1
|
Lindt KA, Frühschulz S, Tampé R, Abele R. Interdomain communication in a homodimeric ABC transporter. J Biol Chem 2024; 300:107440. [PMID: 38844133 PMCID: PMC11267003 DOI: 10.1016/j.jbc.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024] Open
Abstract
ABC transporters are found in all organisms and almost every cellular compartment. They mediate the transport of various solutes across membranes, energized by ATP binding and hydrolysis. Dysfunctions can result in severe diseases, such as cystic fibrosis or antibiotic resistance. In type IV ABC transporters, each of the two nucleotide-binding domains is connected to a transmembrane domain by two coupling helices, which are part of cytosolic loops. Although there are many structural snapshots of different conformations, the interdomain communication is still enigmatic. Therefore, we analyzed the function of three conserved charged residues in the intracytosolic loop 1 of the human homodimeric, lysosomal peptide transporter TAPL (transporter associated with antigen processing-like). Substitution of D278 in coupling helix 1 by alanine interrupted peptide transport by impeding ATP hydrolysis. Alanine substitution of R288 and D292, both localized next to the coupling helix 1 extending to transmembrane helix 3, reduced peptide transport but increased basal ATPase activity. Surprisingly, the ATPase activity of the R288A variant dropped in a peptide-dependent manner, whereas ATPase activity of wildtype and D292A was unaffected. Interestingly, R288A and D292A mutants did not differentiate between ATP and GTP in respect of hydrolysis. However, in contrast to wildtye TAPL, only ATP energized peptide transport. In sum, D278 seems to be involved in bidirectional interdomain communication mediated by network of polar interactions, whereas the two residues in the cytosolic extension of transmembrane helix 3 are involved in regulation of ATP hydrolysis, most likely by stabilization of the outward-facing conformation.
Collapse
Affiliation(s)
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
2
|
Abdelmaksoud NM, Abulsoud AI, Doghish AS, Abdelghany TM. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models. Biochim Biophys Acta Rev Cancer 2023; 1878:188993. [PMID: 37813202 DOI: 10.1016/j.bbcan.2023.188993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Despite the tremendous advances in cancer treatment, resistance to chemotherapeutic agents impedes higher success rates and accounts for major relapses in cancer therapy. Moreover, the resistance of cancer cells to chemotherapy is linked to low efficacy and high recurrence of cancer. To stand up against chemotherapy resistance, different models of chemotherapy resistance have been established to study various molecular mechanisms of chemotherapy resistance. Consequently, this review is going to discuss different models of induction of chemotherapy resistance, highlighting the most common mechanisms of cancer resistance against different chemotherapeutic agents, including overexpression of efflux pumps, drug inactivation, epigenetic modulation, and epithelial-mesenchymal transition. This review aims to open a new avenue for researchers to lower the resistance to the existing chemotherapeutic agents, develop new therapeutic agents with low resistance potential, and establish possible prognostic markers for chemotherapy resistance.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| |
Collapse
|
3
|
Abstract
ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.
Collapse
Affiliation(s)
- Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland;
| |
Collapse
|
4
|
Nieto F, Garrido F, Dinamarca S, Cebrian I, Mayorga LS. Kinetics of antigen cross-presentation assessed experimentally and by a model of the complete endomembrane system. Cell Immunol 2022; 382:104636. [PMID: 36399818 DOI: 10.1016/j.cellimm.2022.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DCs) have a specialized endomembrane system capable of presenting exogenous antigens in the context of MHC class I (MHC-I) molecules. This process, named cross-presentation, is crucial to activate CD8+ T lymphocytes and initiate cytotoxic immune responses. In this report, we present an Agent-Based Model in combination with Ordinary Differential Equations with enough complexity to reproduce cross-presentation. The model embraces the secretory and endocytic pathways, in connection with the plasma membrane, the endoplasmic reticulum, and the cytosol. Key molecules required for cross-presentation were included as cargoes. In the simulations, the kinetics of MHC-I uptake and recycling, and cross-presentation accurately reproduced experimental values. The model proved to be a suitable tool to elaborate hypotheses and design experiments. In particular, the model predictions and the experimental results obtained indicate that the rate-limiting step in cross-presentation of soluble ovalbumin is MHC-I loading after proteasomal processing of the antigenic protein.
Collapse
Affiliation(s)
- Franco Nieto
- Instituto de Histología y Embriología de Mendoza (IHEM) - Universidad Nacional de Cuyo - CONICET, Mendoza 5500, Argentina
| | - Facundo Garrido
- Instituto de Histología y Embriología de Mendoza (IHEM) - Universidad Nacional de Cuyo - CONICET, Mendoza 5500, Argentina
| | - Sofía Dinamarca
- Instituto de Histología y Embriología de Mendoza (IHEM) - Universidad Nacional de Cuyo - CONICET, Mendoza 5500, Argentina
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM) - Universidad Nacional de Cuyo - CONICET, Mendoza 5500, Argentina.
| | - Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM) - Universidad Nacional de Cuyo - CONICET, Mendoza 5500, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina.
| |
Collapse
|
5
|
The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase. Nat Commun 2022; 13:5851. [PMID: 36195619 PMCID: PMC9532399 DOI: 10.1038/s41467-022-33593-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.
Collapse
|
6
|
Gu J, Geng M, Qi M, Wang L, Zhang Y, Gao J. The role of lysosomal membrane proteins in glucose and lipid metabolism. FASEB J 2021; 35:e21848. [PMID: 34582051 DOI: 10.1096/fj.202002602r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Lysosomes have long been regarded as the "garbage dump" of the cell. More recently, however, researchers have revealed novel roles for lysosomal membranes in autophagy, ion transport, nutrition sensing, and membrane fusion and repair. With active research into lysosomal membrane proteins (LMP), increasing evidence has become available showing that LMPs are inextricably linked to glucose and lipid metabolism, and this relationship represents mutual influence and regulation. In this review, we summarize the roles of LMPs in relation to glucose and lipid metabolism, and describe their roles in glucose transport, glycolysis, cholesterol transport, and lipophagy. The role of transport proteins can be traced back to the original discoveries of GLUT8, NPC1, and NPC2, which were all found to have significant roles in the pathways involved in glucose and lipid metabolism. CLC-5 and SIDT2-knockout animals show serious phenotypic disorders of metabolism, and V-ATPase and LAMP-2 have been found to interact with proteins related to glucose and lipid metabolism. These findings all emphasize the critical role of LMPs in glycolipid metabolism and help to strengthen our understanding of the independent and close relationship between LMPs and glycolipid metabolism.
Collapse
Affiliation(s)
- Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Mengya Geng
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Mengxiang Qi
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Rudnik S, Damme M. The lysosomal membrane-export of metabolites and beyond. FEBS J 2021; 288:4168-4182. [PMID: 33067905 DOI: 10.1111/febs.15602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023]
Abstract
Lysosomes are degradative organelles in eukaryotic cells mediating the hydrolytic catabolism of various macromolecules to small basic building blocks. These low-molecular-weight metabolites are transported across the lysosomal membrane and reused in the cytoplasm and other organelles for biosynthetic pathways. Even though in the past 20 years our understanding of the lysosomal membrane regarding various transporters, other integral and peripheral membrane proteins, the lipid composition, but also its turnover has dramatically improved, there are still many unresolved questions concerning key aspects of the function of the lysosomal membrane. These include a possible function of lysosomes as a cellular storage compartment, yet unidentified transporters mediating the export such as various amino acids, mechanisms mediating the transport of lysosomal membrane proteins from the Golgi apparatus to lysosomes, and the turnover of lysosomal membrane proteins. Here, we review the current knowledge about the lysosomal membrane and identify some of the open questions that need to be solved in the future for a comprehensive and complete understanding of how lysosomes communicate with other organelles, cellular processes, and pathways.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
8
|
Diederichs T, Tampé R. Single Cell-like Systems Reveal Active Unidirectional and Light-Controlled Transport by Nanomachineries. ACS NANO 2021; 15:6747-6755. [PMID: 33724767 PMCID: PMC8157534 DOI: 10.1021/acsnano.0c10139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cellular life depends on transport and communication across membranes, which is emphasized by the fact that membrane proteins are prime drug targets. The cell-like environment of membrane proteins has gained increasing attention based on its important role in function and regulation. As a versatile scaffold for bottom-up synthetic biology and nanoscience, giant liposomes represent minimalistic models of living cells. Nevertheless, the incorporation of fragile multiprotein membrane complexes still remains a major challenge. Here, we report on an approach for the functional reconstitution of membrane assemblies exemplified by human and bacterial ATP-binding cassette (ABC) transporters. We reveal that these nanomachineries transport substrates unidirectionally against a steep concentration gradient. Active substrate transport can be spatiotemporally resolved in single cell-like compartments by light, enabling real-time tracking of substrate export and import in individual liposomes. This approach will help to construct delicate artificial cell-like systems.
Collapse
Affiliation(s)
- Tim Diederichs
- Institute of Biochemistry, Biocenter,
Goethe-University Frankfurt, Max-von Laue-Straße 9,
60438 Frankfurt a.M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter,
Goethe-University Frankfurt, Max-von Laue-Straße 9,
60438 Frankfurt a.M., Germany
| |
Collapse
|
9
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
10
|
The macrophage microtubule network acts as a key cellular controller of the intracellular fate of Leishmania infantum. PLoS Negl Trop Dis 2020; 14:e0008396. [PMID: 32722702 PMCID: PMC7386624 DOI: 10.1371/journal.pntd.0008396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/16/2020] [Indexed: 11/19/2022] Open
Abstract
The parasitophorous vacuoles (PVs) that insulate Leishmania spp. in host macrophages are vacuolar compartments wherein promastigote forms differentiate into amastigote that are the replicative form of the parasite and are also more resistant to host responses. We revisited the biogenesis of tight-fitting PVs that insulate L. infantum in promastigote-infected macrophage-like RAW 264.7 cells by time-dependent confocal laser multidimensional imaging analysis. Pharmacological disassembly of the cellular microtubule network and silencing of the dynein gene led to an impaired interaction of L. infantum-containing phagosomes with late endosomes and lysosomes, resulting in the tight-fitting parasite-containing phagosomes never transforming into mature PVs. Analysis of the shape of the L. infantum parasite within PVs, showed that factors that impair promastigote-amastigote differentiation can also result in PVs whose maturation is arrested. These findings highlight the importance of the MT-dependent interaction of L. infantum-containing phagosomes with the host macrophage endolysosomal pathway to secure the intracellular fate of the parasite. Kinetoplastid parasites of the genus Leishmania are responsible for a diverse spectrum of mammalian infectious diseases, the leishmaniases, including cutaneous, mucocutaneous, and mucosal pathologies. Infectious metacyclic promastigotes of infected female Phlebotomus sandflies are injected into the host at the site of the bite during the sandfly blood meal, after which they are internalized by host professional phagocytic neutrophils and macrophages. Leishmania infantum is an etiological agent of potentially fatal visceral pathology. This study molecularly dissects the maturation of L. infantum-containing phagosomes/parasitophorous vacuoles (PVs) in host macrophages. We reveal the requirement of vacuolar movement along macrophage microtubule tracks for the phagosome trafficking toward the endolysosomal pathway necessary for the development of the mature tight-fitting PV crucial for L. infantum survival and proliferation.
Collapse
|
11
|
Del Val M, Antón LC, Ramos M, Muñoz-Abad V, Campos-Sánchez E. Endogenous TAP-independent MHC-I antigen presentation: not just the ER lumen. Curr Opin Immunol 2020; 64:9-14. [PMID: 31935516 DOI: 10.1016/j.coi.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Altered and infected cells are eliminated by CD8+ cytotoxic T lymphocytes. This requires production of antigenic peptides mostly in the cytosol, transport to the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP), and cell surface presentation by major histocompatibility complex class I (MHC-I). Strikingly, antigen presentation occurs without TAP, although it is inefficient and associated to human pathology. TAP-independent peptides derive both from membrane and secreted proteins, as well as cytosolic ones. The efficiency of TAP-independent presentation may be impacted by the availability of receptive MHC-I, and in turn by the functional presence in the ER of the peptide-loading complex, itself anchored on TAP. Without TAP, surface expression of human leukocyte antigen (HLA)-B allotypes varies widely, with those presenting a broader peptide repertoire among the most TAP-independent. Much remains to be learned on the alternative cellular pathways for antigen presentation in the absence of TAP.
Collapse
Affiliation(s)
- Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Luis C Antón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Víctor Muñoz-Abad
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena Campos-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
12
|
Bock C, Zollmann T, Lindt KA, Tampé R, Abele R. Peptide translocation by the lysosomal ABC transporter TAPL is regulated by coupling efficiency and activation energy. Sci Rep 2019; 9:11884. [PMID: 31417173 PMCID: PMC6695453 DOI: 10.1038/s41598-019-48343-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/25/2019] [Indexed: 11/15/2022] Open
Abstract
The lysosomal polypeptide transporter TAPL belongs to the superfamily of ATP-binding cassette transporters. TAPL forms a homodimeric transport complex, which translocates oligo- and polypeptides into the lumen of lysosomes driven by ATP hydrolysis. Although the structure and the function of ABC transporters were intensively studied in the past, details about the single steps of the transport cycle are still elusive. Therefore, we analyzed the coupling of peptide binding, transport and ATP hydrolysis for different substrate sizes. Although longer and shorter peptides bind with the same affinity and are transported with identical Km values, they differ significantly in their transport rates. This difference can be attributed to a higher activation energy for the longer peptide. TAPL shows a basal ATPase activity, which is inhibited in the presence of longer peptides. Uncoupling between ATP hydrolysis and peptide transport increases with peptide length. Remarkably, also the type of nucleotide determines the uncoupling. While GTP is hydrolyzed as good as ATP, peptide transport is significantly reduced. In conclusion, TAPL does not differentiate between transport substrates in the binding process but during the following steps in the transport cycle, whereas, on the other hand, not only the coupling efficiency but also the activation energy varies depending on the size of peptide substrate.
Collapse
Affiliation(s)
- Christoph Bock
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Tina Zollmann
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Katharina-Astrid Lindt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Graab P, Bock C, Weiss K, Hirth A, Koller N, Braner M, Jung J, Loehr F, Tampé R, Behrends C, Abele R. Lysosomal targeting of the ABC transporter TAPL is determined by membrane-localized charged residues. J Biol Chem 2019; 294:7308-7323. [PMID: 30877195 DOI: 10.1074/jbc.ra118.007071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/08/2019] [Indexed: 01/16/2023] Open
Abstract
The human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6-59-amino-acid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membrane-trafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jennifer Jung
- the Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, and
| | - Frank Loehr
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- From the Institute of Biochemistry, Biocenter, and
| | - Christian Behrends
- the Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, and.,the Munich Cluster for Systems Neurology, Ludwig Maximilians University Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Rupert Abele
- From the Institute of Biochemistry, Biocenter, and
| |
Collapse
|
14
|
Bock C, Löhr F, Tumulka F, Reichel K, Würz J, Hummer G, Schäfer L, Tampé R, Joseph B, Bernhard F, Dötsch V, Abele R. Structural and functional insights into the interaction and targeting hub TMD0 of the polypeptide transporter TAPL. Sci Rep 2018; 8:15662. [PMID: 30353140 PMCID: PMC6199259 DOI: 10.1038/s41598-018-33841-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The ATP-binding cassette transporter TAPL translocates polypeptides from the cytosol into the lysosomal lumen. TAPL can be divided into two functional units: coreTAPL, active in ATP-dependent peptide translocation, and the N-terminal membrane spanning domain, TMD0, responsible for cellular localization and interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. Although the structure and function of ABC transporters were intensively analyzed in the past, the knowledge about accessory membrane embedded domains is limited. Therefore, we expressed the TMD0 of TAPL via a cell-free expression system and confirmed its correct folding by NMR and interaction studies. In cell as well as cell-free expressed TMD0 forms oligomers, which were assigned as dimers by PELDOR spectroscopy and static light scattering. By NMR spectroscopy of uniformly and selectively isotope labeled TMD0 we performed a complete backbone and partial side chain assignment. Accordingly, TMD0 has a four transmembrane helix topology with a short helical segment in a lysosomal loop. The topology of TMD0 was confirmed by paramagnetic relaxation enhancement with paramagnetic stearic acid as well as by nuclear Overhauser effects with c6-DHPC and cross-peaks with water.
Collapse
Affiliation(s)
- Christoph Bock
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Franz Tumulka
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Katrin Reichel
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Julia Würz
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | - Lars Schäfer
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 4780, Bochum, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Benesh Joseph
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
16
|
Lawand M, Evnouchidou I, Baranek T, Montealegre S, Tao S, Drexler I, Saveanu L, Si-Tahar M, van Endert P. Impact of the TAP-like transporter in antigen presentation and phagosome maturation. Mol Immunol 2018; 113:75-86. [PMID: 29941219 DOI: 10.1016/j.molimm.2018.06.268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Cross-presentation is thought to require transport of proteasome-generated peptides by the TAP transporters into MHC class I loading compartments for most antigens. However, a proteasome-dependent but TAP-independent pathway has also been described. Depletion of the pool of recycling cell surface MHC class I molecules available for loading with cross-presented peptides might partly or largely account for the critical role of TAP in cross-presentation of phagocytosed antigens. Here we examined a potential role of the homodimeric lysosomal TAP-like transporter in cross-presentation and in presentation of endogenous peptides by MHC class II molecules. We find that TAP-L is strongly recruited to dendritic cell phagosomes at a late stage, when internalized antigen and MHC class I molecules have been degraded or sorted away from phagosomes. Cross-presentation of a receptor-targeted antigen in vitro and of a phagocytosed antigen in vivo, as well as presentation of a cytosolic antigen by MHC class II molecules, is not affected by TAP-L deficiency. However, accumulation in vitro of a peptide optimally adapted to TAP-L selectivity in purified phagosomes is abolished by TAP-L deficiency. Unexpectedly, we find that TAP-L deficiency accelerates phagosome maturation, as reflected in increased Lamp2b recruitment and enhanced proteolytic degradation of phagocytosed antigen and in vitro transported peptides. Although additional experimentation will be required to definitely conclude on the role of TAP-L in transport of peptides presented by MHC class I and class II molecules, our data suggest that the principal role of TAP-L in dendritic cells may be related to regulation of phagosome maturation.
Collapse
Affiliation(s)
- Myriam Lawand
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Irini Evnouchidou
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Thomas Baranek
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Sebastian Montealegre
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Sha Tao
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Ingo Drexler
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Loredana Saveanu
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Peter van Endert
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France.
| |
Collapse
|
17
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
18
|
Orelle C, Durmort C, Mathieu K, Duchêne B, Aros S, Fenaille F, André F, Junot C, Vernet T, Jault JM. A multidrug ABC transporter with a taste for GTP. Sci Rep 2018; 8:2309. [PMID: 29396536 PMCID: PMC5797166 DOI: 10.1038/s41598-018-20558-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/19/2018] [Indexed: 01/26/2023] Open
Abstract
During the evolution of cellular bioenergetics, many protein families have been fashioned to match the availability and replenishment in energy supply. Molecular motors and primary transporters essentially need ATP to function while proteins involved in cell signaling or translation consume GTP. ATP-Binding Cassette (ABC) transporters are one of the largest families of membrane proteins gathering several medically relevant members that are typically powered by ATP hydrolysis. Here, a Streptococcus pneumoniae ABC transporter responsible for fluoroquinolones resistance in clinical settings, PatA/PatB, is shown to challenge this concept. It clearly favors GTP as the energy supply to expel drugs. This preference is correlated to its ability to hydrolyze GTP more efficiently than ATP, as found with PatA/PatB reconstituted in proteoliposomes or nanodiscs. Importantly, the ATP and GTP concentrations are similar in S. pneumoniae supporting the physiological relevance of GTP as the energy source of this bacterial transporter.
Collapse
Affiliation(s)
- Cédric Orelle
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 Passage du Vercors, F-69367, Lyon, France
| | - Claire Durmort
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France.
| | - Khadija Mathieu
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 Passage du Vercors, F-69367, Lyon, France
| | - Benjamin Duchêne
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France
| | - Sandrine Aros
- CEA, Institut Joliot, Service de Pharmacologie et d'Immunoanalyse, UMR 0496, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Université Paris Saclay, F-91191, Gif-sur-Yvette cedex, France
| | - François Fenaille
- CEA, Institut Joliot, Service de Pharmacologie et d'Immunoanalyse, UMR 0496, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Université Paris Saclay, F-91191, Gif-sur-Yvette cedex, France
| | - François André
- Laboratoire Stress Oxydant et Détoxication (LSOD), Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Christophe Junot
- CEA, Institut Joliot, Service de Pharmacologie et d'Immunoanalyse, UMR 0496, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Université Paris Saclay, F-91191, Gif-sur-Yvette cedex, France
| | - Thierry Vernet
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France
| | - Jean-Michel Jault
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 Passage du Vercors, F-69367, Lyon, France.
| |
Collapse
|
19
|
Abstract
The ATP binding cassette containing transporters are a superfamily of integral membrane proteins that translocate a wide range of substrates. The subfamily B members include the biologically important multidrug resistant (MDR) protein and the transporter associated with antigen processing (TAP) complex. Substrates translocated by this subfamily include drugs, lipids, peptides and iron. We have constructed a comprehensive set of comparative models for the transporters from eukaryotes and used these to study the effects of sequence divergence on the substrate translocation pathway. Notably, there is very little structural divergence between the bacterial template structure and the more distantly related eukaryotic proteins illustrating a need to conserve transporter structure. By contrast different properties have been adopted for the translocation pathway depending on the substrate type. A greater level of divergence in electrostatic properties is seen with transporters that have a broad substrate range both within and between species, while a high level of conservation is observed when the substrate range is narrow. This study represents the first effort towards understanding effect of evolution on subfamily B ABC transporters in the context of protein structure and biophysical properties. Abbreviations A. thaliana Arabidopsis thaliana D. melanogaster Drosophilia melanogaster S. aureus Staphylococcus aureus ABC ATP binding cassette TAP Transporter associated with antigen processing.
Collapse
Affiliation(s)
- J.U. Flanagan
- ARC Special Research Centre for Functional and Applied Genomics, Level 5, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - T. Huber
- School of Molecular and Microbial Science, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Szöllősi D, Rose-Sperling D, Hellmich UA, Stockner T. Comparison of mechanistic transport cycle models of ABC exporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:818-832. [PMID: 29097275 PMCID: PMC7610611 DOI: 10.1016/j.bbamem.2017.10.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. “This article is part of a Special Issue entitled: Beyond the Structure Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.”
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria
| | - Dania Rose-Sperling
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Stockner
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria.
| |
Collapse
|
21
|
Tanji T, Shiraishi H, Nishikori K, Aoyama R, Ohashi K, Maeda M, Ohashi-Kobayashi A. Molecular dissection of Caenorhabditis elegans ATP-binding cassette transporter protein HAF-4 to investigate its subcellular localization and dimerization. Biochem Biophys Res Commun 2017; 490:78-83. [PMID: 28427936 DOI: 10.1016/j.bbrc.2017.04.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/15/2017] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans HAF-4 and HAF-9 are half-type ATP-binding cassette (ABC) transporter proteins, which are highly homologous to the human peptide transporter protein, transporter associated with antigen processing-like (TAPL, ABCB9). TAPL forms homodimers and localizes to lysosomes, whereas HAF-4 and HAF-9 form heterodimers and localize to intestine-specific non-acidified organelles. Both TAPL and HAF-4/HAF-9 are predicted to have four amino-terminal transmembrane helices [transmembrane domain 0 (TMD0)] additional to the six transmembrane helices that form the canonical core domain of ABC transporters with a cytosolic ABC region. TAPL requires its amino-terminal domain for localization to lysosomes; however, molecular mechanisms underlying HAF-4 and HAF-9 localization to their target organelles had not been elucidated. Here, we demonstrate that the mechanisms underlying HAF-4 localization differ from those underlying TAPL localization. Using transgenic C. elegans expressing mutant HAF-4 proteins labeled with green fluorescent protein, we reveal that the TMD0 of HAF-4 was not sufficient for proper localization of the protein. The mutant HAF-4, which lacked TMD0, localized to intracellular organelles similarly to the wild-type protein and functioned normally in the biogenesis of its localizing organelles, indicating that the TMD0 of HAF-4 is dispensable for both its localization and function.
Collapse
Affiliation(s)
- Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Kenji Nishikori
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Reiko Aoyama
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Kazuaki Ohashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatomo Maeda
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayako Ohashi-Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Lawand M, Abramova A, Manceau V, Springer S, van Endert P. TAP-Dependent and -Independent Peptide Import into Dendritic Cell Phagosomes. THE JOURNAL OF IMMUNOLOGY 2016; 197:3454-3463. [PMID: 27664280 DOI: 10.4049/jimmunol.1501925] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/24/2016] [Indexed: 11/19/2022]
Abstract
Cross-presentation of phagocytosed Ags by MHC class I (MHC-I) molecules is thought to involve transport of cytosolic peptides into dendritic cell phagosomes, mediated by TAP transporters recruited from the endoplasmic reticulum. However, because pure and tightly sealed phagosomes are difficult to obtain, direct evidence for peptide transport into phagosomes has remained limited. Moreover, the parameters determining peptide uptake by, and survival in, phagosomes remain little characterized. In this study, we monitored peptide import into phagosomes by flow cytometry using two types of fluorescent reporter peptides, one of which directly bound to intraphagosomal beads. We observed that a peptide with high TAP affinity is imported into phagosomes in a TAP- and ATP-dependent manner, as expected. However, surprisingly, import of the OVA peptide SIINFEKL, a CD8+ T cell epitope frequently used to study cross-presentation, is ATP-dependent but substantially TAP-independent. The half-life of both reporter peptides is shortened by enhanced phagosome maturation triggered by TLR signaling. Conversely, formation of complexes with MHC-I molecules enhances peptide accumulation in phagosomes. Collectively, these results confirm that TAP can import peptides into phagosomes, but they suggest that some peptides, including the popular SIINFEKL, can enter phagosomes also via a second unknown energy-dependent mechanism. Therefore, the frequently reported TAP dependence of cross-presentation of phagocytosed OVA may principally reflect a requirement for recycling MHC-I molecules rather than SIINFEKL import into phagosomes via TAP.
Collapse
Affiliation(s)
- Myriam Lawand
- INSERM, Unité 1151, 75015 Paris, France.,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| | - Anastasia Abramova
- INSERM, Unité 1151, 75015 Paris, France.,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| | - Valérie Manceau
- INSERM, Unité 1151, 75015 Paris, France.,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Peter van Endert
- INSERM, Unité 1151, 75015 Paris, France; .,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| |
Collapse
|
23
|
Li X, Heimann K, Dinh XT, Keene FR, Collins JG. Biological processing of dinuclear ruthenium complexes in eukaryotic cells. MOLECULAR BIOSYSTEMS 2016; 12:3032-45. [PMID: 27453040 DOI: 10.1039/c6mb00431h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that metal-based cationic oligomers can achieve selective toxicity against bacteria, despite exhibiting a non-specific membrane damage mechanism of action.
Collapse
Affiliation(s)
- Xin Li
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia.
| | | | | | | | | |
Collapse
|
24
|
Abstract
In this article, we describe the surprising non-specific reactivity in immunoblots of a rabbit polyclonal antibody (ref. Abcam 86222) expected to recognize the transporter associated with antigen processing like (TAP-L, ABCB9) protein. Although this antibody, according to company documentation, recognizes a band with the expected molecular weight of 84 kDa in HeLa, 293T and mouse NIH3T3 whole-cell lysates, we found that this band is also present in immunoblots of TAP-L deficient bone marrow-derived dendritic cell (BMDC) whole-cell lysates in three independent replicates. We performed extensive verification by multiple PCR tests to confirm the complete absence of the ABCB9 gene in our TAP-L deficient mice. We conclude that the antibody tested cross-reacts with an unidentified protein present in TAP-L knockout cells, which coincidentally runs at the same molecular weight as TAP-L. These findings underline the pitfalls of antibody specificity testing in the absence of cells lacking expression of the target protein.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Paris, 75015, France; Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, 75015, France
| | - Myriam Lawand
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Paris, 75015, France; Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, 75015, France
| |
Collapse
|
25
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
26
|
Single liposome analysis of peptide translocation by the ABC transporter TAPL. Proc Natl Acad Sci U S A 2015; 112:2046-51. [PMID: 25646430 DOI: 10.1073/pnas.1418100112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters use ATP to drive solute transport across biological membranes. Members of this superfamily have crucial roles in cell physiology, and some of the transporters are linked to severe diseases. However, understanding of the transport mechanism, especially of human ABC exporters, is scarce. We reconstituted the human lysosomal polypeptide ABC transporter TAPL, expressed in Pichia pastoris, into lipid vesicles (liposomes) and performed explicit transport measurements. We analyzed solute transport at the single liposome level by monitoring the coincident fluorescence of solutes and proteoliposomes in the focal volume of a confocal microscope. We determined a turnover number of eight peptides per minute, which is two orders of magnitude higher than previously estimated from macroscopic measurements. Moreover, we show that TAPL translocates peptides against a large concentration gradient. Maximal filling is not limited by an electrochemical gradient but by trans-inhibition. Countertransport and reversibility studies demonstrate that peptide translocation is a strictly unidirectional process. Altogether, these data are included in a refined model of solute transport by ABC exporters.
Collapse
|
27
|
Oliveira CC, Sluijter M, Querido B, Ossendorp F, van der Burg SH, van Hall T. Dominant contribution of the proteasome and metalloproteinases to TAP-independent MHC-I peptide repertoire. Mol Immunol 2014; 62:129-36. [PMID: 24983205 DOI: 10.1016/j.molimm.2014.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/03/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
Tumors frequently display defects in the MHC-I antigen processing machinery, such as deficiency of the peptide transporter TAP. Interestingly, the residual peptide repertoire contains neo-antigens which are not presented by processing-proficient cells. We termed these immunogenic peptides TEIPP ('T-cell epitopes associated with impaired peptide processing') and were interested to unravel their TAP-independent processing pathways. With an array of chemical inhibitors we assessed the participation of numerous proteases to TAP-independent peptides and found that the previously described catalytic enzymes signal peptidase and furin contributed in a cell-type and MHC-I allele-specific way. In addition, a dominant role for the proteasome and metallopeptidases was observed. These findings raised the question how these proteasome products get access to MHC-I molecules. A novel TEIPP peptide-epitope that represented this intracellular route revealed that the lysosomal peptide transporter ABCB9 ('TAP-like') was dispensable for its presentation. Interestingly, prevention of endolysosomal vesicle acidification by bafilomycin enhanced the surface display of this TEIPP peptide, suggesting that this proteasome-dependent pathway intersects endolysosomes and that these antigens are merely destroyed there. In conclusion, the proteasome has a surprisingly dominant role in shaping the TAP-independent MHC-I peptide repertoire and some of these antigens might be targeted to the endocytic vesicular pathway.
Collapse
Affiliation(s)
- Cláudia C Oliveira
- Department of Clinical Oncology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Graduate Program in Areas of Basic and Applied Biology, Porto, Portugal
| | - Marjolein Sluijter
- Department of Clinical Oncology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bianca Querido
- Department of Clinical Oncology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Clinical Oncology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
28
|
Motohashi Y, Ohashi-Kobayashi A, Nakanishi-Matsui M, Fujimoto Y, Maeda M. Intracellular Localization of ABC Transporter TAPL Differs between Transient and Stable Expression. Cell 2014. [DOI: 10.4236/cellbio.2014.32006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Tumulka F, Roos C, Löhr F, Bock C, Bernhard F, Dötsch V, Abele R. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:141-154. [PMID: 24013930 DOI: 10.1007/s10858-013-9774-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
The ATP binding cassette transporter TAPL translocates cytosolic peptides into the lumen of lysosomes driven by the hydrolysis of ATP. Functionally, this transporter can be divided into coreTAPL, comprising the transport function, and an additional N-terminal transmembrane domain called TMD0, which is essential for lysosomal targeting and mediates the interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. To elucidate the structure of this unique domain, we developed protocols for the production of high quantities of cell-free expressed TMD0 by screening different N-terminal expression tags. Independently of the amino acid sequence, high expression was detected for AU-rich sequences in the first seven codons, decreasing the free energy of RNA secondary structure formation at translation initiation. Furthermore, avoiding NGG codons in the region of translation initiation demonstrated a positive effect on expression. For NMR studies, conditions were optimized for high solubilization efficiency, long-term stability, and high quality spectra. A most critical step was the careful exchange of the detergent used for solubilization by the detergent dihexanoylphosphatidylcholine. Several constructs of different size were tested in order to stabilize the fold of TMD0 as well as to reduce the conformation exchange. NMR spectra with sufficient resolution and homogeneity were finally obtained with a TMD0 derivative only modified by a C-terminal His10-tag and containing a codon optimized AT-rich sequence.
Collapse
Affiliation(s)
- Franz Tumulka
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Co-operative function and mutual stabilization of the half ATP-binding cassette transporters HAF-4 and HAF-9 in Caenorhabditis elegans. Biochem J 2013; 452:467-75. [PMID: 23458156 DOI: 10.1042/bj20130115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caenorhabditis elegans HAF-4 and HAF-9 are half ABC (ATP-binding-cassette) transporters that are highly homologous to the human lysosomal peptide transporter TAPL [TAP (transporter associated with antigen processing)-like; ABCB9]. We reported previously that both HAF-4 and HAF-9 localize to the membrane of a subset of intestinal organelles, and are required for the formation of these organelles and other physiological aspects. In the present paper, we report the genetic and physical interactions between HAF-4 and HAF-9. Overexpression of HAF-4 and HAF-9 did not rescue the intestinal organelle defect of the haf-9 and haf-4 deletion mutants respectively, indicating that they cannot substitute for each other. Double haf-4 and haf-9 mutants do not exhibit more severe phenotypes than the single mutants, suggesting their co-operative function. Immunoprecipitation experiments demonstrated their physical interaction. The results of the present study suggest that HAF-4 and HAF-9 form a heterodimer. Furthermore, Western blot analysis of the deletion mutants and RNAi (RNA interference) knockdown experiments in GFP (green fluorescent protein)-tagged HAF-4 or HAF-9 transgenic worms suggest that HAF-4-HAF-9 heterodimer formation is required for their stabilization. The findings provide a clue as to how ABC transporters adopt a stable functional form.
Collapse
|
31
|
Schwake M, Schröder B, Saftig P. Lysosomal membrane proteins and their central role in physiology. Traffic 2013; 14:739-48. [PMID: 23387372 DOI: 10.1111/tra.12056] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 12/19/2022]
Abstract
The lysosomal membrane was thought for a long time to primarily act as a physical barrier separating the luminal acidic milieu from the cytoplasmic environment. Meanwhile, it has been realized that unique lysosomal membranes play essential roles in a number of cellular events ranging from phagocytosis, autophagy, cell death, virus infection to membrane repair. This review provides an overview about the most interesting emerging functions of lysosomal membrane proteins and how they contribute to health and disease. Their importance is exemplified by their role in acidification, transport of metabolites and ions across the membrane, intracellular transport of hydrolases and the regulation of membrane fusion events. Studies in patient cells, non-mammalian model organisms and knockout mice contributed to our understanding of how the different lysosomal membrane proteins affect cellular homeostasis, developmental processes as well as tissue functions. Because these proteins are central for the biogenesis of this compartment they are also considered as attractive targets to modulate the lysosomal machinery in cases where impaired lysosomal degradation leads to cellular pathologies. We are only beginning to understand the complex composition and function of these proteins which are tightly linked to processes occurring throughout the endocytic and biosynthetic pathways.
Collapse
Affiliation(s)
- Michael Schwake
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | | | | |
Collapse
|
32
|
Demirel Ö, Jan I, Wolters D, Blanz J, Saftig P, Tampé R, Abele R. The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J Cell Sci 2012; 125:4230-40. [PMID: 22641697 DOI: 10.1242/jcs.087346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
TAPL (ABCB9) is a homodimeric polypeptide translocation machinery which transports cytosolic peptides into the lumen of lysosomes for degradation. Since the function of proteins is strongly dependent on the interaction network involved, we investigated the interactome of TAPL. A proteomic approach allowed identification of the lysosome-associated membrane proteins LAMP-1 and LAMP-2B as the most abundant interaction partners. Albeit with low frequency, major histocompatibility complex II subunits were also detected. The interaction interface with LAMP was mapped to the four-transmembrane helices constituting the N-terminal domain of TAPL (TMD0). The LAMP proteins bind independently to TAPL. This interaction has influence on neither subcellular localization nor peptide transport activity. However, in LAMP-deficient cells, the half-life of TAPL is decreased by a factor of five, whereas another lysosomal membrane protein, LIMP-2, is not affected. Reduced stability of TAPL is caused by increased lysosomal degradation, indicating that LAMP proteins retain TAPL on the limiting membrane of endosomes and prevent its sorting to intraluminal vesicles.
Collapse
Affiliation(s)
- Özlem Demirel
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Barbet R, Peiffer I, Hutchins JRA, Hatzfeld A, Garrido E, Hatzfeld JA. Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells: possible role of ABC plasma membrane transporters in maintaining human stem cell pluripotency. Cell Cycle 2012; 11:1611-20. [PMID: 22456339 DOI: 10.4161/cc.20023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporter (low) phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders.
Collapse
Affiliation(s)
- Romain Barbet
- Human Stem Cell Laboratory, Institut André Lwoff (IAL), CNRS, Villejuif, France
| | | | | | | | | | | |
Collapse
|
34
|
Bangert I, Tumulka F, Abele R. The lysosomal polypeptide transporter TAPL: more than a housekeeping factor? Biol Chem 2011; 392:61-6. [PMID: 21194361 DOI: 10.1515/bc.2011.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The transporter associated with antigen processing-like (TAPL) is a polypeptide transporter translocating cytosolic peptides into the lumen of lysosomes driven by ATP hydrolysis. TAPL belongs to the family of ABC transporters and forms a homodimer. This ABC transporter not only shows a broad tissue but also a wide phylogenetic distribution, because orthologs are still found in nematodes and insects. Here, we present the topology, substrate specificity, and distribution of this intracellular polypeptide transporter. Additionally, we will discuss its proposed physiological functions such as housekeeping together with a specialized factor for metabolite storage as well as for the adaptive immunity.
Collapse
Affiliation(s)
- Irina Bangert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt/Main, Germany
| | | | | |
Collapse
|
35
|
Ramos MS, Abele R, Nagy R, Grotemeyer MS, Tampé R, Rentsch D, Martinoia E. Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2403-2410. [PMID: 21282327 DOI: 10.1093/jxb/erq397] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The plant vacuole is the largest compartment in a fully expanded plant cell. While only very limited metabolic activity can be observed within the vacuole, the majority of the hydrolytic activities, including proteolytic activities reside in this organelle. Since it is assumed that protein degradation by the proteasome results in the production of peptides with a size of 3-30 amino acids, we were interested to show whether the tonoplast exhibits a transport activity, which could deliver these peptides into the vacuole for final degradation. It is shown here that isolated barley mesophyll vacuoles take up peptides of 9-27 amino acids in a strictly ATP-dependent manner. Uptake is inhibited by vanadate, but not by NH(+)(4), while GTP could partially substitute for ATP. The apparent affinity for the 9 amino acid peptide was 15 μM, suggesting that peptides are efficiently transferred to the vacuole in vivo. Inhibition experiments showed that peptides with a chain length below 10 amino acids did not compete as efficiently as longer peptides for the uptake of the 9 amino acid peptide. Our results suggest that vacuoles contain at least one peptide transporter that belongs to the ABC-type transporters, which efficiently exports long-chain peptides from the cytosol into the vacuole for final degradation.
Collapse
Affiliation(s)
- Magali Schnell Ramos
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Fujimoto Y, Kamakura A, Motohashi Y, Ohashi-Kobayashi A, Maeda M. Transporter Associated with Antigen Processing-Like (ABCB9) Stably Expressed in Chinese Hamster Ovary-K1 Cells Is Sorted to the Microdomains of Lysosomal Membranes. Biol Pharm Bull 2011; 34:36-40. [DOI: 10.1248/bpb.34.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuyuki Fujimoto
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University
| | - Aya Kamakura
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yu Motohashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Ayako Ohashi-Kobayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masatomo Maeda
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University
| |
Collapse
|
37
|
Ghanem E, Fritzsche S, Al-Balushi M, Hashem J, Ghuneim L, Thomer L, Kalbacher H, van Endert P, Wiertz E, Tampé R, Springer S. The transporter associated with antigen processing (TAP) is active in a post-ER compartment. J Cell Sci 2010; 123:4271-9. [DOI: 10.1242/jcs.060632] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The translocation of cytosolic peptides into the lumen of the endoplasmic reticulum (ER) is a crucial step in the presentation of intracellular antigen to T cells by major histocompatibility complex (MHC) class I molecules. It is mediated by the transporter associated with antigen processing (TAP) protein, which binds to peptide-receptive MHC class I molecules to form the MHC class I peptide-loading complex (PLC). We investigated whether TAP is present and active in compartments downstream of the ER. By fluorescence microscopy, we found that TAP is localized to the ERGIC (ER-Golgi intermediate compartment) and the Golgi of both fibroblasts and lymphocytes. Using an in vitro vesicle formation assay, we show that COPII vesicles, which carry secretory cargo out of the ER, contain functional TAP that is associated with MHC class I molecules. Together with our previous work on post-ER localization of peptide-receptive class I molecules, our results suggest that loading of peptides onto class I molecules in the context of the peptide-loading complex can occur outside the ER.
Collapse
Affiliation(s)
- Esther Ghanem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Susanne Fritzsche
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Mohammed Al-Balushi
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Jood Hashem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lana Ghuneim
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lena Thomer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Hubert Kalbacher
- Medical and Natural Sciences Research Center, University of Tübingen, 72074 Tübingen, Germany
| | - Peter van Endert
- INSERM, U580, 75015 Paris, France, and Université Paris Descartes, Faculté de Médecine René Descartes, 75015 Paris, France
| | - Emmanuel Wiertz
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, and Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Tampé
- Cluster of Excellence ‘Macromolecular Complexes’, Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Marie-Curie-Str. 9, 60439 Frankfurt, Germany
| | - Sebastian Springer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
38
|
Demirel O, Bangert I, Tampé R, Abele R. Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic 2010; 11:383-93. [PMID: 20377823 DOI: 10.1111/j.1600-0854.2009.01021.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homodimeric ATP-binding cassette (ABC) transport complex TAPL (transporter associated with antigen processing-like, ABCB9) translocates a broad spectrum of peptides from the cytosol into the lumen of lysosomes. The presence of an extra N-terminal transmembrane domain (TMD0) lacking any sequence homology to known proteins distinguishes TAPL from most other ABC transporters of its subfamily. By dissecting TAPL, we could assign distinct functions to the core complex and TMD0. The core-TAPL complex, composed of six predicted transmembrane helices and a nucleotide-binding domain, is sufficient for peptide transport, showing that the core transport complex is correctly targeted to and assembled in the membrane. Strikingly, in contrast to the full-length transporter, the core translocation complex is targeted preferentially to the plasma membrane. However, TMD0 alone, comprising a putative four transmembrane helix bundle, traffics to lysosomes. Upon coexpression, TMD0 forms a stable non-covalently linked complex with the core translocation machinery and guides core-TAPL into lysosomal compartments. Therefore, TMD0 represents a unique domain, which folds independently and encodes the information for lysosomal targeting. These outcomes are discussed in respect of trafficking, folding and function of TAPL.
Collapse
Affiliation(s)
- Ozlem Demirel
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
39
|
Hulseberg PD, Zozulya A, Chu HH, Triccas JA, Fabry Z, Sandor M. The same well-characterized T cell epitope SIINFEKL expressed in the context of a cytoplasmic or secreted protein in BCG induces different CD8+ T cell responses. Immunol Lett 2009; 130:36-42. [PMID: 20005257 DOI: 10.1016/j.imlet.2009.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022]
Abstract
Mycobacterium bovis BCG is still the most widely used vaccine against tuberculosis and CD8(+) T cells play important roles in fighting infection. We investigated how well antigen is processed and presented to CD8(+) T cells using the same well-characterized CD8(+) T cell epitope SIINFEKL expressed in either a cytoplasmic (GFP-OVA) or secreted (85B-OVA) context from BCG. We report that secreted SIINFEKL from 85B-OVA BCG is presented better than cytoplasmic SIINFEKL expressed by GFP-OVA BCG.
Collapse
Affiliation(s)
- Paul D Hulseberg
- Department of Pathology and Laboratory Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
40
|
The ABC of dendritic cell development and function. Trends Immunol 2009; 30:421-9. [PMID: 19699682 DOI: 10.1016/j.it.2009.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022]
Abstract
ATP-binding cassette (ABC) transporters are known for their involvement in clinical multidrug resistance (MDR) and their physiological defensive functions in barrier organs. More recently, attention has been focused on their possible involvement in the regulation of immune responses following the identification of their substrates as known immunomodulating agents (e.g. prostaglandins, leukotrienes and cyclic nucleotides) and their functional expression in various immune effector cells, most notably in dendritic cells (DCs). This review addresses the possible roles of ABC transporters in DC development and function, as well as the putative immunostimulatory potential of their cytostatic substrates and how this knowledge might benefit DC-based chemo-immunotherapies.
Collapse
|
41
|
Kawai H, Tanji T, Shiraishi H, Yamada M, Iijima R, Inoue T, Kezuka Y, Ohashi K, Yoshida Y, Tohyama K, Gengyo-Ando K, Mitani S, Arai H, Ohashi-Kobayashi A, Maeda M. Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like. Mol Biol Cell 2009; 20:2979-90. [PMID: 19403699 PMCID: PMC2695804 DOI: 10.1091/mbc.e08-09-0912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 11/11/2022] Open
Abstract
TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals. C. elegans possesses homologous TAPL genes: haf-4 and haf-9. In this study, we examined the tissue-specific expression of these two genes and analyzed the phenotypes of the loss-of-function mutants for haf-4 and haf-9 to elucidate the in vivo function of these genes. Both HAF-4 and HAF-9 tagged with green fluorescent protein (GFP) were mainly localized on the membrane of nonacidic but lysosome-associated membrane protein homologue (LMP-1)-positive intestinal granules from larval to adult stage. The mutants for haf-4 and haf-9 exhibited granular defects in late larval and young adult intestinal cells, associated with decreased brood size, prolonged defecation cycle, and slow growth. The intestinal granular phenotype was rescued by the overexpression of the GFP-tagged wild-type protein, but not by the ATP-unbound form of HAF-4. These results demonstrate that two ABC transporters, HAF-4 and HAF-9, are related to intestinal granular formation and some other physiological aspects.
Collapse
Affiliation(s)
- Hiromi Kawai
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Mitsuo Yamada
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Iijima
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuko Kezuka
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuaki Ohashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshida
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Ohashi-Kobayashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Masatomo Maeda
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Abele R, Tampé R. Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Curr Opin Cell Biol 2009; 21:508-15. [PMID: 19443191 DOI: 10.1016/j.ceb.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 01/03/2023]
Abstract
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt aM, Germany
| | | |
Collapse
|
43
|
Zutz A, Gompf S, Schägger H, Tampé R. Mitochondrial ABC proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:681-90. [PMID: 19248758 DOI: 10.1016/j.bbabio.2009.02.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 12/14/2022]
Abstract
ABC transporters represent one of the largest families of membrane proteins that are found in all three phyla of life. Mitochondria comprise up to four ABC systems, ABCB7/ATM1, ABCB10/MDL1, ABCB8 and ABCB6. These half-transporters, which assemble into homodimeric complexes, are involved in a number of key cellular processes, e.g. biogenesis of cytosolic iron-sulfur clusters, heme biosynthesis, iron homeostasis, multidrug resistance, and protection against oxidative stress. Here, we summarize recent advances and emerging themes in our understanding of how these ABC systems in the inner and outer mitochondrial membrane fulfill their functions in important (patho) physiological processes, including neurodegenerative and hematological disorders.
Collapse
Affiliation(s)
- Ariane Zutz
- Institute of Biochemistry, Biocenter, Goethe-University, Max-von-Laue-Str. 9, D-60348 Frankfurt a.M., Germany
| | | | | | | |
Collapse
|
44
|
Kamakura A, Fujimoto Y, Motohashi Y, Ohashi K, Ohashi-Kobayashi A, Maeda M. Functional dissection of transmembrane domains of human TAP-like (ABCB9). Biochem Biophys Res Commun 2008; 377:847-51. [DOI: 10.1016/j.bbrc.2008.10.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/15/2008] [Indexed: 11/24/2022]
|
45
|
Zhao C, Haase W, Tampé R, Abele R. Peptide Specificity and Lipid Activation of the Lysosomal Transport Complex ABCB9 (TAPL). J Biol Chem 2008; 283:17083-91. [DOI: 10.1074/jbc.m801794200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Sagné C, Gasnier B. Molecular physiology and pathophysiology of lysosomal membrane transporters. J Inherit Metab Dis 2008; 31:258-66. [PMID: 18425435 DOI: 10.1007/s10545-008-0879-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
In contrast to lysosomal hydrolytic enzymes, the lysosomal membrane remains poorly characterized. In particular, although the genetic study of cystinosis and sialic acid storage disorders led to the identification of two lysosomal transporters for cystine and sialic acids, respectively, ten years ago, most transporters responsible for exporting lysosomal hydrolysis products to the cytosol are still unknown at the molecular level. However, two lines of investigation recently started to fill this gap in the knowledge of lysosomal biology. First, novel proteomic approaches are now able to provide a reliable inventory of lysosomal membrane proteins. On the other hand, a novel functional approach based on intracellular trafficking mechanisms allows direct transport measurement in whole cells by redirecting recombinant lysosomal transporters to the cell surface. After surveying the current state of knowledge in this field, the review focuses on the sialic acid transporter sialin and shows how recent functional data using the above whole-cell approach shed new light on the pathogenesis of sialic acid storage disorders by revealing the existence of a residual transport activity associated with Salla disease.
Collapse
Affiliation(s)
- C Sagné
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Université Paris 7 Denis Diderot, Paris, France
| | | |
Collapse
|
47
|
Loch S, Klauschies F, Schölz C, Verweij MC, Wiertz EJHJ, Koch J, Tampé R. Signaling of a varicelloviral factor across the endoplasmic reticulum membrane induces destruction of the peptide-loading complex and immune evasion. J Biol Chem 2008; 283:13428-36. [PMID: 18321854 DOI: 10.1074/jbc.m800226200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytotoxic T lymphocytes eliminate infected cells upon surface display of antigenic peptides on major histocompatibility complex I molecules. To promote immune evasion, UL49.5 of several varicelloviruses interferes with the pathway of major histocompatibility complex I antigen processing. However, the inhibition mechanism has not been elucidated yet. Within the macromolecular peptide-loading complex we identified the transporter associated with antigen processing (TAP1 and TAP2) as the prime target of UL49.5. Moreover, we determined the active oligomeric state and crucial elements of the viral factor. Remarkably, the last two residues of the cytosolic tail of UL49.5 are essential for endoplasmic reticulum (ER)-associated proteasomal degradation of TAP. However, this process strictly requires additional signaling of an upstream regulatory element in the ER lumenal domain of UL49.5. Within this new immune evasion mechanism, we show for the first time that additive elements of a small viral factor and their signaling across the ER membrane are essential for targeted degradation of a multi-subunit membrane complex.
Collapse
Affiliation(s)
- Sandra Loch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, D-60438, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Ohara T, Ohashi-Kobayashi A, Maeda M. Biochemical characterization of transporter associated with antigen processing (TAP)-like (ABCB9) expressed in insect cells. Biol Pharm Bull 2008; 31:1-5. [PMID: 18175933 DOI: 10.1248/bpb.31.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATP-binding cassette (ABC) transporter, transporter associated with antigen processing (TAP)-like (TAPL) tagged with a histidine cluster was overexpressed, amounting to as much as 1-2% of total membrane proteins in Drosophila cell line S2. TAPL was effectively solubilized from membranes by Triton X-100, NP-40 and n-dodecyl-beta-D-maltoside. Solubilized TAPL bound ATP-agarose and adenosine 5'-diphosphate (ADP)-agarose but not adenosine 5'-monophosphate (AMP)-agarose. The binding was competed for by excess free ATP, ADP, guanosine 5'-triphosphate (GTP) and dATP but not by AMP. Pyrimidine nucleotides such as uridine 5'-triphosphate (UTP) and cytidine 5'-triphosphate (CTP) were less effective competitors, suggesting that purine nucleotide triphosphates are substrates for TAPL. The ATP-binding of TAPL required Mg(2+), and was observed at neutral pH. Chemical cross-linking experiments suggested that TAPL forms a homodimer in the membrane and under the solubilized conditions.
Collapse
Affiliation(s)
- Tomomi Ohara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
49
|
Demirel Ö, Waibler Z, Kalinke U, Grünebach F, Appel S, Brossart P, Hasilik A, Tampé R, Abele R. Identification of a Lysosomal Peptide Transport System Induced during Dendritic Cell Development. J Biol Chem 2007; 282:37836-43. [DOI: 10.1074/jbc.m708139200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Gompf S, Zutz A, Hofacker M, Haase W, van der Does C, Tampé R. Switching of the homooligomeric ATP-binding cassette transport complex MDL1 from post-translational mitochondrial import to endoplasmic reticulum insertion. FEBS J 2007; 274:5298-310. [PMID: 17892490 DOI: 10.1111/j.1742-4658.2007.06052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-binding cassette transporter MDL1 of Saccharomyces cerevisiae has been implicated in mitochondrial quality control, exporting degradation products of misassembled respiratory chain complexes. In the present study, we identified an unusually long leader sequence of 59 amino acids, which targets MDL1 to the inner mitochondrial membrane with its nucleotide-binding domain oriented to the matrix. By contrast, MDL1 lacking this leader sequence is directed into the endoplasmic reticulum membrane with the nucleotide-binding domain facing the cytosol. Remarkably, in both targeting routes, the ATP-binding cassette transporter maintains its intrinsic properties of membrane insertion and assembly, leading to homooligomeric complexes with similar activities in ATP hydrolysis. The physiological consequences of both targeting routes were elucidated in cells lacking the mitochondrial ATP-binding cassette transporter ATM1, which is essential for biogenesis of cytosolic iron-sulfur proteins. The mitochondrial MDL1 complex can complement ATM1 function, whereas the endoplasmic reticulum-targeted version, as well as MDL1 mutants deficient in ATP binding and hydrolysis, cannot overcome the Deltaatm1 growth phenotype.
Collapse
Affiliation(s)
- Simone Gompf
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|