1
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
2
|
Ito K, Maeda K, Kariya M, Yasui K, Araki A, Takahashi Y, Takakura Y. Formation of DNA nanotubes increases uptake into fibroblasts via enhanced affinity for collagen. Int J Pharm 2023; 644:123297. [PMID: 37574114 DOI: 10.1016/j.ijpharm.2023.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
DNA nanostructures are promising delivery carriers because of their flexible structural design and high biocompatibility. Selectivity in cellular uptake is an important factor in the development of DNA-nanostructure-based delivery carriers. In this study, DNA nanotubes were selected as the DNA structures, and their selectivity for cellular uptake and the mechanisms involved were investigated. Unlike DNA nanostructures such as polypod-like nanostructured DNA or DNA tetrahedrons, which are easily taken up by macrophages, the formation of DNA nanotubes increases uptake by fibroblasts and fibroblast-like cells. We focused on the collagen expressed in cells as a factor in this process, and found DNA nanotube formation increased the affinity for type I collagen compared with that of single-stranded DNA. Collagenase treatment removes collagen from fibroblasts and reduces the uptake of DNA nanotubes by fibroblasts. We directly observed DNA nanotube uptake by fibroblasts using transmission electron microscopy, whereby the nanotubes were distributed on the cell surface, folded, fragmented, and taken up by phagocytosis. In conclusion, we demonstrated a novel finding that DNA nanotubes are readily taken up by fibroblasts and myoblasts.
Collapse
Affiliation(s)
- Koichi Ito
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koki Maeda
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mutsumi Kariya
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kento Yasui
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayana Araki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
G R, Mitra A, Pk V. Predicting functional riboSNitches in the context of alternative splicing. Gene X 2022; 837:146694. [PMID: 35738445 DOI: 10.1016/j.gene.2022.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
RNAs are the major regulators of gene expression, and their secondary structures play crucial roles at different levels. RiboSNitches are disease-associated SNPs that cause changes in the pre-mRNA secondary structural ensemble. Several riboSNitches have been detected in the 5' and 3' untranslated regions and lncRNA. Although cases of secondary structural elements playing a regulatory role in alternative splicing are known, regions specific to splicing events, such as splice junctions have not received much attention. We tested splice-site mutations for their efficiency in disrupting the secondary structure and hypothesized that these could play a crucial role in alternative splicing. Multiple riboSNitch prediction methods were applied to obtain overlapping results that are potentially more reliable. Putative riboSNitches were identified from aberrant 5' and 3' splice site mutations, cancer-causing somatic mutations, and genes that harbor the regulatory RNA secondary structural elements. Our workflow for predicting riboSNitches associated with alternative splicing is novel and paves the way for subsequent experimental validation.
Collapse
Affiliation(s)
- Ramya G
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Vinod Pk
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| |
Collapse
|
4
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
5
|
Luo Y, He Y, Reker D, Gudmann NS, Henriksen K, Simonsen O, Ladel C, Michaelis M, Mobasheri A, Karsdal M, Bay-Jensen AC. A Novel High Sensitivity Type II Collagen Blood-Based Biomarker, PRO-C2, for Assessment of Cartilage Formation. Int J Mol Sci 2018; 19:ijms19113485. [PMID: 30404167 PMCID: PMC6275061 DOI: 10.3390/ijms19113485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/07/2023] Open
Abstract
N-terminal propeptide of type II collagen (PIINP) is a biomarker reflecting cartilage formation. PIINP exists in two main splice variants termed as type IIA and type IIB collagen NH₂-propeptide (PIIANP, PIIBNP). PIIANP has been widely recognized as a cartilage formation biomarker. However, the utility of PIIBNP as a marker in preclinical and clinical settings has not been fully investigated yet. In this study, we aimed to characterize an antibody targeting human PIIBNP and to develop an immunoassay assessing type II collagen synthesis in human blood samples. A high sensitivity electrochemiluminescence immunoassay, hsPRO-C2, was developed using a well-characterized antibody against human PIIBNP. Human cartilage explants from replaced osteoarthritis knees were cultured for ten weeks in the presence of growth factors, insulin-like growth factor 1 (IGF-1) or recombinant human fibroblast growth factor 18 (rhFGF-18). The culture medium was changed every seven days, and levels of PIIBNP, PIIANP, and matrix metalloproteinase 9-mediated degradation of type II collagen (C2M) were analyzed herein. Serum samples from a cross-sectional knee osteoarthritis cohort, as well as pediatric and rheumatoid arthritis samples, were assayed for PIIBNP and PIIANP. Western blot showed that the antibody recognized PIIBNP either as a free fragment or attached to the main molecule. Immunohistochemistry demonstrated that PIIBNP was predominately located in the extracellular matrix of the superficial and deep zones and chondrocytes in both normal and osteoarthritic articular cartilage. In addition, the hsPRO-C2 immunoassay exhibits acceptable technical performances. In the human cartilage explants model, levels of PIIBNP, but not PIIANP and C2M, were increased (2 to 7-fold) time-dependently in response to IGF-1. Moreover, there was no significant correlation between PIIBNP and PIIANP levels when measured in knee osteoarthritis, rheumatoid arthritis, and pediatric serum samples. Serum PIIBNP was significantly higher in controls (KL0/1) compared to OA groups (KL2/3/4, p = 0.012). The hsPRO-C2 assay shows completely different biological and clinical patterns than PIIANP ELISA, suggesting that it may be a promising biomarker of cartilage formation.
Collapse
Affiliation(s)
- Yunyun Luo
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark.
| | - Yi He
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Ditte Reker
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Natasja Stæhr Gudmann
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Kim Henriksen
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Ole Simonsen
- Department Orthopedic Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark.
| | | | | | - Ali Mobasheri
- D-BOARD EU Consortium for Biomarker Discovery, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, Surrey, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham NG7 2UH, Nottinghamshire, UK.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| | - Morten Karsdal
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | | |
Collapse
|
6
|
|
7
|
Spickett C, Hysi P, Hammond CJ, Prescott A, Fincham GS, Poulson AV, McNinch AM, Richards AJ, Snead MP. Deep Intronic Sequence Variants in COL2A1 Affect the Alternative Splicing Efficiency of Exon 2, and May Confer a Risk for Rhegmatogenous Retinal Detachment. Hum Mutat 2016; 37:1085-96. [PMID: 27406592 DOI: 10.1002/humu.23050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
COL2A1 mutations causing haploinsufficiency of type II collagen cause type 1 Stickler syndrome that has a high risk of retinal detachment and failure of the vitreous to develop normally. Exon 2 of COL2A1 is alternatively spliced, expressed in the eye but not in mature cartilage and encodes a region that binds growth factors TGFβ1 and BMP-2. We investigated how both an apparently de novo variant and a polymorphism in intron 2 altered the efficiency of COL2A1 exon 2 splicing and how the latter may act as a predisposing risk factor for the occurrence of posterior vitreous detachment (PVD)-associated rhegmatogenous retinal detachment (RRD) in the general population. Using amplification of illegitimate transcripts and allele-specific minigenes expressed in cultured cells, we demonstrate variability in exon 2 inclusion not only between different control individuals, but also between different COL2A1 alleles. We identify transacting factors that bind to allele-specific RNA sequences, and investigate the effect of knockdown and overexpression of these factors on exon 2 splicing efficiency. Finally, using a specific cohort of patients with PVD-associated RRD and a control population, we demonstrate a significant difference in the frequency of the COL2A1 intronic variant rs1635532 between the two groups.
Collapse
Affiliation(s)
- Carl Spickett
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Pirro Hysi
- Academic Unit Ophthalmology, King's College London, London, SE1 7EH, UK
| | | | - Alan Prescott
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Gregory S Fincham
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Arabella V Poulson
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Annie M McNinch
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.,Regional Molecular Genetics Laboratory, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Allan J Richards
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK. .,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,Regional Molecular Genetics Laboratory, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Martin P Snead
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
8
|
Felimban R, Ye K, Traianedes K, Di Bella C, Crook J, Wallace GG, Quigley A, Choong PF, Myers DE. Differentiation of Stem Cells from Human Infrapatellar Fat Pad: Characterization of Cells Undergoing Chondrogenesis. Tissue Eng Part A 2014; 20:2213-23. [DOI: 10.1089/ten.tea.2013.0657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Raed Felimban
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Department of Orthopaedics, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ken Ye
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Department of Orthopaedics, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Kathy Traianedes
- Departments of Medicine and Clinical Neurosciences, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Claudia Di Bella
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Department of Orthopaedics, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Jeremy Crook
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Wollongong, New South Wales, Australia
| | - Gordon G. Wallace
- Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Wollongong, New South Wales, Australia
| | - Anita Quigley
- Departments of Medicine and Clinical Neurosciences, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Wollongong, New South Wales, Australia
| | - Peter F.M. Choong
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Department of Orthopaedics, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Damian E. Myers
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Department of Orthopaedics, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
9
|
Abstract
Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two other isoforms have been reported (IIC and IID) that also involve splicing of exon 2; these findings highlight the complexities involving regulation of COL2A1 expression. The biological significance of why different isoforms of COL2A1 exist within the context of skeletal development and maintenance is still not completely understood. This review will provide current knowledge on COL2A1 isoform expression during chondrocyte differentiation and what is known about some of the mechanisms that control exon 2 alternative splicing. Utilization of mouse models to address the biological significance of Col2a1 alternative splicing in vivo will also be discussed. From the knowledge acquired to date, some new questions and concepts are now being proposed on the importance of Col2a1 alternative splicing in regulating extracellular matrix assembly and how this may subsequently affect cartilage and endochondral bone quality and function.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine , St Louis, MO , USA
| |
Collapse
|
10
|
Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5' splice site within Col2a1 exon 2. Matrix Biol 2014; 36:51-63. [PMID: 24735995 DOI: 10.1016/j.matbio.2014.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 01/18/2023]
Abstract
This study describes a new mechanism controlling the production of alternatively spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codons in exon 6 (type IIC). This transcript is produced by utilization of another 5' splice site present in exon 2. To determine the role of this IIC splicing event in vivo, we generated transgenic mice containing silent knock-in mutations at the IIC 5' splice site (Col2a1-mIIC), thereby inhibiting production of IIC transcripts. Heterozygous and homozygous knock-in mice were viable and display no overt skeletal phenotype to date. However, RNA expression profiles revealed that chondrocytes in cartilage from an age range of Col2a1-mIIC mice produced higher levels of IIA and IID mRNAs and decreased levels of IIB mRNAs throughout pre-natal and post-natal development, when compared to chondrocytes from littermate control mice. Immunofluorescence analyses showed a clear increase in expression of embryonic type II collagen protein isoforms (i.e. containing the exon 2-encoded cysteine-rich (CR) protein domain) in cartilage extracellular matrix (ECM). Interestingly, at P14, P28 and P56, expression of embryonic Col2a1 isoforms in Col2a1-mIIC mice persisted in the pericellular domain of the ECM in articular and growth plate cartilage. We also show that persistent expression of the exon 2-encoded CR domain in the ECM of post-natal cartilage tissue may be due, in part, to the embryonic form of type XI collagen (the α3 chain of which is also encoded by the Col2a1 gene). In conclusion, expression of the Col2a1 IIC splice form may have a regulatory function in controlling alternative splicing of exon 2 to generate defined proportions of IIA, IID and IIB procollagen isoforms during cartilage development. Future studies will involve ultrastructural and biomechanical analysis of the collagen ECM to determine the effects of persistent mis-expression of embryonic collagen isoforms in mature cartilage tissue.
Collapse
|
11
|
Byers PH, Murray ML. Ehlers–Danlos syndrome: A showcase of conditions that lead to understanding matrix biology. Matrix Biol 2014; 33:10-5. [DOI: 10.1016/j.matbio.2013.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
|
12
|
McAlinden A, Traeger G, Hansen U, Weis MA, Ravindran S, Wirthlin L, Eyre DR, Fernandes RJ. Molecular properties and fibril ultrastructure of types II and XI collagens in cartilage of mice expressing exclusively the α1(IIA) collagen isoform. Matrix Biol 2013; 34:105-13. [PMID: 24113490 DOI: 10.1016/j.matbio.2013.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/26/2023]
Abstract
Until now, no biological tools have been available to determine if a cross-linked collagen fibrillar network derived entirely from type IIA procollagen isoforms, can form in the extracellular matrix (ECM) of cartilage. Recently, homozygous knock-in transgenic mice (Col2a1(+ex2), ki/ki) were generated that exclusively express the IIA procollagen isoform during post-natal development while type IIB procollagen, normally present in the ECM of wild type mice, is absent. The difference between these Col2a1 isoforms is the inclusion (IIA) or exclusion (IIB) of exon 2 that is alternatively spliced in a developmentally regulated manner. Specifically, chondroprogenitor cells synthesize predominantly IIA mRNA isoforms while differentiated chondrocytes produce mainly IIB mRNA isoforms. Recent characterization of the Col2a1(+ex2) mice has surprisingly shown that disruption of alternative splicing does not affect overt cartilage formation. In the present study, biochemical analyses showed that type IIA collagen extracted from ki/ki mouse rib cartilage can form homopolymers that are stabilized predominantly by hydroxylysyl pyridinoline (HP) cross-links at levels that differed from wild type rib cartilage. The findings indicate that mature type II collagen derived exclusively from type IIA procollagen molecules can form hetero-fibrils with type XI collagen and contribute to cartilage structure and function. Heteropolymers with type XI collagen also formed. Electron microscopy revealed mainly thin type IIA collagen fibrils in ki/ki mouse rib cartilage. Immunoprecipitation and mass spectrometry of purified type XI collagen revealed a heterotrimeric molecular composition of α1(XI)α2(XI)α1(IIA) chains where the α1(IIA) chain is the IIA form of the α3(XI) chain. Since the N-propeptide of type XI collagen regulates type II collagen fibril diameter in cartilage, the retention of the exon 2-encoded IIA globular domain would structurally alter the N-propeptide of type XI collagen. This structural change may subsequently affect the regulatory function of type XI collagen resulting in the collagen fibril and cross-linking differences observed in this study.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University, St Louis MO, USA; Department of Cell Biology & Physiology, Washington University, St Louis MO, USA
| | - Geoffrey Traeger
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA
| | - Uwe Hansen
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | - Mary Ann Weis
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University, St Louis MO, USA
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University, St Louis MO, USA
| | - David R Eyre
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA
| | - Russell J Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA.
| |
Collapse
|
13
|
Guzzo RM, Gibson J, Xu RH, Lee FY, Drissi H. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem 2012; 114:480-90. [DOI: 10.1002/jcb.24388] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/30/2012] [Indexed: 12/21/2022]
|
14
|
Shinomura T, Ito K, Höök M, Kimura JH. A newly identified enhancer element responsible for type II collagen gene expression. J Biochem 2012; 152:565-75. [PMID: 23019346 DOI: 10.1093/jb/mvs110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type II collagen is a major component of cartilage where it is present at a high concentration, which is essential for the functional maintenance of the tissue. Therefore, any fundamental understanding of the physiology of cartilage tissue must include an understanding of the mechanism that allows the high level of expression of type II collagen gene, Col2a1, by chondrocytes. To this end, we developed a new reporter assay system based on the co-transfection of candidate enhancer elements and reporter construct into Swarm rat chondrosarcoma chondrocytes that allowed their stable expression. Using this system, we screened more than 70 kb of the Col2a1 gene and found an enhancer domain that is responsible for the regulation of its expression level. The domain is localized in intron 7, and consists of an 800-bp region that contains within it a previously unidentified domain, ∼140 bp in size.
Collapse
Affiliation(s)
- Tamayuki Shinomura
- Tissue Regeneration, Department of Hard Tissue Engineering, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.
| | | | | | | |
Collapse
|
15
|
Stacey MW, Grubbs J, Asmar A, Pryor J, Elsayed-Ali H, Cao W, Beskok A, Dutta D, Darby DA, Fecteau A, Werner A, Kelly RE. Decorin expression, straw-like structure, and differentiation of human costal cartilage. Connect Tissue Res 2012; 53:415-21. [PMID: 22490077 DOI: 10.3109/03008207.2012.684113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Costal cartilage is much understudied compared with the load-bearing cartilages. Abnormally grown costal cartilages are associated with the inherited chest wall deformities pectus excavatum and pectus carinatum resulting in sunken and pigeon chests, respectively. A lack of understanding of the ultrastructural and molecular biology of costal cartilage is a major confounder in predicting causes and outcomes of these disorders. This study analyzed the structure of marginal human costal cartilage (ribs 6-10) through scanning electron and atomic force microscopes and identified the presence of straw-like structures running longitudinally. We also demonstrated that chondrocytes tend to occur singly or as doublets and that centrally located cells produce high levels of aggrecan compared with more peripherally located cells measured using immunohistochemistry. Gene expression from mRNA extracted from cartilage showed high levels of decorin expression, likely associated with the large, complex tubular structures running through this cartilage type. COL2A1, ACAN, and TIMP1 also showed higher levels of expression compared with ACTB. Analysis of gene expression ratios demonstrate that costal cartilage is under differentiated compared with published ratios for articular cartilage, likely due to the vastly different biomechanical environments of each cartilage type. Further studies need to establish whether findings described here from the costal margins are significantly different than the cartilage of the "true ribs" and how these values change with age.
Collapse
Affiliation(s)
- M W Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Demoor M, Maneix L, Ollitrault D, Legendre F, Duval E, Claus S, Mallein-Gerin F, Moslemi S, Boumediene K, Galera P. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. ACTA ACUST UNITED AC 2012; 60:199-207. [DOI: 10.1016/j.patbio.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/03/2012] [Indexed: 11/28/2022]
|
17
|
Fang M, Jacob R, McDougal O, Oxford JT. Minor fibrillar collagens, variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation. Protein Cell 2012; 3:419-33. [PMID: 22752873 PMCID: PMC3484837 DOI: 10.1007/s13238-012-2917-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/07/2012] [Indexed: 12/25/2022] Open
Abstract
Minor fibrillar collagen types V and XI, are those less abundant than the fibrillar collagen types I, II and III. The alpha chains share a high degree of similarity with respect to protein sequence in all domains except the variable region. Genomic variation and, in some cases, extensive alternative splicing contribute to the unique sequence characteristics of the variable region. While unique expression patterns in tissues exist, the functions and biological relevance of the variable regions have not been elucidated. In this review, we summarize the existing knowledge about expression patterns and biological functions of the collagen types V and XI alpha chains. Analysis of biochemical similarities among the peptides encoded by each exon of the variable region suggests the potential for a shared function. The alternative splicing, conservation of biochemical characteristics in light of low sequence conservation, and evidence for intrinsic disorder, suggest modulation of binding events between the surface of collagen fibrils and surrounding extracellular molecules as a shared function.
Collapse
Affiliation(s)
- Ming Fang
- Department of Biological Sciences, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Reed Jacob
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Owen McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
18
|
Lewis R, Ravindran S, Wirthlin L, Traeger G, Fernandes RJ, McAlinden A. Disruption of the developmentally-regulated Col2a1 pre-mRNA alternative splicing switch in a transgenic knock-in mouse model. Matrix Biol 2012; 31:214-26. [PMID: 22248926 PMCID: PMC3295890 DOI: 10.1016/j.matbio.2011.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/17/2022]
Abstract
The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. Another isoform, IIC, has also been identified that contains a truncated exon 2 and is not translated into protein. The biological significance of this IIA/IID to IIB splicing switch is not known. Utilizing a splice site targeting knock-in approach, a 4 nucleotide mutation was created to convert the 5' splice site of Col2a1 exon 2 from a weak, non-consensus sequence to a strong, consensus splice site. This resulted in apparent expression of only the IIA mRNA isoform, as confirmed in vitro by splicing of a type II procollagen mini-gene containing the 5' splice site mutation. To test the splice site targeting approach in vivo, homozygote mice engineered to retain IIA exon 2 (Col2a1(+ex2)) were generated. Chondrocytes from hindlimb epiphyseal cartilage of homozygote mice were shown to express only IIA mRNA and protein at all pre- and post-natal developmental stages analyzed (E12.5, E16.5, P0, P3, P7, P14, P28 and P70). As expected, type IIB procollagen was the major isoform produced in wild type cartilage at all post-natal time points. Col2a1(+ex2) homozygote mice are viable, appear healthy and display no overt phenotype to date. However, research is currently underway to investigate the biological consequence of persistent expression of the exon 2-encoded conserved cysteine-rich domain in post-natal skeletal tissues.
Collapse
Affiliation(s)
- Renate Lewis
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
| | - Geoffrey Traeger
- Department of Orthopaedic and Sports Medicine, University of Washington, Seattle, WA
| | - Russell J. Fernandes
- Department of Orthopaedic and Sports Medicine, University of Washington, Seattle, WA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
19
|
Symoens S, Malfait F, Vlummens P, Hermanns-Lê T, Syx D, De Paepe A. A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement. PLoS One 2011; 6:e20121. [PMID: 21611149 PMCID: PMC3096658 DOI: 10.1371/journal.pone.0020121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/12/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Ehlers-Danlos Syndrome (EDS) is a heritable connective tissue disorder characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. The classic subtype of EDS is caused by mutations in one of the type V collagen genes (COL5A1 and COL5A2). Most mutations affect the type V collagen helical domain and lead to a diminished or structurally abnormal type V collagen protein. Remarkably, only two mutations were reported to affect the extended, highly conserved N-propeptide domain, which plays an important role in the regulation of the heterotypic collagen fibril diameter. We identified a novel COL5A1 N-propeptide mutation, resulting in an unusual but severe classic EDS phenotype and a remarkable splicing outcome. METHODOLOGY/PRINCIPAL FINDINGS We identified a novel COL5A1 N-propeptide acceptor-splice site mutation (IVS6-2A>G, NM_000093.3_c.925-2A>G) in a patient with cutaneous features of EDS, severe progressive scoliosis and eye involvement. Two mutant transcripts were identified, one with an exon 7 skip and one in which exon 7 and the upstream exon 6 are deleted. Both transcripts are expressed and secreted into the extracellular matrix, where they can participate in and perturb collagen fibrillogenesis, as illustrated by the presence of dermal collagen cauliflowers. Determination of the order of intron removal and computational analysis showed that simultaneous skipping of exons 6 and 7 is due to the combined effect of delayed splicing of intron 7, altered pre-mRNA secondary structure, low splice site strength and possibly disturbed binding of splicing factors. CONCLUSIONS/SIGNIFICANCE We report a novel COL5A1 N-propeptide acceptor-splice site mutation in intron 6, which not only affects splicing of the adjacent exon 7, but also causes a splicing error of the upstream exon 6. Our findings add further insights into the COL5A1 splicing order and show for the first time that a single COL5A1 acceptor-splice site mutation can perturb splicing of the upstream exon.
Collapse
Affiliation(s)
- Sofie Symoens
- Center for Medical Genetics, University Hospital Ghent, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Shainer R, Gaberman E, Levdansky L, Gorodetsky R. Efficient isolation and chondrogenic differentiation of adult mesenchymal stem cells with fibrin microbeads and micronized collagen sponges. Regen Med 2010; 5:255-65. [DOI: 10.2217/rme.09.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Mesenchymal stem cells (MSCs) have been demonstrated to potentially undergo chondrogenic differentiation. We propose a new matrix for stem cell-based chondrogenesis using dense fibrin microbeads (FMBs) combined with grounded dehydrothermally crosslinked collagen sponges (micronized collagen). Methods: In this study, MSCs were isolated from bone marrow of transgenic green fluorescent protein C57/Bl mice by FMBs in high yield. After 48 h in slowly rotating suspension culture, micronized collagen was added. Results: The cells on the FMBs migrated to the collagen pieces and formed aggregates that developed into cartilage-like structures. Following chondrogenic differentiation, alcian blue staining and collagen type II immunohistochemistry demonstrated the presence of chondrocytes in the 3D structures. PCR for the expression of aggrecan and collagen type II genes supported these findings. The in vitro structures that formed were used for ectopic subdermal implantation in wild-type C57/Bl mice. However, the chondrogenic markers faded relative to the pre-implant in vitro structures. Conclusion: We propose that FMBs with micronized collagen could serve as a simple technology for MSC isolation and chondrogenesis as a basis for implantation.
Collapse
Affiliation(s)
| | | | | | - Raphael Gorodetsky
- Biotechnology & Radiobiology Laboratories, Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| |
Collapse
|
21
|
Gouttenoire J, Bougault C, Aubert-Foucher E, Perrier E, Ronzière MC, Sandell L, Lundgren-Akerlund E, Mallein-Gerin F. BMP-2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes. Eur J Cell Biol 2010; 89:307-14. [PMID: 20129696 DOI: 10.1016/j.ejcb.2009.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/28/2009] [Accepted: 10/29/2009] [Indexed: 11/15/2022] Open
Abstract
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Collapse
Affiliation(s)
- Jérôme Gouttenoire
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université de Lyon, and IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, Lyon F-69367, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
O'Leary DA, Sharif O, Anderson P, Tu B, Welch G, Zhou Y, Caldwell JS, Engels IH, Brinker A. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening. PLoS One 2009; 4:e8348. [PMID: 20020055 PMCID: PMC2791862 DOI: 10.1371/journal.pone.0008348] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/23/2009] [Indexed: 11/28/2022] Open
Abstract
One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ∼10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.
Collapse
Affiliation(s)
- Debra A. O'Leary
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (DAO); (IHE)
| | - Orzala Sharif
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Paul Anderson
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Buu Tu
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Genevieve Welch
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jeremy S. Caldwell
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ingo H. Engels
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (DAO); (IHE)
| | - Achim Brinker
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| |
Collapse
|
23
|
Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 2009; 35:169-78. [PMID: 19959365 DOI: 10.1016/j.tibs.2009.10.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 01/06/2023]
Abstract
Pre-mRNA splicing involves removing non-coding introns from RNA transcripts. It is carried out by the spliceosome, along with other auxiliary factors. In general, research in splicing has focused on the sequences within the pre-mRNA, without considering the structures that these sequences might form. We propose that the role of RNA structure deserves more consideration when thinking about splicing mechanisms. RNA structures can inhibit or aid binding of spliceosomal components to the pre-mRNA, or can increase splicing efficiency by bringing important sequences into close proximity. Recent reports have identified proteins and small molecules that can regulate splicing by modulating RNA structures, thereby expanding our knowledge of the mechanisms used to regulate splicing.
Collapse
Affiliation(s)
- M Bryan Warf
- Institute of Molecular Biology, and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
24
|
Liu C, Chauhan C, Unnasch TR. The role of local secondary structure in the function of the trans-splicing motif of Brugia malayi. Mol Biochem Parasitol 2009; 169:115-9. [PMID: 19852985 DOI: 10.1016/j.molbiopara.2009.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/13/2009] [Indexed: 11/15/2022]
Abstract
A 7-nt motif (the trans-splicing motif or TSM) was previously shown to be necessary and sufficient to direct trans-splicing of transgenic mRNAs in transgenic Brugia malayi embryos. Insertion of the TSM into two genes lacking a TSM homologue resulted in trans-splicing of transgenic mRNAs from one transgene but not the other, suggesting that local sequence context might affect TSM function. To test this hypothesis, constructs inserting the TSM into different positions of two B. malayi genes were tested for their ability to support trans-splicing of transgenic mRNAs. Transgenic mRNAs derived from constructs in which the insertion of the TSM did not result in a perturbation of the local predicted secondary structure were trans-spliced, while those in which the TSM perturbed the local secondary structure were not. These data suggest that local secondary structure plays a role in the ability of the TSM to direct trans-splicing.
Collapse
Affiliation(s)
- Canhui Liu
- Global Health Infectious Disease Program, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, United States
| | | | | |
Collapse
|
25
|
Proper expression of helix-loop-helix protein Id2 is important to chondrogenic differentiation of ATDC5 cells. Biochem J 2009; 419:635-43. [PMID: 19175360 DOI: 10.1042/bj20081715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The process of chondrogenesis can be mimicked in vitro by insulin treatment of mouse ATDC5 chondroprogenitor cells. To identify novel factors that are involved in the control of chondrogenesis, we carried out a large-scale screening through retroviral insertion mutagenesis and isolated a fast-growing ATDC5 clone incapable of chondrogenic differentiation. Inverse-PCR analysis of this clone revealed that the retroviral DNA was inserted into the promoter region of mouse Id2 (inhibitor of DNA-binding protein 2) gene. This retroviral insertion increased Id2 protein levels to twice those found in normal ATDC5 cells. To investigate whether an elevated level of Id2 protein was responsible for inhibition of chondrogenic differentiation, ATDC5 cells were infected with a retrovirus to stably express Id2. ATDC5 cells expressing ectopic Id2 exhibited signs of de-differentiation, such as rapid growth, and insulin failed to induce expression of Sox9 (Sry-type high-mobility-group box 9) or matrix genes such as type II collagen (COL2) in these cells. When endogenous Id2 was knocked down by siRNA (small interfering RNA) in ATDC5 cells, expression of Sox9 and COL2 was increased and chondrogenic differentiation was accelerated. To examine how Id2 is expressed in chondrocytes in vivo, we carried out immunostaining of E16.5 mouse embryos and found that Id2 is expressed in articular chondrocytes and proliferating chondrocytes, but barely detectable in hypertrophic chondrocytes. Our results suggest that proper expression of Id2 is important to achieving a fine balance between growth and differentiation during chondrogenesis.
Collapse
|
26
|
Wang Y, Leung FCC. A study on genomic distribution and sequence features of human long inverted repeats reveals species-specific intronic inverted repeats. FEBS J 2009; 276:1986-98. [PMID: 19243432 DOI: 10.1111/j.1742-4658.2009.06930.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The inverted repeats present in a genome play dual roles. They can induce genomic instability and, on the other hand, regulate gene expression. In the present study, we report the distribution and sequence features of recombinogenic long inverted repeats (LIRs) that are capable of forming stable stem-loops or palindromes within the human genome. A total of 2551 LIRs were identified, and 37% of them were located in long introns (largely > 10 kb) of genes. Their distribution appears to be random in introns and is not restrictive, even for regions near intron-exon boundaries. Almost half of them comprise TG/CA-rich repeats, inversely arranged Alu repeats and MADE1 mariners. The remaining LIRs are mostly unique in their sequence features. Comparative studies of human, chimpanzee, rhesus monkey and mouse orthologous genes reveal that human genes have more recombinogenic LIRs than other orthologs, and over 80% are human-specific. The human genes associated with the human-specific LIRs are involved in the pathways of cell communication, development and the nervous system, as based on significantly over-represented Gene Ontology terms. The functional pathways related to the development and functions of the nervous system are not enriched in chimpanzee and mouse orthologs. The findings of the present study provide insight into the role of intronic LIRs in gene regulation and primate speciation.
Collapse
Affiliation(s)
- Yong Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
27
|
Semjidsuren GU, Im GJ, Lee SH, Park SJ, Hwang HY, Jung HH. Differential gene expression profiles of the olfactory bulb after nasal obstruction in neonatal rats. Otolaryngol Head Neck Surg 2008; 138:648-54. [PMID: 18439473 DOI: 10.1016/j.otohns.2007.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/20/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Microarray technique is a useful tool to identify functional gene candidates. In this study, we evaluated the gene expression profiles in the olfactory bulbs of normal rats and naris-occluded rats using the gene microarray technique. STUDY DESIGN AND METHODS To induce atrophic change in the olfactory bulb, we performed a unilateral nasal obstruction by electronic cauterization on postnatal day 1 rats. Differential gene expression profiles of the nasal obstruction group and the normal control group at postnatal day 35 were analyzed with a DNA microarray. RESULTS Microarray revealed 41 genes that were upregulated at least 2-fold in the nasal obstruction group compared with the control group. Among these upregulated genes, increased expression levels of 20 functional genes were confirmed by semiquantitative reverse transcription-polymerase chain reaction. CONCLUSION This study examines candidate genes associated with the development, apoptosis, and signal transduction of the olfactory bulb. These results may explain the fact that blockage of airflow by inflammation and nasal polyps causes deprivation of olfactory functions in vivo.
Collapse
Affiliation(s)
- Gan-Undram Semjidsuren
- Department of Biomedical Sciences, College of Medicine, Korea University, Sungbuk-Gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
28
|
McAlinden A, Majava M, Bishop PN, Perveen R, Black GCM, Pierpont ME, Ala-Kokko L, Männikkö M. Missense and nonsense mutations in the alternatively-spliced exon 2 ofCOL2A1cause the ocular variant of Stickler syndrome. Hum Mutat 2008; 29:83-90. [PMID: 17721977 DOI: 10.1002/humu.20603] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stickler syndrome type I (STL1) is a phenotypically heterogeneous disorder characterized by ocular and extraocular features. It is caused by null-allele mutations in the COL2A1 gene that codes for procollagen II. COL2A1 precursor mRNA undergoes alternative splicing, resulting in two isoforms, a long form including exon 2 (type IIA isoform) and a short form excluding exon 2 (type IIB isoform). The short form is predominantly expressed by differentiated chondrocytes in adult cartilage, and the long form in chondroprogenitor cells during early development and in the vitreous of the eye, which is the only adult tissue containing procollagen IIA. Recent evidence indicates that due to the tissue-specific expression of these two isoforms, premature termination codon mutations in exon 2 cause Stickler syndrome with minimal or no extraocular manifestations. We describe here two mutations in exon 2 of COL2A1 in three patients with predominantly ocular Stickler syndrome: Cys64Stop in two patients, and a novel structural mutation, Cys57Tyr, in one patient. RT-PCR of total lymphoblast RNA from one patient with the Cys64Stop mutation revealed that only the normal allele of the IIA form was present, indicating that the mutation resulted either in complete loss of the allele by nonsense-mediated mRNA decay or by skipping of exon 2 via nonsense-mediated altered splicing, resulting in production of the type IIB isoform. The results of COL2A1 minigene expression studies suggest that both Cys64Stop and Cys57Tyr alter positive cis regulatory elements for splicing, resulting in a lower IIA:IIB ratio.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
McAlinden A, Johnstone B, Kollar J, Kazmi N, Hering TM. Expression of two novel alternatively spliced COL2A1 isoforms during chondrocyte differentiation. Matrix Biol 2007; 27:254-66. [PMID: 18023161 DOI: 10.1016/j.matbio.2007.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/06/2007] [Accepted: 10/11/2007] [Indexed: 01/06/2023]
Abstract
Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow-derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by the use of an alternative 5' splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by the use of another 5' alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5' splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine 4940 Parkview Place, St Louis, MO 63110, United States
| | | | | | | | | |
Collapse
|
30
|
Liu C, de Oliveira A, Higazi TB, Ghedin E, DePasse J, Unnasch TR. Sequences necessary for trans-splicing in transiently transfected Brugia malayi. Mol Biochem Parasitol 2007; 156:62-73. [PMID: 17727976 PMCID: PMC2039923 DOI: 10.1016/j.molbiopara.2007.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Many genes in parasitic nematodes are both cis- and trans-spliced. Previous studies have demonstrated that a 7nt element encoded in the first intron of the Brugia malayi 70kDa heat shock protein (BmHSP70) gene was necessary to permit trans-splicing of transgenic mRNAs in embryos transfected with constructs encoding portions of the BmHSP70 gene. Here we demonstrate that this element (the B. malayi HSP70 trans-splicing motif, or BmHSP70 TSM) is necessary and sufficient to direct trans-splicing of transgenic mRNAs derived from two genes naturally containing this motif. Mutations introduced into any position of the BmHSP70 TSM abrogated its ability to direct trans-splicing. Transgenic mRNAs derived from embryos transfected with constructs containing promoters and associated downstream domains from two normally trans-spliced genes that lack a BmHSP70 TSM homologue (the B. malayi 12kDa small subunit ribosomal protein (BmRPS12) gene and the B. malayi RNA-binding protein (BmRBP1) gene), were not trans-spliced. Transfer of the BmHSP70 TSM into the first intron of the BmRPS12 gene rendered it competent for trans-splicing. Insertion of the BmHSP70 TSM into the single intron of the BmRBP1 gene did not render it trans-splicing competent. However, tagged constructs of the full-length BmRBP1 gene were trans-splicing competent. An analysis of the first exons and introns of over 200 trans-spliced B. malayi genes found homologues for the BmHSP70 TSM in roughly 25%. Thus, while the BmHSP70 TSM is necessary and sufficient to direct trans-splicing in some genomic contexts, independent trans-splicing signals are employed by other genes.
Collapse
Affiliation(s)
- Canhui Liu
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| | - Ana de Oliveira
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| | - Tarig B. Higazi
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| | - Elodie Ghedin
- Division of Infectious Diseases University of Pittsburgh School of Medicine Pittsburgh, PA 15261
| | - Jay DePasse
- Division of Infectious Diseases University of Pittsburgh School of Medicine Pittsburgh, PA 15261
| | - Thomas R. Unnasch
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| |
Collapse
|
31
|
McAlinden A, Liang L, Mukudai Y, Imamura T, Sandell LJ. Nuclear protein TIA-1 regulates COL2A1 alternative splicing and interacts with precursor mRNA and genomic DNA. J Biol Chem 2007; 282:24444-54. [PMID: 17580305 DOI: 10.1074/jbc.m702717200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The RNA-binding protein TIA-1 (T-cell-restricted intracellular antigen-1) functions in regulating post-transcriptional mechanisms, including precursor mRNA (pre-mRNA) alternative splicing and mRNA translation. Utilizing a mini-gene consisting of part of the type II procollagen gene (COL2A1), we show that TIA-1 interacts with a conserved AU-rich cis element in COL2A1 intron 2 and modulates alternative splicing of exon 2. This unique, highly conserved cis element containing stem-loop secondary structure was previously identified in our laboratory as an essential motif that controls the developmentally regulated exon 2 splicing switch during chondrogenesis (McAlinden, A., Havlioglu, N., Liang, L., Davies, S. R., and Sandell, L. J. (2005) J. Biol. Chem. 280, 32700-32711). In vivo binding of endogenous TIA-1 to the AU-rich cis element in COL2A1 pre-mRNA was confirmed by the ribonucleoprotein immunoprecipitation assay. Importantly, we also show that TIA-1 interacts with the equivalent DNA sequence with a preference for single-stranded rather than double-stranded DNA. Chromatin immunoprecipitation assays (including an additional RNase step) confirmed this interaction in vivo. Competition assays showed that TIA-1 apparently binds with higher affinity to DNA than to RNA. Finally, we show that this strong DNA-TIA-1 interaction can be disrupted by an RNA polymerase during active transcription. This suggests a potentially novel, dual role for TIA-1 in shuttling between DNA and RNA ligands to co-regulate COL2A1 expression at the level of transcription and pre-mRNA alternative splicing.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
32
|
Buratti E, Dhir A, Lewandowska MA, Baralle FE. RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events. Nucleic Acids Res 2007; 35:4369-83. [PMID: 17580311 PMCID: PMC1935003 DOI: 10.1093/nar/gkm447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variations deep in the intronic regions of pre-mRNA molecules are increasingly reported to affect splicing events. However, there is no general explanation why apparently similar variations may have either no effect on splicing or cause significant splicing alterations. In this work we have examined the structural architecture of pseudoexons previously described in ATM and CFTR patients. The ATM case derives from the deletion of a repressor element and is characterized by an aberrant 5′ss selection despite the presence of better alternatives. The CFTR pseudoexon instead derives from the creation of a new 5′ss that is used while a nearby pre-existing donor-like sequence is never selected. Our results indicate that RNA structure is a major splicing regulatory factor in both cases. Furthermore, manipulation of the original RNA structures can lead to pseudoexon inclusion following the exposure of unused 5′ss already present in their wild-type intronic sequences and prevented to be recognized because of their location in RNA stem structures. Our data show that intrinsic structural features of introns must be taken into account to understand the mechanism of pseudoexon activation in genetic diseases. Our observations may help to improve diagnostics prediction programmes and eventual therapeutic targeting.
Collapse
|
33
|
Woll NL, Heaney JD, Bronson SK. Osteogenic nodule formation from single embryonic stem cell-derived progenitors. Stem Cells Dev 2007; 15:865-79. [PMID: 17253949 DOI: 10.1089/scd.2006.15.865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The process of bone formation can be approximated in vitro in the form of a mineralized nodule. Osteoprogenitors and mesenchymal stem cells (MSCs), the immediate precursors of the osteoprogenitor, proliferate and differentiate into osteoblasts when placed into culture. These osteoblasts secrete and mineralize a matrix during a period of 3-4 weeks. The differentiation potential of embryonic stem (ES) cells suggests that ES cells should also have the ability to form osteogenic nodules in vitro. ES cells were allowed to form embryoid bodies (EBs) and were cultured in suspension for 2 days; EBs were disrupted and plated as single cells at concentrations as low as 25 cells/cm(2). We provide five lines of evidence for osteogenesis in these ES cell-derived cultures: (1) cell and colony morphology as revealed by phase-contrast microscopy, (2) mineralization of extracellular matrix as revealed by von Kossa staining, (3) quantitative real-time PCR (QRT-PCR) analysis of cDNA from entire plates and individual colonies revealing expression of genes characteristic of, and specific for, osteoblasts, (4) confocal microscopy of nodules from osteocalcin-green fluorescent protein (GFP) ES cell lines demonstrating the appropriate stage and position of osteoblasts expressing the reporter, and (5) immunostaining of nodules with a type I collagen antibody. Our method of initiating osteogenesis from ES cell-derived cultures is the only described method that allows for the observation and manipulation of the commitment stage of mesengenesis from single embryonic progenitors.
Collapse
Affiliation(s)
- Nicole L Woll
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
34
|
Matsushita H, Blackburn ML, Klineberg E, Zielinska-Kwiatkowska A, Bolander ME, Sarkar G, Suva LJ, Chansky HA, Yang L. TASR-1 regulates alternative splicing of collagen genes in chondrogenic cells. Biochem Biophys Res Commun 2007; 356:411-7. [PMID: 17367759 PMCID: PMC1887518 DOI: 10.1016/j.bbrc.2007.02.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/27/2007] [Indexed: 12/14/2022]
Abstract
During the differentiation of chondroprogenitors into mature chondrocytes, the alternative splicing of collagen genes switches from longer isoforms to shorter ones. To investigate the underlying mechanisms, we infected mouse ATDC5 chondroprogenitor cells with retrovirus for stable expression of two closely related SR splicing factors. RT-PCR analysis revealed that TASR-1, but not TASR-2, influenced alternative splicing of type II and type XI collagens in ATDC5 cells. The effect of TASR-1 on splicing could be reversed with the addition of insulin. Results from our microarray analysis of ATDC5 cells showed that TASR-1 and TASR-2 differentially affect genes involved in the differentiation of chondrocytes. Of special interest is the finding that TASR-1 could down-regulate expression of type X collagen, a hallmark of hypertrophic chondrocytes. Immunohistostaining demonstrated that TASR-1 protein is more abundantly expressed than TASR-2 in mouse articular chondrocytes, raising the possibility that TASR-1 might be involved in phenotype maintenance of articular chondrocytes.
Collapse
Affiliation(s)
- Hiroshi Matsushita
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Michael L. Blackburn
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Eric Klineberg
- Department of Orthopedics, University of Washington School of Medicine, Seattle, WA 98108
| | | | - Mark E. Bolander
- Department of Orthopedic Research, Mayo Clinic, Rochester, MN 55905
| | - Gobinda Sarkar
- Department of Orthopedic Research, Mayo Clinic, Rochester, MN 55905
| | - Larry J. Suva
- Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Howard A. Chansky
- Department of Orthopedics, University of Washington School of Medicine, Seattle, WA 98108
| | - Liu Yang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- # Current address for correspondence: Liu Yang, Ph.D. Associate Professor Department of Orthopedics University of Washington 1660 S. Columbian way, GMR 151 Seattle, WA 98108; Tel: 206-277-6913, Fax: 206-768-5261 E-mail:
| |
Collapse
|
35
|
Xing Y, Lee C. Relating alternative splicing to proteome complexity and genome evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:36-49. [PMID: 18380339 DOI: 10.1007/978-0-387-77374-2_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prior to genomics, studies of alternative splicing primarily focused on the function and mechanism of alternative splicing in individual genes and exons. This has changed dramatically since the late 1990s. High-throughput genomics technologies, such as EST sequencing and microarrays designed to detect changes in splicing, led to genome-wide discoveries and quantification of alternative splicing in a wide range of species from human to Arabidopsis. Consensus estimates of AS frequency in the human genome grew from less than 5% in mid-1990s to as high as 60-74% now. The rapid growth in sequence and microarray data for alternative splicing has made it possible to look into the global impact of alternative splicing on protein function and evolution of genomes. In this chapter, we review recent research on alternative splicing's impact on proteomic complexity and its role in genome evolution.
Collapse
Affiliation(s)
- Yi Xing
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | | |
Collapse
|
36
|
Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 2006; 35:371-89. [PMID: 17170000 PMCID: PMC1802598 DOI: 10.1093/nar/gkl1050] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Humans have two nearly identical copies of the survival motor neuron (SMN ) gene, SMN1 and SMN2. Homozygous loss of SMN1 causes spinal muscular atrophy (SMA). SMN2 is unable to prevent the disease due to skipping of exon 7. Using a systematic approach of in vivo selection, we have previously demonstrated that a weak 5' splice site (ss) serves as the major cause of skipping of SMN2 exon 7. Here we show the inhibitory impact of RNA structure on the weak 5' ss of exon 7. We call this structure terminal stem-loop 2 (TSL2). Confirming the inhibitory nature of TSL2, point mutations that destabilize TSL2 promote exon 7 inclusion in SMN2, whereas strengthening of TSL2 promotes exon 7 skipping even in SMN1. We also demonstrate that TSL2 negatively affects the recruitment of U1snRNP at the 5' ss of exon 7. Using enzymatic structure probing, we confirm that the sequence at the junction of exon 7/intron 7 folds into TSL2 and show that mutations in TSL2 cause predicted structural changes in this region. Our findings reveal for the first time the critical role of RNA structure in regulation of alternative splicing of human SMN.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| | | | | |
Collapse
|
37
|
Xing Y, Lee C. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat Rev Genet 2006; 7:499-509. [PMID: 16770337 DOI: 10.1038/nrg1896] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome-wide analyses of alternative splicing have established its nearly ubiquitous role in gene regulation in many organisms. Genome sequencing and comparative genomics have made it possible to look in detail at the evolutionary history of specific alternative exons or splice sites, resulting in a flurry of publications in recent years. Here, we consider how alternative splicing has contributed to the evolution of modern genomes, and discuss constraints on evolution associated with alternative splicing that might have important medical implications.
Collapse
Affiliation(s)
- Yi Xing
- Molecular Biology Institute, Center for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|