapse
Affiliation(s)
- Tyler K. Fenstermaker
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Zuñiga-Hernandez J, Meneses C, Bastias M, Allende ML, Glavic A. Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes. Int J Mol Sci 2023; 24:ijms24087485. [PMID: 37108646 PMCID: PMC10138878 DOI: 10.3390/ijms24087485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Drosophila melanogaster DAxud1 is a transcription factor that belongs to the Cysteine Serine Rich Nuclear Protein (CSRNP) family, conserved in metazoans, with a transcriptional transactivation activity. According to previous studies, this protein promotes apoptosis and Wnt signaling-mediated neural crest differentiation in vertebrates. However, no analysis has been conducted to determine what other genes it might control, especially in connection with cell survival and apoptosis. To partly answer this question, this work analyzes the role of Drosophila DAxud1 using Targeted-DamID-seq (TaDa-seq), which allows whole genome screening to determine in which regions it is most frequently found. This analysis confirmed the presence of DAxud1 in groups of pro-apoptotic and Wnt pathway genes, as previously described; furthermore, stress resistance genes that coding heat shock protein (HSP) family genes were found as hsp70, hsp67, and hsp26. The enrichment of DAxud1 also identified a DNA-binding motif (AYATACATAYATA) that is frequently found in the promoters of these genes. Surprisingly, the following analyses demonstrated that DAxud1 exerts a repressive role on these genes, which are necessary for cell survival. This is coupled with the pro-apoptotic and cell cycle arrest roles of DAxud1, in which repression of hsp70 complements the maintenance of tissue homeostasis through cell survival modulation.
Collapse
Affiliation(s)
- Jorge Zuñiga-Hernandez
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Claudio Meneses
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
- Millennium Nucleus Development of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena Bastias
- Centro de Biotecnología vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Alvaro Glavic
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| |
Collapse
|
3
|
Bao S, Xu C. Molecular insight into the SETD1A/B N-terminal region and its interaction with WDR82. Biochem Biophys Res Commun 2023; 658:136-140. [PMID: 37030068 DOI: 10.1016/j.bbrc.2023.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
SETD1A and SETD1B originate from Set1, the sole H3K4 methyltransferase in yeast, and they play important roles in active gene transcription. Here, we present the crystal structures of the RRM domains of human SETD1A and SETD1B. Although both RRM domains adopt a canonical RRM fold, their structural features are different from that of the yeast Set1 RRM domain, their yeast homolog. By using an ITC binding assay, we found an intrinsically disordered region in SETD1A/B binds WDR82. The structural analysis implies that the positively charged regions within human RRM domains might be involved in binding to RNA. Our work provides structural insight into the assembly of WDR82 with the catalytic subunits SETD1A/B in the context of the whole complex.
Collapse
|
4
|
Stanek TJ, Gennaro VJ, Tracewell MA, Di Marcantonio D, Pauley KL, Butt S, McNair C, Wang F, Kossenkov AV, Knudsen KE, Butt T, Sykes SM, McMahon SB. The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. EMBO J 2021; 40:e102509. [PMID: 34155658 PMCID: PMC8365265 DOI: 10.15252/embj.2019102509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.
Collapse
Affiliation(s)
- Timothy J Stanek
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Victoria J Gennaro
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Mason A Tracewell
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Kristen L Pauley
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Sabrina Butt
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Christopher McNair
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | | | - Karen E Knudsen
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Stephen M Sykes
- Blood Cell Development and Function ProgramFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Steven B McMahon
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
5
|
Putra V, Hulme AJ, Tee AE, Sun JQ, Atmadibrata B, Ho N, Chen J, Gao J, Norris MD, Haber M, Kavallaris M, Henderson MJ, McCarroll J, Trahair T, Liu T, Liu PY. The RNA-helicase DDX21 upregulates CEP55 expression and promotes neuroblastoma. Mol Oncol 2021; 15:1162-1179. [PMID: 33497018 PMCID: PMC8024731 DOI: 10.1002/1878-0261.12906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Approximately 25% of human neuroblastoma is caused by amplification of the MYCN oncogene, which leads to overexpression of N-Myc oncoprotein. The survival rate for this patient subtype is <50%. Here, we show that N-Myc protein bound to the DEAD-box RNA helicase DDX21 gene promoter and upregulated DDX21 mRNA and protein expression. Genome-wide differential gene expression studies identified centrosomal protein CEP55 as one of the genes most dramatically downregulated after DDX21 knockdown in MYCN-amplified neuroblastoma cells. Knocking down DDX21 or CEP55 reduced neuroblastoma cell cytoskeleton stability and cell proliferation and all but abolished clonogenic capacity. Importantly, DDX21 knockdown initially induced tumor regression in neuroblastoma-bearing mice and suppressed tumor progression. In human neuroblastoma tissues, a high level of DDX21 expression correlated with a high level of N-Myc expression and with CEP55 expression, and independently predicted poor patient prognosis. Taken together, our data show that DDX21 induces CEP55 expression, MYCN-amplified neuroblastoma cell proliferation, and tumorigenesis, and that DDX21 and CEP55 are valid therapeutic targets for the treatment of MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Vina Putra
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Amy J. Hulme
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Andrew E. Tee
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Jane Q.J. Sun
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Bernard Atmadibrata
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Nicholas Ho
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Jingwei Chen
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Jixuan Gao
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Murray D. Norris
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
- University of New South Wales Centre for Childhood Cancer ResearchSydneyNSWAustralia
| | - Michelle Haber
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Maria Kavallaris
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyAustralian Centre for NanomedicineUNSW SydneyKensingtonNSWAustralia
- School of Women’s and Children’s HealthFaculty of MedicineUNSW SydneyKensingtonNSWAustralia
| | - Michelle J. Henderson
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Joshua McCarroll
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Toby Trahair
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Tao Liu
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| | - Pei Y. Liu
- Children’s Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNSWAustralia
| |
Collapse
|
6
|
Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair. Curr Genet 2019; 66:531-548. [PMID: 31784768 DOI: 10.1007/s00294-019-01047-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.
Collapse
|
7
|
Azevedo J, Picart C, Dureau L, Pontier D, Jaquinod-Kieffer S, Hakimi MA, Lagrange T. UAP56 associates with DRM2 and is localized to chromatin in Arabidopsis. FEBS Open Bio 2019; 9:973-985. [PMID: 30951268 PMCID: PMC6487834 DOI: 10.1002/2211-5463.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022] Open
Abstract
Repeated sequence expression and transposable element mobilization are tightly controlled by multilayer processes, which include DNA 5′‐cytosine methylation. The RNA‐directed DNA methylation (RdDM) pathway, which uses siRNAs to guide sequence‐specific directed DNA methylation, emerged specifically in plants. RdDM ensures DNA methylation maintenance on asymmetric CHH sites and specifically initiates de novo methylation in all cytosine sequence contexts through the action of DRM DNA methyltransferases, of which DRM2 is the most prominent. The RdDM pathway has been well described, but how DRM2 is recruited onto DNA targets and associates with other RdDM factors remains unknown. To address these questions, we developed biochemical approaches to allow the identification of factors that may escape genetic screens, such as proteins encoded by multigenic families. Through both conventional and affinity purification of DRM2, we identified DEAD box RNA helicases U2AF56 Associated Protein 56 (UAP56a/b), which are widespread among eukaryotes, as new DRM2 partners. We have shown that, similar to DRM2 and other RdDM actors, UAP56 has chromatin‐associated protein properties. We confirmed this association both in vitro and in vivo in reproductive tissues. In addition, our experiments also suggest that UAP56 may exhibit differential distribution in cells depending on plant organ. While originally identified for its role in splicing, our study suggests that UAP56 may also have other roles, and our findings allow us to initiate discussion about its potential role in the RdDM pathway.
Collapse
Affiliation(s)
- Jacinthe Azevedo
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Claire Picart
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Laurent Dureau
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Dominique Pontier
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Sylvie Jaquinod-Kieffer
- Laboratoire Biologie Grande Echelle, Institut de Biosciences et Biotechnologies de Grenoble, UMR_S 1038, CEA, INSERM, Université Grenoble Alpes, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, France
| | - Thierry Lagrange
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| |
Collapse
|
8
|
Matsumoto Y, Hannigan B, Crews D. Temperature Shift Alters DNA Methylation and Histone Modification Patterns in Gonadal Aromatase (cyp19a1) Gene in Species with Temperature-Dependent Sex Determination. PLoS One 2016; 11:e0167362. [PMID: 27902763 PMCID: PMC5130277 DOI: 10.1371/journal.pone.0167362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/13/2016] [Indexed: 12/17/2022] Open
Abstract
The environment surrounding the embryos has a profound impact on the developmental process and phenotypic outcomes of the organism. In species with temperature-dependent sex determination, gonadal sex is determined by the incubation temperature of the eggs. A mechanistic link between temperature and transcriptional regulation of developmental genes, however, remains elusive. In this study, we examine the changes in DNA methylation and histone modification patterns of the aromatase (cyp19a1) gene in embryonic gonads of red-eared slider turtles (Trachemys scripta) subjected to a temperature shift during development. Shifting embryos from a male-producing temperature (MPT) to a female-producing temperature (FPT) at the beginning of the temperature-sensitive period (TSP) resulted in an increase in aromatase mRNA expression while a shift from FPT to MPT resulted in decreased expression. DNA methylation levels at CpG sites in the promoter of the aromatase gene were high (70–90%) at the beginning of TSP, but decreased in embryos that were incubated at constant FPT and those shifted from MPT to the FPT. This decrease in methylation in the promoter inversely correlated with the expected increase in aromatase expression at the FPT. The active demethylation under the FPT was especially prominent at the CpG site upstream of the gonad-specific TATA box at the beginning of TSP and spread downstream of the gene including exon1 as the gonad development progressed. In embryos incubated at FPT, the promoter region was also labeled by canonical transcriptional activation markers, H3K4me3 and RNA polymerase II. A transcriptional repression marker, H3K27me3, was observed in temperature-shifted gonads of both temperature groups, but was not maintained throughout the development in either group. Our findings suggest that DNA hypomethylation and H3K4me3 modification at the aromatase promoter may be a primary mechanism that releases a transcriptional block of aromatase to initiate a cascade of ovarian differentiation.
Collapse
Affiliation(s)
- Yuiko Matsumoto
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Brette Hannigan
- Department of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - David Crews
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
9
|
Fontana GA, Rigamonti A, Lenzken SC, Filosa G, Alvarez R, Calogero R, Bianchi ME, Barabino SML. Oxidative stress controls the choice of alternative last exons via a Brahma-BRCA1-CstF pathway. Nucleic Acids Res 2016; 45:902-914. [PMID: 27591253 PMCID: PMC5314785 DOI: 10.1093/nar/gkw780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing of terminal exons increases transcript and protein diversity. How physiological and pathological stimuli regulate the choice between alternative terminal exons is, however, largely unknown. Here, we show that Brahma (BRM), the ATPase subunit of the hSWI/SNF chromatin-remodeling complex interacts with BRCA1/BARD1, which ubiquitinates the 50 kDa subunit of the 3′ end processing factor CstF. This results in the inhibition of transcript cleavage at the proximal poly(A) site and a shift towards inclusion of the distal terminal exon. Upon oxidative stress, BRM is depleted, cleavage inhibition is released, and inclusion of the proximal last exon is favoored. Our findings elucidate a novel regulatory mechanism, distinct from the modulation of transcription elongation by BRM that controls alternative splicing of internal exons.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Aurora Rigamonti
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Silvia C Lenzken
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Filosa
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Reinaldo Alvarez
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Raffaele Calogero
- Department of Biotechnology and Health Sciences, University of Torino, Via Nizza 52, I-10126 Torino, Italy
| | - Marco E Bianchi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and University, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia M L Barabino
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
10
|
Morris DP, Lei B, Longo LD, Bomsztyk K, Schwinn DA, Michelotti GA. Temporal Dissection of Rate Limiting Transcriptional Events Using Pol II ChIP and RNA Analysis of Adrenergic Stress Gene Activation. PLoS One 2015; 10:e0134442. [PMID: 26244980 PMCID: PMC4526373 DOI: 10.1371/journal.pone.0134442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
In mammals, increasing evidence supports mechanisms of co-transcriptional gene regulation and the generality of genetic control subsequent to RNA polymerase II (Pol II) recruitment. In this report, we use Pol II Chromatin Immunoprecipitation to investigate relationships between the mechanistic events controlling immediate early gene (IEG) activation following stimulation of the α1a-Adrenergic Receptor expressed in rat-1 fibroblasts. We validate our Pol II ChIP assay by comparison to major transcriptional events assessable by microarray and PCR analysis of precursor and mature mRNA. Temporal analysis of Pol II density suggests that reduced proximal pausing often enhances gene expression and was essential for Nr4a3 expression. Nevertheless, for Nr4a3 and several other genes, proximal pausing delayed the time required for initiation of productive elongation, consistent with a role in ensuring transcriptional fidelity. Arrival of Pol II at the 3’ cleavage site usually correlated with increased polyadenylated mRNA; however, for Nfil3 and probably Gprc5a expression was delayed and accompanied by apparent pre-mRNA degradation. Intragenic pausing not associated with polyadenylation was also found to regulate and delay Gprc5a expression. Temporal analysis of Nr4a3, Dusp5 and Nfil3 shows that transcription of native IEG genes can proceed at velocities of 3.5 to 4 kilobases/min immediately after activation. Of note, all of the genes studied here also used increased Pol II recruitment as an important regulator of expression. Nevertheless, the generality of co-transcriptional regulation during IEG activation suggests temporal and integrated analysis will often be necessary to distinguish causative from potential rate limiting mechanisms.
Collapse
Affiliation(s)
- Daniel P. Morris
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lawrence D. Longo
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Debra A. Schwinn
- Department of Anesthesiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Gregory A. Michelotti
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
11
|
Parua PK, Dombek KM, Young ET. Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions. J Biol Chem 2014; 289:35542-60. [PMID: 25355315 PMCID: PMC4271238 DOI: 10.1074/jbc.m114.592287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/22/2014] [Indexed: 01/23/2023] Open
Abstract
In eukaryotes combinatorial activation of transcription is an important component of gene regulation. In the budding yeast Saccharomyces cerevisiae, Adr1-Cat8 and Adr1-Oaf1/Pip2 are pairs of activators that act together to regulate two diverse sets of genes. Transcription activation of both sets is regulated positively by the yeast AMP-activated protein kinase homolog, Snf1, in response to low glucose or the presence of a non-fermentable carbon source and negatively by two redundant 14-3-3 isoforms, Bmh1 and Bmh2. Bmh regulates the function of these pairs at a post-promoter binding step by direct binding to Adr1. However, how Bmh regulates transcription after activator binding remains unknown. In the present study we analyzed Bmh-mediated regulation of two sets of genes activated independently by these pairs of activators. We report that Bmh inhibits mRNA synthesis when the second activator is absent. Using gene fusions we show that Bmh binding to the Adr1 regulatory domain inhibits an Adr1 activation domain but not a heterologous activation domain or artificially recruited Mediator, consistent with Bmh acting at a step in transcription downstream of activator binding. Bmh inhibits the assembly and the function of a preinitiation complex (PIC). Gene expression studies suggest that Bmh regulates Adr1 activity through the coactivators Mediator and Swi/Snf. Mediator recruitment appeared to occur normally, but PIC formation and function were defective, suggesting that Bmh inhibits a step between Mediator recruitment and PIC activation.
Collapse
Affiliation(s)
- Pabitra K Parua
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Kenneth M Dombek
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Elton T Young
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| |
Collapse
|
12
|
Rai R, Zhu L, Chen H, Gupta AP, Sze SK, Zheng J, Ruedl C, Bozdech Z, Featherstone M. Genome-wide analysis in Plasmodium falciparum reveals early and late phases of RNA polymerase II occupancy during the infectious cycle. BMC Genomics 2014; 15:959. [PMID: 25373614 PMCID: PMC4232647 DOI: 10.1186/1471-2164-15-959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/23/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Over the course of its intraerythrocytic developmental cycle (IDC), the malaria parasite Plasmodium falciparum tightly orchestrates the rise and fall of transcript levels for hundreds of genes. Considerable debate has focused on the relative importance of transcriptional versus post-transcriptional processes in the regulation of transcript levels. Enzymatically active forms of RNAPII in other organisms have been associated with phosphorylation on the serines at positions 2 and 5 of the heptad repeats within the C-terminal domain (CTD) of RNAPII. We reasoned that insight into the contribution of transcriptional mechanisms to gene expression in P. falciparum could be obtained by comparing the presence of enzymatically active forms of RNAPII at multiple genes with the abundance of their associated transcripts. RESULTS We exploited the phosphorylation state of the CTD to detect enzymatically active forms of RNAPII at most P. falciparum genes across the IDC. We raised highly specific monoclonal antibodies against three forms of the parasite CTD, namely unphosphorylated, Ser5-P and Ser2/5-P, and used these in ChIP-on-chip type experiments to map the genome-wide occupancy of RNAPII. Our data reveal that the IDC is divided into early and late phases of RNAPII occupancy evident from simple bi-phasic RNAPII binding profiles. By comparison to mRNA abundance, we identified sub-sets of genes with high occupancy by enzymatically active forms of RNAPII and relatively low transcript levels and vice versa. We further show that the presence of active and repressive histone modifications correlates with RNAPII occupancy over the IDC. CONCLUSIONS The simple early/late occupancy by RNAPII cannot account for the complex dynamics of mRNA accumulation over the IDC, suggesting a major role for mechanisms acting downstream of RNAPII occupancy in the control of gene expression in this parasite.
Collapse
Affiliation(s)
- Ragini Rai
- />School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Lei Zhu
- />School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Haifen Chen
- />School of Computer Engineering, Nanyang Technological University, Block N4 #02a-32 Nanyang Avenue, Singapore, 639798 Singapore
| | - Archana Patkar Gupta
- />School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Siu Kwan Sze
- />School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jie Zheng
- />School of Computer Engineering, Nanyang Technological University, Block N4 #02a-32 Nanyang Avenue, Singapore, 639798 Singapore
| | - Christiane Ruedl
- />School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Zbynek Bozdech
- />School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Mark Featherstone
- />School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
13
|
Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y, Sakata-Sogawa K, Tokunaga M, Nagase T, Nozaki N, McNally JG, Kimura H. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 2014; 516:272-5. [PMID: 25252976 DOI: 10.1038/nature13714] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/25/2014] [Indexed: 12/31/2022]
Abstract
In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.
Collapse
Affiliation(s)
- Timothy J Stasevich
- 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA [3] Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Yoko Hayashi-Takanaka
- 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [3] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuko Sato
- 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [2] Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kumiko Sakata-Sogawa
- 1] Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan [2] RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan
| | - Makio Tokunaga
- 1] Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan [2] RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan
| | - Takahiro Nagase
- Department of Biotechnology Research, Kazusa DNA Research Institute, Chiba, 292-0818, Japan
| | | | - James G McNally
- 1] Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Berlin, 14109, Germany
| | - Hiroshi Kimura
- 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [3] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
14
|
White E, Schlackow M, Kamieniarz-Gdula K, Proudfoot NJ, Gullerova M. Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. Nat Struct Mol Biol 2014; 21:552-9. [PMID: 24814348 PMCID: PMC4129937 DOI: 10.1038/nsmb.2827] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Dicer is a central enzymatic player in RNA-interference pathways that acts to regulate gene expression in nearly all eukaryotes. Although the cytoplasmic function of Dicer is well documented in mammals, its nuclear function remains obscure. Here we show that Dicer is present in both the nucleus and cytoplasm, and its nuclear levels are tightly regulated. Dicer interacts with RNA polymerase II (Pol II) at actively transcribed gene loci. Loss of Dicer causes the appearance of endogenous double-stranded RNA (dsRNA), which in turn leads to induction of the interferon-response pathway and consequent cell death. Our results suggest that Pol II-associated Dicer restricts endogenous dsRNA formation from overlapping noncoding-RNA transcription units. Failure to do so has catastrophic effects on cell function.
Collapse
Affiliation(s)
- Eleanor White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Orioli D, Compe E, Nardo T, Mura M, Giraudon C, Botta E, Arrigoni L, Peverali FA, Egly JM, Stefanini M. XPD mutations in trichothiodystrophy hamper collagen VI expression and reveal a role of TFIIH in transcription derepression. Hum Mol Genet 2012; 22:1061-73. [PMID: 23221806 DOI: 10.1093/hmg/dds508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations in the XPD subunit of the transcription/DNA repair factor (TFIIH) give rise to trichothiodystrophy (TTD), a rare hereditary multisystem disorder with skin abnormalities. Here, we show that TTD primary dermal fibroblasts contain low amounts of collagen type VI alpha1 subunit (COL6A1), a fundamental component of soft connective tissues. We demonstrate that COL6A1 expression is downregulated by the sterol regulatory element-binding protein-1 (SREBP-1) whose removal from the promoter is a key step in COL6A1 transcription upregulation in response to cell confluence. We provide evidence for TFIIH being involved in transcription derepression, thus highlighting a new function of TFIIH in gene expression regulation. The lack of COL6A1 upregulation in TTD is caused by the inability of the mutated TFIIH complexes to remove SREBP-1 from COL6A1 promoter and to sustain the subsequent high rate of COL6A1 transcription. This defect might account for the pathologic features that TTD shares with hereditary disorders because of mutations in COL6A genes.
Collapse
Affiliation(s)
- Donata Orioli
- Istituto di Genetica Molecolare CNR, Pavia 27100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mitchell JA, Clay I, Umlauf D, Chen CY, Moir CA, Eskiw CH, Schoenfelder S, Chakalova L, Nagano T, Fraser P. Nuclear RNA sequencing of the mouse erythroid cell transcriptome. PLoS One 2012; 7:e49274. [PMID: 23209567 PMCID: PMC3510205 DOI: 10.1371/journal.pone.0049274] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq) in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq) of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A)-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.
Collapse
Affiliation(s)
- Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet 2012; 8:e1003078. [PMID: 23166521 PMCID: PMC3499365 DOI: 10.1371/journal.pgen.1003078] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/26/2012] [Indexed: 11/22/2022] Open
Abstract
The poly(A)-binding protein nuclear 1 (PABPN1) is a ubiquitously expressed protein that is thought to function during mRNA poly(A) tail synthesis in the nucleus. Despite the predicted role of PABPN1 in mRNA polyadenylation, little is known about the impact of PABPN1 deficiency on human gene expression. Specifically, it remains unclear whether PABPN1 is required for general mRNA expression or for the regulation of specific transcripts. Using RNA sequencing (RNA–seq), we show here that the large majority of protein-coding genes express normal levels of mRNA in PABPN1–deficient cells, arguing that PABPN1 may not be required for the bulk of mRNA expression. Unexpectedly, and contrary to the view that PABPN1 functions exclusively at protein-coding genes, we identified a class of PABPN1–sensitive long noncoding RNAs (lncRNAs), the majority of which accumulated in conditions of PABPN1 deficiency. Using the spliced transcript produced from a snoRNA host gene as a model lncRNA, we show that PABPN1 promotes lncRNA turnover via a polyadenylation-dependent mechanism. PABPN1–sensitive lncRNAs are targeted by the exosome and the RNA helicase MTR4/SKIV2L2; yet, the polyadenylation activity of TRF4-2, a putative human TRAMP subunit, appears to be dispensable for PABPN1–dependent regulation. In addition to identifying a novel function for PABPN1 in lncRNA turnover, our results provide new insights into the post-transcriptional regulation of human lncRNAs. In eukaryotic cells, protein-coding genes are transcribed to produce pre-messenger RNAs (pre–mRNAs) that are processed at the 3′ end by the addition of a sequence of poly-adenosine. This 3′ end poly(A) tail normally confers positive roles to the mRNA life cycle by stimulating nuclear export and translation. The fundamental role of mRNA polyadenylation is generally mediated by the activity of poly(A)-binding proteins (PABPs) that bind to the 3′ poly(A) tail of eukaryotic mRNAs. In the nucleus, the evolutionarily conserved poly(A)-binding protein PABPN1 is thought to be important for gene expression, as it stimulates mRNA polyadenylation in biochemical assays. Using a high-throughput sequencing approach that quantitatively measures the level of RNA expressed from all genes, we addressed the global impact of a PABPN1 deficiency on human gene expression. Notably, we found that most mRNAs were normally expressed in PABPN1–deficient cells, a result inconsistent with a role for PABPN1 in general mRNA metabolism. Surprisingly, our genome-wide analysis unveiled a new function for PABPN1 in a polyadenylation-dependent pathway of RNA decay that targets non-protein coding genes. Our discovery that PABPN1 functions in the regulation of noncoding RNAs raises the possibility that oculopharyngeal muscular dystrophy, a disease associated with mutations in the PABPN1 gene, is caused by defective expression of noncoding RNAs.
Collapse
Affiliation(s)
- Yves B. Beaulieu
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
18
|
Chen Y, Choi SS, Michelotti GA, Chan IS, Swiderska M, Karaca GF, Xie G, Moylan CA, Garibaldi F, Premont R, Suliman HB, Piantodosi CA, Diehl AM. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 2012; 143:1319-1329.e11. [PMID: 22885334 PMCID: PMC3480563 DOI: 10.1053/j.gastro.2012.07.115] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/24/2012] [Accepted: 07/29/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of cirrhosis, a disabling outcome of defective liver repair, involves deregulated accumulation of myofibroblasts derived from quiescent hepatic stellate cells (HSCs), but the mechanisms that control transdifferentiation of HSCs are poorly understood. We investigated whether the Hedgehog (Hh) pathway controls the fate of HSCs by regulating metabolism. METHODS Microarray, quantitative polymerase chain reaction, and immunoblot analyses were used to identify metabolic genes that were differentially expressed in quiescent vs myofibroblast HSCs. Glycolysis and lactate production were disrupted in HSCs to determine if metabolism influenced transdifferentiation. Hh signaling and hypoxia-inducible factor 1α (HIF1α) activity were altered to identify factors that alter glycolytic activity. Changes in expression of genes that regulate glycolysis were quantified and localized in biopsy samples from patients with cirrhosis and liver samples from mice following administration of CCl(4) or bile duct ligation. Mice were given systemic inhibitors of Hh to determine if they affect glycolytic activity of the hepatic stroma; Hh signaling was also conditionally disrupted in myofibroblasts to determine the effects of glycolytic activity. RESULTS Transdifferentiation of cultured, quiescent HSCs into myofibroblasts induced glycolysis and caused lactate accumulation. Increased expression of genes that regulate glycolysis required Hh signaling and involved induction of HIF1α. Inhibitors of Hh signaling, HIF1α, glycolysis, or lactate accumulation converted myofibroblasts to quiescent HSCs. In diseased livers of animals and patients, numbers of glycolytic stromal cells were associated with the severity of fibrosis. Conditional disruption of Hh signaling in myofibroblasts reduced numbers of glycolytic myofibroblasts and liver fibrosis in mice; similar effects were observed following administration of pharmacologic inhibitors of Hh. CONCLUSIONS Hedgehog signaling controls the fate of HSCs by regulating metabolism. These findings might be applied to diagnosis and treatment of patients with cirrhosis.
Collapse
Affiliation(s)
- Yuping Chen
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Steve S. Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA,Section of Gastroenterology, Department of Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Gregory A. Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Isaac S. Chan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Marzena Swiderska
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Gamze F. Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Guanhua Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Cynthia A. Moylan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA,Section of Gastroenterology, Department of Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Francesca Garibaldi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard Premont
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Hagir B. Suliman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Claude A. Piantodosi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA,Department of Anesthesiology, Duke University, Durham, North Carolina, USA,Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
19
|
Vorobyeva NE, Nikolenko JV, Nabirochkina EN, Krasnov AN, Shidlovskii YV, Georgieva SG. SAYP and Brahma are important for 'repressive' and 'transient' Pol II pausing. Nucleic Acids Res 2012; 40:7319-31. [PMID: 22638575 PMCID: PMC3424582 DOI: 10.1093/nar/gks472] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drosophila SAYP, a homologue of human PHF10/BAF45a, is a metazoan coactivator associated with Brahma and essential for its recruitment on the promoter. The role of SAYP in DHR3 activator-driven transcription of the ftz-f1 gene, a member of the ecdysone cascade was studied. In the repressed state of ftz-f1 in the presence of DHR3, the Pol II complex is pre-recruited on the promoter; Pol II starts transcription but is paused 1.5 kb downstream of the promoter, with SAYP and Brahma forming a 'nucleosomal barrier' (a region of high nucleosome density) ahead of paused Pol II. SAYP depletion leads to the removal of Brahma, thereby eliminating the nucleosomal barrier. During active transcription, Pol II pausing at the same point correlates with Pol II CTD Ser2 phosphorylation. SAYP is essential for Ser2 phosphorylation and transcription elongation. Thus, SAYP as part of the Brahma complex participates in both 'repressive' and 'transient' Pol II pausing.
Collapse
Affiliation(s)
- Nadezhda E Vorobyeva
- Group of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | | | | | | | | | | |
Collapse
|
20
|
Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Francis Stewart A, Smith A, Stunnenberg H. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 2012; 149:590-604. [PMID: 22541430 PMCID: PMC3398752 DOI: 10.1016/j.cell.2012.03.026] [Citation(s) in RCA: 660] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 12/26/2011] [Accepted: 03/06/2012] [Indexed: 02/02/2023]
Abstract
Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.
Collapse
Affiliation(s)
- Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Tüzer Kalkan
- Wellcome Trust Centre for Stem Cell Research and Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Roberta Menafra
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sergey Denissov
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kenneth Jones
- Wellcome Trust Centre for Stem Cell Research and Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Helmut Hofemeister
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Am Tatzberg 47-51, D-01307 Dresden, Germany
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research and Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Andrea Kranz
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Am Tatzberg 47-51, D-01307 Dresden, Germany
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Am Tatzberg 47-51, D-01307 Dresden, Germany
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research and Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
21
|
MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene 2011; 30:4118-28. [PMID: 21499305 DOI: 10.1038/onc.2011.118] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
EZH2 overexpression occurs in various malignancies and is associated with a poor outcome. We have so far demonstrated that EZH2 downregulates the important genes such as E-cadherin and RUNX3 by increasing histone H3K27 trimethylation. However, the mechanism of EZH2 overexpression in various cancer cells remains unclear. In this study we carried out a promoter analysis of the EZH2 gene and investigated whether a survival signal that is upregulated in cancer cells is related to overexpression at the transcription level. We also explored the clinical relevance of the signaling pathway that leads to EZH2 overexpression in breast cancer and demonstrated that MEK-ERK1/2-Elk-1 pathway leads to EZH2 overexpression. The triple-negative and ERBB2-overexpressing subtypes of breast cancer are known to contain more rapidly proliferating breast cancer cells. The signaling pathway connected to EZH2 overexpression was associated with both aggressive subtypes of breast cancer. We show the significance that overexpression of histone modifier protein EZH2 in cancer cells and our study could pave the way for EZH2 inhibition to become an efficient treatment for more aggressive breast cancers.
Collapse
|
22
|
Abstract
AbstractNumerous epigenetic modifications have been identified and correlated with transcriptionally active euchromatin or repressed heterochromatin and many enzymes responsible for the addition and removal of these marks have been characterized. However, less is known regarding how these enzymes are regulated and targeted to appropriate genomic locations. Mammalian CXXC finger protein 1 is an epigenetic regulator that was originally identified as a protein that binds specifically to any DNA sequence containing an unmethylated CpG dinucleotide. Mouse embryos lacking CXXC finger protein 1 die prior to gastrulation, and embryonic stem cells lacking CXXC finger protein 1 are viable but are unable to achieve cellular differentiation and lineage commitment. CXXC finger protein 1 is a regulator of both cytosine and histone methylation. It physically interacts with DNA methyltransferase 1 and facilitates maintenance cytosine methylation. Rescue studies reveal that CXXC finger protein 1 contains redundant functional domains that are sufficient to support cellular differentiation and proper levels of cytosine methylation. CXXC finger protein 1 is also a component of the Setd1 histone H3-Lys4 methyltransferase complexes and functions to target these enzymes to unmethylated CpG islands. Depletion of CXXC finger protein 1 leads to loss of histone H3-Lys4 tri-methylation at CpG islands and inappropriate drifting of this euchromatin mark into areas of hetero-chromatin. Thus, one function of CXXC finger protein 1 is to serve as an effector protein that interprets cytosine methylation patterns and facilitates crosstalk with histone-modifying enzymes.
Collapse
Affiliation(s)
- David G. Skalnik
- 1Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1). Epigenetics Chromatin 2010; 3:16. [PMID: 20825659 PMCID: PMC2940767 DOI: 10.1186/1756-8935-3-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/08/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. RESULTS Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1). Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFN)γ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II) occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS)-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD) of Pol II are disrupted during gene activation as well. CONCLUSIONS H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.
Collapse
|
24
|
RNA polymerase II C-terminal domain phosphorylation patterns in Caenorhabditis elegans operons, polycistronic gene clusters with only one promoter. Mol Cell Biol 2010; 30:3887-93. [PMID: 20498277 DOI: 10.1128/mcb.00325-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heptad repeat of the RNA polymerase II (RNAPII) C-terminal domain is phosphorylated at serine 5 near gene 5' ends and serine 2 near 3' ends in order to recruit pre-mRNA processing factors. Ser-5(P) is associated with gene 5' ends to recruit capping enzymes, whereas Ser-2(P) is associated with gene 3' ends to recruit cleavage and polyadenylation factors. In the gene clusters called operons in Caenorhabditis elegans, there is generally only a single promoter, but each gene in the operon forms a 3' end by the usual mechanism. Although downstream operon genes have 5' ends, they receive their caps by trans splicing rather than by capping enzymes. Thus, they are predicted to not need Ser-5 phosphorylation. Here we show by RNAPII chromatin immunoprecipitation (ChIP) that internal operon gene 5' ends do indeed lack Ser-5(P) peaks. In contrast, Ser-2(P) peaks occur at each mRNA 3' end, where the 3'-end formation machinery binds. These results provide additional support for the idea that the serine phosphorylation of the C-terminal domain (CTD) serves to bring RNA-processing enzymes to the transcription complex. Furthermore, these results provide a novel demonstration that genes in operons are cotranscribed from a single upstream promoter.
Collapse
|
25
|
Wang KY, Xiong AZ, Jiang XX, Li L, Li HZ, Fu HQ. Cyclin-dependent kinase inhibitor roscovitine suppresses the invasion of human hepatocellular carcinoma SMMC-7721 cells in vitro. Shijie Huaren Xiaohua Zazhi 2010; 18:119-124. [DOI: 10.11569/wcjd.v18.i2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of cyclin-dependent kinases on the invasion of human hepatocellular carcinoma SMMC-7721 cells in vitro and explore potential mechanisms involved.
METHODS: SMMC-7721 cells were divided into two groups: control group (untreated with roscovitine) and treatment group (treated with 32 μmol/L of roscovitine for 24 hours). The ell cycle distribution of SMMC-7721 cells was detected by flow cytometry. Cell invasion and motility were evaluated by Transwell chamber assay and wound healing assay, respectively. The mRNA expression of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) was detected by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: The percentage of SMMC-7721 cells in G0/G1 phase was significantly higher in the treatment group than in the control group (72.19% ± 0.47% vs 59.22% ± 0.54%, P < 0.05). The number of cells passing through the Transwell membrane was significantly lower in the treatment group than in the control group (71.40 ± 5.59 vs 149.60 ± 16.36, P < 0.05). Roscovitine treatment also significantly decreased cell motility (P < 0.05). RT-PCR analysis revealed that roscovitine treatment downregulated the expression of uPA mRNA expression but had no significant impact on MMP-9 mRNA expression.
CONCLUSION: Roscovitine treatment decreases the invasion and motility of SMMC-7721 cells possibly via a mechanism associated with changing cell cycle and downregulating uPA mRNA expression.
Collapse
|
26
|
Phosphorylation of serine 177 of the small hepatitis delta antigen regulates viral antigenomic RNA replication by interacting with the processive RNA polymerase II. J Virol 2009; 84:1430-8. [PMID: 19923176 DOI: 10.1128/jvi.02083-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies revealed that posttranslational modifications (e.g., phosphorylation and methylation) of the small hepatitis delta antigen (SHDAg) are required for hepatitis delta virus (HDV) replication from antigenomic to genomic RNA. The phosphorylation of SHDAg at serine 177 (Ser(177)) is involved in this step, and this residue is crucial for interaction with RNA polymerase II (RNAP II), the enzyme assumed to be responsible for antigenomic RNA replication. This study demonstrated that SHDAg dephosphorylated at Ser(177) interacted preferentially with hypophosphorylated RNAP II (RNAP IIA), which generally binds at the transcription initiation sites. In contrast, the Ser(177)-phosphorylated counterpart (pSer(177)-SHDAg) exhibited preferential binding to hyperphosphorylated RNAP II (RNAP IIO). In addition, RNAP IIO associated with pSer(177)-SHDAg was hyperphosphorylated at both the Ser(2) and Ser(5) residues of its carboxyl-terminal domain (CTD), which is a hallmark of the transcription elongation isoform. Moreover, the RNAP II CTD kinase inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) not only blocked the interaction between pSer(177)-SHDAg and RNAP IIO but also inhibited HDV antigenomic RNA replication. Our results suggest that the phosphorylation of SHDAg at Ser177 shifted its affinitytoward the RNAP IIO isoform [corrected] and thus is a switch for HDV antigenomic RNA replication from the initiation to the elongation stage.
Collapse
|
27
|
Joh K, Yatsuki H, Higashimoto K, Mukai T, Soejima H. Antisense transcription occurs at the promoter of a mouse imprinted gene, commd1, on the repressed paternal allele. J Biochem 2009; 146:771-4. [PMID: 19762339 DOI: 10.1093/jb/mvp147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Commd1 gene is imprinted in the adult mouse brain and is predominantly expressed from the maternal allele. A paternally expressing imprinted gene, U2af1-rs1, resides in the first intron of Commd1 in an antisense orientation. We found that RNA polymerase II phosphorylated at serine 2 of the carboxyl-terminal domain repeats, a marker of transcription elongation, is enriched on the paternal allele than on the maternal allele in the Commd1 promoter. The Commd1 promoter harbours no allelic differences in DNA methylation and histone modifications. These results strongly suggested that imprinting of Commd1 is generated by interference with paternal Commd1 transcription by the oppositely directed U2af1-rs1 transcription.
Collapse
Affiliation(s)
- Keiichiro Joh
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | |
Collapse
|
28
|
Attenuated strains of influenza A viruses do not induce degradation of RNA polymerase II. J Virol 2009; 83:11166-74. [PMID: 19692472 DOI: 10.1128/jvi.01439-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have previously shown that infection with laboratory-passaged strains of influenza virus causes both specific degradation of the largest subunit of the RNA polymerase II complex (RNAP II) and inhibition of host cell transcription. When infection with natural human and avian isolates belonging to different antigenic subtypes was examined, we observed that all of these viruses efficiently induce the proteolytic process. To evaluate whether this process is a general feature of nonattenuated viruses, we studied the behavior of the influenza virus strains A/PR8/8/34 (PR8) and the cold-adapted A/Ann Arbor/6/60 (AA), which are currently used as the donor strains for vaccine seeds due to their attenuated phenotype. We have observed that upon infection with these strains, degradation of the RNAP II does not occur. Moreover, by runoff experiments we observe that PR8 has a reduced ability to inhibit cellular mRNA transcription. In addition, a hypervirulent PR8 (hvPR8) variant that multiplies much faster than standard PR8 (lvPR8) in infected cells and is more virulent in mice than the parental PR8 virus, efficiently induces RNAP II degradation. Studies with reassortant viruses containing defined genome segments of both hvPR8 and lvPR8 indicate that PA and PB2 subunits individually contribute to the ability of influenza virus to degrade the RNAP II. In addition, recently it has been reported that the inclusion of PA or PB2 from hvPR8 in lvPR8 recombinant viruses, highly increases their pathogenicity. Together, the data indicate that the capacity of the influenza virus to degrade RNAP II and inhibit the host cell transcription machinery is a feature of influenza A viruses that might contribute to their virulence.
Collapse
|
29
|
Groves IJ, Reeves MB, Sinclair JH. Lytic infection of permissive cells with human cytomegalovirus is regulated by an intrinsic 'pre-immediate-early' repression of viral gene expression mediated by histone post-translational modification. J Gen Virol 2009; 90:2364-2374. [PMID: 19515830 DOI: 10.1099/vir.0.012526-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) lytic gene expression occurs in a regulated cascade, initiated by expression of the viral major immediate-early (IE) proteins. Transcribed from the major IE promoter (MIEP), the major IE genes regulate viral early and late gene expression. This study found that a substantial proportion of infecting viral genomes became associated with histones immediately upon infection of permissive fibroblasts at low m.o.i. and these histones bore markers of repressed chromatin. As infection progressed, however, the viral MIEP became associated with histone marks, which correlate with the known transcriptional activity of the MIEP at IE time points. Interestingly, this chromatin-mediated repression of the MIEP at 'pre-IE' times of infection could be overcome by inhibition of histone deacetylases, as well as by infection at high m.o.i., and resulted in a temporal advance of the infection cycle by inducing premature viral early and late gene expression and DNA replication. As well as the MIEP, and consistent with previous observations, the viral early and late promoters were also initially associated with repressive chromatin. However, changes in histone modifications around these promoters also occurred as infection progressed, and this correlated with the known temporal regulation of the viral early and late gene expression cascade. These data argue that the chromatin structure of all classes of viral genes are initially repressed on infection of permissive cells and that the chromatin structure of HCMV gene promoters plays an important role in regulating the time course of viral gene expression during lytic infection.
Collapse
Affiliation(s)
- Ian J Groves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Matthew B Reeves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - John H Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
30
|
Ogba N, Chaplin LJ, Doughman YQ, Fujinaga K, Montano MM. HEXIM1 regulates 17beta-estradiol/estrogen receptor-alpha-mediated expression of cyclin D1 in mammary cells via modulation of P-TEFb. Cancer Res 2008; 68:7015-24. [PMID: 18757415 DOI: 10.1158/0008-5472.can-08-0814] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen receptor alpha (ERalpha) plays a key role in mammary gland development and is implicated in breast cancer through the transcriptional regulation of genes linked to proliferation and apoptosis. We previously reported that hexamethylene bisacetamide inducible protein 1 (HEXIM1) inhibits the activity of ligand-bound ERalpha and bridges a functional interaction between ERalpha and positive transcription elongation factor b (P-TEFb). To examine the consequences of a functional HEXIM1-ERalpha-P-TEFb interaction in vivo, we generated MMTV/HEXIM1 mice that exhibit mammary epithelial-specific and doxycycline-inducible expression of HEXIM1. Increased HEXIM1 expression in the mammary gland decreased estrogen-driven ductal morphogenesis and inhibited the expression of cyclin D1 and serine 2 phosphorylated RNA polymerase II (S2P RNAP II). In addition, increased HEXIM1 expression in MCF-7 cells led to a decrease in estrogen-induced cyclin D1 expression, whereas down-regulation of HEXIM1 expression led to an enhancement of estrogen-induced cyclin D1 expression. Studies on the mechanism of HEXIM1 regulation on estrogen action indicated a decrease in estrogen-stimulated recruitment of ERalpha, P-TEFb, and S2P RNAP II to promoter and coding regions of ERalpha-responsive genes pS2 and CCND1 with increased HEXIM1 expression in MCF-7 cells. Notably, increased HEXIM1 expression decreased only estrogen-induced P-TEFb activity. Whereas there have been previous reports on HEXIM1 inhibition of P-TEFb activity, our studies add a new dimension by showing that E(2)/ER is an important regulator of the HEXIM1/P-TEFb functional unit in breast cells. Together, these studies provide novel insight into the role of HEXIM1 and ERalpha in mammary epithelial cell function.
Collapse
Affiliation(s)
- Ndiya Ogba
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
31
|
Taylor P, Hardin PE. Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifications. Mol Cell Biol 2008; 28:4642-52. [PMID: 18474612 PMCID: PMC2447118 DOI: 10.1128/mcb.01612-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/29/2007] [Accepted: 05/05/2008] [Indexed: 11/20/2022] Open
Abstract
The Drosophila melanogaster circadian oscillator comprises interlocked per/tim and Clk transcriptional feedback loops. In the per/tim loop, CLK-CYC-dependent transcriptional activation is rhythmically repressed by PER or PER-TIM to control circadian gene expression that peaks around dusk. Here we show that rhythmic transcription of per and tim involves time-of-day-specific binding of CLK-CYC and associated cycles in chromatin modifications. Activation of per and tim transcription occurs in concert with CLK-CYC binding to upstream and/or intronic E-boxes, acetylation of histone H3-K9, and trimethylation of histone H3-K4. These events are associated with RNA polymerase II (Pol II) binding to the tim promoter and transcriptional elongation by Pol II that is constitutively bound to the per promoter. Repression of per and tim transcription is associated with PER-dependent reversal of these events. Rhythms in H3-K9 acetylation and H3-K4 trimethylation are also associated with CLOCK-BMAL1-dependent transcription in mammals, indicating that the mechanism that controls rhythmic transcription is a conserved feature of the circadian clock even though feedback repression is mediated by different proteins.
Collapse
Affiliation(s)
- Pete Taylor
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, College Station, Texas 77845-3258, USA
| | | |
Collapse
|
32
|
Koch F, Jourquin F, Ferrier P, Andrau JC. Genome-wide RNA polymerase II: not genes only! Trends Biochem Sci 2008; 33:265-73. [PMID: 18467100 DOI: 10.1016/j.tibs.2008.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 12/31/2022]
Abstract
RNA polymerase (Pol) II transcriptional regulation is an essential process for guiding eukaryotic gene expression. Early in vitro studies deciphered the essential steps for transcription, including recruitment, initiation, elongation and termination. Based on these findings, the idea emerged that Pol II should essentially be located on promoters or genic regions of transcribed genes. The development of in vivo localization protocols has enabled the investigation of genome-wide Pol II occupancy. Recent studies from yeast to human show that Pol II can be poised at the transcription start site or can be located outside of gene-coding regions, sometimes dependent on the growth or differentiation stage. These recent results regarding Pol II genomic location and transcription challenge our classical views of transcriptional regulation.
Collapse
Affiliation(s)
- Frederic Koch
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, CNRS UMR6102, Inserm U631, Marseille, France
| | | | | | | |
Collapse
|
33
|
Chang J, Nie X, Chang HE, Han Z, Taylor J. Transcription of hepatitis delta virus RNA by RNA polymerase II. J Virol 2008; 82:1118-27. [PMID: 18032511 PMCID: PMC2224410 DOI: 10.1128/jvi.01758-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022] Open
Abstract
Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Most eukaryotic messenger RNAs are transcribed as precursors that necessitate specific and exact processing of intron boundaries. Furthermore, the choice of these boundaries appears to be fluid and adaptive to the rate of transcription and the developmental and physiological state of the cell. A central regulator of splicing reactions and choice are kinases that work through phosphorylation of specific factors like RNA polymerase II, which influences the pace of transcription and of SR splicing factors. While very different in their mechanisms both regulatory pathways will impact on splicing site choice. This chapter summarizes the biology of splicing-related phosphorylation activity, emphasizing plant-specific aspects in relation to the metazoan counterpart.
Collapse
|
35
|
Ohhata T, Hoki Y, Sasaki H, Sado T. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 2007; 135:227-35. [PMID: 18057104 DOI: 10.1242/dev.008490] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of Xist, which triggers X inactivation, is negatively regulated in cis by an antisense gene, Tsix, transcribed along the entire Xist gene. We recently demonstrated that Tsix silences Xist through modification of the chromatin structure in the Xist promoter region. This finding prompted us to investigate the role of antisense transcription across the Xist promoter in Tsix-mediated silencing. Here, we prematurely terminated Tsix transcription before the Xist promoter and addressed its effect on Xist silencing in mouse embryos. We found that although 93% of the region encoding Tsix was transcribed, truncation of Tsix abolished the antisense regulation of Xist. This resulted in a failure to establish the repressive chromatin configuration at the Xist promoter on the mutated X, including DNA methylation and repressive histone modifications, especially in extraembryonic tissues. These results suggest a crucial role for antisense transcription across the Xist promoter in Xist silencing.
Collapse
Affiliation(s)
- Tatsuya Ohhata
- PRESTO, Japan Science and Technology Agency (JST Saitama, 332-0012, Japan
| | | | | | | |
Collapse
|
36
|
Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2007; 28:609-18. [PMID: 17998332 DOI: 10.1128/mcb.01356-07] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3-Lys4 trimethylation is associated with the transcription start site of transcribed genes, but the molecular mechanisms that control this distribution in mammals are unclear. The human Setd1A histone H3-Lys4 methyltransferase complex was found to physically associate with the RNA polymerase II large subunit. The Wdr82 component of the Setd1A complex interacts with the RNA recognition motif of Setd1A and additionally binds to the Ser5-phosphorylated C-terminal domain of RNA polymerase II, which is involved in initiation of transcription, but does not bind to an unphosphorylated or Ser2-phosphorylated C-terminal domain. Chromatin immunoprecipitation analysis revealed that Setd1A is localized near the transcription start site of expressed genes. Small interfering RNA-mediated depletion of Wdr82 leads to decreased Setd1A expression and occupancy at transcription start sites and reduced histone H3-Lys4 trimethylation at these sites. However, neither RNA polymerase II (RNAP II) occupancy nor target gene expression levels are altered following Wdr82 depletion. Hence, Wdr82 is required for the targeting of Setd1A-mediated histone H3-Lys4 trimethylation near transcription start sites via tethering to RNA polymerase II, an event that is a consequence of transcription initiation. These results suggest a model for how the mammalian RNAP II machinery is linked with histone H3-Lys4 histone methyltransferase complexes at transcriptionally active genes.
Collapse
|
37
|
Kosmidou I, Moore JP, Weber M, Searles CD. Statin treatment and 3' polyadenylation of eNOS mRNA. Arterioscler Thromb Vasc Biol 2007; 27:2642-9. [PMID: 17916773 DOI: 10.1161/atvbaha.107.154492] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Statins have been shown to increase endothelial nitric oxide synthase expression via enhanced mRNA stability. Because the poly(A) tail is an important determinant of transcript stability, we sought to characterize the effect of statins on eNOS mRNA 3' polyadenylation. METHODS AND RESULTS Endothelial cells treated with statins had a time- and dose-dependent increase in eNOS transcripts with long poly(A) tails (75 to 160 adenosines). This effect was dependent on 3-hydroxy-3-methylglutaryl (HMG)-coenxyme A (CoA) reductase inhibition and was observed with both lipophilic (simvastatin) and hydrophilic (rosuvastatin) statins. In mRNA stability assays, polyadenylated eNOS transcripts from statin-treated cells were 2- to 3-fold more stable than transcripts from untreated cells. The effect of statins on eNOS polyadenylation was related to cytoskeleton organization; there was increased eNOS mRNA polyadenylation after Rho inhibition and cytochalasin D treatment. Further, we found increased phosphorylation of RNA polymerase II in statin-treated cells, suggesting that statin-induced polyadenylation involved modulation of RNA polymerase II activity. CONCLUSIONS Our data provide insight into a mechanism by which statins enhance eNOS mRNA stability and increase eNOS protein: statins increase eNOS mRNA polyadenylation through Rho-mediated changes in the actin cytoskeleton.
Collapse
Affiliation(s)
- Ioanna Kosmidou
- Division of Cardiology, Emory University School of Medicine, 1639 Pierce Dr, WMB 319, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
38
|
Wyce A, Xiao T, Whelan KA, Kosman C, Walter W, Eick D, Hughes TR, Krogan NJ, Strahl BD, Berger SL. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell 2007; 27:275-288. [PMID: 17643376 DOI: 10.1016/j.molcel.2007.01.035] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 08/15/2006] [Accepted: 06/05/2007] [Indexed: 11/27/2022]
Abstract
Histone modifications play an important role in transcription. We previously studied histone H2B ubiquitylation on lysine 123 and subsequent deubiquitylation by SAGA-associated Ubp8. Unlike other histone modifications, both the addition and removal of ubiquitin are required for optimal transcription. Here we report that deubiquitylation of H2B is important for recruitment of a complex containing the kinase Ctk1, resulting in phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD), and for subsequent recruitment of the Set2 methyltransferase. We find that Ctk1 interacts with histones H2A and H2B, and that persistent H2B ubiquitylation disrupts these interactions. We further show that Ubp8 enters the GAL1 coding region through an interaction with Pol II. These findings reveal a mechanism by which H2B ubiquitylation acts as a barrier to Ctk1 association with active genes, while subsequent deubiquitylation by Ubp8 triggers Ctk1 recruitment at the appropriate point in activation.
Collapse
Affiliation(s)
- Anastasia Wyce
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA; University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Tiaojiang Xiao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kelly A Whelan
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Christine Kosman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA; University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wendy Walter
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Dirk Eick
- Institute of Clinical Molecular Biology and Tumour Genetics, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Timothy R Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shelley L Berger
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Wang X, Lee C, Gilmour DS, Gergen JP. Transcription elongation controls cell fate specification in the Drosophila embryo. Genes Dev 2007; 21:1031-6. [PMID: 17473169 PMCID: PMC1855229 DOI: 10.1101/gad.1521207] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The simple combinatorial rules for regulation of the sloppy-paired-1 (slp1) gene by the pair-rule transcription factors during early Drosophila embryogenesis offer a unique opportunity to investigate the molecular mechanisms of developmentally regulated transcription repression. We find that the initial repression of slp1 in response to Runt and Fushi-tarazu (Ftz) does not involve chromatin remodeling, or histone modification. Chromatin immunoprecipitation and in vivo footprinting experiments indicate RNA polymerase II (Pol II) initiates transcription in slp1-repressed cells and pauses downstream from the promoter in a complex that includes the negative elongation factor NELF. The finding that NELF also associates with the promoter regions of wingless (wg) and engrailed (en), two other pivotal targets of the pair-rule transcription factors, strongly suggests that developmentally regulated transcriptional elongation is central to the process of cell fate specification during this critical stage of embryonic development.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794, USA
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Chanhyo Lee
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David S. Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794, USA
- Corresponding author.E-MAIL ; FAX (631) 632-8575
| |
Collapse
|
40
|
Michelotti GA, Brinkley DM, Morris DP, Smith MP, Louie RJ, Schwinn DA. Epigenetic regulation of human alpha1d-adrenergic receptor gene expression: a role for DNA methylation in Sp1-dependent regulation. FASEB J 2007; 21:1979-93. [PMID: 17384146 PMCID: PMC2279228 DOI: 10.1096/fj.06-7118com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A growing body of evidence implicates alpha1-adrenergic receptors (alpha1ARs) as potent regulators of growth pathways. The three alpha1AR subtypes (alpha1aAR, alpha1bAR, alpha1dAR) display highly restricted tissue expression that undergoes subtype switching with many pathological stimuli, the mechanistic basis of which remains unknown. To gain insight into transcriptional pathways governing cell-specific regulation of the human alpha1dAR subtype, we cloned and characterized the alpha1dAR promoter region in two human cellular models that display disparate levels of endogenous alpha1dAR expression (SK-N-MC and DU145). Results reveal that alpha1dAR basal expression is regulated by Sp1-dependent binding of two promoter-proximal GC boxes, the mutation of which attenuates alpha1dAR promoter activity 10-fold. Mechanistically, chromatin immunoprecipitation data demonstrate that Sp1 binding correlates with expression of the endogenous gene in vivo, correlating highly with alpha1dAR promoter methylation-dependent silencing of both episomally expressed reporter constructs and the endogenous gene. Further, analysis of methylation status of proximal GC boxes using sodium bisulfite sequencing reveals differential methylation of proximal GC boxes in the two cell lines examined. Together, the data support a mechanism of methylation-dependent disruption of Sp1 binding in a cell-specific manner resulting in repression of basal alpha1dAR expression.
Collapse
MESH Headings
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Cell Line, Tumor
- Chromatin/chemistry
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA Methylation
- Decitabine
- Gene Expression Regulation
- Gene Silencing
- Humans
- Immunoprecipitation
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sp1 Transcription Factor/metabolism
- Sulfites/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Gregory A Michelotti
- Department of Pharmacology/Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
Collapse
Affiliation(s)
- Hemali P Phatnani
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
42
|
Kim A, Kiefer CM, Dean A. Distinctive signatures of histone methylation in transcribed coding and noncoding human beta-globin sequences. Mol Cell Biol 2006; 27:1271-9. [PMID: 17158930 PMCID: PMC1800709 DOI: 10.1128/mcb.01684-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The establishment of epigenetic marks, such as methylation on histone tails, is mechanistically linked to RNA polymerase II within active genes. To explore the interplay between these modifications in transcribed noncoding as well as coding sequences, we analyzed epigenetic modification and chromatin structure at high resolution across 300 kb of human chromosome 11, including the beta-globin locus which is extensively transcribed in intergenic regions. Monomethylated H3K4, K9, and K36 were broadly distributed, while hypermethylated forms appeared to different extents across the region in a manner reflecting transcriptional activity. The trimethylation of H3K4 and H3K9 correlated within the most highly transcribed sequences. The H3K36me3 mark was more broadly detected in transcribed coding and noncoding sequences, suggesting that K36me3 is a stable mark on sequences transcribed at any level. Most epigenetic and chromatin structural features did not undergo transitions at the presumed borders of the globin domain where the insulator factor CTCF interacts, raising questions about the function of the borders.
Collapse
Affiliation(s)
- AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, South Korea.
| | | | | |
Collapse
|
43
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
44
|
Thompson J, Lepikhova T, Teixido-Travesa N, Whitehead MA, Palvimo JJ, Jänne OA. Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J 2006; 25:2757-67. [PMID: 16724108 PMCID: PMC1500849 DOI: 10.1038/sj.emboj.7601161] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 05/02/2006] [Indexed: 01/08/2023] Open
Abstract
Small carboxyl-terminal domain (CTD) phosphatase 2 (SCP2) was identified and verified as a protein that interacts with the androgen receptor (AR). Ectopic expression of SCP2 or two other family members, SCP1 and SCP3, attenuated AR transcriptional activity in LNCaP cells and were recruited in an androgen- and AR-dependent fashion onto the prostate-specific antigen (PSA) promoter. Silencing SCP2 and SCP1 by short hairpin RNAs increased androgen-dependent transcription of the PSA gene and augmented AR loading onto the PSA promoter and enhancer. SCP2 also attenuated glucocorticoid receptor (GR) function, and its silencing increased dexamethasone-mediated PSA mRNA accumulation and GR loading onto the PSA enhancer in LNCaP 1F5 cells. SCP2 silencing was accompanied by augmented recruitment and earlier cycling of RNA polymerase II on the promoter. Ser 5 phosphorylation of the RNA polymerase II CTD, a process necessary for initiation of transcription elongation, occurred significantly earlier in SCP2-silenced than parental LNCaP cells. Collectively, our results suggest that SCP2 is involved in promoter clearance during steroid-activated transcription.
Collapse
Affiliation(s)
- James Thompson
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tatyana Lepikhova
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Neus Teixido-Travesa
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Maria A Whitehead
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Olli A Jänne
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
45
|
Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 2006; 8:407-15. [PMID: 16531993 DOI: 10.1038/ncb1383] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 01/11/2006] [Indexed: 11/08/2022]
Abstract
Currently, the mammalian heterochromatic proteins HP1alpha, HP1beta and the pan-nuclear HP1gamma are considered 'gatekeepers' of methyl-K9-H3-mediated silencing. Understanding how the binding of these proteins to post-translationally modified histones is switched on and off will further our knowledge of how the histone code is modulated. Here, we report that all three HP1 isoforms can be extensively modified, similar to histones, suggesting that the silencing of gene expression may be further regulated beyond the histone code. To assess the potential impact of these modifications, we analysed the phosphorylation of HP1gamma at Ser 83 as a 'model modification'. We demonstrate that P-Ser 83-HP1gamma has an exclusively euchromatic localization, interacts with Ku70 (a regulatory protein involved in multiple nuclear procesess), has impaired silencing activity and serves as a marker for transcription elongation. These observations predict that regulation of silencing by methyl-K9-H3 through modification of mammalian HP1 proteins may be more complex than previously thought and suggests the existence of an HP1-mediated 'silencing subcode' that underlies the instructions of the histone code.
Collapse
Affiliation(s)
- Gwen Lomberk
- Gastroenterology Research Unit, Department of Medicine, and Mayo Clinic Cancer Center, Rochester, MN 55605, USA
| | | | | | | |
Collapse
|
46
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Batsché E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 2005; 13:22-9. [PMID: 16341228 DOI: 10.1038/nsmb1030] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 11/01/2005] [Indexed: 11/09/2022]
Abstract
The SWI/SNF (mating-type switch/sucrose nonfermenting) complex involved in chromatin remodeling on promoters has also been detected on the coding region of genes. Here we show that SWI/SNF can function as a regulator of alternative splicing. We found that the catalytic subunit Brm favors inclusion of variant exons in the mRNA of several genes, including E-cadherin, BIM, cyclin D1 and CD44. Consistent with this, Brm associates with several components of the spliceosome and with Sam68, an ERK-activated enhancer of variant exon inclusion. Examination of the CD44 gene revealed that Brm induced accumulation of RNA polymerase II (RNAPII) with a modified CTD phosphorylation pattern on regions encoding variant exons. Altogether, our data suggest that on genes regulated by SWI/SNF, Brm contributes to the crosstalk between transcription and RNA processing by decreasing RNAPII elongation rate and facilitating recruitment of the splicing machinery to variant exons with suboptimal splice sites.
Collapse
Affiliation(s)
- Eric Batsché
- Expression Génétique et Maladies, FRE 2850 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | | | | |
Collapse
|