1
|
Dixon CL, Martin NR, Niphakis MJ, Cravatt BF, Fairn GD. Attenuating ABHD17 Isoforms Augments the S-acylation and Function of NOD2 and a Subset of Crohn's Disease-associated NOD2 Variants. Cell Mol Gastroenterol Hepatol 2025; 19:101491. [PMID: 40054525 PMCID: PMC12005342 DOI: 10.1016/j.jcmgh.2025.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND & AIMS NOD2 is an intracellular innate immune receptor that detects bacterial peptidoglycan fragments. Although nominally soluble, some NOD2 is associated with the plasma membrane and endosomal compartments for microbial surveillance. This membrane targeting is achieved through post-translational S-acylation of NOD2 by the protein acyltransferase ZDHHC5. Membrane attachment is necessary to initiate a signaling cascade in response to cytosolic peptidoglycan fragments. Ultimately, this signaling results in the production of antimicrobial peptides and proinflammatory cytokines. In most cases, S-acylation is a reversible post-translational modification with removal of the fatty acyl chain catalyzed by one of several acyl protein thioesterases. Deacylation of NOD2 by such an enzyme will displace it from the plasma membrane and endosomes, thus preventing signaling. METHODS To identify the enzymes responsible for NOD2 deacylation, we used engineered cell lines with RNA interference and small-molecule inhibitors. These approaches were combined with confocal microscopy, acyl-resin-assisted capture, immunoblotting, and cytokine multiplex assays. RESULTS We identified α/β-hydrolase domain-containing protein 17 isoforms (ABHD17A, ABHD17B, and ABHD17C) as the acyl protein thioesterases responsible for NOD2 deacylation. Inhibiting ABHD17 increased the plasma membrane localization of wild-type NOD2 and a subset of poorly acylated Crohn's disease-associated variants. This enhanced NOD2 activity, increasing NF-κB activation and pro-inflammatory cytokine production in epithelial cells. CONCLUSIONS These findings demonstrate that ABHD17 isoforms are negative regulators of NOD2. The results also suggest that targeting ABHD17 isoforms could restore functionality to specific Crohn's disease-associated NOD2 variants, offering a potential therapeutic strategy.
Collapse
Affiliation(s)
- Charneal L Dixon
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Noah R Martin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Dixon CL, Martin NR, Niphakis MJ, Cravatt BF, Fairn GD. Attenuating ABHD17 isoforms augments the S-acylation and function of NOD2 and a subset of Crohn's disease-associated NOD2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.20.572362. [PMID: 38187608 PMCID: PMC10769251 DOI: 10.1101/2023.12.20.572362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND AIMS NOD2 is an intracellular innate immune receptor that detects bacterial peptidoglycan fragments. Although nominally soluble, some NOD2 is associated with the plasma membrane and endosomal compartments for microbial surveillance. This membrane targeting is achieved through post-translational S-acylation of NOD2 by the protein acyltransferase ZDHHC5. Membrane attachment is necessary to initiate a signaling cascade in response to cytosolic peptidoglycan fragments. Ultimately, this signaling results in the production of antimicrobial peptides and pro-inflammatory cytokines. In most cases, S-acylation is a reversible post-translational modification with removal of the fatty acyl chain catalyzed by one of several acyl protein thioesterases. Deacylation of NOD2 by such an enzyme will displace it from the plasma membrane and endosomes, thus preventing signaling. METHODS To identify the enzymes responsible for NOD2 deacylation, we used engineered cell lines with RNA interference and small-molecule inhibitors. These approaches were combined with confocal microscopy, acyl-resin-assisted capture, immunoblotting, and cytokine multiplex assays. RESULTS We identified α/β-hydrolase domain-containing protein 17 isoforms (ABHD17A, ABHD17B, and ABHD17C) as the acyl protein thioesterases responsible for NOD2 deacylation. Inhibiting ABHD17 increased the plasma membrane localization of wild-type NOD2 and a subset of poorly acylated Crohn's disease-associated variants. This enhanced NOD2 activity, increasing NF-κB activation and pro-inflammatory cytokine production in epithelial cells. CONCLUSIONS These findings demonstrate that ABHD17 isoforms are negative regulators of NOD2. The results also suggest that targeting ABHD17 isoforms could restore functionality to specific Crohn's disease-associated NOD2 variants, offering a potential therapeutic strategy.
Collapse
Affiliation(s)
- Charneal L. Dixon
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Noah R. Martin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Gregory D. Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Chauvin C, Alvarez-Simon D, Radulovic K, Boulard O, Laine W, Delacre M, Waldschmitt N, Segura E, Kluza J, Chamaillard M, Poulin LF. NOD2 in monocytes negatively regulates macrophage development through TNFalpha. Front Immunol 2023; 14:1181823. [PMID: 37415975 PMCID: PMC10320732 DOI: 10.3389/fimmu.2023.1181823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Objective It is believed that intestinal recruitment of monocytes from Crohn's Disease (CD) patients who carry NOD2 risk alleles may repeatedly give rise to recruitment of pathogenic macrophages. We investigated an alternative possibility that NOD2 may rather inhibit their differentiation from intravasating monocytes. Design The monocyte fate decision was examined by using germ-free mice, mixed bone marrow chimeras and a culture system yielding macrophages and monocyte-derived dendritic cells (mo-DCs). Results We observed a decrease in the frequency of mo-DCs in the colon of Nod2-deficient mice, despite a similar abundance of monocytes. This decrease was independent of the changes in the gut microbiota and dysbiosis caused by Nod2 deficiency. Similarly, the pool of mo-DCs was poorly reconstituted in a Nod2-deficient mixed bone marrow (BM) chimera. The use of pharmacological inhibitors revealed that activation of NOD2 during monocyte-derived cell development, dominantly inhibits mTOR-mediated macrophage differentiation in a TNFα-dependent manner. These observations were supported by the identification of a TNFα-dependent response to muramyl dipeptide (MDP) that is specifically lost when CD14-expressing blood cells bear a frameshift mutation in NOD2. Conclusion NOD2 negatively regulates a macrophage developmental program through a feed-forward loop that could be exploited for overcoming resistance to anti-TNF therapy in CD.
Collapse
Affiliation(s)
- Camille Chauvin
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Daniel Alvarez-Simon
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Katarina Radulovic
- Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, Valenciennes CEDEX, France
| | | | - William Laine
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | - Myriam Delacre
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Elodie Segura
- INSERM U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Jérome Kluza
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | | | | |
Collapse
|
4
|
Essential Roles of Peroxiredoxin IV in Inflammation and Cancer. Molecules 2022; 27:molecules27196513. [PMID: 36235049 PMCID: PMC9573489 DOI: 10.3390/molecules27196513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin IV (Prx4) is a 2-Cysteine peroxidase with ubiquitous expression in human tissues. Prx4 scavenges hydrogen peroxide and participates in oxidative protein folding in the endoplasmic reticulum. In addition, Prx4 is secreted outside the cell. Prx4 is upregulated in several cancers and is a potential therapeutic target. We have summarized historical and recent advances in the structure, function and biological roles of Prx4, focusing on inflammatory diseases and cancer. Oxidative stress is known to activate pro-inflammatory pathways. Chronic inflammation is a risk factor for cancer development. Hence, redox enzymes such as Prx4 are important players in the crosstalk between inflammation and cancer. Understanding molecular mechanisms of regulation of Prx4 expression and associated signaling pathways in normal physiological and disease conditions should reveal new therapeutic strategies. Thus, although Prx4 is a promising therapeutic target for inflammatory diseases and cancer, further research needs to be conducted to bridge the gap to clinical application.
Collapse
|
5
|
Cysteine-Rich LIM-Only Protein 4 (CRP4) Promotes Atherogenesis in the ApoE -/- Mouse Model. Cells 2022; 11:cells11081364. [PMID: 35456043 PMCID: PMC9032522 DOI: 10.3390/cells11081364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) can switch from their contractile state to a synthetic phenotype resulting in high migratory and proliferative capacity and driving atherosclerotic lesion formation. The cysteine-rich LIM-only protein 4 (CRP4) reportedly modulates VSM-like transcriptional signatures, which are perturbed in VSMCs undergoing phenotypic switching. Thus, we hypothesized that CRP4 contributes to adverse VSMC behaviours and thereby to atherogenesis in vivo. The atherogenic properties of CRP4 were investigated in plaque-prone apolipoprotein E (ApoE) and CRP4 double-knockout (dKO) as well as ApoE-deficient CRP4 wildtype mice. dKO mice exhibited lower plaque numbers and lesion areas as well as a reduced content of α-smooth muscle actin positive cells in the lesion area, while lesion-associated cell proliferation was elevated in vessels lacking CRP4. Reduced plaque volumes in dKO correlated with significantly less intra-plaque oxidized low-density lipoprotein (oxLDL), presumably due to upregulation of the antioxidant factor peroxiredoxin-4 (PRDX4). This study identifies CRP4 as a novel pro-atherogenic factor that facilitates plaque oxLDL deposition and identifies the invasion of atherosclerotic lesions by VSMCs as important determinants of plaque vulnerability. Thus, targeting of VSMC CRP4 should be considered in plaque-stabilizing pharmacological strategies.
Collapse
|
6
|
Ghalandary M, Li Y, Fröhlich T, Magg T, Liu Y, Rohlfs M, Hollizeck S, Conca R, Schwerd T, Uhlig HH, Bufler P, Koletzko S, Muise AM, Snapper SB, Hauck F, Klein C, Kotlarz D. Valosin-containing protein-regulated endoplasmic reticulum stress causes NOD2-dependent inflammatory responses. Sci Rep 2022; 12:3906. [PMID: 35273242 PMCID: PMC8913691 DOI: 10.1038/s41598-022-07804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
NOD2 polymorphisms may affect sensing of the bacterial muramyl dipeptide (MDP) and trigger perturbed inflammatory responses. Genetic screening of a patient with immunodeficiency and enteropathy revealed a rare homozygous missense mutation in the first CARD domain of NOD2 (ENST00000300589; c.160G > A, p.E54K). Biochemical assays confirmed impaired NOD2-dependent signaling and proinflammatory cytokine production in patient's cells and heterologous cellular models with overexpression of the NOD2 mutant. Immunoprecipitation-coupled mass spectrometry unveiled the ATPase valosin-containing protein (VCP) as novel interaction partner of wildtype NOD2, while the binding to the NOD2 variant p.E54K was abrogated. Knockdown of VCP in coloncarcinoma cells led to impaired NF-κB activity and IL8 expression upon MDP stimulation. In contrast, tunicamycin-induced ER stress resulted in increased IL8, CXCL1, and CXCL2 production in cells with knockdown of VCP, while enhanced expression of these proinflammatory molecules was abolished upon knockout of NOD2. Taken together, these data suggest that VCP-mediated inflammatory responses upon ER stress are NOD2-dependent.
Collapse
Affiliation(s)
- Maryam Ghalandary
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Yue Li
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Thomas Magg
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Yanshan Liu
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Sebastian Hollizeck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Raffaele Conca
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Tobias Schwerd
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Department of Pediatrics, and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Philip Bufler
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- Department of Pediatrics, School of Medicine Collegium, Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, M5G1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G1A8, Canada
| | - Scott B Snapper
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Gene Center, LMU Munich, Munich, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany.
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany.
| |
Collapse
|
7
|
Robinson EK, Covarrubias S, Zhou S, Carpenter S. Generation and utilization of a HEK-293T murine GM-CSF expressing cell line. PLoS One 2021; 16:e0249117. [PMID: 33836009 PMCID: PMC8034741 DOI: 10.1371/journal.pone.0249117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages and dendritic cells (DCs) are innate immune cells that play a key role in defense against pathogens. In vitro cultures of bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) are well-established and valuable methods for immunological studies. Typically, commercially available recombinant GM-CSF is utilized to generate BMDCs and is also used to culture alveolar macrophages. We have generated a new HEK-293T cell line expressing murine GM-CSF that secretes high levels of GM-CSF (~180 ng/ml) into complete media as an alternative to commercial GM-CSF. Differentiation of dendritic cells and expression of various markers were kinetically assessed using the GM-CSF HEK293T cell line, termed supGM-CSF and compared directly to purified commercial GMCSF. After 7–9 days of cell culture the supGM-CSF yielded twice as many viable cells compared to the commercial purified GM-CSF. In addition to differentiating BMDCs, the supGM-CSF can be utilized to culture functionally active alveolar macrophages. Collectively, our results show that supernatant from our GM-CSF HEK293T cell line supports the differentiation of mouse BMDCs or alveolar macrophage culturing, providing an economical alternative to purified GM-CSF.
Collapse
Affiliation(s)
- Elektra Kantzari Robinson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Simon Zhou
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wegrzyn AB, Herzog K, Gerding A, Kwiatkowski M, Wolters JC, Dolga AM, van Lint AEM, Wanders RJA, Waterham HR, Bakker BM. Fibroblast-specific genome-scale modelling predicts an imbalance in amino acid metabolism in Refsum disease. FEBS J 2020; 287:5096-5113. [PMID: 32160399 PMCID: PMC7754141 DOI: 10.1111/febs.15292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Refsum disease (RD) is an inborn error of metabolism that is characterised by a defect in peroxisomal α‐oxidation of the branched‐chain fatty acid phytanic acid. The disorder presents with late‐onset progressive retinitis pigmentosa and polyneuropathy and can be diagnosed biochemically by elevated levels of phytanate in plasma and tissues of patients. To date, no cure exists for RD, but phytanate levels in patients can be reduced by plasmapheresis and a strict diet. In this study, we reconstructed a fibroblast‐specific genome‐scale model based on the recently published, FAD‐curated model, based on Recon3D reconstruction. We used transcriptomics (available via GEO database with identifier GSE138379), metabolomics and proteomics (available via ProteomeXchange with identifier PXD015518) data, which we obtained from healthy controls and RD patient fibroblasts incubated with phytol, a precursor of phytanic acid. Our model correctly represents the metabolism of phytanate and displays fibroblast‐specific metabolic functions. Using this model, we investigated the metabolic phenotype of RD at the genome scale, and we studied the effect of phytanate on cell metabolism. We identified 53 metabolites that were predicted to discriminate between healthy and RD patients, several of which with a link to amino acid metabolism. Ultimately, these insights in metabolic changes may provide leads for pathophysiology and therapy. Databases Transcriptomics data are available via GEO database with identifier GSE138379, and proteomics data are available via ProteomeXchange with identifier PXD015518.
Collapse
Affiliation(s)
- Agnieszka B Wegrzyn
- Systems Medicine of Metabolism and Signalling, Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands.,Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Katharina Herzog
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands.,Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Sweden
| | - Albert Gerding
- Systems Medicine of Metabolism and Signalling, Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marcel Kwiatkowski
- Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, The Netherlands.,Mass Spectrometric Proteomics and Metabolomics, Institute of Biochemistry, University of Innsbruck, Austria
| | - Justina C Wolters
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Alida E M van Lint
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands
| | - Barbara M Bakker
- Systems Medicine of Metabolism and Signalling, Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands
| |
Collapse
|
9
|
Lipinski S, Pfeuffer S, Arnold P, Treitz C, Aden K, Ebsen H, Falk-Paulsen M, Gisch N, Fazio A, Kuiper J, Luzius A, Billmann-Born S, Schreiber S, Nuñez G, Beer HD, Strowig T, Lamkanfi M, Tholey A, Rosenstiel P. Prdx4 limits caspase-1 activation and restricts inflammasome-mediated signaling by extracellular vesicles. EMBO J 2019; 38:e101266. [PMID: 31544965 PMCID: PMC6792017 DOI: 10.15252/embj.2018101266] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are cytosolic protein complexes, which orchestrate the maturation of active IL‐1β by proteolytic cleavage via caspase‐1. Although many principles of inflammasome activation have been described, mechanisms that limit inflammasome‐dependent immune responses remain poorly defined. Here, we show that the thiol‐specific peroxidase peroxiredoxin‐4 (Prdx4) directly regulates IL‐1β generation by interfering with caspase‐1 activity. We demonstrate that caspase‐1 and Prdx4 form a redox‐sensitive regulatory complex via caspase‐1 cysteine 397 that leads to caspase‐1 sequestration and inactivation. Mice lacking Prdx4 show an increased susceptibility to LPS‐induced septic shock. This effect was phenocopied in mice carrying a conditional deletion of Prdx4 in the myeloid lineage (Prdx4‐ΔLysMCre). Strikingly, we demonstrate that Prdx4 co‐localizes with inflammasome components in extracellular vesicles (EVs) from inflammasome‐activated macrophages. Purified EVs are able to transmit a robust IL‐1β‐dependent inflammatory response in vitro and also in recipient mice in vivo. Loss of Prdx4 boosts the pro‐inflammatory potential of EVs. These findings identify Prdx4 as a critical regulator of inflammasome activity and provide new insights into remote cell‐to‐cell communication function of inflammasomes via macrophage‐derived EVs.
Collapse
Affiliation(s)
- Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Steffen Pfeuffer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,1st Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henriette Ebsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Kuiper
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Billmann-Born
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- 1st Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gabriel Nuñez
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
10
|
Alekseeva LG, Laman AG, Shepelyakovskaya AO, Plekhanova NS, Ivanov VT. Inhibitory Effect of Transcription Factor YB-1 in the Development of Signal from an Innate Immunity Receptor NOD2. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Velloso FJ, Campos AR, Sogayar MC, Correa RG. Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics 2019; 20:152. [PMID: 30791886 PMCID: PMC6385390 DOI: 10.1186/s12864-019-5523-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. Results We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. Conclusions Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-019-5523-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando J Velloso
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Alexandre R Campos
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Ricardo G Correa
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Kim HJ, Seo YH, An S, Jo A, Kwon IC, Kim S. Chemiluminescence imaging of Duox2-derived hydrogen peroxide for longitudinal visualization of biological response to viral infection in nasal mucosa. Am J Cancer Res 2018; 8:1798-1807. [PMID: 29556357 PMCID: PMC5858501 DOI: 10.7150/thno.22481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Rationale: Hydrogen peroxide (H2O2) provides an important mechanism for resisting infectious pathogens within the respiratory tract, and accordingly, the in situ analysis of H2O2 generation in real time provides a valuable tool for assessing immune response. Methods: In this study, we applied a chemiluminescent nanoparticle-based real-time imaging approach to noninvasive evaluation of the Duox2-mediated H2O2 generation after viral infection, and assessed its usefulness for analytical purposes in mouse nasal mucosa. The chemiluminescent nanoprobe employed herein (BioNT) possesses appropriate physicochemical properties, such as high sensitivity and selectivity toward H2O2, no background noise, deliverability to the respiratory tract, and capability of multiple injections to a single animal subject for long-term repetitive imaging. Results: The favorable characteristics of BioNT allowed for a longitudinal study with the same mice to noninvasively evaluate the long-term evolution of endogenous H2O2 in the nasal epithelium after infection with influenza A virus (WS/33/H1N1). We found that nasal epithelial cells by themselves respond to viral infection by generating H2O2, and that the in vivo cumulative H2O2 level in the nasal mucosa peaks at day 3 post-infection. Such in vitro and in vivo temporal behaviors of the endogenous H2O2 generation showed a good correlation with those of Duox2 expression after infection. This correlation could be further confirmed with Duox2-deficient subjects (Duox2-knockdown NHNE cells and Duox2-knockout mutant mice) where no H2O2-induced chemiluminescence was detectable even after viral infection. Importantly, upon knock-down of Duox2 expression, the condition of mice caused by viral infection in the upper airway was significantly aggravated, evidencing the involvement of Duox2 in the immune defense. Conclusion: All these results reveal a critical role of Duox2 in the infection-induced H2O2 production and the H2O2-mediated immune response to infection in the respiratory tract, well elucidating the potential of BioNT as a noninvasive tool for fundamental in vivo studies of infectious diseases.
Collapse
|
13
|
Recent Advances in the Etiopathogenesis of Inflammatory Bowel Disease: The Role of Omics. Mol Diagn Ther 2017; 22:11-23. [DOI: 10.1007/s40291-017-0298-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Kim HJ, Kim CH, Kim MJ, Ryu JH, Seong SY, Kim S, Lim SJ, Holtzman MJ, Yoon JH. The Induction of Pattern-Recognition Receptor Expression against Influenza A Virus through Duox2-Derived Reactive Oxygen Species in Nasal Mucosa. Am J Respir Cell Mol Biol 2015; 53:525-35. [PMID: 25751630 DOI: 10.1165/rcmb.2014-0334oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We studied the relative roles of Duox2-derived reactive oxygen species (ROS) in host defense against influenza A virus (IAV) infection in normal human nasal epithelial cells and mouse nasal mucosa. We found that Duox2 primarily generated ROS rapidly after IAV infection in normal human nasal epithelial cells and that knockdown of Duox2 aggravated IAV infection. In addition, Duox2-derived ROS enhancement significantly suppressed IAV infection in nasal epithelium. In particular, Duox2-derived ROS were required for the induction of retinoic acid-inducible gene (RIG)-I and melanoma differentiation-associated protein 5 (MDA5) transcription. After intranasal IAV inoculation into mice, viral infection was significantly aggravated from 3 days postinoculation (dpi) in the nasal mucosa, and the IAV viral titer was highest at 7 dpi. Both RIG-I and MDA5 messenger RNA levels increased dominantly in mouse nasal mucosa from 3 dpi; consistent with this, RIG-I and MDA5 proteins were also induced after IAV infection. RIG-I and MDA5 messenger RNA levels were induced to a lower extent in the nasal mucosa of the mice that were inoculated with Duox2 short hairpin RNA, and the IAV viral titer was significantly higher in nasal lavage. Taken together, Duox2-derived ROS are necessary for the innate immune response and trigger the induction of RIG-I and MDA5 to resist IAV infection in human nasal epithelium and mouse nasal mucosa.
Collapse
Affiliation(s)
- Hyun Jik Kim
- 1 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea.,2 The Airway Mucus Institute
| | - Chang-Hoon Kim
- 3 Department of Otorhinolaryngology.,2 The Airway Mucus Institute
| | - Min-Ji Kim
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Hwan Ryu
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sujin Kim
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Lim
- 1 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Michael J Holtzman
- 5 Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, and.,6 Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Joo-Heon Yoon
- 3 Department of Otorhinolaryngology.,2 The Airway Mucus Institute.,7 BK 21 Project for Medical Science, and.,4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Wasinger VC, Yau Y, Duo X, Zeng M, Campbell B, Shin S, Luber R, Redmond D, Leong RWL. Low Mass Blood Peptides Discriminative of Inflammatory Bowel Disease (IBD) Severity: A Quantitative Proteomic Perspective. Mol Cell Proteomics 2015; 15:256-65. [PMID: 26530476 DOI: 10.1074/mcp.m115.055095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Breakdown of the protective gut barrier releases effector molecules and degradation products into the blood stream making serum and plasma ideal as a diagnostic medium. The enriched low mass proteome is unexplored as a source of differentiators for diagnosing and monitoring inflammatory bowel disease (IBD) activity, that is less invasive than colonoscopy. Differences in the enriched low mass plasma proteome (<25 kDa) were assessed by label-free quantitative mass-spectrometry. A panel of marker candidates were progressed to validation phase and "Tier-2" FDA-level validated quantitative assay. Proteins important in maintaining gut barrier function and homeostasis at the epithelial interface have been quantitated by multiple reaction monitoring in plasma and serum including both inflammatory; rheumatoid arthritis controls, and non-inflammatory healthy controls; ulcerative colitis (UC), and Crohn's disease (CD) patients. Detection by immunoblot confirmed presence at the protein level in plasma. Correlation analysis and receiver operator characteristics were used to report the sensitivity and specificity. Peptides differentiating controls from IBD originate from secreted phosphoprotein 24 (SPP24, p = 0.000086, 0.009); whereas those in remission and healthy can be differentiated in UC by SPP24 (p = 0.00023, 0.001), α-1-microglobulin (AMBP, p = 0.006) and CD by SPP24 (p = 0.019, 0.05). UC and CD can be differentiated by Guanylin (GUC2A, p = 0.001), and Secretogranin-1 (CHGB p = 0.035). Active and quiescent disease can also be differentiated in UC and CD by CHGB (p ≤ 0.023) SPP24 (p ≤ 0.023) and AMBP (UC p = 0.046). Five peptides discriminating IBD activity and severity had very little-to-no correlation to erythrocyte sedimentation rate, C-reactive protein, white cell or platelet counts. Three of these peptides were found to be binding partners to SPP24 protein alongside other known matrix proteins. These proteins have the potential to improve diagnosis and evaluate IBD activity, reducing the need for more invasive techniques. Data are available via ProteomeXchange with identifier PXD002821.
Collapse
Affiliation(s)
- Valerie C Wasinger
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia;
| | - Yunki Yau
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia
| | - Xizi Duo
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ming Zeng
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Beth Campbell
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Sean Shin
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raphael Luber
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane Redmond
- ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| | - Rupert W L Leong
- §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia; ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Ulcerative colitis and Crohn's disease are the two predominant types of inflammatory bowel disease (IBD), affecting over 1.4 million individuals in the United States. IBD results from complex interactions between pathogenic components, including genetic and epigenetic factors, the immune response, and the microbiome, through an unknown sequence of events. The purpose of this review is to describe a systems biology approach to IBD as a novel and exciting methodology aiming at developing novel IBD therapeutics based on the integration of molecular and cellular 'omics' data. RECENT FINDINGS Recent evidence suggested the presence of genetic, epigenetic, transcriptomic, proteomic, and metabolomic alterations in IBD patients. Furthermore, several studies have shown that different cell types including fibroblasts, epithelial, immune, and endothelial cells together with the intestinal microbiota are involved in IBD pathogenesis. Novel computational methodologies have been developed aiming to integrate high-throughput molecular data. SUMMARY A systems biology approach could potentially identify the central regulators (hubs) in the IBD interactome and improve our understanding of the molecular mechanisms involved in IBD pathogenesis. The future IBD therapeutics should be developed on the basis of targeting the central hubs in the IBD network.
Collapse
|
17
|
Jakopin Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: a rational approach toward inhibition of NOD signaling pathway. J Med Chem 2014; 57:6897-918. [PMID: 24707857 DOI: 10.1021/jm401841p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of nucleotide-binding oligomerization domains 1 and 2 (NOD1 and NOD2) has been implicated in the pathology of various inflammatory disorders, rendering them and their downstream signaling proteins potential therapeutic targets. Selective inhibition of NOD1 and NOD2 signaling could be advantageous in treating many acute and chronic diseases; therefore, harnessing the full potential of NOD inhibitors is a key topic in medicinal chemistry. Although they are among the best studied NOD-like receptors (NLRs), the therapeutic potential of pharmacological modulation of NOD1 and NOD2 is largely unexplored. This review is focused on the scientific progress in the field of NOD inhibitors over the past decade, including the recently reported selective inhibitors of NOD1 and NOD2. In addition, the potential approaches to inhibition of NOD signaling as well as the advantages and disadvantages linked with inhibition of NOD signaling are discussed. Finally, the potential directions for drug discovery are also discussed.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Tang Y, Li R, Lin G, Li L. PEP Search in MyCompoundID: Detection and Identification of Dipeptides and Tripeptides Using Dimethyl Labeling and Hydrophilic Interaction Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2014; 86:3568-74. [DOI: 10.1021/ac500109y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanan Tang
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2 Canada
| | - Ronghong Li
- Department
of Computing Science, University of Alberta, 2-21 Athabasca Hall, Edmonton, Alberta, T6G 2E8 Canada
| | - Guohui Lin
- Department
of Computing Science, University of Alberta, 2-21 Athabasca Hall, Edmonton, Alberta, T6G 2E8 Canada
| | - Liang Li
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2 Canada
| |
Collapse
|
19
|
Yau Y, Leong RW, Zeng M, Wasinger VC. Proteomics and metabolomics in inflammatory bowel disease. J Gastroenterol Hepatol 2013; 28:1076-86. [PMID: 23489082 DOI: 10.1111/jgh.12193] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2013] [Indexed: 12/16/2022]
Abstract
Genome-wide studies in inflammatory bowel disease (IBD) have allowed us to understand Crohn's disease and ulcerative colitis as forms of related autoinflammatory disorders that arise from a multitude of pathogenic origins. Proteomics and metabolomics are the offspring of genomics that possess unprecedented possibilities to characterize unknown pathogenic pathways. It has been about a decade since proteomics was first applied to IBD, and 5 years for metabolomics. These techniques have yielded novel and potentially important findings, but turning these results into beneficial patient outcomes remains challenging. This review recounts the history and context of clinical IBD developments before and after proteomics and metabolomics IBD in this field, discusses the challenges in consolidating high complexity data with physiological understanding, and provides an outlook on the emerging principles that will help interface the bioanalytical laboratory with IBD prognosis.
Collapse
Affiliation(s)
- Yunki Yau
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
20
|
Marischen L, Wesch D, Oberg HH, Rosenstiel P, Trad A, Shomali M, Grötzinger J, Janssen O, Tchikov V, Schütze S, Kabelitz D. Functional expression of NOD2 in freshly isolated human peripheral blood γδ T cells. Scand J Immunol 2011; 74:126-34. [PMID: 21410503 DOI: 10.1111/j.1365-3083.2011.02560.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
γδ T cells play an important role in anti-infective immunity. The major subset of human γδ T cells selectively recognizes phosphorylated bacterial metabolites of the isoprenoid biosynthesis pathway, so-called phosphoantigens. The activation of γδ T cells is modulated by functionally expressed innate immune receptors, notably Toll-like receptor 2 and 3. It was also reported that in vitro expanded γδ T cells respond to muramyl dipeptide (MDP), the minimal peptidoglycan motif activating the nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, although it is unknown whether ex vivo isolated human γδ T cells express functional NOD2. Here, we report that freshly isolated, highly purified peripheral blood γδ T cells express NOD2 mRNA and detectable amounts of NOD2 protein. The biologically active MDP L-D isomer but not the inactive D-D isomer augmented the interferon-γ (IFN-γ) secretion in phosphoantigen-stimulated peripheral blood mononuclear cells. Moreover, a moderate but reproducible and statistically significant increase in IFN-γ secretion was also observed when highly purified peripheral blood γδ T cells were activated by T cell receptor cross-linking in the presence of MDP. Taken together, our results indicate that in addition to the T cell receptor and Toll-like receptors, circulating human γδ T cells express NOD2 as a third class of pattern recognition receptor for sensing bacterial products.
Collapse
Affiliation(s)
- L Marischen
- Institute of Immunology, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Billmann-Born S, Till A, Arlt A, Lipinski S, Sina C, Latiano A, Annese V, Häsler R, Kerick M, Manke T, Seegert D, Hanidu A, Schäfer H, van Heel D, Li J, Schreiber S, Rosenstiel P. Genome-wide expression profiling identifies an impairment of negative feedback signals in the Crohn's disease-associated NOD2 variant L1007fsinsC. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4027-4038. [PMID: 21335489 DOI: 10.4049/jimmunol.1000085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NOD2 is an intracellular receptor for the bacterial cell wall component muramyl dipeptide (MDP), and variants of NOD2 are associated with chronic inflammatory diseases of barrier organs (e.g., Crohn's disease, asthma, and atopic eczema). It is known that activation of NOD2 induces a variety of inflammatory and antibacterial factors. The exact transcriptomal signatures that define the cellular programs downstream of NOD2 activation and the influence of the Crohn-associated variant L1007fsinsC are yet to be defined. To describe the MDP-induced activation program, we analyzed the transcriptomal reactions of isogenic HEK293 cells expressing NOD2(wt) or NOD2(L1007fsinsC) to stimulation with MDP. Importantly, a clear loss of function could be observed in the cells carrying the Crohn-associated variant L1007fsinsC, whereas the NOD2(wt) cells showed differential regulation of growth factors, chemokines, and several antagonists of NF-κB (e.g., TNFAIP3 [A20] and IER3). This genotype-dependent regulation pattern was confirmed in primary human myelomonocytic cells. The influence of TNFAIP3 and IER3 in the context of NOD2 signaling was characterized, and we could validate the predicted role as inhibitors of NOD2-induced NF-κB activation. We show that IER3 impairs the protective effect of NOD2(wt) against bacterial cytoinvasion. These results further our understanding of NOD2 as a first-line defense molecule and emphasize the importance of simultaneous upregulation of counterregulatory anti-inflammatory factors as an integral part of the NOD2-induced cellular program. Lack of these regulatory events due to the L1007fsinsC variant may pivotally contribute to the induction and perpetuation of chronic inflammation.
Collapse
Affiliation(s)
- Susanne Billmann-Born
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Billmann-Born S, Lipinski S, Böck J, Till A, Rosenstiel P, Schreiber S. The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease. Eur J Cell Biol 2010; 90:593-602. [PMID: 21146253 DOI: 10.1016/j.ejcb.2010.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/07/2023] Open
Abstract
Several coding variants of NOD2 and ATG16L1 are associated with increased risk of Crohn disease (CD). NOD2, a cytosolic receptor of the innate immune system activates pro-inflammatory signalling cascades upon recognition of bacterial muramyl dipeptide, but seems also to be involved in antiviral and anti-parasitic defence programs. The CD associated variant L1007fsinsC leads to impaired pro-inflammatory signalling and diminished bacterial clearance. ATG16L1 is a protein essential for autophagosome formation at the phagophore assembly site. The CD associated T300A variant is located in the c-terminal WD40 domain, whose function is still unknown. Basal autophagy is not affected by the T300A variant, but antibacterial autophagy (xenophagy) is impaired, a finding that relates ATG16L1 as well as NOD2 to pathogen defence. Notably, combination of disease-associated alleles of ATG16L1 and NOD2/CARD15 leads to synergistically increased susceptibility for CD, indicating a possible crosstalk between NOD2- and ATG16L1-mediated processes in the pathogenesis of CD. This review surveys current research results and discusses the functional models of potential interplay between NLR-pathways and xenophagy. Interaction between pathways is discussed in the context of reactive oxygen species (ROS), membrane co-localisation, antigen processing and implications of disturbed Paneth cell vesicle export. These effects on pathogen response might imbalance the intestinal barrier epithelia towards chronic inflammation and promote development of Crohn disease. Further elucidation of NOD2/ATG16L1 interplay in xenophagy is relevant for understanding the aetiology of chronic intestinal inflammation and host-microbe interaction in general and could lead to principal new insights to xenophagy induction.
Collapse
Affiliation(s)
- Susanne Billmann-Born
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Duan H, Wang J. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther 2010; 335:743-53. [PMID: 20858707 PMCID: PMC2993547 DOI: 10.1124/jpet.110.170142] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 09/20/2010] [Indexed: 01/11/2023] Open
Abstract
The plasma membrane monoamine transporter (PMAT) and organic cation transporter 3 (OCT3) are the two most prominent low-affinity, high-capacity (i.e., uptake(2)) transporters for endogenous biogenic amines. Using the Flp-in system, we expressed human PMAT (hPMAT) and human OCT3 (hOCT3) at similar levels in human embryonic kidney 293 cells. Parallel and detailed kinetics analysis revealed distinct and seemingly complementary patterns for the two transporters in transporting monoamine neurotransmitters. hPMAT is highly selective toward serotonin (5-HT) and dopamine, with the rank order of transport efficiency (V(max)/K(m)) being: dopamine, 5-HT ≫ histamine, norepinephrine, epinephrine. The substrate preference of hPMAT toward these amines is substantially driven by large (up to 15-fold) distinctions in its apparent binding affinities (K(m)). In contrast, hOCT3 is less selective than hPMAT toward the monoamines, and the V(max)/K(m) rank order for hOCT3 is: histamine > norepinephrine, epinephrine > dopamine >5-HT. It is noteworthy that hOCT3 demonstrated comparable (≤2-fold difference) K(m) toward all amines, and distinctions in V(max) played an important role in determining its differential transport efficiency toward the monoamines. Real-time reverse transcription-polymerase chain reaction revealed that hPMAT is expressed at much higher levels than hOCT3 in most human brain areas, whereas hOCT3 is selectively and highly expressed in adrenal gland and skeletal muscle. Our results suggest that hOCT3 represents a major uptake(2) transporter for histamine, epinephrine, and norepinephrine. hPMAT, on the other hand, is a major uptake(2) transporter for 5-HT and dopamine and may play a more important role in transporting these two neurotransmitters in the central nervous system.
Collapse
Affiliation(s)
- Haichuan Duan
- Department of Pharmaceutics, University of Washington, H272J Health Science Bldg, Seattle, WA 98195, USA
| | | |
Collapse
|
24
|
Borzutzky A, Fried A, Chou J, Bonilla FA, Kim S, Dedeoglu F. NOD2-associated diseases: Bridging innate immunity and autoinflammation. Clin Immunol 2010; 134:251-61. [DOI: 10.1016/j.clim.2009.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 11/25/2022]
|
25
|
Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, Rosenstiel P. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 2009; 122:3522-30. [PMID: 19759286 DOI: 10.1242/jcs.050690] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Generation of microbicidal reactive oxygen species (ROS) is a pivotal protective component of the innate immune system in many eukaryotes. NOD (nucleotide oligomerisation domain containing protein)-like receptors (NLRs) have been implicated as phylogenetically ancient sensors of intracellular pathogens or endogenous danger signals. NOD2 recognizes the bacterial cell wall component muramyldipeptide leading to NFkappaB and MAPK activation via induced proximity signalling through the serine-threonine kinase RIP2. In addition to the subsequent induction of cytokines and antimicrobial peptides, NOD2 has been shown also to exert a direct antibacterial effect. Using a fluorescence-based ROS detection assay we demonstrate controlled ROS generation as an integral component of NOD2-induced signalling in epithelial cells. We demonstrate that the NAD(P)H oxidase family member DUOX2 is involved in NOD2-dependent ROS production. Coimmunoprecipitation and fluorescence microscopy were used to show that DUOX2 interacts and colocalizes with NOD2 at the plasma membrane. Moreover, simultaneous overexpression of NOD2 and DUOX2 was found to result in cooperative protection against bacterial cytoinvasion using the Listeria monocytogenes infection model. RNAi-based studies revealed that DUOX2 is required for the direct bactericidal properties of NOD2. Our results demonstrate a new role of ROS as effector molecules of protective cellular signalling in response to a defined danger signal carried out by a mammalian intracellular NLR system.
Collapse
Affiliation(s)
- Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Rosenstiel P, Schreiber S. NOD-like receptors--pivotal guardians of the immunological integrity of barrier organs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:35-47. [PMID: 19799110 DOI: 10.1007/978-1-4419-0901-5_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NOD-like receptors (NLRs) exert pivotal roles in innate immunity as sensors of exogenous or endogenous cellular danger signals. The NLR protein family has a characteristic domain architecture comprising a central nucleotide binding and oligomerization domain (NOD), an N-terminal effector binding domain and C-terminal leucine-rich repeats (LRRs). Mutations in NLR genes are genetically associated with a number of chronic inflammatory diseases of barrier organs. In this chapter, we focus on the influence of NLR regulation and function in the complex pathophysiology of mucosal homeostasis. The understanding of NLR biology may guide our future understanding of how the interaction between the human genome and the metagenome of transient and resident microbiota precipitates into chronic inflammatory disorders, such as Crohn's disease or atopy.
Collapse
Affiliation(s)
- Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
27
|
Yamamoto S, Ma X. Role of Nod2 in the development of Crohn's disease. Microbes Infect 2009; 11:912-8. [PMID: 19573617 PMCID: PMC2924159 DOI: 10.1016/j.micinf.2009.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/23/2009] [Indexed: 12/24/2022]
Abstract
Crohn's Disease (CD) is caused by a loss of the regulatory capacity of the immune apparatus. Nod2 is an intracellular bacterial sensor and its mutations are associated with the development of CD. Here we summarize recent and controversial findings about the role of the Nod2 mutants in the disease process.
Collapse
Affiliation(s)
- Soichiro Yamamoto
- Department of Microbiology and Immunology, Weill Medical College of Cornell University 1300 York Avenue, New York, NY 10021, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
28
|
Alex P, Gucek M, Li X. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies. Inflamm Bowel Dis 2009; 15:616-29. [PMID: 18844215 PMCID: PMC2667948 DOI: 10.1002/ibd.20652] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, heterogeneous, and multifactorial intestinal inflammatory disorders. Major challenges in IBD research include identification of major pathogenic alterations of genes/proteins as well as effective biomarkers for early diagnosis, prognosis, and prediction of therapeutic response. Since proteins govern cellular structure and biological function, a wide selection of proteomic approaches enables effective characterization of IBD pathogenesis by investigating the dynamic nature of protein expression, cellular and subcellular distribution, posttranslational modifications, and interactions at both the cellular and subcellular levels. The aims of this review are to 1) highlight the current status of proteomic studies of IBD, and 2) introduce the available and emerging proteomic technologies that have potential applications in the study of IBD. These technologies include various mass spectrometry technologies, quantitative proteomics (2D-PAGE, ICAT, SILAC, iTRAQ), protein/antibody arrays, and multi-epitope-ligand cartography. This review also presents information and methodologies, from sample selection and enrichment to protein identification, that are not only essential but also particularly relevant to IBD research. The potential future application of these technologies is expected to have a significant impact on the discovery of novel biomarkers and key pathogenic factors for IBD.
Collapse
Affiliation(s)
- Philip Alex
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
29
|
Till A, Rosenstiel P, Bräutigam K, Sina C, Jacobs G, Oberg HH, Seegert D, Chakraborty T, Schreiber S. A role for membrane-bound CD147 in NOD2-mediated recognition of bacterial cytoinvasion. J Cell Sci 2008; 121:487-95. [PMID: 18256385 DOI: 10.1242/jcs.016980] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
NOD2 is an intracellular receptor for the bacterial cell wall component muramyl dipeptide. Mutations in the leucine-rich repeat region of NOD2, which lead to an impaired recognition of muramyl dipeptide, have been associated with chronic inflammatory diseases of barrier organs such as Crohn disease, asthma and atopic eczema. In this study we identify CD147 (also known as BSG and EMMPRIN), a membrane-bound regulator of cellular migration, differentiation and inflammatory processes, as a protein interaction partner of NOD2. We demonstrate a complex influence of the CD147-NOD2 interaction on NOD2-dependent signaling responses. We show that CD147 itself acts as an enhancer of the invasion of Listeria monocytogenes, an intracellular bacterial pathogen. We propose that the CD147-NOD2 interaction serves as a molecular guide to regulate NOD2 function at sites of pathogen invasion.
Collapse
Affiliation(s)
- Andreas Till
- Institute for Clinical Molecular Biology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstr 12, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Farkas L, Stoelcker B, Jentsch N, Heitzer S, Pfeifer M, Schulz C. Muramyldipeptide modulates CXCL-8 release of BEAS-2B cells via NOD2. Scand J Immunol 2008; 68:315-22. [PMID: 18647246 DOI: 10.1111/j.1365-3083.2008.02145.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chronic inflammation and acute exacerbations are pathophysiological features of chronic obstructive pulmonary disease (COPD). An impaired immune response to bacterial pathogens can contribute to both of them. Nucleotide oligomerization domain 2 (NOD2) is an intracellular receptor of innate immunity for muramyldipeptide (MDP). Mutations of the NOD2 gene followed by decreased recognition of MDP are associated with chronic intestinal inflammation and pulmonary complications of patients with allogenic stem cell transplant and sepsis. Our study provides evidence that NOD2, toll-like receptor 4 (TLR4) and the adapter protein receptor-interacting protein 2 (RIP2) are induced by tumor-necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) in the bronchial epithelial cell line BEAS-2B. We also demonstrate that lipopolysaccharide (LPS) can further increase NOD2 transcription in a TNF-alpha and IFN-gamma-induced activation state. In addition, we show that, while MDP fails to enhance CXCL-8 release from otherwise unstimulated BEAS-2B cells, a 12 h prestimulation period with TNF-alpha and IFN-gamma primes the cells for an additional increase of CXCL-8 secretion via induction of NOD2 and RIP2. LPS itself significantly augments CXCL-8 production and co-administration of MDP further increases cytokine secretion. Finally, overexpression of an SNP13 mutant decreased MDP-induced chemokine production in BEAS-2B cells compared with NOD2 wild type overexpression. Taken together, our work indicates that MDP and NOD2 play an important role for CXCL-8 release of BEAS-2B cells following LPS-challenge via synergistic interactions between MDP and LPS.
Collapse
Affiliation(s)
- L Farkas
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Kufer TA. Signal transduction pathways used by NLR-type innate immune receptors. MOLECULAR BIOSYSTEMS 2008; 4:380-6. [PMID: 18414735 DOI: 10.1039/b718948f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins from the nucleotide-binding domain, LRR containing (NLR) family are involved in sensing bacterial invasion and danger signals in mammalian cells. Activation of these molecules leads to inflammatory responses which help clearance of invading pathogens. Recent data now shed light on the signal transduction pathways used by NLR proteins. This review summarizes advances in our understanding of signalling through NLRs with special emphasis on the Nod1 and Nod2 pathways.
Collapse
Affiliation(s)
- Thomas A Kufer
- Molecular Innate Immunobiology Group, Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Joseph-Stelzmann Str. 9, Geb. 37, Cologne, Germany.
| |
Collapse
|
32
|
Nikolaus S, Schreiber S. Diagnostics of inflammatory bowel disease. Gastroenterology 2007; 133:1670-89. [PMID: 17983810 DOI: 10.1053/j.gastro.2007.09.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 08/30/2007] [Indexed: 02/06/2023]
Abstract
The diagnosis of inflammatory bowel disease (IBD) with its 2 main subforms, Crohn's disease and ulcerative colitis, is based on clinical, endoscopic, radiologic, and histologic criteria. This paradigm remains unchanged despite the advent of new molecular technologies for the examination of serum proteins and genetic sequences, respectively. The main innovations in diagnostic technologies include the development of more sophisticated endoscopic and noninvasive imaging techniques with the aim of improving the identification of complications, in particular malignant diseases associated with IBD. The future will see further progress in the identification of genetic susceptibility factors and of protein biomarkers and their use to describe the molecular epidemiology of IBD. It can be expected that future diagnostic algorithms will include molecular parameters to detect early disease or guide therapies by predicting the individual course of disease.
Collapse
Affiliation(s)
- Susanna Nikolaus
- Department of General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | | |
Collapse
|
33
|
Din S, Lennon AM, Arnott ID, Hupp T, Satsangi J. Technology insight: the application of proteomics in gastrointestinal disease. ACTA ACUST UNITED AC 2007; 4:372-85. [PMID: 17607293 DOI: 10.1038/ncpgasthep0872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 05/09/2007] [Indexed: 12/16/2022]
Abstract
Analysis of the human genome has increased our knowledge of the genes that are associated with disease. At the same time, however, it has become clear that having complete DNA sequences alone is not sufficient to elucidate the biological functions of the proteins that they encode. For this reason, proteomics-the analysis of proteins-has become increasingly attractive, because the proteome reflects both the intrinsic genetic programming of a cell and the impact of its immediate environment. The principal goals of clinical proteomics are to identify biomarkers for the early diagnosis of disease and potential targets for therapeutic intervention. Other goals include the identification of biomarkers for the early detection of disease recurrence (relapse) and how they might be combined with diagnostic imaging techniques to improve the sensitivity for detecting disease. This Review describes conventional proteomic technologies, their strengths and limitations, and demonstrates their application to clinical practice, with specific reference to their use in the gastroenterology field.
Collapse
|
34
|
Wu L, Feng BS, He SH, Zheng PY, Croitoru K, Yang PC. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: the role of TLR2 and NOD2. Immunol Cell Biol 2007; 85:538-45. [PMID: 17563761 DOI: 10.1038/sj.icb.7100079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intestinal microbes are believed to be involved in the pathogenesis of inflammatory bowel disease. Microbes and their products are generally well tolerated by intestinal epithelial cells in the intestinal tract of healthy individuals. It is of significance to understand what breaks down the established tolerance leading to intestinal barrier dysfunction and intestinal inflammation. T84 monolayer transported peptidoglycan (PGN) was determined by enzyme-linked immune assay. Mast cell line HMC-1 cell activation in response to PGN stimulation was observed with electron microscopy and measurement of histamine release. T84 monolayer barrier function was determined by recording the transepithelial electric resistance (TER) and measuring the permeability in response to PGN-induced HMC-1 cell activation. Expression of Toll-like receptor (TLR) 2 and nucleotide-binding oligomerization domain (NOD) 2 were determined by immunocytochemistry, real-time reverse transcription (RT)-PCR and Western blot. Exposure to PGN alone did not alter TER and permeability of T84 monolayers. T84 monolayers transported PGN from the apical chamber to the basal chamber of transwell system. TLR2 expressed on the surface of HMC-1 cells. HMC-1 cells absorbed PGN. HMC-1 cells released histamine in response to the PGN stimulation, which was blocked by pretreatment with antibodies or small interfering RNA against TLR2 or NOD2. In a co-culture system, T84 monolayer transported PGN activated HMC-1 cells and increased the horseradish peroxidase flux. TLR2 mediated the PGN-absorption in HMC-1 cells. Blockade of TLR2 or NOD2 abolished PGN-induced HMC-1 cell activation and T84 monolayer barrier dysfunction. T84 monolayer transported PGN activates HMC-1 cells to release chemical mediators to induce T84 monolayer dysfunction that are mediated by TLR2 and NOD2.
Collapse
Affiliation(s)
- Linda Wu
- Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
NOD-like receptors are cytosolic proteins that contain a central nucleotide-binding oligomerization domain (NACHT), an N-terminal effector-binding domain and C-terminal leucine-rich repeats (LRRs). NOD-like receptors have been implicated as ancient cellular sentinels mediating protective immune responses against intracellular pathogens. Recent studies have described the genetic association of polymorphisms in NOD-like receptor genes with complex chronic inflammatory barrier diseases, such as Crohn's disease and asthma and with rare auto-inflammatory syndromes including familial cold urticaria, Muckle-Wells syndrome and Blau syndrome. Whereas genetic variability in NLRs may have been an important element to provide plasticity to antigen recognition and host defense in the past, recent changes in the lifestyle of industrialized societies (e.g. hygiene ("cold-chain-hypothesis"), nutrition, or antibiotics) may have turned ancient genetic variability into disease-causing mutations. The review focuses on NLR function in the molecular pathophysiology of human inflammatory disorders.
Collapse
Affiliation(s)
- Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstrasse 12, 24105 Kiel, Germany.
| | | | | |
Collapse
|
36
|
Fillon S, Soulis K, Rajasekaran S, Benedict-Hamilton H, Radin JN, Orihuela CJ, El Kasmi KC, Murti G, Kaushal D, Gaber MW, Weber JR, Murray PJ, Tuomanen EI. Platelet-activating factor receptor and innate immunity: uptake of gram-positive bacterial cell wall into host cells and cell-specific pathophysiology. THE JOURNAL OF IMMUNOLOGY 2006; 177:6182-91. [PMID: 17056547 DOI: 10.4049/jimmunol.177.9.6182] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current model of innate immune recognition of Gram-positive bacteria suggests that the bacterial cell wall interacts with host recognition proteins such as TLRs and Nod proteins. We describe an additional recognition system mediated by the platelet-activating factor receptor (PAFr) and directed to the pathogen-associated molecular pattern phosphorylcholine that results in the uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild-type, Tlr2(-/-), and Nod2(-/-) mice but not in Pafr(-/-) mice. The cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes, and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons but causing a rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as the cell wall into host cells from where the response ranges from quiescence to severe pathophysiology.
Collapse
Affiliation(s)
- Sophie Fillon
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kufer TA, Sansonetti PJ. Sensing of bacteria: NOD a lonely job. Curr Opin Microbiol 2006; 10:62-9. [PMID: 17161646 DOI: 10.1016/j.mib.2006.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/28/2006] [Indexed: 02/07/2023]
Abstract
Recognition of bacteria by the vertebrate innate immune system relies on detection of invariant molecules by specialized receptors. The view is emerging that activation of both Toll-like receptors (TLRs) and Nod-like receptors (NLRs) by different bacterial agonists is important in order to mount an inflammatory response in the host. Priming of cells with peptidoglycan and products that are sensed by cytosolic-localized members of the NLR family have a synergistic effect on TLR signalling and vice versa. Currently, the underlying molecular mechanisms of this cross-talk between NLR and TLR signalling are beginning to emerge. These reveal that the two sensing-systems are non-redundant in bacterial recognition and that their cross-talk plays an important role in immunological homeostasis.
Collapse
Affiliation(s)
- Thomas A Kufer
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, F-75724 Paris Cédex 15, France
| | | |
Collapse
|
38
|
Abstract
Polymorphisms in NOD2 (CARD15) are associated with ileal and ileocolonic Crohn's disease, increased mortality from graft-versus-host disease, and Blau syndrome. NOD2 activation by peptidoglycan components initiates various signaling pathways and CD-associated NOD2 mutations are associated with decreased activation of NF-kappaB. NOD2 may be important for both initial defenses against commensal and pathogenic bacteria and tolerance mechanisms for maintaining controlled activation of the intestinal immune system. Significant progress has been made in defining NOD2 signaling partners and pathways and functional consequences of NOD2 mutations with respect to its activation, expression, signaling, synergistic effects with Toll-like receptor signaling, and antimicrobial effects. However, NOD2 contributions to human intestinal inflammation are complex and incompletely understood. Improved understanding of NOD2-mediated pathways may lead to identification of other molecules that can also contribute to the development of Crohn's disease in humans.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|