1
|
Liu J, Huang G, Lin H, Yang R, Zhan W, Luo C, Wu Y, Chen L, Mao X, Chen J, Huang B. MTHFD2 Enhances cMYC O-GlcNAcylation to Promote Sunitinib Resistance in Renal Cell Carcinoma. Cancer Res 2025; 85:1113-1129. [PMID: 39804969 DOI: 10.1158/0008-5472.can-24-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/04/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. In this study, we identified methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC. MTHFD2 was elevated in sunitinib-resistant RCC cells, and loss of MTHDF2 conferred sensitivity to sunitinib. In patients, MTHFD2 was highly expressed in RCC and was associated with poor outcomes. Mechanistically, MTHFD2 stimulated UDP-N-acetylglucosamine (UDP-GlcNAc) biosynthesis and promoted cMYC O-GlcNAcylation by driving the folate cycle. O-GlcNAcylation enhanced cMYC stability and promoted MTHFD2 and cyclin D1 transcription. Targeting MTHFD2 or cyclin D1 sensitized tumor cells to sunitinib in vitro and in vivo. Consistently, development of a peptide drug capable of efficiently degrading MTHFD2 enabled reversal of sunitinib resistance in RCC. These findings identify a noncanonical metabolic function of MTHFD2 in cell signaling and response to therapy and reveal the interplay between one-carbon metabolism and sunitinib resistance in RCC. Targeting MTHFD2 could be an effective approach to overcome sunitinib resistance. Significance: MTHFD2 regulates cMYC O-GlcNAcylation to promote sunitinib resistance in renal cell carcinoma, highlighting the important role of one-carbon metabolism in sunitinib resistance and proposing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Jinwen Liu
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaowei Huang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou, China
| | - Rui Yang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Zhan
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yukun Wu
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxing Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Huang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Hu W. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction in lipopolysaccharide-induced tubular epithelial cells. Ren Fail 2024; 46:2369342. [PMID: 39230047 PMCID: PMC11376309 DOI: 10.1080/0886022x.2024.2369342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis represents an organ dysfunction resulting from the host's maladjusted response to infection, and can give rise to acute kidney injury (AKI), which significantly increase the morbidity and mortality of septic patients. This study strived for identifying a novel therapeutic strategy for patients with sepsis-induced AKI (SI-AKI). Rat tubular epithelial NRK-52E cells were subjected to lipopolysaccharide (LPS) exposure for induction of in-vitro SI-AKI. The expressions of E1A binding protein p300 (EP300) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in NRK-52E cells were assessed by western blot and qRT-PCR, and their interaction was explored by chromatin immunoprecipitation performed with antibody for H3K27 acetylation (H3K27ac). The effect of them on SI-AKI-associated mitochondrial dysfunction of tubular epithelial cells was investigated using transfection, MTT assay, TUNEL staining, 2',7'-Dichlorodihydrofluorescein diacetate probe assay, Mitosox assay, and JC-1 staining. MTHFD2 and EP300 were upregulated by LPS exposure in NRK-52E cells. LPS increased the acetylation of H3 histone in the MTHFD2 promoter region, and EP300 suppressed the effect of LPS. EP300 ablation inhibited the expression of MTHFD2. MTHFD2 overexpression antagonized LPS-induced viability reduction, apoptosis promotion, reactive oxygen species overproduction, and mitochondrial membrane potential collapse of NRK-52E cells. By contrast, MTHFD2 knockdown and EP300 ablation brought about opposite consequences. Furthermore, MTHFD2 overexpress and EP300 ablation counteracted each other's effect in LPS-exposed NRK-52E cells. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction of tubular epithelial cells in SI-AKI.
Collapse
Affiliation(s)
- Weike Hu
- Department of Emergency Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Mo HY, Wang RB, Ma MY, Zhang Y, Li XY, Wen WR, Han Y, Tian T. MTHFD2-mediated redox homeostasis promotes gastric cancer progression under hypoxic conditions. Redox Rep 2024; 29:2345455. [PMID: 38723197 PMCID: PMC11086033 DOI: 10.1080/13510002.2024.2345455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.
Collapse
Affiliation(s)
- Hai-Yu Mo
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, People’s Republic of China
| | - Ruo-Bing Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Meng-Yao Ma
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Yi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xin-Yu Li
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Wang-Rong Wen
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, People’s Republic of China
| | - Yi Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tian Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Kocyigit SE, Katipoglu B. Hypomagnesemia may be related to frailty, gait and balance problems, and basic activities of daily living in older adults. Acta Clin Belg 2024; 79:160-167. [PMID: 38849991 DOI: 10.1080/17843286.2024.2364143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVES The study aims to investigate the relationship between hypomagnesemia, preclinical hypomagnesemia, and normomagnesemia as along with geriatric syndrome and comprehensive geriatric parameters(CGA). METHODS 217 patients who applied to the geriatric clinic between November 2022 and December 2023 were included in the study. All patients underwent CGA. Patients were categorized into three groups: Magnesium (Mg) level ≤ 1.5 mg/dL, Mg level 1.5-1.8 mg/dL, and Mg level > 1.8 mg/dL. These three groups were compared in terms of demographic characteristics, comorbidities, CGA parameters, and geriatric syndromes. Regression analyses was conducted for significant parameters, adjusting for confounders. RESULTS 74.9% of all participants were female, with an average age of 76.5 ± 6.6 years. The frequency of hypomagnesemia was 14.2%. Demographic characteristics and medication use, including proton pump inhibitors and diuretics, were similar in these three groups. While the FRIED frailty scale and the duration of the timed-up-and-go test were higher in the hypomagnesemia group, the Basic Activities Daily of Living (ADLs) and the Tinetti-POMA(performance-oriented mobility assessment) scores were lower in the hypomagnesemia group. When normomagnesemia was accepted as the reference category, FRIED frailty scale, Basic ADLs, and POMA score were more significant in the hypomagnesemia group (p = 0.025, p = 0.013 and p = 0.011,respectively), but there was no significance in the preclinical hypomagnesemia group regardless of the covariates. CONCLUSION Hypomagnesemia, particularly serum Mg levels below 1.5 mg/dL, may be associated with frailty, basic ADLs, gait, and balance tests. In geriatric practice, patients with hypomagnesemia should be evaluated in terms of the risk of the mentioned disorders.
Collapse
Affiliation(s)
- Suleyman Emre Kocyigit
- Department of Geriatric Medicine, Balikesir University Medicine of Faculty, Balikesir, Turkey
| | - Bilal Katipoglu
- Department of Geriatric Medicine, Ataturk City Training and Research Hospital, Balikesir, Turkey
| |
Collapse
|
5
|
Petrova B, Maynard AG, Wang P, Kanarek N. Regulatory mechanisms of one-carbon metabolism enzymes. J Biol Chem 2023; 299:105457. [PMID: 37949226 PMCID: PMC10758965 DOI: 10.1016/j.jbc.2023.105457] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
One-carbon metabolism is a central metabolic pathway critical for the biosynthesis of several amino acids, methyl group donors, and nucleotides. The pathway mostly relies on the transfer of a carbon unit from the amino acid serine, through the cofactor folate (in its several forms), and to the ultimate carbon acceptors that include nucleotides and methyl groups used for methylation of proteins, RNA, and DNA. Nucleotides are required for DNA replication, DNA repair, gene expression, and protein translation, through ribosomal RNA. Therefore, the one-carbon metabolism pathway is essential for cell growth and function in all cells, but is specifically important for rapidly proliferating cells. The regulation of one-carbon metabolism is a critical aspect of the normal and pathological function of the pathway, such as in cancer, where hijacking these regulatory mechanisms feeds an increased need for nucleotides. One-carbon metabolism is regulated at several levels: via gene expression, posttranslational modification, subcellular compartmentalization, allosteric inhibition, and feedback regulation. In this review, we aim to inform the readers of relevant one-carbon metabolism regulation mechanisms and to bring forward the need to further study this aspect of one-carbon metabolism. The review aims to integrate two major aspects of cancer metabolism-signaling downstream of nutrient sensing and one-carbon metabolism, because while each of these is critical for the proliferation of cancerous cells, their integration is critical for comprehensive understating of cellular metabolism in transformed cells and can lead to clinically relevant insights.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Adam G Maynard
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Peng Wang
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Tunc M, Soysal P, Pasin O, Smith L, Rahmati M, Yigitalp V, Sahin S, Dramé M. Hypomagnesemia Is Associated with Excessive Daytime Sleepiness, but Not Insomnia, in Older Adults. Nutrients 2023; 15:nu15112467. [PMID: 37299428 DOI: 10.3390/nu15112467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to investigate associations between serum magnesium levels with insomnia and excessive daytime sleepiness (EDS) in older adults. A total of 938 older outpatients were included in the study. Hypomagnesemia was defined as serum magnesium concentration below <1.6 mg/dL. Patients were divided into two groups: hypomagnesemia and normomagnesia (1.6-2.6 mg/dL). The Epworth Sleepiness Scale was implemented and scores of ≥11 points were categorized as EDS. The Insomnia Severity Index was implemented and scores of ≥8 indicated insomnia. The mean age was 81.1 ± 7.6 years. While the presence of EDS, hypertension, diabetes mellitus, and coronary artery disease were more common in the hypomagnesemia group than the normomagnesia group, Parkinson's disease was less common (p < 0.05). Hemoglobin and HDL cholesterol were lower, whereas HbA1c, triglyceride, and number of drugs used were higher in the hypomagnesemia group compared to the normomagnesia group (p < 0.05). In both univariate analysis and multivariate analysis adjusted for gender, age and all confounders, there were significant associations between hypomagnesemia and EDS [odds ratio (OR):1.7; 95% confidence interval (CI): 1.6-2.6, and OR: 1.9; 95%CI: 1.2-3.3, respectively (p < 0.05)]. There was no significant relationship between hypomagnesemia and insomnia (p > 0.05). The present study identified an association between hypomagnesemia and EDS in older adults. Therefore, it may be prudent to consider hypomagnesemia when evaluating older adults with EDS and vice versa.
Collapse
Affiliation(s)
- Muhammed Tunc
- Division of Internal Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Pinar Soysal
- Division of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Ozge Pasin
- Division of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Masoud Rahmati
- Division of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad 68151-44316, Iran
| | - Veliye Yigitalp
- Division of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Sevnaz Sahin
- Division of Geriatrics, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir 35040, Türkiye
| | - Moustapha Dramé
- Division of Clinical Research and Innovation, University Hospitals of Martinique, 97261 Fort-de-France, France
| |
Collapse
|
7
|
Shang M, Ni L, Shan X, Cui Y, Hu P, Ji Z, Shen L, Zhang Y, Zhou J, Wang T, Yu Q. MTHFD2 reprograms macrophage polarization by inhibiting PTEN. Cell Rep 2023; 42:112481. [PMID: 37149861 DOI: 10.1016/j.celrep.2023.112481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is involved in the regulation of tumor oncogenesis and immune cell functions, but whether it can contribute to macrophage polarization remains elusive. Here, we show that MTHFD2 suppresses polarization of interferon-γ-activated macrophages (M(IFN-γ)) but enhances that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, MTHFD2 interacts with phosphatase and tensin homolog (PTEN) to suppress PTEN's phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase activity and enhance downstream Akt activation, independent of the N-terminal mitochondria-targeting signal of MTHFD2. MTHFD2-PTEN interaction is promoted by IL-4 but not IFN-γ. Furthermore, amino acid residues (aa 215-225) of MTHFD2 directly target PTEN catalytic center (aa 118-141). Residue D168 of MTHFD2 is also critical for regulating PTEN's PIP3 phosphatase activity by affecting MTHFD2-PTEN interaction. Our study suggests a non-metabolic function of MTHFD2 by which MTHFD2 inhibits PTEN activity, orchestrates macrophage polarization, and alters macrophage-mediated immune responses.
Collapse
Affiliation(s)
- Man Shang
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Lina Ni
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao Shan
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Cui
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Penghui Hu
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Zemin Ji
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Long Shen
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanan Zhang
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China.
| | - Qiujing Yu
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
8
|
Dhillon VS, Deo P, Thomas P, Fenech M. Low Magnesium in Conjunction with High Homocysteine and Less Sleep Accelerates Telomere Attrition in Healthy Elderly Australian. Int J Mol Sci 2023; 24:ijms24020982. [PMID: 36674498 PMCID: PMC9866301 DOI: 10.3390/ijms24020982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The relationship between sleep and micronutrients, including magnesium, is implicated in its regulation. The effects of low magnesium and other micronutrients on sleep disruption and telomere loss are not well understood. The present study was carried out in 172 healthy elderly subjects from South Australia. Plasma micronutrients including magnesium were measured. Each participant provided information about their sleep hours (<7 h or ≥7 h). Lymphocyte telomere length (TL) was measured by real-time qPCR assay. Plasma magnesium level was significantly low in subjects who sleep less than 7 h (p = 0.0002). TL was significantly shorter in people who are low in magnesium and sleep less than 7 h (p = 0.01). Plasma homocysteine (Hcy) is negatively associated with magnesium (r = −0.299; p < 0.0001). There is a significant interaction effect of magnesium and Hcy on sleep duration (p = 0.04) and TL (p = 0.003). Our results suggest that inadequate magnesium levels have an adverse impact on sleep and telomere attrition rate in cognitively normal elderly people, and this may be exacerbated by low levels of vitamin B12 and folate that elevate Hcy concentration.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: (V.S.D.); (M.F.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide, SA 5001, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Genome Health Foundation, North Brighton, SA 5048, Australia
- Correspondence: (V.S.D.); (M.F.)
| |
Collapse
|
9
|
Scaletti ER, Gustafsson Westergren R, Andersson Y, Wiita E, Henriksson M, Homan EJ, Jemth A, Helleday T, Stenmark P. The First Structure of Human MTHFD2L and Its Implications for the Development of Isoform-Selective Inhibitors. ChemMedChem 2022; 17:e202200274. [PMID: 35712863 PMCID: PMC9796130 DOI: 10.1002/cmdc.202200274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Indexed: 01/01/2023]
Abstract
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a mitochondrial 1-carbon metabolism enzyme, which is an attractive anticancer drug target as it is highly upregulated in cancer but is not expressed in healthy adult cells. Selective MTHFD2 inhibitors could therefore offer reduced side-effects during treatment, which are common with antifolate drugs that target other 1C-metabolism enzymes. This task is challenging however, as MTHFD2 shares high sequence identity with the constitutively expressed isozymes cytosolic MTHFD1 and mitochondrial MTHFD2L. In fact, one of the most potent MTHFD2 inhibitors reported to date, TH7299, is actually more active against MTHFD1 and MTHFD2L. While structures of MTHFD2 and MTHFD1 exist, no MTHFD2L structures are available. We determined the first structure of MTHFD2L and its complex with TH7299, which reveals the structural basis for its highly potent MTHFD2L inhibition. Detailed analysis of the MTHFD2L structure presented here clearly highlights the challenges associated with developing truly isoform-selective MTHFD2 inhibitors.
Collapse
Affiliation(s)
- Emma R. Scaletti
- Department of Biochemistry and BiophysicsStockholm UniversitySvante Arrhenius väg 16 CStockholm106 91Sweden
| | | | - Yasmin Andersson
- Drug Discovery and Development Platform, Science for Life Laboratory School of BiotechnologyRoyal Institute of TechnologyTomtebodavägen 23aStockholm17165Sweden
| | - Elisee Wiita
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Martin Henriksson
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Evert J. Homan
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Ann‐Sofie Jemth
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
- Department of Oncology and MetabolismThe University of SheffieldBeech Hill RoadSheffieldS10 2RXUK
| | - Pål Stenmark
- Department of Biochemistry and BiophysicsStockholm UniversitySvante Arrhenius väg 16 CStockholm106 91Sweden
| |
Collapse
|
10
|
The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2). PLoS Comput Biol 2022; 18:e1010140. [PMID: 35613161 PMCID: PMC9173628 DOI: 10.1371/journal.pcbi.1010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate MgA2+, while MgA2+ together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate MgB2+, and MgB2+ further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of MgA2+, MgB2+ and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.
Collapse
|
11
|
Zhu L, Liu X, Zhang W, Hu H, Wang Q, Xu K. MTHFD2 is a potential oncogene for its strong association with poor prognosis and high level of immune infiltrates in urothelial carcinomas of bladder. BMC Cancer 2022; 22:556. [PMID: 35581573 PMCID: PMC9112551 DOI: 10.1186/s12885-022-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The bifunctional methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2) has been reported to play an oncogenic role in various types of cancers. However, the function of MTHFD2 in urothelial carcinomas of bladder (UCB) and its association with tumor immune infiltration remains unknown. We aim to examine the suitability of MTHFD2 to be a novel biomarker of bladder cancer and whether MTHFD2 is linked to immune infiltration. METHODS RNA sequencing data and clinical information (bladder cancer samples: normal samples = 414: 19) were downloaded from The Cancer Genome Atlas official website. Western blot analysis was performed to detect MTHFD2 expression in human bladder cancer (BLCA) cells and normal urothelial cell line SV-HUC-1. Associations between MTHFD2 expression and clinicopathological features were analyzed using Mann Whitney U test or Kruskal-Wallis H test. The "survival" and "survminer" packages were utilized to plot Kaplan-Meier survival curves. Moreover, the gene set enrichment analysis (GSEA) was conducted using a clusterProfiler package. The correlation of MTHFD2 expression with immune infiltration level was estimated using the single sample GSEA (ssGSEA) algorithm. Furthermore, associations between MTHFD2 and immune checkpoint genes were evaluated using the correlation analysis. RESULTS Transcriptome analysis manifested that MTHFD2 was highly expressed in UCB tissues than normal bladder tissues, which was further confirmed by western blot analysis in human BLCA cells and SV-HUC-1 cells. Moreover, MTHFD2 high expression was significantly associated with the advanced disease progression. Also, the high expression of MTHFD2 was correlated with poor prognosis, and MTHFD2 was considered as an independent prognostic factor for disease specific survival. Furthermore, a number of cancer-related pathways were enriched in MTHFD2 high group, including NF-κB activation, JAK/STAT, and cancer immunotherapy by PD1 blockade. Several immune checkpoint molecules were also strongly associated with MTHFD2 expression, including PDCD1, CD274, CTLA4, CD276, LAG3, HAVCR2, and TIGIT. CONCLUSIONS MTHFD2 expression was remarkably elevated in UCB, suggesting that MTHFD2 could be a promising biomarker for BLCA as well as novel target for anti-cancer immunotherapy since its close association with immune infiltration.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xianhui Liu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Weiyu Zhang
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.,Peking University Applied Lithotripsy Institute, Peking University People's Hospital, Beijing, 100034, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Qi Wang
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
12
|
Ma WJ, Cheng YF, Jin RC. Comprehensive evaluation of the long-term effect of Cu 2+ on denitrifying granular sludge and feasibility of in situ recovery by phosphate. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126901. [PMID: 34419849 DOI: 10.1016/j.jhazmat.2021.126901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
With increased industrial development, vast heavy metals are inevitably discharged into wastewater. Cu2+ is one of the most hazardous heavy metals in biotreatment. However, the potential effect of Cu2+ on denitrifying granular sludge is still unknown. This work assesses the response of denitrifying granular sludge to Cu2+ stress from multiple aspects. The denitrifying granular sludge could tolerate 5 mg L-1 Cu2+, while the nitrogen removal efficiency decreased to 48.5% under 10 mg L-1 Cu2+. Enzyme activity and carbohydrate metabolism were inhibited, and the denitrifying bacteria were washed out under Cu2+ stress. The resulting deteriorated state was reversed by phosphate. The nitrogen removal efficiency recovered to 99% after 10 days, and the enzyme activity also recovered to the original level. Membrane transport, transcription and cellular processes were promoted. Overall, the results of this work provide a feasible strategy to rapidly restore the metabolic activity of denitrifying granular sludge under Cu2+ stress.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
13
|
Lee LC, Peng YH, Chang HH, Hsu T, Lu CT, Huang CH, Hsueh CC, Kung FC, Kuo CC, Jiaang WT, Wu SY. Xanthine Derivatives Reveal an Allosteric Binding Site in Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2). J Med Chem 2021; 64:11288-11301. [PMID: 34337952 PMCID: PMC8389891 DOI: 10.1021/acs.jmedchem.1c00663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Methylenetetrahydrofolate
dehydrogenase 2 (MTHFD2) plays an important
role in one-carbon metabolism. The MTHFD2 gene is upregulated in various
cancers but very low or undetectable in normal proliferating cells,
and therefore a potential target for cancer treatment. In this study,
we present the structure of MTHFD2 in complex with xanthine derivative 15, which allosterically binds to MTHFD2 and coexists with
the substrate analogue. A kinetic study demonstrated the uncompetitive
inhibition of MTHFD2 by 15. Allosteric inhibitors often
provide good selectivity and, indeed, xanthine derivatives are highly
selective for MTHFD2. Moreover, several conformational changes were
observed upon the binding of 15, which impeded the binding
of the cofactor and phosphate to MTHFD2. To the best of our knowledge,
this is the first study to identify allosteric inhibitors targeting
the MTHFD family and our results would provide insights on the inhibition
mechanism of MTHFD proteins and the development of novel inhibitors.
Collapse
Affiliation(s)
- Lung-Chun Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Tsu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Cheng-Tai Lu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Chih-Hsiang Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Ching-Cheng Hsueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Fang-Chun Kung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan, ROC
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350 Taiwan, ROC
| |
Collapse
|
14
|
Zhu Z, Leung GKK. More Than a Metabolic Enzyme: MTHFD2 as a Novel Target for Anticancer Therapy? Front Oncol 2020; 10:658. [PMID: 32411609 PMCID: PMC7199629 DOI: 10.3389/fonc.2020.00658] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 01/22/2023] Open
Abstract
The bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a mitochondrial one-carbon folate metabolic enzyme whose role in cancer was not known until recently. MTHFD2 is highly expressed in embryos and a wide range of tumors but has low or absent expression in most adult differentiated tissues. Elevated MTHFD2 expression is associated with poor prognosis in both hematological and solid malignancy. Its depletion leads to suppression of multiple malignant phenotypes including proliferation, invasion, migration, and induction of cancer cell death. The non-metabolic functions of this enzyme, especially in cancers, have thus generated considerable research interests. This review summarizes current knowledge on both the metabolic functions and non-enzymatic roles of MTHFD2. Its expression, potential functions, and regulatory mechanism in cancers are highlighted. The development of MTHFD2 inhibitors and their implications in pre-clinical models are also discussed.
Collapse
Affiliation(s)
- Zhiyuan Zhu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Gilberto Ka Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
15
|
Nishimura T, Nakata A, Chen X, Nishi K, Meguro-Horike M, Sasaki S, Kita K, Horike SI, Saitoh K, Kato K, Igarashi K, Murayama T, Kohno S, Takahashi C, Mukaida N, Yano S, Soga T, Tojo A, Gotoh N. Cancer stem-like properties and gefitinib resistance are dependent on purine synthetic metabolism mediated by the mitochondrial enzyme MTHFD2. Oncogene 2019; 38:2464-2481. [PMID: 30532069 PMCID: PMC6484769 DOI: 10.1038/s41388-018-0589-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 01/04/2023]
Abstract
Tumor recurrence is attributable to cancer stem-like cells (CSCs), the metabolic mechanisms of which currently remain obscure. Here, we uncovered the critical role of folate-mediated one-carbon (1C) metabolism involving mitochondrial methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and its downstream purine synthesis pathway. MTHFD2 knockdown greatly reduced tumorigenesis and stem-like properties, which were associated with purine nucleotide deficiency, and caused marked accumulation of 5-aminoimidazole carboxamide ribonucleotide (AICAR)-the final intermediate of the purine synthesis pathway. Lung cancer cells with acquired resistance to the targeted drug gefitinib, caused by elevated expression of components of the β-catenin pathway, exhibited increased stem-like properties and enhanced expression of MTHFD2. MTHFD2 knockdown or treatment with AICAR reduced the stem-like properties and restored gefitinib sensitivity in these gefitinib-resistant cancer cells. Moreover, overexpression of MTHFD2 in gefitinib-sensitive lung cancer cells conferred resistance to gefitinib. Thus, MTHFD2-mediated mitochondrial 1C metabolism appears critical for cancer stem-like properties and resistance to drugs including gefitinib through consumption of AICAR, leading to depletion of the intracellular pool of AICAR. Because CSCs are dependent on MTHFD2, therapies targeting MTHFD2 may eradicate tumors and prevent recurrence.
Collapse
Affiliation(s)
- Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Asuka Nakata
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Xiaoxi Chen
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Kurumi Nishi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa city, 920-1192, Japan
| | - Soichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Kenji Kita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1, Takaramachi, Kanazawa city, 920-0934, Japan
| | - Shin-Ichi Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa city, 920-1192, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, 246-2, Minakami, Kakuganji, Tsuruoka city, Yamagata, 997-0052, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, 246-2, Minakami, Kakuganji, Tsuruoka city, Yamagata, 997-0052, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, 246-2, Minakami, Kakuganji, Tsuruoka city, Yamagata, 997-0052, Japan
| | - Takahiko Murayama
- Division of Molecular Therapy, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1, Takaramachi, Kanazawa city, 920-0934, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2, Minakami, Kakuganji, Tsuruoka city, Yamagata, 997-0052, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa city, 920-1192, Japan.
- Division of Molecular Therapy, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
16
|
Mc Auley MT, Mooney KM, Salcedo-Sora JE. Computational modelling folate metabolism and DNA methylation: implications for understanding health and ageing. Brief Bioinform 2019; 19:303-317. [PMID: 28007697 DOI: 10.1093/bib/bbw116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/12/2022] Open
Abstract
Dietary folates have a key role to play in health, as deficiencies in the intake of these B vitamins have been implicated in a wide variety of clinical conditions. The reason for this is folates function as single carbon donors in the synthesis of methionine and nucleotides. Moreover, folates have a vital role to play in the epigenetics of mammalian cells by supplying methyl groups for DNA methylation reactions. Intriguingly, a growing body of experimental evidence suggests that DNA methylation status could be a central modulator of the ageing process. This has important health implications because the methylation status of the human genome could be used to infer age-related disease risk. Thus, it is imperative we further our understanding of the processes which underpin DNA methylation and how these intersect with folate metabolism and ageing. The biochemical and molecular mechanisms, which underpin these processes, are complex. However, computational modelling offers an ideal framework for handling this complexity. A number of computational models have been assembled over the years, but to date, no model has represented the full scope of the interaction between the folate cycle and the reactions, which governs the DNA methylation cycle. In this review, we will discuss several of the models, which have been developed to represent these systems. In addition, we will present a rationale for developing a combined model of folate metabolism and the DNA methylation cycle.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Department of Chemical Engineering, Thornton Science Park, University of Chester, UK
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, UK
| | | |
Collapse
|
17
|
Megarity CF. Engineering enzyme catalysis: an inverse approach. Biosci Rep 2019; 39:BSR20181107. [PMID: 30700569 PMCID: PMC6900428 DOI: 10.1042/bsr20181107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
Enzymes' inherent chirality confers their exquisite enantiomeric specificity and makes their use as green alternatives to chiral metal complexes or chiral organocatalysts invaluable to the fine chemical industry. The most prevalent way to alter enzyme activity in terms of regioselectivity and stereoselectivity for both industry and fundamental research is to engineer the enzyme. In a recent article by Keinänen et al., published in Bioscience Reports 2018, 'Controlling the regioselectivity and stereoselectivity of FAD-dependent polyamine oxidases with the use of amine-attached guide molecules as conformational modulators', an inverse approach was presented that focuses on the manipulation of the enzyme substrate rather than the enzyme. This approach not only uncovered dormant enantioselectivity in related enzymes but allowed for its control by the use of guide molecules simply added to the reaction solution or covalently linked to an achiral scaffold molecule.
Collapse
Affiliation(s)
- Clare F Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| |
Collapse
|
18
|
Shin M, Momb J, Appling DR. Human mitochondrial MTHFD2 is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase. Cancer Metab 2017; 5:11. [PMID: 29225823 PMCID: PMC5718140 DOI: 10.1186/s40170-017-0173-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/05/2017] [Indexed: 01/13/2023] Open
Abstract
Background Folate-dependent one-carbon metabolism provides one-carbon units for several biological processes. This pathway is highly compartmentalized in eukaryotes, with the mitochondrial pathway producing formate for use in cytoplasmic processes. The mitochondrial enzyme MTHFD2 has been reported to use NAD+ as a cofactor while the isozyme MTHFD2L utilizes NAD+ or NADP+ at physiologically relevant conditions. Because MTHFD2 is highly expressed in many cancer types, we sought to determine the cofactor preference of this enzyme. Results Kinetic analysis shows that purified human MTHFD2 exhibits dual redox cofactor specificity, utilizing either NADP+ or NAD+ with the more physiologically relevant pentaglutamate folate substrate. Conclusion These results show that the mitochondrial folate pathway isozymes MTHFD2 and MTHFD2L both exhibit dual redox cofactor specificity. Our kinetic analysis clearly supports a role for MTHFD2 in mitochondrial NADPH production, indicating that this enzyme is likely responsible for mitochondrial production of both NADH and NADPH in rapidly proliferating cells.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0165 USA
| | - Jessica Momb
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0165 USA
| | - Dean R Appling
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0165 USA
| |
Collapse
|
19
|
Gustafsson R, Jemth AS, Gustafsson NMS, Färnegårdh K, Loseva O, Wiita E, Bonagas N, Dahllund L, Llona-Minguez S, Häggblad M, Henriksson M, Andersson Y, Homan E, Helleday T, Stenmark P. Crystal Structure of the Emerging Cancer Target MTHFD2 in Complex with a Substrate-Based Inhibitor. Cancer Res 2016; 77:937-948. [PMID: 27899380 DOI: 10.1158/0008-5472.can-16-1476] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/23/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
To sustain their proliferation, cancer cells become dependent on one-carbon metabolism to support purine and thymidylate synthesis. Indeed, one of the most highly upregulated enzymes during neoplastic transformation is MTHFD2, a mitochondrial methylenetetrahydrofolate dehydrogenase and cyclohydrolase involved in one-carbon metabolism. Because MTHFD2 is expressed normally only during embryonic development, it offers a disease-selective therapeutic target for eradicating cancer cells while sparing healthy cells. Here we report the synthesis and preclinical characterization of the first inhibitor of human MTHFD2. We also disclose the first crystal structure of MTHFD2 in complex with a substrate-based inhibitor and the enzyme cofactors NAD+ and inorganic phosphate. Our work provides a rationale for continued development of a structural framework for the generation of potent and selective MTHFD2 inhibitors for cancer treatment. Cancer Res; 77(4); 937-48. ©2017 AACR.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nina M S Gustafsson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Färnegårdh
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nadilly Bonagas
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leif Dahllund
- Drug Discovery and Development Platform, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Häggblad
- Biochemical and Cellular Screening, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yasmin Andersson
- Drug Discovery and Development Platform, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Evert Homan
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
20
|
Gustafsson Sheppard N, Jarl L, Mahadessian D, Strittmatter L, Schmidt A, Madhusudan N, Tegnér J, Lundberg EK, Asplund A, Jain M, Nilsson R. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci Rep 2015; 5:15029. [PMID: 26461067 PMCID: PMC4602236 DOI: 10.1038/srep15029] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism.
Collapse
Affiliation(s)
- Nina Gustafsson Sheppard
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lisa Jarl
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Diana Mahadessian
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Laura Strittmatter
- Department of Molecular Biology and the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Angelika Schmidt
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nikhil Madhusudan
- Department of Molecular Biology and the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jesper Tegnér
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma K Lundberg
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohit Jain
- Department of Medicine, Institute for Metabolomics Medicine, University of California, San Diego, USA
| | - Roland Nilsson
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Tedeschi PM, Vazquez A, Kerrigan JE, Bertino JR. Mitochondrial Methylenetetrahydrofolate Dehydrogenase (MTHFD2) Overexpression Is Associated with Tumor Cell Proliferation and Is a Novel Target for Drug Development. Mol Cancer Res 2015; 13:1361-6. [PMID: 26101208 PMCID: PMC4618031 DOI: 10.1158/1541-7786.mcr-15-0117] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
Abstract
Rapidly proliferating tumors attempt to meet the demands for nucleotide biosynthesis by upregulating folate pathways that provide the building blocks for pyrimidine and purine biosynthesis. In particular, the key role of mitochondrial folate enzymes in providing formate for de novo purine synthesis and for providing the one-carbon moiety for thymidylate synthesis has been recognized in recent studies. We have shown a significant correlation between the upregulation of the mitochondrial folate enzymes, high proliferation rates, and sensitivity to the folate antagonist methotrexate (MTX). Burkitt lymphoma and diffuse large-cell lymphoma tumor specimens have the highest levels of mitochondrial folate enzyme expression and are known to be sensitive to treatment with MTX. A key enzyme upregulated in rapidly proliferating tumors but not in normal adult cells is the mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2). This perspective outlines the rationale for specific targeting of MTHFD2 and compares known and generated crystal structures of MTHFD2 and closely related enzymes as a molecular basis for developing therapeutic agents against MTHFD2. Importantly, the development of selective inhibitors of mitochondrial methylenetetrahydrofolate dehydrogenase is expected to have substantial activity, and this perspective supports the investigation and development of MTHFD2 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Philip M Tedeschi
- Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Alexei Vazquez
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - John E Kerrigan
- Department of Bioinformatics, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Joseph R Bertino
- Departments of Medicine and Pharmacology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey.
| |
Collapse
|
22
|
Sah S, Varshney U. Impact of Mutating the Key Residues of a Bifunctional 5,10-Methylenetetrahydrofolate Dehydrogenase-Cyclohydrolase from Escherichia coli on Its Activities. Biochemistry 2015; 54:3504-13. [PMID: 25988590 DOI: 10.1021/acs.biochem.5b00400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) catalyzes interconversion of 5,10-methylene-tetrahydrofolate and 10-formyl-tetrahydrofolate in the one-carbon metabolic pathway. In some organisms, the essential requirement of 10-formyl-tetrahydrofolate may also be fulfilled by formyltetrahydrofolate synthetase (Fhs). Recently, we developed an Escherichia coli strain in which the folD gene was deleted in the presence of Clostridium perfringens fhs (E. coli ΔfolD/p-fhs) and used it to purify FolD mutants (free from the host-encoded FolD) and determine their biological activities. Mutations in the key residues of E. coli FolD, as identified from three-dimensional structures (D121A, Q98K, K54S, Y50S, and R191E), and a genetic screen (G122D and C58Y) were generated, and the mutant proteins were purified to determine their kinetic constants. Except for the R191E and K54S mutants, others were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. While the R191E mutant showed high cyclohydrolase activity, it retained only a residual dehydrogenase activity. On the other hand, the K54S mutant lacked the cyclohydrolase activity but possessed high dehydrogenase activity. The D121A and G122D (in a loop between two helices) mutants were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. In vivo and in vitro characterization of wild-type and mutant (R191E, G122D, D121A, Q98K, C58Y, K54S, and Y50S) FolD together with three-dimensional modeling has allowed us to develop a better understanding of the mechanism for substrate binding and catalysis by E. coli FolD.
Collapse
Affiliation(s)
- Shivjee Sah
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,‡Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
23
|
Shin M, Bryant JD, Momb J, Appling DR. Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J Biol Chem 2014; 289:15507-17. [PMID: 24733394 DOI: 10.1074/jbc.m114.555573] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mitochondria are able to produce formate from one-carbon donors such as serine, glycine, and sarcosine. This pathway relies on the mitochondrial pool of tetrahydrofolate (THF) and several folate-interconverting enzymes in the mitochondrial matrix. We recently identified MTHFD2L as the enzyme that catalyzes the oxidation of 5,10-methylenetetrahydrofolate (CH2-THF) in adult mammalian mitochondria. We show here that the MTHFD2L enzyme is bifunctional, possessing both CH2-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase activities. The dehydrogenase activity can use either NAD(+) or NADP(+) but requires both phosphate and Mg(2+) when using NAD(+). The NADP(+)-dependent dehydrogenase activity is inhibited by inorganic phosphate. MTHFD2L uses the mono- and polyglutamylated forms of CH2-THF with similar catalytic efficiencies. Expression of the MTHFD2L transcript is low in early mouse embryos but begins to increase at embryonic day 10.5 and remains elevated through birth. In adults, MTHFD2L is expressed in all tissues examined, with the highest levels observed in brain and lung.
Collapse
Affiliation(s)
- Minhye Shin
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Joshua D Bryant
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Jessica Momb
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Dean R Appling
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
24
|
Vickers TJ, Murta SMF, Mandell MA, Beverley SM. The enzymes of the 10-formyl-tetrahydrofolate synthetic pathway are found exclusively in the cytosol of the trypanosomatid parasite Leishmania major. Mol Biochem Parasitol 2009; 166:142-52. [PMID: 19450731 PMCID: PMC2692634 DOI: 10.1016/j.molbiopara.2009.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 11/27/2022]
Abstract
In most organisms 10-formyl-tetrahydrofolate (10-CHO-THF) participates in the synthesis of purines in the cytosol and formylation of mitochondrial initiator methionyl-tRNA(Met). Here we studied 10-CHO-THF biosynthesis in the protozoan parasite Leishmania major, a purine auxotroph. Two distinct synthetic enzymes are known, a bifunctional methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (DHCH) or formyl-tetrahydrofolate ligase (FTL), and phylogenomic profiling revealed considerable diversity for these in trypanosomatids. All species surveyed contain a DHCH1, which was shown recently to be essential in L. major. A second DHCH2 occurred only in L. infantum, L. mexicana and T. cruzi, and as a pseudogene in L. major. DHCH2s bear N-terminal extensions and we showed a LiDHCH2-GFP fusion was targeted to the mitochondrion. FTLs were found in all species except Trypanosoma brucei. L. major ftl(-) null mutants were phenotypically normal in growth, differentiation, animal infectivity and sensitivity to a panel of pteridine analogs, but grew more slowly when starved for serine or glycine, as expected for amino acids that are substrates in C1-folate metabolism. Cell fractionation and western blotting showed that both L. major DHCH1 and FTL were localized to the cytosol and not the mitochondrion. These localization data predict that in L. major cytosolic 10-formyl-tetrahydrofolate must be transported into the mitochondrion to support methionyl-tRNA(Met) formylation. The retention in all the trypanosomatids of at least one enzyme involved in 10-formyl-tetrahydrofolate biosynthesis, and the essentiality of this metabolite in L. major, suggests that this pathway represents a promising new area for chemotherapeutic attack in these parasites.
Collapse
Affiliation(s)
| | | | | | - Stephen M. Beverley
- Corresponding author: Department of Molecular Microbiology, Campus Box 8230, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis MO 63110 USA. Telephone 314-747-2630, FAX 314-747-2634,
| |
Collapse
|
25
|
Christensen KE, Rohlicek CV, Andelfinger GU, Michaud J, Bigras JL, Richter A, Mackenzie RE, Rozen R. The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Hum Mutat 2009; 30:212-20. [PMID: 18767138 DOI: 10.1002/humu.20830] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylenetetrahydrofolate dehydrogenase)methenyltetrahydrofolate cyclohydrolase)formyltetrahydrofolate synthetase (MTHFD1) is a trifunctional enzyme that interconverts tetrahydrofolate (THF) derivatives for nucleotide synthesis. A common variant in MTHFD1, p.Arg653Gln (c.1958G>A), may increase the risk for neural tube defects (NTD). To examine the biological impact of this variant on MTHFD1 function, we measured enzyme activity and stability in vitro and assessed substrate flux in transfected mammalian cells. The purified Arg653Gln enzyme has normal substrate affinity but a 36% reduction in half)life at 42 degrees C. Thermolability is reduced by magnesium adenosine triphosphate and eliminated by the substrate analog folate pentaglutamate, suggesting that folate status may modulate impact of the variant. The mutation reduces the metabolic activity of MTHFD1 within cells: formate incorporation into DNA in murine Mthfd1 knockout cells transfected with Arg653Gln is reduced by 26%+/-7.7% (P<0.05), compared to cells transfected with wild)type protein, indicating a disruption of de novo purine synthesis. We assessed the impact of the variant on risk for congenital heart defects (CHD) in a cohort of Quebec children (158 cases, 110 controls) and mothers of children with heart defects (199 cases, 105 controls). The 653QQ genotype in children is associated with increased risk for heart defects (odds ratio [OR], 2.11; 95% confidence interval [CI], 1.01-4.42), particularly Tetralogy of Fallot (OR, 3.60; 95% CI, 1.38-9.42) and aortic stenosis (OR, 3.13; 95% CI, 1.13-8.66). There was no effect of maternal genotype. Our results indicate that the Arg653Gln polymorphism decreases enzyme stability and increases risk for CHD. Further evaluation of this polymorphism in folate)related disorders and its potential interaction with folate status is warranted.
Collapse
Affiliation(s)
- Karen E Christensen
- Department of Pediatrics, McGill University)Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Murta SMF, Vickers TJ, Scott DA, Beverley SM. Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major. Mol Microbiol 2009; 71:1386-401. [PMID: 19183277 PMCID: PMC2692627 DOI: 10.1111/j.1365-2958.2009.06610.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
10-Formyl tetrahydrofolate (10-CHO-THF) is a key metabolite in C1 carbon metabolism, arising through the action of formate-tetrahydrofolate ligase (FTL) and/or 5,10-methenyltetrahydrofolate cyclohydrolase/5,10-methylene tetrahydrofolate dehydrogenase (DHCH). Leishmania major possesses single DHCH1 and FTL genes encoding exclusively cytosolic proteins, unlike other organisms where isoforms occur in the mitochondrion as well. Recombinant DHCH1 showed typical NADP(+)-dependent methylene tetrahydrofolate DH and 5,10-methenyltetrahydrofolate CH activities, and the DH activity was potently inhibited by a substrate analogue 5,10-CO-THF (K(i) 105 nM), as was Leishmania growth (EC(50) 1.1 microM). Previous studies showed null ftl(-) mutants were normal, raising the possibility that loss of the purine synthetic pathway had rendered 10-CHO-THF dispensable in evolution. We were unable to generate dhch1(-) null mutants by gene replacement, despite using a wide spectrum of nutritional supplements expected to bypass DHCH function. We applied an improved method for testing essential genes in Leishmania, based on segregational loss of episomal complementing genes rather than transfection; analysis of approximately 1400 events without successful loss of DHCH1 again established its requirement. Lastly, we employed 'genetic metabolite complementation' using ectopically expressed FTL as an alternative source of 10-CHO-THF; now dhch1(-) null parasites were readily obtained. These data establish a requirement for 10-CHO-THF metabolism in L. major, and provide genetic and pharmacological validation of DHCH as a target for chemotherapy, in this and potentially other protozoan parasites.
Collapse
Affiliation(s)
| | | | | | - Stephen M. Beverley
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Christensen KE, Mackenzie RE. Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. VITAMINS AND HORMONES 2008; 79:393-410. [PMID: 18804703 DOI: 10.1016/s0083-6729(08)00414-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folate-mediated metabolism involves enzyme-catalyzed reactions that occur in the cytoplasmic, mitochondrial, and nuclear compartments in mammalian cells. Which of the folate-dependent enzymes are expressed in these compartments depends on the stage of development, cell type, cell cycle, and whether or not the cell is transformed. Mitochondria become formate-generating organelles in cells and tissues expressing the MTHFD2 and MTHFD1L genes. The products of these nuclear genes were derived from trifunctional precursor proteins, expressing methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetase activities. The MTHFD2 protein is a bifunctional protein with dehydrogenase and cyclohydrolase activities that arose from a trifunctional precursor through the loss of the synthetase domain and a novel adaptation to NAD rather than NADP specificity for the dehydrogenase. The MTHFD1L protein retains the size of its trifunctional precursor, but through the mutation of critical residues, both the dehydrogenase and cyclohydrolase activities have been silenced. MTHFD1L is thus a monofunctional formyltetrahydrofolate synthetase. This review discusses the properties and functions of these mitochondrial proteins and their role in supporting cytosolic purine synthesis during embryonic development and in cells undergoing rapid growth.
Collapse
Affiliation(s)
- Karen E Christensen
- Montreal Children's Hospital Research Institute, Montreal, QC, Canada H3Z 2Z3
| | | |
Collapse
|
28
|
Franklin E, Browne S, Hayes J, Boland C, Dunne A, Elliot G, Mantle TJ. Activation of biliverdin-IXalpha reductase by inorganic phosphate and related anions. Biochem J 2007; 405:61-7. [PMID: 17402939 PMCID: PMC1925240 DOI: 10.1042/bj20061651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of pH on the initial-rate kinetic behaviour of BVR-A (biliverdin-IXalpha reductase) exhibits an alkaline optimum with NADPH as cofactor, but a neutral optimum with NADH as cofactor. This has been described as dual cofactor and dual pH dependent behaviour; however, no mechanism has been described to explain this phenomenon. We present evidence that the apparent peak of activity observed at neutral pH with phosphate buffer and NADH as cofactor is an anion-dependent activation, where inorganic phosphate apparently mimics the role played by the 2'-phosphate of NADPH in stabilizing the interaction between NADH and the enzyme. The enzymes from mouse, rat and human all exhibit this behaviour. This behaviour is not seen with BVR-A from Xenopus tropicalis or the ancient cyanobacterial enzyme from Synechocystis PCC 6803, which, in addition to being refractory to activation by inorganic phosphate, are also differentiated by an acid pH optimum with both nicotinamide nucleotides.
Collapse
Affiliation(s)
- Edward Franklin
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Christensen KE, MacKenzie RE. Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals. Bioessays 2006; 28:595-605. [PMID: 16700064 DOI: 10.1002/bies.20420] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, folate metabolism is compartmentalized between the cytoplasm and organelles. The folate pathways of mitochondria are adapted to serve the metabolism of the organism. In yeast, mitochondria support cytoplasmic purine synthesis through the generation of formate. This pathway is important but not essential for survival, consistent with the flexibility of yeast metabolism. In plants, the mitochondrial pathways support photorespiration by generating serine from glycine. This pathway is essential under photosynthetic conditions and the enzyme expression varies with photosynthetic activity. In mammals, the expression of the mitochondrial enzymes varies in tissues and during development. In embryos, mitochondria supply formate and glycine for purine synthesis, a process essential for survival; in adult tissues, flux through mitochondria can favor serine production. The differences in the folate pathways of mitochondria depending on species, tissues and developmental stages, profoundly alter the nature of their metabolic contribution.
Collapse
|