1
|
Tsukamoto S. Natural products that target p53 for cancer therapy. J Nat Med 2025:10.1007/s11418-025-01906-6. [PMID: 40295432 DOI: 10.1007/s11418-025-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Wild-type p53 acts as a tumor suppressor, but p53 is frequently mutated and inactivated in tumor cells, promoting cancer progression, invasion, and metastasis. Thus, compounds that reactivate p53 may be leveraged for cancer treatment, and the development of drugs targeting p53 reactivation is actively progressing. Notably, natural products exhibit diverse structures and biological activities and are used as therapeutic agents for various diseases worldwide. This review discusses the natural products that inhibit p53 degradation through p53-Mdm2 interaction, promote p53 reactivation by inducing conformational changes, and exhibit p53-dependent growth inhibition.
Collapse
Affiliation(s)
- Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
2
|
Klett T, Stahlecker J, Jaag S, Masberg B, Knappe C, Lämmerhofer M, Coles M, Stehle T, Boeckler FM. Covalent Fragments Acting as Tyrosine Mimics for Mutant p53-Y220C Rescue by Nucleophilic Aromatic Substitution. ACS Pharmacol Transl Sci 2024; 7:3984-3999. [PMID: 39698266 PMCID: PMC11651176 DOI: 10.1021/acsptsci.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
The tumor suppressor p53 is frequently mutated in human cancers. The Y220C mutant is the ninth most common p53 cancer mutant and is classified as a structural mutant, as it leads to strong thermal destabilization and degradation by creating a solvent-accessible hydrophobic cleft. To identify small molecules that thermally stabilize p53, we employed DSF to screen SNAr-type electrophiles from our covalent fragment library (CovLib) for binding to different structural (Y220C, R282W) and DNA contact (R273H) mutants of p53. The reactive fragments SN001, SN006, and SN007 were detected to specifically stabilize Y220C, indicating the arylation of Cys220 in the mutational cleft, as confirmed by X-ray crystallography. The fragments occupy the central cavity and mimic the ring system of the WT tyrosine lost by the mutation. Surpassing previously reported noncovalent ligands, SN001 stabilized T-p53C-Y220C concentration-dependently up to 4.45 °C and, due to its small size, represents a promising starting point for optimization.
Collapse
Affiliation(s)
- Theresa Klett
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Jason Stahlecker
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Simon Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Benedikt Masberg
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Murray Coles
- Department
of Protein Evolution, Max-Planck-Institute
for Biology, 72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty
Institute of Biochemistry, Eberhard Karls
Universität Tübingen, 72076 Tübingen, Germany
| | - Frank M. Boeckler
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
- Interfaculty
Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S, Islam S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024; 13:1838. [PMID: 39594587 PMCID: PMC11592877 DOI: 10.3390/cells13221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cell survival and death are intricately governed by apoptosis, a meticulously controlled programmed cell death. Apoptosis is vital in facilitating embryonic development and maintaining tissue homeostasis and immunological functioning. It is a complex interplay of intrinsic and extrinsic signaling pathways that ultimately converges on executing the apoptotic program. The extrinsic pathway is initiated by the binding of death ligands such as TNF-α and Fas to their respective receptors on the cell surface. In contrast, the intrinsic pathway leads to increased permeability of the outer mitochondrial membrane and the release of apoptogenic factors like cytochrome c, which is regulated by the Bcl-2 family of proteins. Once activated, these pathways lead to a cascade of biochemical events, including caspase activation, DNA fragmentation, and the dismantling of cellular components. Dysregulation of apoptosis is implicated in various disorders, such as cancer, autoimmune diseases, neurodegenerative disorders, and cardiovascular diseases. This article focuses on elucidating the molecular mechanisms underlying apoptosis regulation, to develop targeted therapeutic strategies. Modulating apoptotic pathways holds immense potential in cancer treatment, where promoting apoptosis in malignant cells could lead to tumor regression. This article demonstrates the therapeutic potential of targeting apoptosis, providing options for treating cancer and neurological illnesses. The safety and effectiveness of apoptosis-targeting drugs are being assessed in ongoing preclinical and clinical trials (phase I-III), opening the door for more effective therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Irfan Qadir Tantry
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, India;
| | - Waleem Ahmad
- Department of Medicine, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
6
|
Michaeli O, Luz I, Vatarescu M, Manko T, Weizman N, Korotinsky Y, Tsitrina A, Braiman A, Arazi L, Cooks T. APR-246 as a radiosensitization strategy for mutant p53 cancers treated with alpha-particles-based radiotherapy. Cell Death Dis 2024; 15:426. [PMID: 38890278 PMCID: PMC11189442 DOI: 10.1038/s41419-024-06830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Radiation therapy (RT) remains a common treatment for cancer patients worldwide, despite the development of targeted biological compounds and immunotherapeutic drugs. The challenge in RT lies in delivering a lethal dose to the cancerous site while sparing the surrounding healthy tissues. Low linear energy transfer (low-LET) and high linear energy transfer (high-LET) radiations have distinct effects on cells. High-LET radiation, such as alpha particles, induces clustered DNA double-strand breaks (DSBs), potentially inducing cell death more effectively. However, due to limited range, alpha-particle therapies have been restricted. In human cancer, mutations in TP53 (encoding for the p53 tumor suppressor) are the most common genetic alteration. It was previously reported that cells carrying wild-type (WT) p53 exhibit accelerated senescence and significant rates of apoptosis in response to RT, whereas cells harboring mutant p53 (mutp53) do not. This study investigated the combination of the alpha-emitting atoms RT based on internal Radium-224 (224Ra) sources and systemic APR-246 (a p53 reactivating compound) to treat tumors with mutant p53. Cellular models of colorectal cancer (CRC) or pancreatic ductal adenocarcinoma (PDAC) harboring mutant p53, were exposed to alpha particles, and tumor xenografts with mutant p53 were treated using 224Ra source and APR-246. Effects on cell survival and tumor growth, were assessed. The spread of alpha emitters in tumors was also evaluated as well as the spatial distribution of apoptosis within the treated tumors. We show that mutant p53 cancer cells exhibit radio-sensitivity to alpha particles in vitro and to alpha-particles-based RT in vivo. APR-246 treatment enhanced sensitivity to alpha radiation, leading to reduced tumor growth and increased rates of tumor eradication. Combining alpha-particles-based RT with p53 restoration via APR-246 triggered cell death, resulting in improved therapeutic outcomes. Further preclinical and clinical studies are needed to provide a promising approach for improving treatment outcomes in patients with mutant p53 tumors.
Collapse
Affiliation(s)
- Or Michaeli
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Maayan Vatarescu
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Tal Manko
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Weizman
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yevgeniya Korotinsky
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| |
Collapse
|
7
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
8
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
9
|
Pan S, Fan R, Han B, Tong A, Guo G. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol 2024; 45:20-31. [PMID: 38142147 DOI: 10.1016/j.it.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Owing to their outstanding performance against COVID-19, mRNA vaccines have brought great hope for combating various incurable diseases, including cancer. Differences in the encoded proteins result in different molecular and cellular mechanisms of mRNA vaccines. With the rapid development of nanotechnology and molecular medicine, personalized antigen-encoding mRNA vaccines that enhance antigen presentation can trigger effective immune responses and prevent off-target toxicities. Herein, we review new insights into the influence of encoded antigens, cytokines, and other functional proteins on the mechanisms of mRNA vaccines. We also highlight the importance of delivery systems and chemical modifications for mRNA translation efficiency, stability, and targeting, and we discuss the potential problems and application prospects of mRNA vaccines as versatile tools for combating cancer.
Collapse
Affiliation(s)
- Shulin Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Katebi M, Rahgozar S, Kazemi F, Rahmani S, Najafi Dorcheh S. GingerenoneA overcomes dexamethasone resistance by activating apoptosis and inhibiting cell proliferation in pediatric T-ALL cells. Cancer Sci 2023; 114:3984-3995. [PMID: 37619556 PMCID: PMC10551595 DOI: 10.1111/cas.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Plant-based combination strategies have been widely considered in cancer therapy to attenuate chemotherapeutics side effects. The anti-leukemic effect of the whole ginger extract was previously portrayed by our team, and the current study is centered around the cytotoxicity and mechanism of action of a phenolic subsidiary of ginger, GingerenoneA, on pediatric acute lymphoblastic leukemia. GingernoneA imposed, dose-dependently, inhibitory effects on the viability of T and B leukemia cell lines confirmed by MTT assays. Resistance to Dexamethasone, a mostly used chemotherapeutic in acute lymphoblastic leukemia treatments, was overcome by GingernoneA. A synergistic effect of Dexamethasone and GingrenoneA on T leukemia cell lines and patient primary cells was confirmed. Annexin-V/PI and acridine orange/ethidium bromide staining illustrated dose-dependent apoptosis in CCRF-CEM cells developed by GingerenoneA. The intrinsic and extrinsic apoptosis induction and antiproliferative attribution of GingerenoneA were validated by western blot and qPCR. Despite the supposed loss of function in CCRF-CEM cells, TP53 showed increased expression levels and functional activity upon treatment with GingernoneA. Bioinformatic studies revealed the conceivable impact of GingerenoneA on the reactivity of mutant P53 through its binding to Cys124. Our findings may provide novel strategies for therapeutic intervention to ameliorate pALL outcomes.
Collapse
Affiliation(s)
- Melika Katebi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Farnoosh Kazemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Saeideh Rahmani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Somayeh Najafi Dorcheh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| |
Collapse
|
11
|
Shahi N, Yadav PN, Chaudhary U, Saad M, Mahiya K, Khan A, Shafi S, Pokharel YR. 5-Methoxyisatin N(4)-Pyrrolidinyl Thiosemicarbazone (MeOIstPyrd) Restores Mutant p53 and Inhibits the Growth of Skin Cancer Cells, In Vitro. ACS OMEGA 2023; 8:31998-32016. [PMID: 37692215 PMCID: PMC10483675 DOI: 10.1021/acsomega.3c03824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
A series of novel thiosemicarbazone derivatives containing 5-methoxy isatin were designed and synthesized with modification on N(4) position. Derivatives considering structure-activity relationship have been designed and synthesized by condensing thiosemicarbazide with 5-methoxy isatin. The synthesized compounds were characterized by elemental analysis, FT-IR spectroscopy, UV-visible spectroscopy, NMR (1H, 13C) spectroscopy, mass spectrometry, and a single-crystal study. Biological evaluation of the synthesized compounds revealed that MeOIstPyrd is the most promising compound against skin cancer cell line, A431, with an IC50 value of 0.9 μM. In addition, MeOIstPyrd also exhibited low toxicity against the normal human fibroblast and the human embryonic kidney 293 cell line, HLF-1, and HEK293, respectively. Furthermore, the mechanistic study revealed that MeOIstPyrd efficiently inhibited cell proliferation, migration, and spheroid formation by activating the mitochondrial intrinsic apoptotic pathway. MeOIstPyrd also induces DNA damage and activates p53 irrespective of the p53 status. It increases the half-life of p53 and stabilizes p53 by phosphorylating it at ser15. Moreover, MeOIstPyrd was found to bind to MDM2 in the p53 sub-pocket and, therefore, block p53-MDM2 interaction. Our result exhibited potential anticancer activity of MeOIstPyrd in the A431 cell line and its ability in restoring mutant p53, which is an interesting and promising strategy for cancer therapeutics.
Collapse
Affiliation(s)
- Nerina Shahi
- Cancer
Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Paras Nath Yadav
- Central
Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 700128, Nepal
| | - Upendra Chaudhary
- Central
Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 700128, Nepal
| | - Mohd Saad
- Cancer
Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Kuldeep Mahiya
- Department
of Chemistry, F.G.M. Government College, Mandi Adampur, Hisar 125052, Haryana, India
| | - Arif Khan
- Department
of Chemistry, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Syed Shafi
- Department
of Chemistry, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Yuba Raj Pokharel
- Cancer
Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
12
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
13
|
Kumbhar N, Nimal S, Patil D, Kaiser VF, Haupt J, Gacche RN. Repurposing of neprilysin inhibitor 'sacubitrilat' as an anti-cancer drug by modulating epigenetic and apoptotic regulators. Sci Rep 2023; 13:9952. [PMID: 37336927 DOI: 10.1038/s41598-023-36872-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
Modifications in the epigenetic landscape have been considered a hallmark of cancer. Histone deacetylation is one of the crucial epigenetic modulations associated with the aggressive progression of various cancer subtypes. Herein, we have repurposed the neprilysin inhibitor sacubitrilat as a potent anticancer agent using in-silico protein-ligand interaction profiler (PLIP) analysis, molecular docking, and in vitro studies. The screening of PLIP profiles between vorinostat/panobinostat and HDACs/LTA4H followed by molecular docking resulted in five (Sacubitrilat, B65, BDS, BIR, and NPV) FDA-approved, experimental and investigational drugs. Sacubitrilat has demonstrated promising anticancer activity against colorectal cancer (SW-480) and triple-negative breast cancer (MDA-MB-231) cells, with IC50 values of 14.07 μg/mL and 23.02 μg/mL, respectively. FACS analysis revealed that sacubitrilat arrests the cell cycle at the G0/G1 phase and induces apoptotic-mediated cell death in SW-480 cells. In addition, sacubitrilat inhibited HDAC isoforms at the transcriptomic level by 0.7-0.9 fold and at the proteomic level by 0.5-0.6 fold as compared to the control. Sacubitrilat increased the protein expression of tumor-suppressor (p53) and pro-apoptotic makers (Bax and Bid) by 0.2-2.5 fold while decreasing the expression of anti-apoptotic Bcl2 and Nrf2 proteins by 0.2-0.5 fold with respect to control. The observed cleaved PARP product indicates that sacubitrilat induces apoptotic-mediated cell death. This study may pave the way to identify the anticancer potential of sacubitrilat and can be explored in human clinical trials.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | - Deeksha Patil
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | | | | | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
14
|
Fallatah MMJ, Law FV, Chow WA, Kaiser P. Small-molecule correctors and stabilizers to target p53. Trends Pharmacol Sci 2023; 44:274-289. [PMID: 36964053 PMCID: PMC10511064 DOI: 10.1016/j.tips.2023.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
The tumor suppressor p53 is the most frequently mutated protein in human cancer and tops the list of high-value precision oncology targets. p53 prevents initiation and progression of cancer by inducing cell-cycle arrest and various forms of cell death. Tumors have thus evolved ways to inactivate p53, mainly by TP53 mutations or by hyperactive p53 degradation. This review focuses on two types of p53 targeting compounds, MDM2 antagonists and mutant p53 correctors. MDM2 inhibitors prevent p53 protein degradation, while correctors restore tumor suppressor activity of p53 mutants by enhancing thermodynamic stability. Herein we explore both novel and repurposed p53 targeting compounds, discuss their mode of action, and examine the challenges in advancing them to the clinic.
Collapse
Affiliation(s)
- Maryam M J Fallatah
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Fiona V Law
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Warren A Chow
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Papaleo E, Tiberti M, Arnaudi M, Pecorari C, Faienza F, Cantwell L, Degn K, Pacello F, Battistoni A, Lambrughi M, Filomeni G. TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins. Cell Death Dis 2023; 14:284. [PMID: 37085483 PMCID: PMC10121659 DOI: 10.1038/s41419-023-05780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
S-nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S-nitrosothiol (SNO) adduct. S-nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S-nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S-nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S-nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S-nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S-nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S-nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.
Collapse
Affiliation(s)
- Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Matteo Arnaudi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Chiara Pecorari
- Redox Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Lisa Cantwell
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Francesca Pacello
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
- Center for Healthy Aging, Copenhagen University, 2200, Copenhagen, Denmark
| |
Collapse
|
16
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
17
|
Inhibition of p53 protein aggregation as a cancer treatment strategy. Curr Opin Chem Biol 2023; 72:102230. [PMID: 36436275 DOI: 10.1016/j.cbpa.2022.102230] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
The p53 protein plays a critical role in the prevention of genome mutations in the body, however, this protein is frequently mutated in cancer and almost all cancers exhibit malfunction along the p53 pathway. In addition to a loss of activity, mutant p53 protein is prone to unfolding and aggregation, eventually forming amyloid aggregates. There continues to be a considerable effort to develop strategies to restore normal p53 expression and activity and this review details recent advances in small-molecule stabilization of mutant p53 protein and the design of p53 aggregation inhibitors.
Collapse
|
18
|
Brown K, Jenkins LMM, Crooks DR, Surman DR, Mazur SJ, Xu Y, Arimilli BS, Yang Y, Lane AN, Fan TWM, Schrump DS, Linehan WM, Ripley RT, Appella E. Targeting mutant p53-R248W reactivates WT p53 function and alters the onco-metabolic profile. Front Oncol 2023; 12:1094210. [PMID: 36713582 PMCID: PMC9874945 DOI: 10.3389/fonc.2022.1094210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
TP53 is the most commonly mutated gene in cancer, and gain-of-function mutations have wide-ranging effects. Efforts to reactivate wild-type p53 function and inhibit mutant functions have been complicated by the variety of TP53 mutations. Identified from a screen, the NSC59984 compound has been shown to restore activity to mutant p53 in colorectal cancer cells. Here, we investigated its effects on esophageal adenocarcinoma cells with specific p53 hot-spot mutations. NSC59984 treatment of cells reactivated p53 transcriptional regulation, inducing mitochondrial intrinsic apoptosis. Analysis of its effects on cellular metabolism demonstrated increased utilization of the pentose phosphate pathway and inhibition of glycolysis at the fructose-1,6-bisphosphate to fructose 6-phosphate junction. Furthermore, treatment of cells with NSC59984 increased reactive oxygen species production and decreased glutathione levels; these effects were enhanced by the addition of buthionine sulfoximine and inhibited by N-acetyl cysteine. We found that the effects of NSC59984 were substantially greater in cells harboring the p53 R248W mutation. Overall, these findings demonstrate p53-dependent effects of NSC59984 on cellular metabolism, with increased activity in cells harboring the p53 R248W mutation. This research highlights the importance of defining the mutational status of a particular cancer to create a patient-centric strategy for the treatment of p53-driven cancers.
Collapse
Affiliation(s)
- Kate Brown
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,*Correspondence: Kate Brown,
| | - Lisa M. Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah R. Surman
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J. Mazur
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuan Xu
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bhargav S. Arimilli
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - R. Taylor Ripley
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
19
|
Nishikawa S, Iwakuma T. Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel) 2023; 15:429. [PMID: 36672377 PMCID: PMC9856662 DOI: 10.3390/cancers15020429] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Mutations in the tumor suppressor p53 (p53) promote cancer progression. This is mainly due to loss of function (LOS) as a tumor suppressor, dominant-negative (DN) activities of missense mutant p53 (mutp53) over wild-type p53 (wtp53), and wtp53-independent oncogenic activities of missense mutp53 by interacting with other tumor suppressors or oncogenes (gain of function: GOF). Since p53 mutations occur in ~50% of human cancers and rarely occur in normal tissues, p53 mutations are cancer-specific and ideal therapeutic targets. Approaches to target p53 mutations include (1) restoration or stabilization of wtp53 conformation from missense mutp53, (2) rescue of p53 nonsense mutations, (3) depletion or degradation of mutp53 proteins, and (4) induction of p53 synthetic lethality or targeting of vulnerabilities imposed by p53 mutations (enhanced YAP/TAZ activities) or deletions (hyperactivated retrotransposons). This review article focuses on clinically available FDA-approved drugs and drugs in clinical trials that target p53 mutations and summarizes their mechanisms of action and activities to suppress cancer progression.
Collapse
Affiliation(s)
- Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int 2022; 22:416. [PMID: 36567312 PMCID: PMC9791775 DOI: 10.1186/s12935-022-02831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-β, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Shaikh Maryam Ghufran
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Aqsa Khan
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Subhrajit Biswas
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Susanta Roychoudhury
- grid.489176.50000 0004 1803 6730Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, 700063 India ,grid.417635.20000 0001 2216 5074Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
21
|
Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Gain of Function (GOF) Mutant p53 in Cancer-Current Therapeutic Approaches. Int J Mol Sci 2022; 23:13287. [PMID: 36362074 PMCID: PMC9654280 DOI: 10.3390/ijms232113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2023] Open
Abstract
Continuous development of personalized treatments is undoubtedly beneficial for oncogenic patients' comfort and survival rate. Mutant TP53 is associated with a worse prognosis due to the occurrence of metastases, increased chemoresistance, and tumor growth. Currently, numerous compounds capable of p53 reactivation or the destabilization of mutant p53 are being investigated. Several of them, APR-246, COTI-2, SAHA, and PEITC, were approved for clinical trials. This review focuses on these novel therapeutic opportunities, their mechanisms of action, and their significance for potential medical application.
Collapse
Affiliation(s)
- Katarzyna A. Roszkowska
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| | | | | | | | - Sylwia Flis
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| |
Collapse
|
22
|
GOF Mutant p53 in Cancers: A Therapeutic Challenge. Cancers (Basel) 2022; 14:cancers14205091. [PMID: 36291874 PMCID: PMC9600758 DOI: 10.3390/cancers14205091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In normal cells, p53 is a protein which regulates the cell cycle progression to ensure normal cell division, growth, and development. However, in cancer, changes in the p53 DNA sequence, called genetic mutation, results in the protein either losing its normal function or exhibiting advanced pro-tumorigenic functions that lead to cancer. Importantly, cancers with mutations in the p53 protein often represent ones which are more aggressive and more resistant to chemotherapy. As a result, many studies have and continue to investigate multiple ways to target mutant p53-bearing cancer using targeted therapy, gene therapy, immunotherapy, and combination therapies. Knowledge of these strategies is important in improving the overall therapeutic response of cancers with mutant p53. This review highlights new strategies and discusses the progression of such therapies. Abstract TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53 expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy. As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways, p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and challenges of these strategies are discussed.
Collapse
|
23
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
24
|
Anticancer Therapeutic Strategies Targeting p53 Aggregation. Int J Mol Sci 2022; 23:ijms231911023. [PMID: 36232329 PMCID: PMC9569952 DOI: 10.3390/ijms231911023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is a tumor suppressor protein that is mutated in more than 50% of cancer cases. When mutated, it frequently results in p53 oncogenic gain of function (GOF), resulting in a greater tendency to aggregate in the phase separation and phase transition pathway. GOFs related to p53 aggregation include chemoresistance, which makes therapy even more difficult. The therapies available for the treatment of cancer are still quite limited, so the study of new molecules and therapeutic targets focusing on p53 aggregates is a promising strategy against cancer. In this review, we classify anticancer molecules with antiaggregation properties into four categories: thiol alkylating agents, designed peptides, agents with chaperone-based mechanisms that inhibit p53 aggregation, and miscellaneous compounds with anti-protein aggregation properties that have been studied in neurodegenerative diseases. Furthermore, we highlight autophagy as a possible degradation pathway for aggregated p53. Here, considering cancer as a protein aggregation disease, we review strategies that have been used to disrupt p53 aggregates, leading to cancer regression.
Collapse
|
25
|
Durairaj G, Demir Ö, Lim B, Baronio R, Tifrea D, Hall LV, DeForest JC, Lauinger L, Jebril Fallatah MM, Yu C, Bae H, Lin DW, Kim JK, Salehi F, Jang C, Qiao F, Lathrop RH, Huang L, Edwards R, Rychnovsky S, Amaro RE, Kaiser P. Discovery of compounds that reactivate p53 mutants in vitro and in vivo. Cell Chem Biol 2022; 29:1381-1395.e13. [PMID: 35948006 PMCID: PMC9481737 DOI: 10.1016/j.chembiol.2022.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/13/2021] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
The tumor suppressor p53 is the most frequently mutated protein in human cancer. The majority of these mutations are missense mutations in the DNA binding domain of p53. Restoring p53 tumor suppressor function could have a major impact on the therapy for a wide range of cancers. Here we report a virtual screening approach that identified several small molecules with p53 reactivation activities. The UCI-LC0023 compound series was studied in detail and was shown to bind p53, induce a conformational change in mutant p53, restore the ability of p53 hotspot mutants to associate with chromatin, reestablish sequence-specific DNA binding of a p53 mutant in a reconstituted in vitro system, induce p53-dependent transcription programs, and prevent progression of tumors carrying mutant p53, but not p53null or p53WT alleles. Our study demonstrates feasibility of a computation-guided approach to identify small molecule corrector drugs for p53 hotspot mutations.
Collapse
Affiliation(s)
- Geetha Durairaj
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryant Lim
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Roberta Baronio
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Delia Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Linda V Hall
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jacob C DeForest
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Da-Wei Lin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jin Kwang Kim
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Faezeh Salehi
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Feng Qiao
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard H Lathrop
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Scott Rychnovsky
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Ikeda D, Chi S, Uchiyama S, Nakamura H, Guo YM, Yamauchi N, Yuda J, Minami Y. Molecular Classification and Overcoming Therapy Resistance for Acute Myeloid Leukemia with Adverse Genetic Factors. Int J Mol Sci 2022; 23:5950. [PMID: 35682627 PMCID: PMC9180585 DOI: 10.3390/ijms23115950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
The European LeukemiaNet (ELN) criteria define the adverse genetic factors of acute myeloid leukemia (AML). AML with adverse genetic factors uniformly shows resistance to standard chemotherapy and is associated with poor prognosis. Here, we focus on the biological background and real-world etiology of these adverse genetic factors and then describe a strategy to overcome the clinical disadvantages in terms of targeting pivotal molecular mechanisms. Different adverse genetic factors often rely on common pathways. KMT2A rearrangement, DEK-NUP214 fusion, and NPM1 mutation are associated with the upregulation of HOX genes. The dominant tyrosine kinase activity of the mutant FLT3 or BCR-ABL1 fusion proteins is transduced by the AKT-mTOR, MAPK-ERK, and STAT5 pathways. Concurrent mutations of ASXL1 and RUNX1 are associated with activated AKT. Both TP53 mutation and mis-expressed MECOM are related to impaired apoptosis. Clinical data suggest that adverse genetic factors can be found in at least one in eight AML patients and appear to accumulate in relapsed/refractory cases. TP53 mutation is associated with particularly poor prognosis. Molecular-targeted therapies focusing on specific genomic abnormalities, such as FLT3, KMT2A, and TP53, have been developed and have demonstrated promising results.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
- Department of Hematology, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Satoshi Uchiyama
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Hirotaka Nakamura
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Yong-Mei Guo
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Nobuhiko Yamauchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| |
Collapse
|
27
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
28
|
Xiao Y, Chen J, Zhou H, Zeng X, Ruan Z, Pu Z, Jiang X, Matsui A, Zhu L, Amoozgar Z, Chen DS, Han X, Duda DG, Shi J. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat Commun 2022; 13:758. [PMID: 35140208 PMCID: PMC8828745 DOI: 10.1038/s41467-022-28279-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy with immune checkpoint blockade (ICB) has shown limited benefits in hepatocellular carcinoma (HCC) and other cancers, mediated in part by the immunosuppressive tumor microenvironment (TME). As p53 loss of function may play a role in immunosuppression, we herein examine the effects of restoring p53 expression on the immune TME and ICB efficacy. We develop and optimize a CXCR4-targeted mRNA nanoparticle platform to effectively induce p53 expression in HCC models. Using p53-null orthotopic and ectopic models of murine HCC, we find that combining CXCR4-targeted p53 mRNA nanoparticles with anti-PD-1 therapy effectively induces global reprogramming of cellular and molecular components of the immune TME. This effect results in improved anti-tumor effects compared to anti-PD-1 therapy or therapeutic p53 expression alone. Thus, our findings demonstrate the reversal of immunosuppression in HCC by a p53 mRNA nanomedicine when combined with ICB and support the implementation of this strategy for cancer treatment. The p53 tumor suppressor gene is frequently mutated in liver cancer. Here the authors show that restoration of p53 expression with a mRNA nanoparticle platform elicits anti-tumor immune responses and promotes response to immune checkpoint blockade in preclinical models of p53-null hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiang Chen
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, 430071, Wuhan, China
| | - Xiaodong Zeng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, 430071, Wuhan, China
| | - Zhiping Ruan
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhangya Pu
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aya Matsui
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lingling Zhu
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zohreh Amoozgar
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiangfei Han
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett 2022; 525:131-145. [PMID: 34742870 DOI: 10.1016/j.canlet.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Impairment of the prominent tumor suppressor p53, well known for its canonical role as the "guardian of the genome", is found in almost half of human cancers. More recently, p53 has been suggested to be a crucial regulator of stemness, orchestrating the differentiation of embryonal and adult stem cells, suppressing reprogramming into induced pluripotent stem cells, or inhibiting cancer stemness (i.e., cancer stem cells, CSCs), which underlies the development of therapy-resistant tumors. This review addresses these noncanonical roles of p53 and their implications in sarcoma initiation and progression. Indeed, dysregulation of p53 family proteins is a common event in sarcomas and is associated with poor survival. Additionally, emerging studies have demonstrated that loss of wild-type p53 activity hinders the terminal differentiation of mesenchymal stem cells and leads to the development of aggressive sarcomas. This review summarizes recent findings on the roles of aberrant p53 in sarcoma development and stemness and further describes therapeutic approaches to restore normal p53 activity as a promising anti-CSC strategy to treat refractory sarcomas.
Collapse
|
30
|
Sadahiro Y, Hitora Y, Tsukamoto S. Colletofragarone A2 and Colletoins A-C from a Fungus Colletotrichum sp. Decrease Mutant p53 Levels in Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:3131-3137. [PMID: 34854682 DOI: 10.1021/acs.jnatprod.1c00913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
p53 is frequently mutated in tumor cells. Mutant p53 (mut p53) accumulates in cells to promote cancer progression, invasion, and metastasis, and it is attracting attention as a target for cancer therapies. In this study, we used immunofluorescence staining of Saos-2 cells harboring doxycycline-inducible p53R175H [Saos-2 (p53R175H) cells] to search for compounds from natural sources that can target mut p53 and found an extract of Colletotrichum sp. (13S020) that was active. Bioassay-guided fractionation of the extract afforded a known polyketide, colletofragarone A2 (1), and three new analogues, colletoins A-C (2-4). The relative and absolute configurations of 1 were determined by the spectroscopic method and DFT calculation. Compounds 1 and 2 inhibited the growth of Saos-2 (p53R175H) cells and decreased mut p53 in the cells.
Collapse
Affiliation(s)
- Yusaku Sadahiro
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Hitora
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
31
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
32
|
Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021; 14:157. [PMID: 34583722 PMCID: PMC8480024 DOI: 10.1186/s13045-021-01169-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
TP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | | | - Shijie Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
33
|
Chiang YT, Chien YC, Lin YH, Wu HH, Lee DF, Yu YL. The Function of the Mutant p53-R175H in Cancer. Cancers (Basel) 2021; 13:4088. [PMID: 34439241 PMCID: PMC8391618 DOI: 10.3390/cancers13164088] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wild-type p53 is known as "the guardian of the genome" because of its function of inducing DNA repair, cell-cycle arrest, and apoptosis, preventing the accumulation of gene mutations. TP53 is highly mutated in cancer cells and most TP53 hotspot mutations are missense mutations. Mutant p53 proteins, encoded by these hotspot mutations, lose canonical wild-type p53 functions and gain functions that promote cancer development, including promoting cancer cell proliferation, migration, invasion, initiation, metabolic reprogramming, angiogenesis, and conferring drug resistance to cancer cells. Among these hotspot mutations, p53-R175H has the highest occurrence. Although losing the transactivating function of the wild-type p53 and prone to aggregation, p53-R175H gains oncogenic functions by interacting with many proteins. In this review, we summarize the gain of functions of p53-R175H in different cancer types, the interacting proteins of p53-R175H, and the downstream signaling pathways affected by p53-R175H to depict a comprehensive role of p53-R175H in cancer development. We also summarize treatments that target p53-R175H, including reactivating p53-R175H with small molecules that can bind to p53-R175H and alter it into a wild-type-like structure, promoting the degradation of p53-R175H by targeting heat-shock proteins that maintain the stability of p53-R175H, and developing immunotherapies that target the p53-R175H-HLA complex presented by tumor cells.
Collapse
Affiliation(s)
- Yen-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu-Heng Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Hui-Hsuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
34
|
Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer 2021; 1876:188556. [PMID: 33932560 PMCID: PMC8730328 DOI: 10.1016/j.bbcan.2021.188556] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
TP53 is the most commonly mutated gene in human cancer with over 100,000 literature citations in PubMed. This is a heavily studied pathway in cancer biology and oncology with a history that dates back to 1979 when p53 was discovered. The p53 pathway is a complex cellular stress response network with multiple diverse inputs and downstream outputs relevant to its role as a tumor suppressor pathway. While inroads have been made in understanding the biology and signaling in the p53 pathway, the p53 family, transcriptional readouts, and effects of an array of mutants, the pathway remains challenging in the realm of clinical translation. While the role of mutant p53 as a prognostic factor is recognized, the therapeutic modulation of its wild-type or mutant activities remain a work-in-progress. This review covers current knowledge about the biology, signaling mechanisms in the p53 pathway and summarizes advances in therapeutic development.
Collapse
Affiliation(s)
- Liz J Hernández Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America.
| |
Collapse
|
35
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
36
|
Luwang JW, Nair AR, Natesh R. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability. Biochimie 2021; 189:99-107. [PMID: 34197865 DOI: 10.1016/j.biochi.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
The p53 protein has been known to exist structurally in three different forms inside the cells. Earlier studies have reported the predominance of the lower oligomeric forms of p53 over its tetrameric form inside the cells, although only the tetrameric p53 contributes to its transcriptional activity. However, it remains unclear the functional relevance of the existence of other p53 oligomers inside the cells. In this study, we characterize the stability and conformational state of tetrameric, dimeric and monomeric p53 that spans both DNA Binding Domain (DBD) and Tetramerization Domain (TD) of human p53 (94-360 amino acid residues). Intriguingly, our studies reveal an unexpected drastic reduction in tetrameric p53 thermal stability in comparison to its dimeric and monomeric form with a higher propensity to aggregate at physiological temperature. Our EMSA study suggests that tetrameric p53, not their lower oligomeric counterpart, exhibit rapid loss of binding to their consensus DNA elements at the physiological temperature. This detrimental effect of destabilization is imparted due to the tetramerization of p53 that drives the DBDs to misfold at a faster pace when compared to its lower oligomeric form. This crosstalk between DBDs is achieved when it exists as a tetramer but not as dimer or monomer. Our findings throw light on the plausible reason for the predominant existence of p53 in dimer and monomer forms inside the cells with a lesser population of tetramer form. Therefore, the transient disruption of tetramerization between TDs could be a potential cue for the stabilization of p53 inside the cells.
Collapse
Affiliation(s)
- Johnson Wahengbam Luwang
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Aadithye R Nair
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India.
| |
Collapse
|
37
|
Ghasemishahrestani Z, Melo Mattos LM, Tilli TM, Santos ALSD, Pereira MD. Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy. Curr Med Chem 2021; 28:3514-3534. [PMID: 32814521 DOI: 10.2174/0929867327999200819123357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Over the past decades, several advances in cancer cell biology have led to relevant details about a phenomenon called the 'Warburg effect'. Currently, it has been accepted that the Warburg effect is not compatible with all cancer cells, and thus the process of aerobic glycolysis is now challenged by the knowledge of a large number of cells presenting mitochondrial function. The energy metabolism of cancer cells is focused on the bioenergetic and biosynthetic pathways in order to meet the requirements of rapid proliferation. Changes in the metabolism of carbohydrates, amino acids and lipids have already been reported for cancer cells and this might play an important role in cancer progression. To the best of our knowledge, these changes are mainly attributed to genetic reprogramming which leads to the transformation of a healthy into a cancerous cell. Indeed, several enzymes that are highly relevant for cellular energy are targets of oncogenes (e.g. PI3K, HIF1, and Myc) and tumor suppressor proteins (e.g. p53). As a consequence of extensive studies on cancer cell metabolism, some new therapeutic strategies have appeared that aim to interrupt the aberrant metabolism, in addition to influencing genetic reprogramming in cancer cells. In this review, we present an overview of cancer cell metabolism (carbohydrate, amino acid, and lipid), and also describe oncogenes and tumor suppressors that directly affect the metabolism. We also discuss some of the potential therapeutic candidates which have been designed to target and disrupt the main driving forces associated with cancer cell metabolism and proliferation.
Collapse
Affiliation(s)
- Zeinab Ghasemishahrestani
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Maura Melo Mattos
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Martins Tilli
- Centro de Desenvolvimento Tecnologico em Saude, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Dias Pereira
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Kim J, Lee S, Kim H, Lee H, Seong KM, Youn H, Youn B. Autophagic Organelles in DNA Damage Response. Front Cell Dev Biol 2021; 9:668735. [PMID: 33912571 PMCID: PMC8072393 DOI: 10.3389/fcell.2021.668735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important subcellular event engaged in the maintenance of cellular homeostasis via the degradation of cargo proteins and malfunctioning organelles. In response to cellular stresses, like nutrient deprivation, infection, and DNA damaging agents, autophagy is activated to reduce the damage and restore cellular homeostasis. One of the responses to cellular stresses is the DNA damage response (DDR), the intracellular pathway that senses and repairs damaged DNA. Proper regulation of these pathways is crucial for preventing diseases. The involvement of autophagy in the repair and elimination of DNA aberrations is essential for cell survival and recovery to normal conditions, highlighting the importance of autophagy in the resolution of cell fate. In this review, we summarized the latest information about autophagic recycling of mitochondria, endoplasmic reticulum (ER), and ribosomes (called mitophagy, ER-phagy, and ribophagy, respectively) in response to DNA damage. In addition, we have described the key events necessary for a comprehensive understanding of autophagy signaling networks. Finally, we have highlighted the importance of the autophagy activated by DDR and appropriate regulation of autophagic organelles, suggesting insights for future studies. Especially, DDR from DNA damaging agents including ionizing radiation (IR) or anti-cancer drugs, induces damage to subcellular organelles and autophagy is the key mechanism for removing impaired organelles.
Collapse
Affiliation(s)
- Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
39
|
BF 3-OEt 2 Catalyzed C3-Alkylation of Indole: Synthesis of Indolylsuccinimidesand Their Cytotoxicity Studies. Molecules 2021; 26:molecules26082202. [PMID: 33920456 PMCID: PMC8069703 DOI: 10.3390/molecules26082202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
A simple and efficient BF3-OEt2 promoted C3-alkylation of indole has been developed to obtain3-indolylsuccinimidesfrom commercially available indoles and maleimides, with excellent yields under mild reaction conditions. Furthermore, anti-proliferative activity of these conjugates was evaluated against HT-29 (Colorectal), Hepg2 (Liver) and A549 (Lung) human cancer cell lines. One of the compounds, 3w, having N,N-Dimethylatedindolylsuccinimide is a potent congener amongst the series with IC50 value 0.02 µM and 0.8 µM against HT-29 and Hepg2 cell lines, respectively, and compound 3i was most active amongst the series with IC50 value 1.5 µM against A549 cells. Molecular docking study and mechanism of reaction have briefly beendiscussed. This method is better than previous reports in view of yield and substrate scope including electron deficient indoles.
Collapse
|
40
|
Demir Ö, Barros EP, Offutt TL, Rosenfeld M, Amaro RE. An integrated view of p53 dynamics, function, and reactivation. Curr Opin Struct Biol 2021; 67:187-194. [PMID: 33401096 DOI: 10.1016/j.sbi.2020.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
The tumor suppressor p53 plays a vital role in responding to cell stressors such as DNA damage, hypoxia, and tumor formation by inducing cell-cycle arrest, senescence, or apoptosis. Expression level alterations and mutational frequency implicates p53 in most human cancers. In this review, we show how both computational and experimental methods have been used to provide an integrated view of p53 dynamics, function, and reactivation potential. We argue that p53 serves as an exceptional case study for developing methods in modeling intrinsically disordered proteins. We describe how these methods can be leveraged to improve p53 reactivation molecule design and other novel therapeutic modalities, such as PROteolysis TARgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Özlem Demir
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emilia P Barros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tavina L Offutt
- Dana Farber Cancer Institute, Center for Protein Degradation, Boston, MA, 02215, USA
| | - Mia Rosenfeld
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
41
|
Barros EP, Demir Ö, Soto J, Cocco MJ, Amaro RE. Markov state models and NMR uncover an overlooked allosteric loop in p53. Chem Sci 2020; 12:1891-1900. [PMID: 34163952 PMCID: PMC8179107 DOI: 10.1039/d0sc05053a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tumor suppressor p53 is the most frequently mutated gene in human cancer, and thus reactivation of mutated p53 is a promising avenue for cancer therapy. Analysis of wildtype p53 and the Y220C cancer mutant long-timescale molecular dynamics simulations with Markov state models and validation by NMR relaxation studies has uncovered the involvement of loop L6 in the slowest motions of the protein. Due to its distant location from the DNA-binding surface, the conformational dynamics of this loop has so far remained largely unexplored. We observe mutation-induced stabilization of alternate L6 conformations, distinct from all experimentally-determined structures, in which the loop is both extended and located further away from the DNA-interacting surface. Additionally, the effect of the L6-adjacent Y220C mutation on the conformational landscape of the functionally-important loop L1 suggests an allosteric role to this dynamic loop and the inactivation mechanism of the mutation. Finally, the simulations reveal a novel Y220C cryptic pocket that can be targeted for p53 rescue efforts. Our approach exemplifies the power of the MSM methodology for uncovering intrinsic dynamic and kinetic differences among distinct protein ensembles, such as for the investigation of mutation effects on protein function. Wildtype and Y220C L1 and L6 loops conformational landscape, with MSM-identified L6 states highlighted on the right.![]()
Collapse
Affiliation(s)
- Emilia P Barros
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| | - Jenaro Soto
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA
| | - Melanie J Cocco
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA.,Department of Molecular Biology and Biochemistry, University of California Irvine Irvine 92697 CA USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| |
Collapse
|
42
|
Xu C, Zhuang J, Zhang X. 2-[(4-Hydroxybenzyl) Amino] Phenol (HBAP) Restores the Mutated p53 to the Level Similar to That of Wild-Type p53 Protein and Inhibits Breast Cancer Growth in vivo to by Inducing Tumor Cells Apoptosis. Front Cell Dev Biol 2020; 8:574799. [PMID: 33324634 PMCID: PMC7726228 DOI: 10.3389/fcell.2020.574799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
P53 is a transcriptional factor that plays important roles in apoptosis and is mutated in more than 50% of tumor cells. However, the restoration of mutated p53 to the level similar to wild-type p53 by a natural compound has not been explored intensively. In this study, the 2-[(4-hydroxybenzyl) amino] phenol (HBAP) compound, obtained from deep-sea virus-challenged thermophile Geobacillus sp. E263, interacted specifically with the mutated p53 protein. HBAP was able to induce apoptosis of p53-mutated breast cancer cells, but not normal breast cells and p53-unmutated breast cancer cells. HBAP activated the mutant p53 transcriptional activity by restoring the function of mutant p53 to that of wild-type p53. Further analysis indicated that HBAP bound only to the DNA binding domain of mutant p53 and that the interaction was dependent on the HBAP hydroxyl groups. In vivo data demonstrated that HBAP was toxicity-free and could suppress tumor growth by inducing tumor cell apoptosis. Therefore our findings revealed that recovering mutated p53 function to that of wild-type p53 caused by HBAP triggered cancer cell apoptosis and that metabolites from deep-sea virus-challenged thermophiles could be a promising source of anti-tumor drugs.
Collapse
Affiliation(s)
- Chenxi Xu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianjian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00089-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundCells have evolved balanced mechanisms to protect themselves by initiating a specific response to a variety of stress. TheTP53gene, encoding P53 protein, is one of the many widely studied genes in human cells owing to its multifaceted functions and complex dynamics. The tumour-suppressing activity of P53 plays a principal role in the cellular response to stress. The majority of the human cancer cells exhibit the inactivation of the P53 pathway. In this review, we discuss the recent advancements in P53 research with particular focus on the role of P53 in DNA damage responses, apoptosis, autophagy, and cellular metabolism. We also discussed important P53-reactivation strategies that can play a crucial role in cancer therapy and the role of P53 in various diseases.Main bodyWe used electronic databases like PubMed and Google Scholar for literature search. In response to a variety of cellular stress such as genotoxic stress, ischemic stress, oncogenic expression, P53 acts as a sensor, and suppresses tumour development by promoting cell death or permanent inhibition of cell proliferation. It controls several genes that play a role in the arrest of the cell cycle, cellular senescence, DNA repair system, and apoptosis. P53 plays a crucial role in supporting DNA repair by arresting the cell cycle to purchase time for the repair system to restore genome stability. Apoptosis is essential for maintaining tissue homeostasis and tumour suppression. P53 can induce apoptosis in a genetically unstable cell by interacting with many pro-apoptotic and anti-apoptotic factors.Furthermore, P53 can activate autophagy, which also plays a role in tumour suppression. P53 also regulates many metabolic pathways of glucose, lipid, and amino acid metabolism. Thus under mild metabolic stress, P53 contributes to the cell’s ability to adapt to and survive the stress.ConclusionThese multiple levels of regulation enable P53 to perform diversified roles in many cell responses. Understanding the complete function of P53 is still a work in progress because of the inherent complexity involved in between P53 and its target proteins. Further research is required to unravel the mystery of this Guardian of the genome “TP53”.
Collapse
|
44
|
New maleimide 1,2,3-triazole hybrids: design, synthesis, anticancer, and antimicrobial activities. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02685-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Kim S, Lee JW, Park YS. The Application of Next-Generation Sequencing to Define Factors Related to Oral Cancer and Discover Novel Biomarkers. Life (Basel) 2020; 10:E228. [PMID: 33023080 PMCID: PMC7599837 DOI: 10.3390/life10100228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of next-generation sequencing in the realm of DNA sequencing technology, it is not often used in the investigation of oral squamous cell carcinoma (OSCC). Oral cancer is one of the most frequently occurring malignancies in some parts of the world and has a high mortality rate. Patients with this malignancy are likely to have a poor prognosis and may suffer from severe facial deformity or mastication problems even after successful treatment. Therefore, a thorough understanding of this malignancy is essential to prevent and treat it. This review sought to highlight the contributions of next-generation sequencing (NGS) in unveiling the genetic alterations and differential expressions of miRNAs involved in OSCC progression. By applying an appropriate eligibility criterion, we selected relevant studies for review. Frequently identified mutations in genes such as TP53, NOTCH1, and PIK3CA are discussed. The findings of existing miRNAs (e.g., miR-21) as well as novel discoveries pertaining to OSCC are also covered. Lastly, we briefly mention the latest findings in targeted gene therapy and the potential use of miRNAs as biomarkers. Our goal is to encourage researchers to further adopt NGS in their studies and give an overview of the latest findings of OSCC treatment.
Collapse
Affiliation(s)
| | | | - Young-Seok Park
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03968, Korea; (S.K.); (J.W.L.)
| |
Collapse
|
46
|
Lyakhova I, Piatkova M, Gulaia V, Romanishin A, Shmelev M, Bryukhovetskiy A, Sharma A, Sharma HS, Khotimchenko R, Bryukhovetskiy I. Alkaloids of fascaplysin are promising chemotherapeutic agents for the treatment of glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:299-324. [PMID: 32448613 DOI: 10.1016/bs.irn.2020.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glioblastoma is one of the most aggressive human brain tumors. Even following all the modern protocols of complex treatment, the median patient survival typically does not exceed 15 months. This review analyzes the main reasons for glioblastoma resistance to therapy, as well as attempts at categorizing the main approaches to increasing chemotherapy efficiency. Special emphasis is placed on the specific group of compounds, known as marine alkaloids and their synthetic derivatives exerting a general antitumor effect on glioblastoma cells. The unique mechanisms of marine alkaloid influence on the tumor cells prompt considering them as a promising basis for creating new chemotherapeutic agents for glioblastoma treatment.
Collapse
Affiliation(s)
- Irina Lyakhova
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Mariia Piatkova
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Aleksandr Romanishin
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Mikhail Shmelev
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Rodion Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
47
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
48
|
Lopes EA, Gomes S, Saraiva L, Santos MM. Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Curr Med Chem 2020; 26:7323-7336. [DOI: 10.2174/0929867325666181116124308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
:
More than half of all human tumors express mutant forms of p53, with the ovary,
lung, pancreas, and colorectal cancers among the tumor types that display the highest prevalence
of p53 mutations. In addition, the expression of mutant forms of p53 in tumors is associated
with poor prognosis due to increased chemoresistance and invasiveness. Therefore, the
pharmacological restoration of wild-type-like activity to mutant p53 arises as a promising therapeutic
strategy against cancer. This review is focused on the most relevant mutant p53 small
molecule reactivators described to date. Despite some of them have entered into clinical trials,
none has reached the clinic, which emphasizes that new pharmacological alternatives, particularly
with higher selectivity and lower adverse toxic side effects, are still required.
Collapse
Affiliation(s)
- Elizabeth A. Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Gomes
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria M.M. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49:6995-7014. [DOI: 10.1039/d0cs00163e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small molecules targeting various aspects of the p53 protein pathway have shown significant promise in the treatment of a number of cancer types.
Collapse
Affiliation(s)
| | - Christian Gaiddon
- Inserm UMR_S 1113
- Université de Strasbourg
- Molecular Mechanisms of Stress Response and Pathologies
- ITI InnoVec
- Strasbourg
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
50
|
PRIMA-1 MET cytotoxic effect correlates with p53 protein reduction in TP53-mutated chronic lymphocytic leukemia cells. Leuk Res 2019; 89:106288. [PMID: 31924585 DOI: 10.1016/j.leukres.2019.106288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
TP53 gene defects represent the most unfavorable prognostic factor in chronic lymphocytic leukemia (CLL). Although recently introduced small-molecule B-cell receptor signalling inhibitors have revolutionized CLL treatment, data for ibrutinib still point to impaired prognosis for TP53-affected patients. Among cancer-associated TP53 mutations, missense substitutions predominate and typically result in a high mutated-p53 protein level. Therefore, rescuing the p53 tumor suppressor function through specific small molecules restoring p53 wild-type (wt) conformation represents an attractive therapeutic strategy for cancer patients with TP53 missense mutations. We tested the effect of mutated-p53 reactivating molecule PRIMA-1MET in 62 clinical CLL samples characterized for TP53 mutations and p53 protein level. At the subtle PRIMA-1MET concentrations (1-4 μM), most samples manifested concentration-dependent viability decrease and, conversely, apoptosis induction, with the response being similar in both the TP53-mutated and TP53-wt groups, as well as in the TP53-mutated samples with p53 protein stabilization and without it. PRIMA-1MET was able to reduce mutated p53 protein in a proportion of TP53-mutated CLL samples, and this reduction correlated with a significantly stronger viability decrease and apoptosis induction than samples with stable p53 levels. CLL cells are mostly sensitive to PRIMA-1MET apart from those with stable mutated p53.
Collapse
|