1
|
Kratochvilová L, Dinová A, Valková N, Dobrovolná M, Sánchez-Murcia PA, Brázda V. Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines. ACS BIO & MED CHEM AU 2025; 5:283-298. [PMID: 40255281 PMCID: PMC12006861 DOI: 10.1021/acsbiomedchemau.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/22/2025]
Abstract
Clarifying functions of the p53 protein is a crucial aspect of cancer research. We analyzed the binding sites of p53 wild-type (WT) protein and its oncologically significant mutants and evaluated their transactivation properties using a functional yeast assay. Unlike the binding sites as determined in myeloid leukemia cell lines by chromatin immunoprecipitation of p53-R175H, p53-Y220C, p53-M237I, p53-R248Q, and p53-R273H mutants, the target sites of p53-WT and p53-R282W were significantly associated with putative G-quadruplex sequences (PQSs). Guanine-quadruplex (G-quadruplex or G4) formation in these sequences was evaluated by using a set of biophysical methods. G4s can modulate gene expression induced by p53. At low p53 expression level, PQS upstream of the p53-response element (RE) leads to greater gene expression induced by p53-R282W compared to that for the RE without PQS. Meanwhile, p53-WT protein expression is decreased by the PQS presence. At a high p53 expression level, the presence of PQS leads to a decreased expression of the reporter regardless of the distance and localization of the G4 from the RE.
Collapse
Affiliation(s)
- Libuše Kratochvilová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Alessandra Dinová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Natália Valková
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Michaela Dobrovolná
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Pedro A. Sánchez-Murcia
- Laboratory
of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Neue Stiftingtalstr. 6/III, Graz A-8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz A-8010, Austria
| | - Václav Brázda
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| |
Collapse
|
2
|
Wojtaszek JL, Hoff KE, Longley MJ, Kaur P, Andres S, Wang H, Williams R, Copeland W. Structure-specific roles for PolG2-DNA complexes in maintenance and replication of mitochondrial DNA. Nucleic Acids Res 2023; 51:9716-9732. [PMID: 37592734 PMCID: PMC10570022 DOI: 10.1093/nar/gkad679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The homodimeric PolG2 accessory subunit of the mitochondrial DNA polymerase gamma (Pol γ) enhances DNA binding and processive DNA synthesis by the PolG catalytic subunit. PolG2 also directly binds DNA, although the underlying molecular basis and functional significance are unknown. Here, data from Atomic Force Microscopy (AFM) and X-ray structures of PolG2-DNA complexes define dimeric and hexameric PolG2 DNA binding modes. Targeted disruption of PolG2 DNA-binding interfaces impairs processive DNA synthesis without diminishing Pol γ subunit affinities. In addition, a structure-specific DNA-binding role for PolG2 oligomers is supported by X-ray structures and AFM showing that oligomeric PolG2 localizes to DNA crossings and targets forked DNA structures resembling the mitochondrial D-loop. Overall, data indicate that PolG2 DNA binding has both PolG-dependent and -independent functions in mitochondrial DNA replication and maintenance, which provide new insight into molecular defects associated with PolG2 disruption in mitochondrial disease.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Kirsten E Hoff
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Sara N Andres
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Chang YC, Lin K, Baxley RM, Durrett W, Wang L, Stojkova O, Billmann M, Ward H, Myers CL, Bielinsky AK. RNF4 and USP7 cooperate in ubiquitin-regulated steps of DNA replication. Open Biol 2023; 13:230068. [PMID: 37607592 PMCID: PMC10444366 DOI: 10.1098/rsob.230068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
DNA replication requires precise regulation achieved through post-translational modifications, including ubiquitination and SUMOylation. These modifications are linked by the SUMO-targeted E3 ubiquitin ligases (STUbLs). Ring finger protein 4 (RNF4), one of only two mammalian STUbLs, participates in double-strand break repair and resolving DNA-protein cross-links. However, its role in DNA replication has been poorly understood. Using CRISPR/Cas9 genetic screens, we discovered an unexpected dependency of RNF4 mutants on ubiquitin specific peptidase 7 (USP7) for survival in TP53-null retinal pigment epithelial cells. TP53-/-/RNF4-/-/USP7-/- triple knockout (TKO) cells displayed defects in DNA replication that cause genomic instability. These defects were exacerbated by the proteasome inhibitor bortezomib, which limited the nuclear ubiquitin pool. A shortage of free ubiquitin suppressed the ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint response, leading to increased cell death. In conclusion, RNF4 and USP7 work cooperatively to sustain a functional level of nuclear ubiquitin to maintain the integrity of the genome.
Collapse
Affiliation(s)
- Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wesley Durrett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivera Stojkova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Henry Ward
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Irvin EM, Wang H. Single-molecule imaging of genome maintenance proteins encountering specific DNA sequences and structures. DNA Repair (Amst) 2023; 128:103528. [PMID: 37392578 PMCID: PMC10989508 DOI: 10.1016/j.dnarep.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.
Collapse
Affiliation(s)
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, NC, USA; Physics Department, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc Natl Acad Sci U S A 2020; 117:14127-14138. [PMID: 32522879 PMCID: PMC7321962 DOI: 10.1073/pnas.1921311117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA repair is essential to life and to avoidance of genome instability and cancer. Xeroderma pigmentosum group G (XPG) protein acts in multiple DNA repair pathways, both as an active enzyme and as a scaffold for coordinating with other repair proteins. We present here the structure of the catalytic domain responsible for its DNA binding and nuclease activity. Our analysis provides structure-based hypotheses for how XPG recognizes its bubble DNA substrate and predictions of the structural impacts of XPG disease mutations associated with two phenotypically distinct diseases: xeroderma pigmentosum (XP, skin cancer prone) or Cockayne syndrome (XP/CS, severe progressive developmental defects). Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG’s role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.
Collapse
|
6
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
7
|
Countryman P, Fan Y, Gorthi A, Pan H, Strickland E, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 2018; 293:1054-1069. [PMID: 29175904 PMCID: PMC5777247 DOI: 10.1074/jbc.m117.806406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.
Collapse
Affiliation(s)
| | - Yanlin Fan
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Aparna Gorthi
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | | | | | | | | | - Jiangguo Lin
- From the Physics Department
- the Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lei
- the Department of BioSciences, Rice University, Houston, Texas 77251
- the School of Public Health, Shandong University, Jinan 250012, China
| | | | - Changjiang You
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | - Nicolas Wirth
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jacob Piehler
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | | | - Alexander J R Bishop
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | - Yizhi Jane Tao
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Hong Wang
- From the Physics Department,
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
8
|
Klusmann I, Rodewald S, Müller L, Friedrich M, Wienken M, Li Y, Schulz-Heddergott R, Dobbelstein M. p53 Activity Results in DNA Replication Fork Processivity. Cell Rep 2017; 17:1845-1857. [PMID: 27829155 DOI: 10.1016/j.celrep.2016.10.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/03/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
p53 induces cell death upon DNA damage, but this may not confer all of its tumor suppressor activity. We report that p53 activation enhances the processivity of DNA replication, as monitored by multi-label fiber assays, whereas removal of p53 reduces fork progression. This is observed in tumor-derived U2OS cells but also in murine embryonic fibroblasts with heterozygous or homozygous p53 deletion and in freshly isolated thymocytes from mice with differential p53 status. Mdm2, a p53-inducible gene product, similarly supports DNA replication even in p53-deficient cells, suggesting that sustained Mdm2-expression is at least one of the mechanisms allowing p53 to prevent replicative stress. Thus, p53 helps to protect the genome during S phase, by preventing the occurrence of stalled or collapsed replication forks. These results expand p53's tumor-suppressive functions, adding to the ex-post model (elimination of damaged cells) an ex-ante activity; i.e., the prevention of DNA damage during replication.
Collapse
Affiliation(s)
- Ina Klusmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Sabrina Rodewald
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Leonie Müller
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Mascha Friedrich
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Magdalena Wienken
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Yizhu Li
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Ramona Schulz-Heddergott
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Bermek O, Weller SK, Griffith JD. The UL8 subunit of the helicase-primase complex of herpes simplex virus promotes DNA annealing and has a high affinity for replication forks. J Biol Chem 2017; 292:15611-15621. [PMID: 28743747 DOI: 10.1074/jbc.m117.799064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) DNA is replicated by a mechanism involving DNA recombination. For instance, replication of the HSV-1 genome produces X- and Y-branched structures, reminiscent of recombination intermediates. HSV-1's replication machinery includes a trimeric helicase-primase composed of helicase (UL5) and primase (UL52) subunits and a third subunit, UL8. UL8 has been reported to stimulate the helicase and primase activities of the complex in the presence of ICP8, an HSV-1 protein that functions as an annealase, a protein that binds complementary single-stranded DNA (ssDNA) and facilitates its annealing to duplex DNA. UL8 also influences the intracellular localization of the UL5/UL52 subunits, but UL8's catalytic activities are not known. In this study we used a combination of biochemical techniques and transmission electron microscopy. First, we report that UL8 alone forms protein filaments in solution. Moreover, we also found that UL8 binds to ssDNAs >50-nucletides long and promotes the annealing of complementary ssDNA to generate highly branched duplex DNA structures. Finally, UL8 has a very high affinity for replication fork structures containing a gap in the lagging strand as short as 15 nucleotides, suggesting that UL8 may aid in directing or loading the trimeric complex onto a replication fork. The properties of UL8 uncovered here suggest that UL8 may be involved in the generation of the X- and Y-branched structures that are the hallmarks of HSV replication.
Collapse
Affiliation(s)
- Oya Bermek
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| |
Collapse
|
10
|
Brázda V, Coufal J. Recognition of Local DNA Structures by p53 Protein. Int J Mol Sci 2017; 18:ijms18020375. [PMID: 28208646 PMCID: PMC5343910 DOI: 10.3390/ijms18020375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
11
|
p53 Maintains Genomic Stability by Preventing Interference between Transcription and Replication. Cell Rep 2016; 15:132-146. [PMID: 27052176 DOI: 10.1016/j.celrep.2016.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/17/2015] [Accepted: 02/26/2016] [Indexed: 01/23/2023] Open
Abstract
p53 tumor suppressor maintains genomic stability, typically acting through cell-cycle arrest, senescence, and apoptosis. We discovered a function of p53 in preventing conflicts between transcription and replication, independent of its canonical roles. p53 deficiency sensitizes cells to Topoisomerase (Topo) II inhibitors, resulting in DNA damage arising spontaneously during replication. Topoisomerase IIα (TOP2A)-DNA complexes preferentially accumulate in isogenic p53 mutant or knockout cells, reflecting an increased recruitment of TOP2A to regulate DNA topology. We propose that p53 acts to prevent DNA topological stress originating from transcription during the S phase and, therefore, promotes normal replication fork progression. Consequently, replication fork progression is impaired in the absence of p53, which is reversed by transcription inhibition. Pharmacologic inhibition of transcription also attenuates DNA damage and decreases Topo-II-DNA complexes, restoring cell viability in p53-deficient cells. Together, our results demonstrate a function of p53 that may underlie its role in tumor suppression.
Collapse
|
12
|
Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Biosci Rep 2015; 36:e00288. [PMID: 26647378 PMCID: PMC4725248 DOI: 10.1042/bsr20150275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Comparative biochemical analysis of mtHMG proteins from distantly related yeast species revealed that they exhibit a preference for recombination/replication intermediates. We discuss how these biochemical characteristics relate to the role of mtHMG proteins in mtDNA compaction and evolution. Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species.
Collapse
|
13
|
Bower BD, Griffith JD. TRF1 and TRF2 differentially modulate Rad51-mediated telomeric and nontelomeric displacement loop formation in vitro. Biochemistry 2014; 53:5485-95. [PMID: 25115914 PMCID: PMC4151696 DOI: 10.1021/bi5006249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A growing
body of literature suggests that the homologous recombination/repair
(HR) pathway cooperates with components of the shelterin complex to
promote both telomere maintenance and nontelomeric HR. This may be
due to the ability of both HR and shelterin proteins to promote strand
invasion, wherein a single-stranded DNA (ssDNA) substrate base pairs
with a homologous double-stranded DNA (dsDNA) template displacing
a loop of ssDNA (D-loop). Rad51 recombinase catalyzes D-loop formation
during HR, and telomere repeat binding factor 2 (TRF2) catalyzes the
formation of a telomeric D-loop that stabilizes a looped structure
in telomeric DNA (t-loop) that may facilitate telomere protection.
We have characterized this functional interaction in vitro using a fluorescent D-loop assay measuring the incorporation of
Cy3-labeled 90-nucleotide telomeric and nontelomeric substrates into
telomeric and nontelomeric plasmid templates. We report that preincubation
of a telomeric template with TRF2 inhibits the ability of Rad51 to
promote telomeric D-loop formation upon preincubation with a telomeric
substrate. This suggests Rad51 does not facilitate t-loop formation
and suggests a mechanism whereby TRF2 can inhibit HR at telomeres.
We also report a TRF2 mutant lacking the dsDNA binding domain promotes
Rad51-mediated nontelomeric D-loop formation, possibly explaining
how TRF2 promotes nontelomeric HR. Finally, we report telomere repeat
binding factor 1 (TRF1) promotes Rad51-mediated telomeric D-loop formation,
which may facilitate HR-mediated replication fork restart and explain
why TRF1 is required for efficient telomere replication.
Collapse
Affiliation(s)
- Brian D Bower
- Curriculum in Genetics and Molecular Biology, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | |
Collapse
|
14
|
Arat NÖ, Griffith JD. Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere. J Biol Chem 2012; 287:41583-94. [PMID: 23086976 DOI: 10.1074/jbc.m112.415984] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRF2-Rap1 complex suppresses non-homologous end joining and interacts with DNAPK-C to prevent end joining. We previously demonstrated that hTRF2 is a double strand telomere binding protein that forms t-loops in vitro and recognizes three- and four-way junctions independent of DNA sequence. How the DNA binding characteristics of hTRF2 to DNA is altered in the presence of hRap1 however is not known. Here we utilized EM and quantitative gel retardation to characterize the DNA binding properties of hRap1 and the TRF2-Rap1 complex. Both gel filtration chromatography and mass analysis from two-dimensional projections showed that the TRF2-Rap1 complex exists in solution and binds to DNA as a complex consisting of four monomers each of hRap1 and hTRF2. EM revealed for the first time that hRap1 binds to DNA templates in the absence of hTRF2 with a preference for double strand-single strand junctions in a sequence independent manner. When hTRF2 and hRap1 are in a complex, its affinity for ds telomeric sequences is 2-fold higher than TRF2 alone and more than 10-fold higher for telomeric 3' ends. This suggests that as hTRF2 recruits hRap1 to telomeric sequences, hRap1 alters the affinity of hTRF2 and its binding preference on telomeric DNA. Moreover, the TRF2-Rap1 complex has higher ability to re-model telomeric DNA than either component alone. This finding underlies the importance of complex formation between hRap1 and hTRF2 for telomere function and end protection.
Collapse
Affiliation(s)
- N Özlem Arat
- Department of Biochemistry, Lineberger ComprehensiveCancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
15
|
Dolezal D, Jones CE, Lai X, Brister JR, Mueser TC, Nossal NG, Hinton DM. Mutational analysis of the T4 gp59 helicase loader reveals its sites for interaction with helicase, single-stranded binding protein, and DNA. J Biol Chem 2012; 287:18596-607. [PMID: 22427673 DOI: 10.1074/jbc.m111.332080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.
Collapse
Affiliation(s)
- Darin Dolezal
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Gustafsson C, Rhodin Edsö J, Cohn M. Rap1 binds single-stranded DNA at telomeric double- and single-stranded junctions and competes with Cdc13 protein. J Biol Chem 2011; 286:45174-85. [PMID: 22075002 DOI: 10.1074/jbc.m111.300517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ends of eukaryotic chromosomes are protected by specialized telomere chromatin structures. Rap1 and Cdc13 are essential for the formation of functional telomere chromatin in budding yeast by binding to the double-stranded part and the single-stranded 3' overhang, respectively. We analyzed the binding properties of Saccharomyces castellii Rap1 and Cdc13 to partially single-stranded oligonucleotides, mimicking the junction of the double- and single-stranded DNA (ds-ss junction) at telomeres. We determined the optimal and the minimal DNA setup for a simultaneous binding of Rap1 and Cdc13 at the ds-ss junction. Remarkably, Rap1 is able to bind to a partially single-stranded binding site spanning the ds-ss junction. The binding over the ds-ss junction is anchored in a single double-stranded hemi-site and is stabilized by a sequence-independent interaction of Rap1 with the single-stranded 3' overhang. Thus, Rap1 is able to switch between a sequence-specific and a nonspecific binding mode of one hemi-site. At a ds-ss junction configuration where the two binding sites partially overlap, Rap1 and Cdc13 are competing for the binding. These results shed light on the end protection mechanisms and suggest that Rap1 and Cdc13 act together to ensure the protection of both the 3' and the 5' DNA ends at telomeres.
Collapse
Affiliation(s)
- Cecilia Gustafsson
- Department of Biology, Genetics Group, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
17
|
ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells. PLoS One 2011; 6:e23053. [PMID: 21857991 PMCID: PMC3155521 DOI: 10.1371/journal.pone.0023053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/05/2011] [Indexed: 01/10/2023] Open
Abstract
Homologous recombination (HR) is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB). However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.
Collapse
|
18
|
E. coli DNA replication in the absence of free β clamps. EMBO J 2011; 30:1830-40. [PMID: 21441898 DOI: 10.1038/emboj.2011.84] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/28/2011] [Indexed: 11/08/2022] Open
Abstract
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.
Collapse
|
19
|
Rass U, Compton SA, Matos J, Singleton MR, Ip SC, Blanco MG, Griffith JD, West SC. Mechanism of Holliday junction resolution by the human GEN1 protein. Genes Dev 2010; 24:1559-69. [PMID: 20634321 PMCID: PMC2904945 DOI: 10.1101/gad.585310] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/02/2010] [Indexed: 11/25/2022]
Abstract
Holliday junction (HJ) resolution is essential for chromosome segregation at meiosis and the repair of stalled/collapsed replication forks in mitotic cells. All organisms possess nucleases that promote HJ resolution by the introduction of symmetrically related nicks in two strands at, or close to, the junction point. GEN1, a member of the Rad2/XPG nuclease family, was isolated recently from human cells and shown to promote HJ resolution in vitro and in vivo. Here, we provide the first biochemical/structural characterization of GEN1, showing that, like the Escherichia coli HJ resolvase RuvC, it binds specifically to HJs and resolves them by a dual incision mechanism in which nicks are introduced in the pair of continuous (noncrossing) strands within the lifetime of the GEN1-HJ complex. In contrast to RuvC, but like other Rad2/XPG family members such as FEN1, GEN1 is a monomeric 5'-flap endonuclease. However, the unique feature of GEN1 that distinguishes it from other Rad2/XPG nucleases is its ability to dimerize on HJs. This functional adaptation provides the two symmetrically aligned active sites required for HJ resolution.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Sarah A. Compton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Joao Matos
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Martin R. Singleton
- London Research Institute, Cancer Research UK, London WC2A 3PX, United Kingdom
| | - Stephen C.Y. Ip
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Miguel G. Blanco
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Stephen C. West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|
20
|
Compton SA, Ozgür S, Griffith JD. Ring-shaped Rad51 paralog protein complexes bind Holliday junctions and replication forks as visualized by electron microscopy. J Biol Chem 2010; 285:13349-56. [PMID: 20207730 DOI: 10.1074/jbc.m109.074286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammals, there are five Rad51 paralogs that form two distinct complexes in vivo. One complex is composed of Rad51B-Rad51C-Rad51D-Xrcc2 (BCDX2) and the other Rad51C-Xrcc3 (CX3). We co-expressed and purified human BCDX2 and CX3 protein complexes from insect cells and investigated their binding preferences and structure using transmission electron microscopy (TEM). We visualized the binding of BCDX2 and CX3 to DNA templates containing replication forks and Holliday junctions, intermediates observed during DNA replication and recombination, respectively. We show that both complexes bind with exceptionally high specificity to the DNA junctions with little binding observed elsewhere on the DNAs. Further analysis of the structure of free or DNA-bound BCDX2 and CX3 complexes revealed a multimeric ring structure whose subunits are arranged into a flat disc around a central channel. This work provides the first EM visualization of BCDX2 and CX3 binding to Holliday junctions and forked DNAs and suggests the complexes form ring-shaped structures.
Collapse
Affiliation(s)
- Sarah A Compton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
21
|
Burrow AA, Marullo A, Holder LR, Wang YH. Secondary structure formation and DNA instability at fragile site FRA16B. Nucleic Acids Res 2010; 38:2865-77. [PMID: 20071743 PMCID: PMC2875025 DOI: 10.1093/nar/gkp1245] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human chromosomal fragile sites are specific loci that are especially susceptible to DNA breakage following conditions of partial replication stress. They often are found in genes involved in tumorigenesis and map to over half of all known cancer-specific recurrent translocation breakpoints. While their molecular basis remains elusive, most fragile DNAs contain AT-rich flexibility islands predicted to form stable secondary structures. To understand the mechanism of fragile site instability, we examined the contribution of secondary structure formation to breakage at FRA16B. Here, we show that FRA16B forms an alternative DNA structure in vitro. During replication in human cells, FRA16B exhibited reduced replication efficiency and expansions and deletions, depending on replication orientation and distance from the origin. Furthermore, the examination of a FRA16B replication fork template demonstrated that the majority of the constructs contained DNA polymerase paused within the FRA16B sequence, and among the molecules, which completed DNA synthesis, 81% of them underwent fork reversal. These results strongly suggest that the secondary-structure-forming ability of FRA16B contributes to its fragility by stalling DNA replication, and this mechanism may be shared among other fragile DNAs.
Collapse
Affiliation(s)
- Allison A Burrow
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | | | | | | |
Collapse
|
22
|
Compton SA, Tolun G, Kamath-Loeb AS, Loeb LA, Griffith JD. The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer. J Biol Chem 2008; 283:24478-83. [PMID: 18596042 DOI: 10.1074/jbc.m803370200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Werner syndrome is an inherited disease displaying a premature aging phenotype. The gene mutated in Werner syndrome encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Both WRN helicase and exonuclease preferentially utilize DNA substrates containing alternate secondary structures. By virtue of its ability to resolve such DNA structures, WRN is postulated to prevent the stalling and collapse of replication forks that encounter damaged DNA. Using electron microscopy, we visualized the binding of full-length WRN to DNA templates containing replication forks and Holliday junctions, intermediates observed during DNA replication and recombination, respectively. We show that both wild-type WRN and a helicase-defective mutant bind with exceptionally high specificity (>1000-fold) to DNA secondary structures at the replication fork and at Holliday junctions. Little or no binding is observed elsewhere on the DNA molecules. Calculations of the molecular weight of full-length WRN revealed that, in solution, WRN exists predominantly as a dimer. However, WRN bound to DNA is larger; the mass is consistent with that of a tetramer.
Collapse
Affiliation(s)
- Sarah A Compton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
23
|
Pamidi A, Cardoso R, Hakem A, Matysiak-Zablocki E, Poonepalli A, Tamblyn L, Perez-Ordonez B, Hande MP, Sanchez O, Hakem R. Functional interplay of p53 and Mus81 in DNA damage responses and cancer. Cancer Res 2007; 67:8527-35. [PMID: 17875692 DOI: 10.1158/0008-5472.can-07-1161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mus81 plays an integral role in the maintenance of genome stability and DNA repair in mammalian cells. Deficiency of Mus81 in human and mouse cells results in hypersensitivity to interstrand cross-linking (ICL) agents and elevated levels of genomic instability. Furthermore, Mus81-mutant mice are susceptible to spontaneous lymphomas. The role of cellular checkpoints in mediating the phenotypes observed in Mus81-deficient cells and mice is currently unknown. In this study, we have observed increased activation of p53 in Mus81(-/-) cells in response to ICL-induced DNA damage. In addition, p53 inactivation completely rescued the ICL hypersensitivity of Mus81(-/-) cells, signifying p53 is essential for the elimination of ICL-damaged cells in the absence of Mus81. Confirming that p53 acts as a critical checkpoint for the Mus81 repair pathway, a synergistic increase of spontaneous and ICL-induced genomic instability was observed in Mus81(-/-)p53(-/-) cells. To clarify the genetic interactions of Mus81 and p53 in tumor suppression, we monitored Mus81(-/-)p53(-/-) and control mice for the development of spontaneous tumors. Significantly, we show that loss of even a single allele of Mus81 drastically modifies the tumor spectrum of p53-mutant mice and increases their predisposition to developing sarcomas. Our results reveal a key role for p53 in mediating the response to spontaneous and ICL-induced DNA damage that occurs in the absence of Mus81. Furthermore, our data show that loss of Mus81, in addition to p53, is a key step in sarcoma development.
Collapse
Affiliation(s)
- Ashwin Pamidi
- The Advanced Medical Discovery Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Manipulation of cell cycle progression can counteract the apparent loss of correction frequency following oligonucleotide-directed gene repair. BMC Mol Biol 2007; 8:9. [PMID: 17284323 PMCID: PMC1797188 DOI: 10.1186/1471-2199-8-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 02/06/2007] [Indexed: 11/10/2022] Open
Abstract
Background Single-stranded oligonucleotides (ssODN) are used routinely to direct specific base alterations within mammalian genomes that result in the restoration of a functional gene. Despite success with the technique, recent studies have revealed that following repair events, correction frequencies decrease as a function of time, possibly due to a sustained activation of damage response signals in corrected cells that lead to a selective stalling. In this study, we use thymidine to slow down the replication rate to enhance repair frequency and to maintain substantial levels of correction over time. Results First, we utilized thymidine to arrest cells in G1 and released the cells into S phase, at which point specific ssODNs direct the highest level of correction. Next, we devised a protocol in which cells are maintained in thymidine following the repair reaction, in which the replication is slowed in both corrected and non-corrected cells and the initial correction frequency is retained. We also present evidence that cells enter a senescence state upon prolonged treatment with thymidine but this passage can be avoided by removing thymidine at 48 hours. Conclusion Taken together, we believe that thymidine may be used in a therapeutic fashion to enable the maintenance of high levels of treated cells bearing repaired genes.
Collapse
|
25
|
Nossal NG, Makhov AM, Chastain PD, Jones CE, Griffith JD. Architecture of the Bacteriophage T4 Replication Complex Revealed with Nanoscale Biopointers. J Biol Chem 2007; 282:1098-108. [PMID: 17105722 DOI: 10.1074/jbc.m606772200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous electron microscopy of DNA replicated by the bacteriophage T4 proteins showed a single complex at the fork, thought to contain the leading and lagging strand proteins, as well as the protein-covered single-stranded DNA on the lagging strand folded into a compact structure. "Trombone" loops formed from nascent lagging strand fragments were present on a majority of the replicating molecules (Chastain, P., Makhov, A. M., Nossal, N. G., and Griffith, J. D. (2003) J. Biol. Chem. 278, 21276-21285). Here we probe the composition of this replication complex using nanoscale DNA biopointers to show the location of biotin-tagged replication proteins. We find that a large fraction of the molecules with a trombone loop had two pointers to polymerase, providing strong evidence that the leading and lagging strand polymerases are together in the replication complex. 6% of the molecules had two loops, and 31% of these had three pointers to biotin-tagged polymerase, suggesting that the two loops result from two fragments that are being extended simultaneously. Under fixation conditions that extend the lagging strand, occasional molecules show two nascent lagging strand fragments, each being elongated by a biotin-tagged polymerase. T4 41 helicase is present in the complex on a large fraction of actively replicating molecules but on a smaller fraction of molecules with a stalled polymerase. Unexpectedly, we found that 59 helicase-loading protein remains on the fork after loading the helicase and is present on molecules with extensive replication.
Collapse
Affiliation(s)
- Nancy G Nossal
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | |
Collapse
|
26
|
Fouché N, Cesare AJ, Willcox S, Ozgür S, Compton SA, Griffith JD. The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J Biol Chem 2006; 281:37486-95. [PMID: 17052985 DOI: 10.1074/jbc.m608778200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The replication of long tracts of telomeric repeats may require specific factors to avoid fork regression (Fouché, N., Ozgür, S., Roy, D., and Griffith, J. (2006) Nucleic Acids Res., in press). Here we show that TRF2 binds to model replication forks and four-way junctions in vitro in a structure-specific but sequence-independent manner. A synthetic peptide encompassing the TRF2 basic domain also binds to DNA four-way junctions, whereas the TRF2 truncation mutant (TRF2(DeltaB)) and a mutant basic domain peptide do not. In the absence of the basic domain, the ability of TRF2 to localize to model telomere ends and facilitate t-loop formation in vitro is diminished. We propose that TRF2 plays a key role during telomere replication in binding chickenfoot intermediates of telomere replication fork regression. Junction-specific binding would also allow TRF2 to stabilize a strand invasion structure that is thought to exist at the strand invasion site of the t-loop.
Collapse
Affiliation(s)
- Nicole Fouché
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Among several different types of repetitive sequences found in the human genome, this study has examined the telomeric repeat, necessary for the protection of chromosome termini, and the disease-associated triplet repeat (CTG)·(CAG)n. Evidence suggests that replication of both types of repeats is problematic and that a contributing factor is the repetitive nature of the DNA itself. Here we have used electron microscopy to investigate DNA structures formed at replication forks on large model DNAs containing these repeat sequences, in an attempt to elucidate the contributory effect that these repetitive DNAs may have on their replication. Visualization of the DNA revealed that there is a high propensity for a paused replication fork to spontaneously regress when moving through repetitive DNAs, and that this results in a four-way chickenfoot intermediate that could present a significant block to replication in vivo, possibly leading to unwanted recombination events, amplifications or deletions.
Collapse
Affiliation(s)
| | | | | | - Jack D. Griffith
- To whom correspondence should be addressed. Tel: +1 919 966 2151; Fax: +1 919 966 3015;
| |
Collapse
|
28
|
Baharoglu Z, Petranovic M, Flores MJ, Michel B. RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 2006; 25:596-604. [PMID: 16424908 PMCID: PMC1383526 DOI: 10.1038/sj.emboj.7600941] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/14/2005] [Indexed: 12/28/2022] Open
Abstract
Inactivated replication forks may be reversed by the annealing of leading- and lagging-strand ends, resulting in the formation of a Holliday junction (HJ) adjacent to a DNA double-strand end. In Escherichia coli mutants deficient for double-strand end processing, resolution of the HJ by RuvABC leads to fork breakage, a reaction that we can directly quantify. Here we used the HJ-specific resolvase RusA to test a putative role of the RuvAB helicase in replication fork reversal (RFR). We show that the RuvAB complex is required for the formation of a RusA substrate in the polymerase III mutants dnaEts and holD, affected for the Pol III catalytic subunit and clamp loader, and in the helicase mutant rep. This finding reveals that the recombination enzyme RuvAB targets forks in vivo and we propose that it directly converts forks into HJs. In contrast, RFR occurs in the absence of RuvAB in the dnaNts mutant, affected for the processivity clamp of Pol III, and in the priA mutant, defective for replication restart. This suggests alternative pathways of RFR.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
- Present address: Centre de génétique Moléculaire, CNRS Bâtiment 26, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Mirjana Petranovic
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
| | - Maria-Jose Flores
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
| | - Bénédicte Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
- Present address: Centre de génétique Moléculaire, CNRS Bâtiment 26, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- Centre de génétique Moléculaire, CNRS Bâtiment 26, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France. Tel.: +33 1 69 82 32 29; Fax: +33 1 69 82 31 40; E-mail:
| |
Collapse
|