1
|
Pei J, Andreeva A, Chuguransky S, Lázaro Pinto B, Paysan-Lafosse T, Dustin Schaeffer R, Bateman A, Cong Q, Grishin NV. Bridging the Gap between Sequence and Structure Classifications of Proteins with AlphaFold Models. J Mol Biol 2024; 436:168764. [PMID: 39197652 DOI: 10.1016/j.jmb.2024.168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Classification of protein domains based on homology and structural similarity serves as a fundamental tool to gain biological insights into protein function. Recent advancements in protein structure prediction, exemplified by AlphaFold, have revolutionized the availability of protein structural data. We focus on classifying about 9000 Pfam families into ECOD (Evolutionary Classification of Domains) by using predicted AlphaFold models and the DPAM (Domain Parser for AlphaFold Models) tool. Our results offer insights into their homologous relationships and domain boundaries. More than half of these Pfam families contain DPAM domains that can be confidently assigned to the ECOD hierarchy. Most assigned domains belong to highly populated folds such as Immunoglobulin-like (IgL), Armadillo (ARM), helix-turn-helix (HTH), and Src homology 3 (SH3). A large fraction of DPAM domains, however, cannot be confidently assigned to ECOD homologous groups. These unassigned domains exhibit statistically different characteristics, including shorter average length, fewer secondary structure elements, and more abundant transmembrane segments. They could potentially define novel families remotely related to domains with known structures or novel superfamilies and folds. Manual scrutiny of a subset of these domains revealed an abundance of internal duplications and recurring structural motifs. Exploring sequence and structural features such as disulfide bond patterns, metal-binding sites, and enzyme active sites helped uncover novel structural folds as well as remote evolutionary relationships. By bridging the gap between sequence-based Pfam and structure-based ECOD domain classifications, our study contributes to a more comprehensive understanding of the protein universe by providing structural and functional insights into previously uncharacterized proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sara Chuguransky
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Beatriz Lázaro Pinto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Typhaine Paysan-Lafosse
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Guo Q, Zhong C, Dong H, Cronan JE, Wang H. Diversity in fatty acid elongation enzymes: The FabB long-chain β-ketoacyl-ACP synthase I initiates fatty acid synthesis in Pseudomonas putida F1. J Biol Chem 2024; 300:105600. [PMID: 38335573 PMCID: PMC10869286 DOI: 10.1016/j.jbc.2023.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024] Open
Abstract
The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by β-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 β-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.
Collapse
Affiliation(s)
- Qiaoqiao Guo
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Canyao Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huijuan Dong
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Pozdniakova TA, Cruz JP, Silva PC, Azevedo F, Parpot P, Domingues MR, Carlquist M, Johansson B. Optimization of a hybrid bacterial/ Arabidopsis thaliana fatty acid synthase system II in Saccharomyces cerevisiae. Metab Eng Commun 2023; 17:e00224. [PMID: 37415783 PMCID: PMC10320613 DOI: 10.1016/j.mec.2023.e00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 07/08/2023] Open
Abstract
Fatty acids are produced by eukaryotes like baker's yeast Saccharomyces cerevisiae mainly using a large multifunctional type I fatty acid synthase (FASI) where seven catalytic steps and a carrier domain are shared between one or two protein subunits. While this system may offer efficiency in catalysis, only a narrow range of fatty acids are produced. Prokaryotes, chloroplasts and mitochondria rely instead on a FAS type II (FASII) where each catalytic step is carried out by a monofunctional enzyme encoded by a separate gene. FASII is more flexible and capable of producing a wider range of fatty acid structures, such as the direct production of unsaturated fatty acids. An efficient FASII in the preferred industrial organism S. cerevisiae could provide a platform for developing sustainable production of specialized fatty acids. We functionally replaced either yeast FASI genes (FAS1 or FAS2) with a FASII consisting of nine genes from Escherichia coli (acpP, acpS and fab -A, -B, -D, -F, -G, -H, -Z) as well as three from Arabidopsis thaliana (MOD1, FATA1 and FATB). The genes were expressed from an autonomously replicating multicopy vector assembled using the Yeast Pathway Kit for in-vivo assembly in yeast. Two rounds of adaptation led to a strain with a maximum growth rate (μmax) of 0.19 h-1 without exogenous fatty acids, twice the growth rate previously reported for a comparable strain. Additional copies of the MOD1 or fabH genes resulted in cultures with higher final cell densities and three times higher lipid content compared to the control.
Collapse
Affiliation(s)
- Tatiana A. Pozdniakova
- CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - João P. Cruz
- CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Paulo César Silva
- CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Flávio Azevedo
- CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Pier Parpot
- CEB - C, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria Rosario Domingues
- Mass Spectrometry Center & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- CESAM–Centre for Environmental and Marine Studies, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Magnus Carlquist
- Division of Applied Microbiology, Lund University, Box 124, 221 00, Lund, Sweden
| | - Björn Johansson
- CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
4
|
Cronan JE. How an overlooked gene in coenzyme a synthesis solved an enzyme mechanism predicament. Mol Microbiol 2023; 119:687-694. [PMID: 37140060 PMCID: PMC10330860 DOI: 10.1111/mmi.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Coenzyme A (CoA) is an essential cofactor throughout biology. The first committed step in the CoA synthetic pathway is synthesis of β-alanine from aspartate. In Escherichia coli and Salmonella enterica panD encodes the responsible enzyme, aspartate-1-decarboxylase, as a proenzyme. To become active, the E. coli and S. enterica PanD proenzymes must undergo an autocatalytic cleavage to form the pyruvyl cofactor that catalyzes decarboxylation. A problem was that the autocatalytic cleavage was too slow to support growth. A long-neglected gene (now called panZ) was belatedly found to encode the protein that increases autocatalytic cleavage of the PanD proenzyme to a physiologically relevant rate. PanZ must bind CoA or acetyl-CoA to interact with the PanD proenzyme and accelerate cleavage. The CoA/acetyl-CoA dependence has led to proposals that the PanD-PanZ CoA/acetyl-CoA interaction regulates CoA synthesis. Unfortunately, regulation of β-alanine synthesis is very weak or absent. However, the PanD-PanZ interaction provides an explanation for the toxicity of the CoA anti-metabolite, N5-pentyl pantothenamide.
Collapse
Affiliation(s)
- John E. Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana 61801, USA
| |
Collapse
|
5
|
Yin Y, Li R, Liang WT, Zhang WB, Hu Z, Ma JC, Wang HH. Of its five acyl carrier proteins, only AcpP1 functions in Ralstonia solanacearum fatty acid synthesis. Front Microbiol 2022; 13:1014971. [PMID: 36212838 PMCID: PMC9542644 DOI: 10.3389/fmicb.2022.1014971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The fatty acid synthesis (FAS) pathway is essential for bacterial survival. Acyl carrier proteins (ACPs), donors of acyl moieties, play a central role in FAS and are considered potential targets for the development of antibacterial agents. Ralstonia solanacearum, a primary phytopathogenic bacterium, causes bacterial wilt in more than 200 plant species. The genome of R. solanacearum contains five annotated acp genes, acpP1, acpP2, acpP3, acpP4, and acpP5. In this study, we characterized the five putative ACPs and confirmed that only AcpP1 is involved in FAS and is necessary for the growth of R. solanacearum. We also found that AcpP2 and AcpP4 participate in the polyketide synthesis pathway. Unexpectedly, the disruption of four acp genes (acpP2, acpP3, acpP4, and acpP5) allowed the mutant strain to grow as well as the wild-type strain, but attenuated the bacterium’s pathogenicity in the host plant tomato, suggesting that these four ACPs contribute to the virulence of R. solanacearum through mechanisms other than the FAS pathway.
Collapse
|
6
|
Chen YC, Hu Z, Zhang WB, Yin Y, Zhong CY, Mo WY, Yu YH, Ma JC, Wang HH. HetI-Like Phosphopantetheinyl Transferase Posttranslationally Modifies Acyl Carrier Proteins in Xanthomonas spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:323-335. [PMID: 35286156 DOI: 10.1094/mpmi-10-21-0249-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In Xanthomonas spp., the biosynthesis of the yellow pigment xanthomonadin and fatty acids originates in the type II polyketide synthase (PKS II) and fatty acid synthase (FAS) pathways, respectively. The acyl carrier protein (ACP) is the central component of PKS II and FAS and requires posttranslational phosphopantetheinylation to initiate these pathways. In this study, for the first time, we demonstrate that the posttranslational modification of ACPs in X. campestris pv. campestris is performed by an essential 4'-phosphopantetheinyl transferase (PPTase), XcHetI (encoded by Xc_4132). X. campestris pv. campestris strain XchetI could not be deleted from the X. campestris pv. campestris genome unless another PPTase-encoding gene such as Escherichia coli acpS or Pseudomonas aeruginosa pcpS was present. Compared with wild-type strain X. campestris pv. campestris 8004 and mutant XchetI::PapcpS, strain XchetI::EcacpS failed to generate xanthomonadin pigments and displayed reduced pathogenicity for the host plant, Brassica oleracea. Further experiments showed that the expression of XchetI restored the growth of E. coli acpS mutant HT253 and, when a plasmid bearing XchetI was introduced into P. aeruginosa, pcpS, which encodes the sole PPTase in P. aeruginosa, could be deleted. In in vitro enzymatic assays, XcHetI catalyzed the transformation of 4'-phosphopantetheine from coenzyme A to two X. campestris pv. campestris apo-acyl carrier proteins, XcAcpP and XcAcpC. All of these findings indicate that XcHetI is a surfactin PPTase-like PPTase with a broad substrate preference. Moreover, the HetI-like PPTase is ubiquitously conserved in Xanthomonas spp., making it a potential new drug target for the prevention of plant diseases caused by Xanthomonas.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yi-Cai Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yu Yin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Can-Yao Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wan-Ying Mo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong-Hong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
7
|
Cho YI, Armstrong CL, Sulpizio A, Acheampong KK, Banks KN, Bardhan O, Churchill SJ, Connolly-Sporing AE, Crawford CE, Cruz Parrilla PL, Curtis SM, De La Ossa LM, Epstein SC, Farrehi CJ, Hamrick GS, Hillegas WJ, Kang A, Laxton OC, Ling J, Matsumura SM, Merino VM, Mukhtar SH, Shah NJ, Londergan CH, Daly CA, Kokona B, Charkoudian LK. Engineered Chimeras Unveil Swappable Modular Features of Fatty Acid and Polyketide Synthase Acyl Carrier Proteins. Biochemistry 2022; 61:217-227. [PMID: 35073057 PMCID: PMC9357449 DOI: 10.1021/acs.biochem.1c00798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.
Collapse
Affiliation(s)
- Yae In Cho
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | - Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | - Oishi Bardhan
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | | | | | - Sarah M. Curtis
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | | | | | | | - Austin Kang
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | - Joie Ling
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | | | - Neel J. Shah
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | - Clyde A. Daly
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | - Bashkim Kokona
- Department of Chemistry, Haverford College, Haverford, PA 19041
- Spark Therapeutics, Philadelphia PA 19041
| | | |
Collapse
|
8
|
Abstract
Fatty acid (FA) biosynthesis plays a central role in the metabolism of living cells as building blocks of biological membranes, energy reserves of the cell, and precursors to second messenger molecules. In keeping with its central metabolic role, FA biosynthesis impacts several cellular functions and its misfunction is linked to disease, such as cancer, obesity, and non-alcoholic fatty liver disease. Cellular FA biosynthesis is conducted by fatty acid synthases (FAS). All FAS enzymes catalyze similar biosynthetic reactions, but the functional architectures adopted by these cellular catalysts can differ substantially. This variability in FAS structure amongst various organisms and the essential role played by FA biosynthetic pathways makes this metabolic route a valuable target for the development of antibiotics. Beyond cellular FA biosynthesis, the quest for renewable energy sources has piqued interest in FA biosynthetic pathway engineering to generate biofuels and fatty acid derived chemicals. For these applications, based on FA biosynthetic pathways, to succeed, detailed metabolic, functional and structural insights into FAS are required, along with an intimate knowledge into the regulation of FAS. In this review, we summarize our present knowledge about the functional, structural, and regulatory aspects of FAS.
Collapse
Affiliation(s)
- Aybeg N Günenc
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Graf
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
9
|
Pandey S, Singh A, Yang G, d’Andrea FB, Jiang X, Hartman TE, Mosior JW, Bourland R, Gold B, Roberts J, Geiger A, Tang S, Rhee K, Ouerfelli O, Sacchettini JC, Nathan CF, Burns-Huang K. Characterization of Phosphopantetheinyl Hydrolase from Mycobacterium tuberculosis. Microbiol Spectr 2021; 9:e0092821. [PMID: 34550010 PMCID: PMC8557913 DOI: 10.1128/spectrum.00928-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphopantetheinyl hydrolase, PptH (Rv2795c), is a recently discovered enzyme from Mycobacterium tuberculosis that removes 4'-phosphopantetheine (Ppt) from holo-carrier proteins (CPs) and thereby opposes the action of phosphopantetheinyl transferases (PPTases). PptH is the first structurally characterized enzyme of the phosphopantetheinyl hydrolase family. However, conditions for optimal activity of PptH have not been defined, and only one substrate has been identified. Here, we provide biochemical characterization of PptH and demonstrate that the enzyme hydrolyzes Ppt in vitro from more than one M. tuberculosis holo-CP as well as holo-CPs from other organisms. PptH provided the only detectable activity in mycobacterial lysates that dephosphopantetheinylated acyl carrier protein M (AcpM), suggesting that PptH is the main Ppt hydrolase in M. tuberculosis. We could not detect a role for PptH in coenzyme A (CoA) salvage, and PptH was not required for virulence of M. tuberculosis during infection of mice. It remains to be determined why mycobacteria conserve a broadly acting phosphohydrolase that removes the Ppt prosthetic group from essential CPs. We speculate that the enzyme is critical for aspects of the life cycle of M. tuberculosis that are not routinely modeled. IMPORTANCE Tuberculosis (TB), caused by Mycobacterium tuberculosis, was the leading cause of death from an infectious disease before COVID, yet the in vivo essentiality and function of many of the protein-encoding genes expressed by M. tuberculosis are not known. We biochemically characterize M. tuberculosis's phosphopantetheinyl hydrolase, PptH, a protein unique to mycobacteria that removes an essential posttranslational modification on proteins involved in synthesis of lipids important for the bacterium's cell wall and virulence. We demonstrate that the enzyme has broad substrate specificity, but it does not appear to have a role in coenzyme A (CoA) salvage or virulence in a mouse model of TB.
Collapse
Affiliation(s)
- Shilpika Pandey
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Amrita Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Guangli Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Felipe B. d’Andrea
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Travis E. Hartman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - John W. Mosior
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ronnie Bourland
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Annie Geiger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Su Tang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Jin L, Bao J, Chen Y, Yang W, Du W. Structural insights into acyl-ACP selective recognition by the Aeromonas hydrophila AHL synthase AhyI. BMC Microbiol 2021; 21:173. [PMID: 34103011 PMCID: PMC8188788 DOI: 10.1186/s12866-021-02244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background Aeromonas hydrophila is a gram-negative bacterium and the major causative agent of the fish disease motile aeromonad septicemia (MAS). It uses N-acyl-homoserine lactone (AHL) quorum sensing signals to coordinate biofilm formation, motility, and virulence gene expression. The AHL signaling pathway is therefore considered to be a therapeutic target against pathogenic A. hydrophila infection. In A. hydrophila, AHL autoinducers biosynthesis are specifically catalyzed by an ACP-dependent AHL synthase AhyI using the precursors SAM and acyl-ACP. Our previously reported AhyI was heterologously expressed in E. coli, which showed the production characteristics of medium-long chain AHLs. This contradicted the prevailing understanding that AhyI was only a short-chain C4/C6-HSL synthase. Results In this study, six linear acyl-ACP proteins with C-terminal his-tags were synthesized in Vibrio harveyi AasS using fatty acids and E. coli produced active holo-ACP proteins, and in vitro biosynthetic assays of six AHL molecules and kinetic studies of recombinant AhyI with a panel of four linear acyl-ACPs were performed. UPLC-MS/MS analyses indicated that AhyI can synthesize short-, medium- and long-chain AHLs from SAM and corresponding linear acyl-ACP substrates. Kinetic parameters measured using a DCPIP colorimetric assay, showed that there was a notable decrease in catalytic efficiency with acyl-chain lengths above C6, and hyperbolic or sigmoidal responses in rate curves were observed for varying acyl-donor substrates. Primary sequence alignment of the six representative AHL synthases offers insights into the structural basis for their specific acyl substrate preference. To further understand the acyl chain length preference of AhyI for linear acyl-ACP, we performed a structural comparison of three ACP-dependent LuxI homologs (TofI, BmaI1 and AhyI) and identified three key hydrophobic residues (I67, F125 and L157) which confer AhyI to selectively recognize native C4/C6-ACP substrates. These predictions were further supported by a computational Ala mutation assay. Conclusions In this study, we have redefined AhyI as a multiple short- to long-chain AHL synthase which uses C4/C6-ACP as native acyl substrates and longer acyl-ACPs (C8 ~ C14) as non-native ones. We also theorized that the key residues in AhyI would likely drive acyl-ACP selective recognition. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02244-9.
Collapse
Affiliation(s)
- Lei Jin
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China.,Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Jingjiao Bao
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Yu Chen
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| | - Wenyi Du
- Sichuan MoDe Technology Co., Ltd., Chengdu, 610000, China
| |
Collapse
|
11
|
Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng 2021; 67:41-52. [PMID: 34052445 DOI: 10.1016/j.ymben.2021.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Metabolic heterogeneity and dynamic changes in metabolic fluxes are two inherent characteristics of microbial fermentation that limit the precise control of metabolisms, often leading to impaired cell growth and low productivity. Dynamic metabolic engineering addresses these challenges through the design of multi-layered and multi-genetic dynamic regulation network (DRN) that allow a single cell to autonomously adjust metabolic flux in response to its growth and metabolite accumulation conditions. Here, we developed a growth coupled NCOMB (Naringenin-Coumaric acid-Malonyl-CoA-Balanced) DRN with systematic optimization of (2S)-naringenin and p-coumaric acid-responsive regulation pathways for real-time control of intracellular supply of malonyl-CoA. In this scenario, the acyl carrier protein was used as a novel critical node for fine-tuning malonyl-CoA consumption instead of direct repression of fatty acid synthase commonly employed in previous studies. To do so, we first engineered a multi-layered DRN enabling single cells to concurrently regulate acpH, acpS, acpT, acs, and ACC in malonyl-CoA catabolic and anabolic pathways. Next, the NCOMB DRN was optimized to enhance the synergies between different dynamic regulation layers via a biosensor-based directed evolution strategy. Finally, a high producer obtained from NCOMB DRN approach yielded a 8.7-fold improvement in (2S)-naringenin production (523.7 ± 51.8 mg/L) with a concomitant 20% increase in cell growth compared to the base strain using static strain engineering approach, thus demonstrating the high efficiency of this system for improving pathway production.
Collapse
|
12
|
Zhao S, Xiao C, Wang J, Tian K, Ji W, Yang T, Khan B, Qian G, Yan W, Ye Y. Discovery of Natural FabH Inhibitors Using an Immobilized Enzyme Column and Their Antibacterial Activity against Xanthomonas oryzae pv. oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14204-14211. [PMID: 33201689 DOI: 10.1021/acs.jafc.0c06363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
β-Ketoacyl-acyl carrier protein synthase III (KAS III, FabH) is essential for bacterial fatty acid biosynthesis. Recent studies indicate that FabH can be a potential target for bactericide development. In the present study, an immobilized FabH column was developed and used to screen FabH inhibitors from complex natural product extracts. Combined with HPLC, four secondary metabolites, alternariol (1), altenuisol (2), alterlactone (3), and dehydroaltenusin (4), were site-directed, isolated, and identified from the crude extract of Alternaria alternata ZHJG5. These compounds showed inhibitory activities on FabH of Xanthomonas oryzae pv. oryzae (Xoo) with IC50 values from 29.5 to 74.1 μM and also displayed a varying degree of antibacterial activities against Xoo with minimal inhibitory concentration values from 4 to 64 μg/mL. Molecular modeling was then used to picture how the compounds interact with XooFabH. Two inhibitors, compounds 1 and 3, exhibited significant bactericidal activity against rice bacterial leaf blight with a protective efficiency of 66.2 and 82.5% at the concentration of 200 μg/mL, respectively, suggesting that they could be lead candidates to develop novel bactericides.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Cheng Xiao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiajie Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tingting Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Guoliang Qian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
13
|
Mosior J, Bourland R, Soma S, Nathan C, Sacchettini J. Structural insights into phosphopantetheinyl hydrolase PptH from Mycobacterium tuberculosis. Protein Sci 2020; 29:744-757. [PMID: 31886928 PMCID: PMC7021004 DOI: 10.1002/pro.3813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
The amidinourea 8918 was recently reported to inhibit the type II phosphopantetheinyl transferase (PPTase) of Mycobacterium tuberculosis (Mtb), PptT, a potential drug-target that activates synthases and synthetases involved in cell wall biosynthesis and secondary metabolism. Surprisingly, high-level resistance to 8918 occurred in Mtb harboring mutations within the gene adjacent to pptT, rv2795c, highlighting the role of the encoded protein as a potentiator of the bactericidal action of the amidinourea. Those studies revealed that Rv2795c (PptH) is a phosphopantetheinyl (PpT) hydrolase, possessing activity antagonistic with respect to PptT. We have solved the crystal structure of Mtb's phosphopantetheinyl hydrolase, making it the first phosphopantetheinyl (carrier protein) hydrolase structurally characterized. The 2.5 Å structure revealed the hydrolases' four-layer (α/β/β/α) sandwich fold featuring a Mn-Fe binuclear center within the active site. A structural similarity search confirmed that PptH most closely resembles previously characterized metallophosphoesterases (MPEs), particularly within the vicinity of the active site, suggesting that it may utilize a similar catalytic mechanism. In addition, analysis of the structure has allowed for the rationalization of the previously reported PptH mutations associated with 8918-resistance. Notably, differences in the sequences and predicted structural characteristics of the PpT hydrolases PptH of Mtb and E. coli's acyl carrier protein hydrolase (AcpH) indicate that the two enzymes evolved convergently and therefore are representative of two distinct PpT hydrolase families.
Collapse
Affiliation(s)
- John Mosior
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Ronnie Bourland
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Shivatheja Soma
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Carl Nathan
- Department of Microbiology and ImmunologyWeill Cornell MedicineNew YorkNew York
| | - James Sacchettini
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| |
Collapse
|
14
|
Acheampong KK, Kokona B, Braun GA, Jacobsen DR, Johnson KA, Charkoudian LK. Colorimetric Assay Reports on Acyl Carrier Protein Interactions. Sci Rep 2019; 9:15589. [PMID: 31666546 PMCID: PMC6821831 DOI: 10.1038/s41598-019-51554-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023] Open
Abstract
The ability to produce new molecules of potential pharmaceutical relevance via combinatorial biosynthesis hinges on improving our understanding of acyl-carrier protein (ACP)-protein interactions. However, the weak and transient nature of these interactions makes them difficult to study using traditional spectroscopic approaches. Herein we report that converting the terminal thiol of the E. coli ACP 4'-phosphopantetheine arm into a mixed disulfide with 2-nitro-5-thiobenzoate ion (TNB-) activates this site to form a selective covalent cross-link with the active site cysteine of a cognate ketoacyl synthase (KS). The concomitant release of TNB2-, which absorbs at 412 nm, provides a visual and quantitative measure of mechanistically relevant ACP-KS interactions. The colorimetric assay can propel the engineering of biosynthetic routes to novel chemical diversity by providing a high-throughput screen for functional hybrid ACP-KS partnerships as well as the discovery of novel antimicrobial agents by enabling the rapid identification of small molecule inhibitors of ACP-KS interactions.
Collapse
Affiliation(s)
- Kofi K Acheampong
- Department of Chemistry, Haverford College, Haverford, PA, 19041-1391, USA
| | - Bashkim Kokona
- Department of Chemistry, Haverford College, Haverford, PA, 19041-1391, USA
| | - Gabriel A Braun
- Department of Chemistry, Haverford College, Haverford, PA, 19041-1391, USA
| | | | - Karl A Johnson
- Department of Biology, Haverford College, Haverford, PA, 19041-1391, USA.
| | | |
Collapse
|
15
|
Ballinger E, Mosior J, Hartman T, Burns-Huang K, Gold B, Morris R, Goullieux L, Blanc I, Vaubourgeix J, Lagrange S, Fraisse L, Sans S, Couturier C, Bacqué E, Rhee K, Scarry SM, Aubé J, Yang G, Ouerfelli O, Schnappinger D, Ioerger TR, Engelhart CA, McConnell JA, McAulay K, Fay A, Roubert C, Sacchettini J, Nathan C. Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition. Science 2019; 363:363/6426/eaau8959. [PMID: 30705156 DOI: 10.1126/science.aau8959] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the leading infectious cause of death in humans. Synthesis of lipids critical for Mtb's cell wall and virulence depends on phosphopantetheinyl transferase (PptT), an enzyme that transfers 4'-phosphopantetheine (Ppt) from coenzyme A (CoA) to diverse acyl carrier proteins. We identified a compound that kills Mtb by binding and partially inhibiting PptT. Killing of Mtb by the compound is potentiated by another enzyme encoded in the same operon, Ppt hydrolase (PptH), that undoes the PptT reaction. Thus, loss-of-function mutants of PptH displayed antimicrobial resistance. Our PptT-inhibitor cocrystal structure may aid further development of antimycobacterial agents against this long-sought target. The opposing reactions of PptT and PptH uncover a regulatory pathway in CoA physiology.
Collapse
Affiliation(s)
- Elaine Ballinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - John Mosior
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX, USA
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Roxanne Morris
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Laurent Goullieux
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Isabelle Blanc
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sophie Lagrange
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Laurent Fraisse
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Stéphanie Sans
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Cedric Couturier
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Eric Bacqué
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sarah M Scarry
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guangbin Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas R Ioerger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer A McConnell
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Kathrine McAulay
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Roubert
- Infectious Diseases Therapeutic Area, Sanofi, Marcy-l'Étoile, France
| | - James Sacchettini
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX, USA.
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Chen A, Re RN, Burkart MD. Type II fatty acid and polyketide synthases: deciphering protein-protein and protein-substrate interactions. Nat Prod Rep 2018; 35:1029-1045. [PMID: 30046786 PMCID: PMC6233901 DOI: 10.1039/c8np00040a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to April 5, 2018 Metabolites from type II fatty acid synthase (FAS) and polyketide synthase (PKS) pathways differ broadly in their identities and functional roles. The former are considered primary metabolites that are linear hydrocarbon acids, while the latter are complex aromatic or polyunsaturated secondary metabolites. Though the study of bacterial FAS has benefitted from decades of biochemical and structural investigations, type II PKSs have remained less understood. Here we review the recent approaches to understanding the protein-protein and protein-substrate interactions in these pathways, with an emphasis on recent chemical biology and structural applications. New approaches to the study of FAS have highlighted the critical role of the acyl carrier protein (ACP) with regard to how it stabilizes intermediates through sequestration and selectively delivers cargo to successive enzymes within these iterative pathways, utilizing protein-protein interactions to guide and organize enzymatic timing and specificity. Recent tools that have shown promise in FAS elucidation should find new approaches to studying type II PKS systems in the coming years.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
18
|
Ma JC, Wu YQ, Cao D, Zhang WB, Wang HH. Only Acyl Carrier Protein 1 (AcpP1) Functions in Pseudomonas aeruginosa Fatty Acid Synthesis. Front Microbiol 2017; 8:2186. [PMID: 29176964 PMCID: PMC5686131 DOI: 10.3389/fmicb.2017.02186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
The genome of Pseudomonas aeruginosa contains three open reading frames, PA2966, PA1869, and PA3334, which encode putative acyl carrier proteins, AcpP1, AcpP2, and AcpP3, respectively. In this study, we found that, although these apo-ACPs were successfully phosphopantetheinylated by P. aeruginosa phosphopantetheinyl transferase (PcpS) and all holo-forms of these proteins could be acylated by Vibrio harveyi acyl-ACP synthetase (AasS), only AcpP1 could be used as a substrate for the synthesis of fatty acids, catalyzed by P. aeruginosa cell free extracts in vitro, and only acpP1 gene could restore growth in the Escherichia coliacpP mutant strain CY1877. And P. aeruginosaacpP1 could not be deleted, while disruption of acpP2 or acpP3 in the P. aeruginosa genome allowed mutant strains to grow as well as the wild type strain. These findings confirmed that only P. aeruginosa AcpP1 functions in fatty acid biosynthesis, and that acpP2 and acpP3 do not play roles in the fatty acid synthetic pathway. Moreover, disruption of acpP2 and acpP3 did not affect the ability of P. aeruginosa to produce N-acylhomoserine lactones (AHL), but replacement of P. aeruginosaacpP1 with E. coliacpP caused P. aeruginosa to reduce the production of AHL molecules, which indicated that neither P. aeruginosa AcpP2 nor AcpP3 can act as a substrate for synthesis of AHL molecules in vivo. Furthermore, replacement of acpP1 with E. coliacpP reduced the ability of P. aeruginosa to produce some exo-products and abolished swarming motility in P. aeruginosa.
Collapse
Affiliation(s)
- Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yun-Qi Wu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Dan Cao
- Forensic Science Center of Qingyuan, Qingyuan Public Security Department, Qingyuan, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Santos C, Maximiano MR, Ribeiro DG, Oliveira-Neto OB, Murad AM, Franco OL, Mehta A. Differential accumulation ofXanthomonas campestrispv.campestrisproteins during the interaction with the host plant: Contributions of an in vivo system. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Cristiane Santos
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
- Centro de Analises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília DF Brazil
| | - Mariana R. Maximiano
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
- Universidade Federal de Juiz de Fora; MG Brazil
| | - Daiane G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
- Universidade Paulista; Brasília DF Brazil
| | | | - André M. Murad
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
| | - Octávio L. Franco
- Centro de Analises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília DF Brazil
- Universidade Federal de Juiz de Fora; MG Brazil
- S-Inova, Pós-Graduação em Biotecnologia; Universidade Católica Dom Bosco; Campo Grande MS Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
| |
Collapse
|
20
|
Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat Microbiol 2017; 2:17073. [PMID: 28504670 DOI: 10.1038/nmicrobiol.2017.73] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/05/2017] [Indexed: 02/04/2023]
Abstract
Coenzymes are vital for cellular metabolism and act on the full spectrum of enzymatic reactions. Intrinsic chemical reactivity, enzyme promiscuity and high flux through their catalytic cycles make coenzymes prone to damage. To counteract such compromising factors and ensure stable levels of functional coenzymes, cells use a complex interplay between de novo synthesis, salvage, repair and degradation. However, the relative contribution of these factors is currently unknown, as is the overall stability of coenzymes in the cell. Here, we use dynamic 13C-labelling experiments to determine the half-life of major coenzymes of Escherichia coli. We find that coenzymes such as pyridoxal 5-phosphate, flavins, nicotinamide adenine dinucleotide (phosphate) and coenzyme A are remarkably stable in vivo and allow biosynthesis close to the minimal necessary rate. In consequence, they are essentially produced to compensate for dilution by growth and passed on over generations of cells. Exceptions are antioxidants, which are short-lived, suggesting an inherent requirement for increased renewal. Although the growth-driven turnover of stable coenzymes is apparently subject to highly efficient end-product homeostasis, we exemplify that coenzyme pools are propagated in excess in relation to actual growth requirements. Additional testing of Bacillus subtilis and Saccharomyces cerevisiae suggests that coenzyme longevity is a conserved feature in biology.
Collapse
|
21
|
Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978. Int J Antimicrob Agents 2017; 49:74-80. [DOI: 10.1016/j.ijantimicag.2016.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 11/23/2022]
|
22
|
A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat Chem Biol 2016; 12:621-7. [PMID: 27322068 DOI: 10.1038/nchembio.2108] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
Abstract
DUF89 family proteins occur widely in both prokaryotes and eukaryotes, but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), with subfamily II being split into stand-alone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metal-dependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed a novel phosphatase active site with fructose 6-phosphate and Mg(2+) bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.
Collapse
|
23
|
Shin D, Frane ND, Brecht RM, Keeler J, Nagarajan R. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays. Chembiochem 2015; 16:2651-9. [PMID: 26456773 DOI: 10.1002/cbic.201500387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/10/2022]
Abstract
Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds.
Collapse
Affiliation(s)
- Daniel Shin
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Nicole D Frane
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Ryan M Brecht
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID, 83725, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, PO Box 208114, New Haven, CT, 06520-8114, USA
| | - Jesse Keeler
- Department of Chemistry, Northwest Nazarene University, Nampa, ID, 83686, USA.,Loma Linda School of Medicine, Coleman Pavilion, 11175 Campus Street, Loma Linda, CA, 92350, USA
| | - Rajesh Nagarajan
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID, 83725, USA.
| |
Collapse
|
24
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
25
|
Abstract
Pantothenate is vitamin B5 and is the key precursor for the biosynthesis of coenzyme A (CoA), a universal and essential cofactor involved in a myriad of metabolic reactions, including the synthesis of phospholipids, the synthesis and degradation of fatty acids, and the operation of the tricarboxylic acid cycle. CoA is also the only source of the phosphopantetheine prosthetic group for enzymes that shuttle intermediates between the active sites of enzymes involved in fatty acid, nonribosomal peptide, and polyketide synthesis. Pantothenate can be synthesized de novo and/or transported into the cell through a pantothenatepermease. Pantothenate uptake is essential for those organisms that lack the genes to synthesize this vitamin. The intracellular levels of CoA are controlled by the balance between synthesis and degradation. In particular, CoA is assembled in five enzymatic steps, starting from the phosphorylation of pantothenate to phosphopantothenatecatalyzed by pantothenate kinase, the product of the coaA gene. In some bacteria, the production of phosphopantothenate by pantothenate kinase is the rate limiting and most regulated step in the biosynthetic pathway. CoA synthesis additionally networks with other vitamin-associated pathways, such as thiamine and folic acid.
Collapse
|
26
|
Finzel K, Lee DJ, Burkart MD. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 2015; 16:528-547. [PMID: 25676190 PMCID: PMC4545599 DOI: 10.1002/cbic.201402578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in nature, preserving the same handful of chemical reactions across all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug-resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock, or antimicrobial purposes has been met with limited success, due in part to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain will focus first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. Although significant unknowns remain, new understandings of the intricacies of FAS point to future advances in manipulating this complex molecular factory.
Collapse
Affiliation(s)
- Kara Finzel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - D. John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| |
Collapse
|
27
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
28
|
de Villiers M, Barnard L, Koekemoer L, Snoep JL, Strauss E. Variation in pantothenate kinase type determines the pantothenamide mode of action and impacts on coenzyme A salvage biosynthesis. FEBS J 2014; 281:4731-53. [PMID: 25156889 DOI: 10.1111/febs.13013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Abstract
N-substituted pantothenamides are analogues of pantothenic acid, the vitamin precursor of CoA, and constitute a class of well-studied bacterial growth inhibitors that show potential as new antibacterial agents. Previous studies have highlighted the importance of pantothenate kinase (PanK; EC 2.7.1.33) (the first enzyme of CoA biosynthesis) in mediating pantothenamide-induced growth inhibition by one of two proposed mechanisms: first, by acting on the pantothenamides as alternate substrates (allowing their conversion into CoA antimetabolites, with subsequent effects on CoA- and acyl carrier protein-dependent processes) or, second, by being directly inhibited by them (causing a reduction in CoA biosynthesis). In the present study we used structurally modified pantothenamides to probe whether PanKs interact with these compounds in the same manner. We show that the three distinct types of eubacterial PanKs that are known to exist (PanKI , PanKII and PanKIII ) respond very differently and, consequently, are responsible for determining the pantothenamide mode of action in each case: although the promiscuous PanKI enzymes accept them as substrates, the highly selective PanKIII s are resistant to their inhibitory effects. Most unexpectedly, Staphylococcus aureus PanK (the only known example of a bacterial PanKII ) experiences uncompetitive inhibition in a manner that is described for the first time. In addition, we show that pantetheine, a CoA degradation product that closely resembles the pantothenamides, causes the same effect. This suggests that, in S. aureus, pantothenamides may act by usurping a previously unknown role of pantetheine in the regulation of CoA biosynthesis, and validates its PanK as a target for the development of new antistaphylococcal agents.
Collapse
|
29
|
Montebello AN, Brecht RM, Turner RD, Ghali M, Pu X, Nagarajan R. Acyl-ACP substrate recognition in Burkholderia mallei BmaI1 acyl-homoserine lactone synthase. Biochemistry 2014; 53:6231-42. [PMID: 25215658 PMCID: PMC4188261 DOI: 10.1021/bi5009529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme.
Collapse
Affiliation(s)
- Aubrey N Montebello
- Department of Chemistry and Biochemistry, Boise State University , 1910 University Drive, Boise, Idaho 83725, United States
| | | | | | | | | | | |
Collapse
|
30
|
Kosa NM, Pham KM, Burkart MD. Chemoenzymatic exchange of phosphopantetheine on protein and peptide. Chem Sci 2014; 5:1179-1186. [PMID: 26998215 PMCID: PMC4795179 DOI: 10.1039/c3sc53154f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of new acyl carrier protein hydrolase (AcpH, EC 3.1.4.14) homologs from proteobacteria and cyanobacteria reveals significant variation in substrate selectivity and kinetic parameters for phosphopantetheine hydrolysis from carrier proteins. Evaluation with carrier proteins from both primary and secondary metabolic pathways reveals an overall preference for acyl carrier protein (ACP) substrates from type II fatty acid synthases, as well as variable activity for polyketide synthase ACPs and peptidyl carrier proteins (PCP) from non-ribosomal peptide synthases. We also demonstrate the kinetic parameters of these homologs for AcpP and the 11-mer peptide substrate YbbR. These findings enable the fully reversible labeling of all three classes of natural product synthase carrier proteins as well as full and minimal fusion protein constructs.
Collapse
Affiliation(s)
- Nicolas M. Kosa
- Department of Chemistry and Biochemistry, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Kevin M. Pham
- Department of Chemistry and Biochemistry, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego (UCSD), La Jolla, California, USA
| |
Collapse
|
31
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
33
|
Siqueira FM, Thompson CE, Virginio VG, Gonchoroski T, Reolon L, Almeida LG, da Fonsêca MM, de Souza R, Prosdocimi F, Schrank IS, Ferreira HB, de Vasconcelos ATR, Zaha A. New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis. BMC Genomics 2013; 14:175. [PMID: 23497205 PMCID: PMC3610235 DOI: 10.1186/1471-2164-14-175] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis live in swine respiratory tracts. M. flocculare, a commensal bacterium, is genetically closely related to M. hyopneumoniae, the causative agent of enzootic porcine pneumonia. M. hyorhinis is also pathogenic, causing polyserositis and arthritis. In this work, we present the genome sequences of M. flocculare and M. hyopneumoniae strain 7422, and we compare these genomes with the genomes of other M. hyoponeumoniae strain and to the a M. hyorhinis genome. These analyses were performed to identify possible characteristics that may help to explain the different behaviors of these species in swine respiratory tracts. RESULTS The overall genome organization of three species was analyzed, revealing that the ORF clusters (OCs) differ considerably and that inversions and rearrangements are common. Although M. flocculare and M. hyopneumoniae display a high degree of similarity with respect to the gene content, only some genomic regions display considerable synteny. Genes encoding proteins that may be involved in host-cell adhesion in M. hyopneumoniae and M. flocculare display differences in genomic structure and organization. Some genes encoding adhesins of the P97 family are absent in M. flocculare and some contain sequence differences or lack of domains that are considered to be important for adhesion to host cells. The phylogenetic relationship of the three species was confirmed by a phylogenomic approach. The set of genes involved in metabolism, especially in the uptake of precursors for nucleic acids synthesis and nucleotide metabolism, display some differences in copy number and the presence/absence in the three species. CONCLUSIONS The comparative analyses of three mycoplasma species that inhabit the swine respiratory tract facilitated the identification of some characteristics that may be related to their different behaviors. M. hyopneumoniae and M. flocculare display many differences that may help to explain why one species is pathogenic and the other is considered to be commensal. However, it was not possible to identify specific virulence determinant factors that could explain the differences in the pathogenicity of the analyzed species. The M. hyorhinis genome contains differences in some components involved in metabolism and evasion of the host's immune system that may contribute to its growth aggressiveness. Several horizontal gene transfer events were identified. The phylogenomic analysis places M. hyopneumoniae, M. flocculare and M. hyorhinis in the hyopneumoniae clade.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica. UFRGS, Porto Alegre, Brazil
| | - Claudia Elizabeth Thompson
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Veridiana Gomes Virginio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
| | - Taylor Gonchoroski
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciano Reolon
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
| | - Luiz Gonzaga Almeida
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Marbella Maria da Fonsêca
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Rangel de Souza
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Francisco Prosdocimi
- Departamento de Bioquímica Médica. Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| | | | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica. UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| |
Collapse
|
34
|
Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Proc Natl Acad Sci U S A 2013; 110:E295-304. [PMID: 23288898 DOI: 10.1073/pnas.1213892110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shipworms are marine wood-boring bivalve mollusks (family Teredinidae) that harbor a community of closely related Gammaproteobacteria as intracellular endosymbionts in their gills. These symbionts have been proposed to assist the shipworm host in cellulose digestion and have been shown to play a role in nitrogen fixation. The genome of one strain of Teredinibacter turnerae, the first shipworm symbiont to be cultivated, was sequenced, revealing potential as a rich source of polyketides and nonribosomal peptides. Bioassay-guided fractionation led to the isolation and identification of two macrodioloide polyketides belonging to the tartrolon class. Both compounds were found to possess antibacterial properties, and the major compound was found to inhibit other shipworm symbiont strains and various pathogenic bacteria. The gene cluster responsible for the synthesis of these compounds was identified and characterized, and the ketosynthase domains were analyzed phylogenetically. Reverse-transcription PCR in addition to liquid chromatography and high-resolution mass spectrometry and tandem mass spectrometry revealed the transcription of these genes and the presence of the compounds in the shipworm, suggesting that the gene cluster is expressed in vivo and that the compounds may fulfill a specific function for the shipworm host. This study reports tartrolon polyketides from a shipworm symbiont and unveils the biosynthetic gene cluster of a member of this class of compounds, which might reveal the mechanism by which these bioactive metabolites are biosynthesized.
Collapse
|
35
|
Park AK, Lee JH, Chi YM, Moon JH. Crystallization and preliminary X-ray crystallographic studies of a new class of enoyl-(acyl-carrier protein) reductase, FabV, from Vibrio fischeri. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 68:78-80. [PMID: 22232178 DOI: 10.1107/s1744309111049426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/19/2011] [Indexed: 11/10/2022]
Abstract
Enoyl-(acyl-carrier protein) reductase (ENR) catalyzes the last step of the fatty-acid elongation cycle of the bacterial fatty-acid biosynthesis (FAS II) pathway. Recently, a new class of ENR has been identified from Vibrio cholerae and was named FabV. In order to understand the molecular mechanism of the new class of ENR at the structural level, FabV from V. fischeri was overexpressed, purified and crystallized. Diffraction data were collected to 2.7 Å resolution from a native crystal. The crystal belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 123.53, b = 164.14, c = 97.07 Å. The presence of four molecules of FabV in the asymmetric unit gave a V(M) value of 2.81 Å(3) Da(-1), with a corresponding solvent content of 54.5%.
Collapse
Affiliation(s)
- Ae Kyung Park
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
36
|
Abstract
FA (fatty acid) synthesis represents a central, conserved process by which acyl chains are produced for utilization in a number of end-products such as biological membranes. Central to FA synthesis, the ACP (acyl carrier protein) represents the cofactor protein that covalently binds all fatty acyl intermediates via a phosphopantetheine linker during the synthesis process. FASs (FA synthases) can be divided into two classes, type I and II, which are primarily present in eukaryotes and bacteria/plants respectively. They are characterized by being composed of either large multifunctional polypeptides in the case of type I or consisting of discretely expressed mono-functional proteins in the type II system. Owing to this difference in architecture, the FAS system has been thought to be a good target for the discovery of novel antibacterial agents, as exemplified by the antituberculosis drug isoniazid. There have been considerable advances in this field in recent years, including the first high-resolution structural insights into the type I mega-synthases and their dynamic behaviour. Furthermore, the structural and dynamic properties of an increasing number of acyl-ACPs have been described, leading to an improved comprehension of this central carrier protein. In the present review we discuss the state of the understanding of FA synthesis with a focus on ACP. In particular, developments made over the past few years are highlighted.
Collapse
|
37
|
Bobadilla Fazzini RA, Preto MJ, Quintas ACP, Bielecka A, Dos Santos VAPM. Consortia modulation of the stress response: proteomic analysis of single strain versus mixed culture. Environ Microbiol 2010; 12:2436-49. [PMID: 20406297 DOI: 10.1111/j.1462-2920.2010.02217.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high complexity of naturally occurring microbial communities is the major drawback limiting the study of these important biological systems. In this study, a comparison between pure cultures of Pseudomonas reinekei sp. strain MT1 and stable community cultures composed of MT1 plus the addition of Achromobacter xylosoxidans strain MT3 (in a steady-state proportion 9:1) was used as a model system to study bacterial interactions that take place under simultaneous chemical and oxidative stress. Both are members of a real community isolated from a polluted sediment by enrichment in 4-chlorosalicylate (4CS). The analysis of dynamic states was carried out at the proteome, metabolic profile and population dynamic level. Differential protein expression was evaluated under exposure to 4CS and high concentrations of toxic intermediates (4-chlorocatechol and protoanemonin), including proteins from several functional groups and particularly enzymes of aromatic degradation pathways and outer membrane proteins. Remarkably, 4CS addition generated a strong oxidative stress response in pure strain MT1 culture led by alkyl hydroperoxide reductase, while the community showed an enhanced central metabolism response, where A. xylosoxidans MT3 helped to prevent toxic intermediate accumulation. A significant change in the outer membrane composition of P. reinekei MT1 was observed during the chemical stress caused by 4CS and in the presence of A. xylosoxidans MT3, highlighting the expression of the major outer membrane protein OprF, tightly correlated to 4CC concentration profile and its potential detoxification role.
Collapse
|
38
|
Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 2010; 6:e1000834. [PMID: 20368969 PMCID: PMC2848557 DOI: 10.1371/journal.ppat.1000834] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/25/2010] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii is a common pathogen whose recent resistance to drugs has emerged as a major health problem. Ethanol has been found to increase the virulence of A. baumannii in Dictyostelium discoideum and Caenorhabditis elegans models of infection. To better understand the causes of this effect, we examined the transcriptional profile of A. baumannii grown in the presence or absence of ethanol using RNA-Seq. Using the Illumina/Solexa platform, a total of 43,453,960 reads (35 nt) were obtained, of which 3,596,474 mapped uniquely to the genome. Our analysis revealed that ethanol induces the expression of 49 genes that belong to different functional categories. A strong induction was observed for genes encoding metabolic enzymes, indicating that ethanol is efficiently assimilated. In addition, we detected the induction of genes encoding stress proteins, including upsA, hsp90, groEL and lon as well as permeases, efflux pumps and a secreted phospholipase C. In stationary phase, ethanol strongly induced several genes involved with iron assimilation and a high-affinity phosphate transport system, indicating that A. baumannii makes a better use of the iron and phosphate resources in the medium when ethanol is used as a carbon source. To evaluate the role of phospholipase C (Plc1) in virulence, we generated and analyzed a deletion mutant for plc1. This strain exhibits a modest, but reproducible, reduction in the cytotoxic effect caused by A. baumannii on epithelial cells, suggesting that phospholipase C is important for virulence. Overall, our results indicate the power of applying RNA-Seq to identify key modulators of bacterial pathogenesis. We suggest that the effect of ethanol on the virulence of A. baumannii is multifactorial and includes a general stress response and other specific components such as phospholipase C. Acinetobacter baumannii has recently emerged as a frequent opportunistic pathogen. In the presence of ethanol A. baumannii increases its pathogenicity towards Dictyostelium discoideum and Caenorhabditis elegans, and community-acquired infections of A. baumannii are associated with alcoholism. Ethanol negatively affects both epithelial cells and alters the bacterial physiology. To explore the underlying basis for the increased virulence of A. baumannii in the presence of ethanol we examined the transcriptional profile of this bacterium using the novel methodology known as RNA-Seq. We show that ethanol induces the expression of a phospholipase C, which contributes to A. baumannii cytotoxicity. We also show that many proteins related to stress were induced and that ethanol is efficiently assimilated as a carbon source leading to induction in stationary phase of two different Fe uptake systems and a phosphate transport system. Interestingly, a previous study showed that a mutant in the high-affinity phosphate uptake system was avirulent. Our work contributes to the understanding of A. baumannii pathogenesis and provides a powerful approach that can be extended to other pathogenic bacteria.
Collapse
Affiliation(s)
- Laura Camarena
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Universidad Nacional Autónoma de México, Inst. Inv. Biomédicas, México, D.F., México
| | - Vincent Bruno
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ghia Euskirchen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Stanford Univeristy School of Medicine, Stanford, California, United States of America
| | - Sebastian Poggio
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Michael Snyder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Stanford Univeristy School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Expression, purification and characterization of the acyl carrier protein phosphodiesterase from Pseudomonas Aeruginosa. Protein Expr Purif 2010; 71:132-8. [PMID: 20064615 DOI: 10.1016/j.pep.2010.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 11/22/2022]
Abstract
Acyl carrier protein phosphodiesterases (AcpH) are the only enzymes known to remove the 4'-phosphopantetheinyl moiety from holo acyl carrier proteins (ACP), which are a large family of proteins essential for the biosynthesis of lipid and other cellular metabolites. Here we report that the AcpH (paAcpH) from Pseudomonas aeruginosa can be overexpressed in Escherichia coli as a soluble and stable protein after optimization of the expression and purification conditions. This marks an improvement from the aggregation-prone E. coli AcpH that could only be obtained by refolding the polypeptide obtained from the inclusion body. With the soluble recombinant protein, we found that PaAcpH exhibits preferred substrate specificity towards the ACPs from the fatty acid synthesis pathway among eight carrier proteins. We further showed that PaAcpH hydrolyzes and releases the 4'-phosphopantetheinyl group-linked products from a multidomain polyketide synthase, demonstrating that the enzyme is fully capable of hydrolyzing acylated ACP substrates.
Collapse
|
40
|
Antibacterial activity of N-pentylpantothenamide is due to inhibition of coenzyme a synthesis. Antimicrob Agents Chemother 2010; 54:1374-7. [PMID: 20047918 DOI: 10.1128/aac.01473-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth inhibition by the pantothenate analog N-pentylpantothenamide (N5-Pan) has been attributed to the accumulation of acyl carrier protein carrying a prosthetic group modified by incorporation of N5-Pan. This was attributed to an inability of the AcpH acyl carrier protein phosphodiesterase to cleave the N5-Pan-modified prosthetic group from the protein moiety. We report that AcpH readily removes the N5-Pan-modified prosthetic group both in vivo and in vitro and show that N5-Pan blocks coenzyme A synthesis.
Collapse
|
41
|
Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 2009; 54:689-98. [PMID: 19933806 DOI: 10.1128/aac.01152-09] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Triclosan, a very widely used biocide, specifically inhibits fatty acid synthesis by inhibition of enoyl-acyl carrier protein (ACP) reductase. Escherichia coli FabI is the prototypical triclosan-sensitive enoyl-ACP reductase, and E. coli is extremely sensitive to the biocide. However, other bacteria are resistant to triclosan, because they encode triclosan-resistant enoyl-ACP reductase isozymes. In contrast, the triclosan resistance of Pseudomonas aeruginosa PAO1 has been attributed to active efflux of the compound (R. Chuanchuen, R. R. Karkhoff-Schweizer, and H. P. Schweizer, Am. J. Infect. Control 31:124-127, 2003). We report that P. aeruginosa contains two enoyl-ACP reductase isozymes, the previously characterized FabI homologue plus a homologue of FabV, a triclosan-resistant enoyl-ACP reductase recently demonstrated in Vibrio cholerae. By deletion of the genes encoding P. aeruginosa FabI and FabV, we demonstrated that FabV confers triclosan resistance on P. aeruginosa. Upon deletion of the fabV gene, the mutant strain became extremely sensitive to triclosan (>2,000-fold more sensitive than the wild-type strain), whereas the mutant strain lacking FabI remained completely resistant to the biocide.
Collapse
|
42
|
Meier JL, Burkart MD. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009; 38:2012-45. [DOI: 10.1039/b805115c] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Cronan JE, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 2009; 459:395-433. [PMID: 19362649 DOI: 10.1016/s0076-6879(09)04617-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review presents the most thoroughly studied bacterial fatty acid synthetic pathway, that of Escherichia coli and then discusses the exceptions to the E. coli pathway present in other bacteria. The known interrelationships between the fatty acid and polyketide synthetic pathways are also assessed, mainly in the Streptomyces group of bacteria. Finally, we present a compendium of methods for analysis of bacterial fatty acid synthetic pathways.
Collapse
Affiliation(s)
- John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|
44
|
Genetic interaction between the Escherichia coli AcpT phosphopantetheinyl transferase and the YejM inner membrane protein. Genetics 2008; 178:1327-37. [PMID: 18245839 DOI: 10.1534/genetics.107.081836] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain LH530, a mutant of Escherichia coli K-12, was reported by others to show increased outer membrane permeability, temperature-sensitive growth, and reduced synthesis of lipid A. The unmapped mutant gene was found to be suppressed by high-copy-number plasmids carrying the wild-type acpT gene, which encodes a protein that catalyzes a post-translational protein modification, the attachment of 4'-phosphopantetheine. We mapped the strain LH530 mutation to a gene of unknown function, yejM, known to encode an inner membrane protein. The mutation is a yejM nonsense mutation that produces a truncated protein lacking the predicted periplasmic domain. Reconstruction of the mutation gave a strain having the same phenotypes as LH530. In contrast to the nonsense mutants, deletion of the entire yejM gene was lethal. Suppression by AcpT overexpression of the yejM nonsense mutants encoding the truncated proteins was specific to AcpT. Moreover, AcpT overexpression also suppressed the lethality due to deletion of the entire yejM gene and this suppression also did not require that AcpT be enzymatically active. The mechanism whereby overexpression of a specific cytosolic protein bypasses the essentiality of an inner membrane protein is unknown.
Collapse
|
45
|
Massengo-Tiassé RP, Cronan JE. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J Biol Chem 2007; 283:1308-1316. [PMID: 18032386 DOI: 10.1074/jbc.m708171200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enoyl-acyl carrier protein (ACP) reductase catalyzes the last step of the fatty acid elongation cycle. The paradigm enoyl-ACP reductase is the FabI protein of Escherichia coli that is the target of the antibacterial compound, triclosan. However, some Gram-positive bacteria are naturally resistant to triclosan due to the presence of the triclosan-resistant enoyl-ACP reductase isoforms, FabK and FabL. The genome of the Gram-negative bacterium, Vibrio cholerae lacks a gene encoding a homologue of any of the three known enoyl-ACP reductase isozymes suggesting that this organism encodes a novel fourth enoyl-ACP reductase isoform. We report that this is the case. The gene encoding the new isoform, called FabV, was isolated by complementation of a conditionally lethal E. coli fabI mutant strain and was shown to restore fatty acid synthesis to the mutant strain both in vivo and in vitro. Like FabI and FabL, FabV is a member of the short chain dehydrogenase reductase superfamily, although it is considerably larger (402 residues) than either FabI (262 residues) or FabL (250 residues). The FabV, FabI and FabL sequences can be aligned, but only poorly. Alignment requires many gaps and yields only 15% identical residues. Thus, FabV defines a new class of enoyl-ACP reductase. The native FabV protein has been purified to homogeneity and is active with both crotonyl-ACP and the model substrate, crotonyl-CoA. In contrast to FabI and FabL, FabV shows a very strong preference for NADH over NADPH. Expression of FabV in E. coli results in markedly increased resistance to triclosan and the purified enzyme is much more resistant to triclosan than is E. coli FabI.
Collapse
Affiliation(s)
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801; Department of Biochemistry, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
46
|
Donato H, Krupenko NI, Tsybovsky Y, Krupenko SA. 10-formyltetrahydrofolate dehydrogenase requires a 4'-phosphopantetheine prosthetic group for catalysis. J Biol Chem 2007; 282:34159-66. [PMID: 17884809 DOI: 10.1074/jbc.m707627200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
10-Formyltetrahydrofolate dehydrogenase (FDH) consists of two independent catalytic domains, N- and C-terminal, connected by a 100-amino acid residue linker (intermediate domain). Our previous studies on structural organization and enzymatic properties of rat FDH suggest that the overall enzyme reaction, i.e. NADP(+)-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO(2), consists of two steps: (i) hydrolytic cleavage of the formyl group in the N-terminal catalytic domain, followed by (ii) NADP(+)-dependent oxidation of the formyl group to CO(2) in the C-terminal aldehyde dehydrogenase domain. In this mechanism, it was not clear how the formyl group is transferred between the two catalytic domains after the first step. This study demonstrates that the intermediate domain functions similarly to an acyl carrier protein. A 4'-phosphopantetheine swinging arm bound through a phosphoester bond to Ser(354) of the intermediate domain transfers the formyl group between the catalytic domains of FDH. Thus, our study defines the intermediate domain of FDH as a novel carrier protein and provides the previously lacking component of the FDH catalytic mechanism.
Collapse
Affiliation(s)
- Henry Donato
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
47
|
Wang CJ, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I. Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 2007; 373:1213-28. [PMID: 17904577 DOI: 10.1016/j.jmb.2007.08.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 02/06/2023]
Abstract
The gene PA0785 from Pseudomonas aeruginosa strain PAO1, which is annotated as a probable acyl carrier protein phosphodiesterase (acpD), has been cloned and heterologously overexpressed in Escherichia coli. The purified recombinant enzyme exhibits activity corresponding to that of azoreductase but not acpD. Each recombinant protein molecule has an estimated molecular mass of 23,050 Da and one non-covalently bound FMN as co-factor. This enzyme, now identified as azoreductase 1 from Pseudomonas aeruginosa (paAzoR1), is a flavodoxin-like protein with an apparent molecular mass of 110 kDa as determined by gel-filtration chromatography, indicating that the protein is likely to be tetrameric in solution. The three-dimensional structure of paAzoR1, in complex with the substrate methyl red, was solved at a resolution of 2.18 A by X-ray crystallography. The protein exists as a dimer of dimers in the crystal lattice, with two spatially separated active sites per dimer, and the active site of paAzoR1 was shown to be a well-conserved hydrophobic pocket formed between two monomers. The paAzoR1 enzyme is able to reduce different classes of azo dyes and activate several azo pro-drugs used in the treatment of inflammatory bowel disease (IBD). During azo reduction, FMN serves as a redox centre in the electron-transferring system by mediating the electron transfer from NAD(P)H to the azo substrate. The spectral properties of paAzoR1 demonstrate the hydrophobic interaction between FMN and the active site in the protein. The structure of the ligand-bound protein also highlights the pi-stacking interactions between FMN and the azo substrate.
Collapse
Affiliation(s)
- Chan-Ju Wang
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mercer AC, Burkart MD. The ubiquitous carrier protein--a window to metabolite biosynthesis. Nat Prod Rep 2007; 24:750-73. [PMID: 17653358 DOI: 10.1039/b603921a] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature has developed a remarkable strategy to isolate metabolites from the milieu of the cell for chemical modification through the use of carrier proteins. Common to both primary and secondary metabolic pathways, acyl-carrier proteins constitute a conserved protein architecture which mediate the biosynthesis of a variety of metabolic products. Analogies have been made between the carrier protein and solid phase resin for chemical synthesis, as both entities provide a mechanism to separate compounds of interest from complex mixtures for selective chemical modification. However, there is significantly more to the carrier protein than an attachment point. In this review, we aim to systematically characterize the role of carrier proteins in various metabolic pathways and outline their utility in biosynthesis and biotechnology; 185 references are cited.
Collapse
Affiliation(s)
- Andrew C Mercer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | |
Collapse
|