1
|
Malinow I, Fong DC, Miyamoto M, Badran S, Hong CC. Pediatric dilated cardiomyopathy: a review of current clinical approaches and pathogenesis. Front Pediatr 2024; 12:1404942. [PMID: 38966492 PMCID: PMC11223501 DOI: 10.3389/fped.2024.1404942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Pediatric dilated cardiomyopathy (DCM) is a rare, yet life-threatening cardiovascular condition characterized by systolic dysfunction with biventricular dilatation and reduced myocardial contractility. Therapeutic options are limited with nearly 40% of children undergoing heart transplant or death within 2 years of diagnosis. Pediatric patients are currently diagnosed based on correlating the clinical picture with echocardiographic findings. Patient age, etiology of disease, and parameters of cardiac function significantly impact prognosis. Treatments for pediatric DCM aim to ameliorate symptoms, reduce progression of disease, and prevent life-threatening arrhythmias. Many therapeutic agents with known efficacy in adults lack the same evidence in children. Unlike adult DCM, the pathogenesis of pediatric DCM is not well understood as approximately two thirds of cases are classified as idiopathic disease. Children experience unique gene expression changes and molecular pathway activation in response to DCM. Studies have pointed to a significant genetic component in pediatric DCM, with variants in genes related to sarcomere and cytoskeleton structure implicated. In this regard, pediatric DCM can be considered pediatric manifestations of inherited cardiomyopathy syndromes. Yet exciting recent studies in infantile DCM suggest that this subset has a distinct etiology involving defective postnatal cardiac maturation, such as the failure of programmed centrosome breakdown in cardiomyocytes. Improved knowledge of pathogenesis is central to developing child-specific treatment approaches. This review aims to discuss the established biological pathogenesis of pediatric DCM, current clinical guidelines, and promising therapeutic avenues, highlighting differences from adult disease. The overarching goal is to unravel the complexities surrounding this condition to facilitate the advancement of novel therapeutic interventions and improve prognosis and overall quality of life for pediatric patients affected by DCM.
Collapse
Affiliation(s)
- Ian Malinow
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel C. Fong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Miyamoto
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah Badran
- Department of Pediatric Cardiology, Michigan State University College of Human Medicine Helen Devos Children’s Hospital, Grand Rapids, MI, United States
| | - Charles C. Hong
- Department of Medicine, Division of Cardiology, Michigan State University College of Human Medicine, East Lansing, MI, United States
| |
Collapse
|
2
|
Sequeira V, Maack C, Reil GH, Reil JC. Exploring the Connection Between Relaxed Myosin States and the Anrep Effect. Circ Res 2024; 134:117-134. [PMID: 38175910 DOI: 10.1161/circresaha.123.323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The Anrep effect is an adaptive response that increases left ventricular contractility following an acute rise in afterload. Although the mechanistic origin remains undefined, recent findings suggest a two-phase activation of resting myosin for contraction, involving strain-sensitive and posttranslational phases. We propose that this mobilization represents a transition among the relaxed states of myosin-specifically, from the super-relaxed (SRX) to the disordered-relaxed (DRX)-with DRX myosin ready to participate in force generation. This hypothesis offers a unified explanation that connects myosin's SRX-DRX equilibrium and the Anrep effect as parts of a singular phenomenon. We underscore the significance of this equilibrium in modulating contractility, primarily studied in the context of hypertrophic cardiomyopathy, the most common inherited cardiomyopathy associated with diastolic dysfunction, hypercontractility, and left ventricular hypertrophy. As we posit that the cellular basis of the Anrep effect relies on a two-phased transition of myosin from the SRX to the contraction-ready DRX configuration, any dysregulation in this equilibrium may result in the pathological manifestation of the Anrep phenomenon. For instance, in hypertrophic cardiomyopathy, hypercontractility is linked to a considerable shift of myosin to the DRX state, implying a persistent activation of the Anrep effect. These valuable insights call for additional research to uncover a clinical Anrep fingerprint in pathological states. Here, we demonstrate through noninvasive echocardiographic pressure-volume measurements that this fingerprint is evident in 12 patients with hypertrophic obstructive cardiomyopathy before septal myocardial ablation. This unique signature is characterized by enhanced contractility, indicated by a leftward shift and steepening of the end-systolic pressure-volume relationship, and a prolonged systolic ejection time adjusted for heart rate, which reverses post-procedure. The clinical application of this concept has potential implications beyond hypertrophic cardiomyopathy, extending to other genetic cardiomyopathies and even noncongenital heart diseases with complex etiologies across a broad spectrum of left ventricular ejection fractions.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Christoph Maack
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Gert-Hinrich Reil
- Klinik für Kardiologie, Klinikum Oldenburg, Innere Medizin I, Germany (G.-H.R.)
| | - Jan-Christian Reil
- Klinik für Allgemeine und Interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R.)
| |
Collapse
|
3
|
Cool AM, Lindert S. Umbrella Sampling Simulations of Cardiac Thin Filament Reveal Thermodynamic Consequences of Troponin I Inhibitory Peptide Mutations. J Chem Inf Model 2023; 63:3534-3543. [PMID: 37261389 PMCID: PMC10506665 DOI: 10.1021/acs.jcim.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cardiac thin filament comprises F-actin, tropomyosin, and troponin (cTn). cTn is composed of three subunits: troponin C (cTnC), troponin I (cTnI), and troponin T (cTnT). To computationally study the effect of the thin filament on cTn activation events, we employed targeted molecular dynamics followed by umbrella sampling using a model of the thin filament to measure the thermodynamics of cTn transition events. Our simulations revealed that the thin filament causes an increase in the free energy required to open the cTnC hydrophobic patch and causes a more favorable interaction between this region and the cTnI switch peptide. Mutations to the cTn complex can lead to cardiomyopathy, a collection of diseases that present clinically with symptoms of hypertrophy or dilation of the cardiac muscle, leading to impairment of the heart's ability to function normally and ultimately myocardial infarction or heart failure. Upon introduction of cardiomyopathic mutations to R145 of cTnI, we observed a general decrease in the free energy of opening the cTnC hydrophobic patch, which is on par with previous experimental results. These mutations also exhibited a decrease in electrostatic interactions between cTnI-R145 and actin-E334. After introduction of a small molecule to the wild-type cTnI-actin interface to intentionally disrupt intersubunit contacts, we successfully observed similar thermodynamic consequences and disruptions to the same protein-protein contacts as observed with the cardiomyopathic mutations. Computational studies utilizing the cTn complex in isolation would have been unable to observe these effects, highlighting the importance of using a more physiologically relevant thin-filament model to investigate the global consequences of cardiomyopathic mutations to the cTn complex.
Collapse
Affiliation(s)
- Austin M. Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
4
|
Hanft LM, Robinett JC, Kalogeris TJ, Campbell KS, Biesiadecki BJ, McDonald KS. Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts. J Gen Physiol 2023; 155:e202213290. [PMID: 37000170 PMCID: PMC10067705 DOI: 10.1085/jgp.202213290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
The heart's pumping capacity is determined by myofilament power generation. Power is work done per unit time and measured as the product of force and velocity. At a sarcomere level, these contractile properties are linked to the number of attached cross-bridges and their cycling rate, and many signaling pathways modulate one or both factors. We previously showed that power is increased in rodent permeabilized cardiac myocytes following PKA-mediated phosphorylation of myofibrillar proteins. The current study found that that PKA increased power by ∼30% in permeabilized cardiac myocyte preparations (n = 8) from human failing hearts. To address myofilament molecular specificity of PKA effects, mechanical properties were measured in rat permeabilized slow-twitch skeletal muscle fibers before and after exchange of endogenous slow skeletal troponin with recombinant human Tn complex that contains cardiac (c)TnT, cTnC and either wildtype (WT) cTnI or pseudo-phosphorylated cTnI at sites Ser23/24Asp, Tyr26Glu, or the combinatorial Ser23/24Asp and Tyr26Glu. We found that cTnI Ser23/24Asp, Tyr26Glu, and combinatorial Ser23/24Asp and Tyr26Glu were sufficient to increase power by ∼20%. Next, we determined whether pseudo-phosphorylated cTnI at Ser23/24 was sufficient to increase power in cardiac myocytes from human failing hearts. Following cTn exchange that included cTnI Ser23/24Asp, power output increased ∼20% in permeabilized cardiac myocyte preparations (n = 6) from the left ventricle of human failing hearts. These results implicate cTnI N-terminal phosphorylation as a molecular regulator of myocyte power and could serve as a regional target for small molecule therapy to unmask myocyte power reserve capacity in human failing hearts.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Jones MR, Tran C, Singh J, Dawson JF. A gradient of force generation at rest differentiates cardiomyopathy outcomes with variants of actin located at the same residue. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 2:100023. [PMID: 39802493 PMCID: PMC11708414 DOI: 10.1016/j.jmccpl.2022.100023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 01/16/2025]
Abstract
The calcium sensitivity hypothesis helps explain the development of different forms of cardiomyopathy: increased sensitivity to calcium in cardiac sarcomeres leads to hypertrophic cardiomyopathy (HCM) and decreased sensitivity results in dilated cardiomyopathy (DCM). This hypothesis has driven the development of next generation drugs targeting sarcomere proteins to correct the amount of force generated as a result of changes in calcium sensitivity (e.g. mavacamten decreases cardiac myosin activity to treat HCM). Characterization of variants of cardiac actin (ACTC) found in patients with HCM or DCM has generally supported the calcium sensitivity hypothesis. Of interest are two different substitution mutations at R312 on ACTC: R312H leads to DCM, while R312C was found in patients with HCM. To determine how changes in the same codon on the same gene lead to different disease phenotypes, we characterized recombinant R312H- and R312C-ACTC variant proteins. Both variants exhibited the same change in calcium sensitivity, suggesting that a factor other than calcium sensitivity is responsible for disease differentiation. We observed a gradient of increased residual myosin activity with R312-ACTC variant proteins under relaxing conditions which may trigger different disease development. Our findings suggest that factors other than calcium sensitivity may contribute to cardiomyopathy development and should be considered when planning treatments.
Collapse
Affiliation(s)
- Michael R. Jones
- Corresponding author at: Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | | | | - John F. Dawson
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Robinett JC, Hanft LM, Biesiadecki B, McDonald KS. Molecular regulation of stretch activation. Am J Physiol Cell Physiol 2022; 323:C1728-C1739. [PMID: 36280392 PMCID: PMC9744651 DOI: 10.1152/ajpcell.00101.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Stretch activation is defined as a delayed increase in force after rapid stretches. Although there is considerable evidence for stretch activation in isolated cardiac myofibrillar preparations, few studies have measured mechanisms of stretch activation in mammalian skeletal muscle fibers. We measured stretch activation following rapid step stretches [∼1%-4% sarcomere length (SL)] during submaximal Ca2+ activations of rat permeabilized slow-twitch skeletal muscle fibers before and after protein kinase A (PKA), which phosphorylates slow myosin binding protein-C. PKA significantly increased stretch activation during low (∼25%) Ca2+ activation and accelerated rates of delayed force development (kef) during both low and half-maximal Ca2+ activation. Following the step stretches and subsequent force development, fibers were rapidly shortened to original sarcomere length, which often elicited a shortening-induced transient force overshoot. After PKA, step shortening-induced transient force overshoot increased ∼10-fold following an ∼4% SL shortening during low Ca2+ activation levels. kdf following step shortening also increased after PKA during low and half-maximal Ca2+ activations. We next investigated thin filament regulation of stretch activation. We tested the interplay between cardiac troponin I (cTnI) phosphorylation at the canonical PKA and novel tyrosine kinase sites on stretch activation. Native slow-skeletal Tn complexes were exchanged with recombinant human cTn complex with different human cTnI N-terminal pseudo-phosphorylation molecules: 1) nonphosphorylated wild type (WT), 2) the canonical S22/23D PKA sites, 3) the tyrosine kinase Y26E site, and 4) the combinatorial S22/23D + Y26E cTnI. All three pseudo-phosphorylated cTnIs elicited greater stretch activation than WT. Following stretch activation, a new, elevated stretch-induced steady-state force was reached with pseudo-phosphorylated cTnI. Combinatorial S22/23D + Y26E pseudo-phosphorylated cTnI increased kdf. These results suggest that slow-skeletal myosin binding protein-C (sMyBP-C) phosphorylation modulates stretch activation by a combination of cross-bridge recruitment and faster cycling kinetics, whereas cTnI phosphorylation regulates stretch activation by both redundant and synergistic mechanisms; and, taken together, these sarcomere phosphoproteins offer precision targets for enhanced contractility.
Collapse
Affiliation(s)
- Joel C Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Sequeira V, Wang L, Wijnker PJ, Kim K, Pinto JR, dos Remedios C, Redwood C, Knollmann BC, van der Velden J. Low expression of the K280N TNNT2 mutation is sufficient to increase basal myofilament activation in human hypertrophy cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100007. [PMID: 37159677 PMCID: PMC10160007 DOI: 10.1016/j.jmccpl.2022.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 05/11/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder with patients typically showing heterozygous inheritance of a pathogenic variant in a gene encoding a contractile protein. Here, we study the contractile effects of a rare homozygous mutation using explanted tissue and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to gain insight into how the balance between mutant and WT protein expression affects cardiomyocyte function. Methods Force measurements were performed in cardiomyocytes isolated from a HCM patient carrying a homozygous troponin T mutation (cTnT-K280N) and healthy donors. To discriminate between mutation-mediated and phosphorylation-related effects on Ca2+-sensitivity, cardiomyocytes were treated with alkaline phosphatase (AP) or protein kinase A (PKA). Troponin exchange experiments characterized the relation between mutant levels and myofilament function. To define mutation-mediated effects on Ca2+-dynamics we used CRISPR/Cas9 to generate hiPSC-CMs harbouring heterozygous and homozygous TnT-K280N mutations. Ca2+-transient and cell shortening experiments compared these lines against isogenic controls. Results Myofilament Ca2+-sensitivity was higher in homozygous cTnT-K280N cardiomyocytes and was not corrected by AP- and PKA-treatment. In cTnT-K280N cells exchanged with cTnT-WT, a low level (14%) of cTnT-K280N mutation elevated Ca2+-sensitivity. Similarly, exchange of donor cells with 45 ± 2% cTnT-K280N increased Ca2+-sensitivity and was not corrected by PKA. cTnT-K280N hiPSC-CMs show elevated diastolic Ca2+ and increases in cell shortening. Impaired cardiomyocyte relaxation was only evident in homozygous cTnT-K280N hiPSC-CMs. Conclusions The cTnT-K280N mutation increases myofilament Ca2+-sensitivity, elevates diastolic Ca2+, enhances contractility and impairs cellular relaxation. A low level (14%) of the cTnT-K280N sensitizes myofilaments to Ca2+, a universal finding of human HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
- Comprehensive Heart Failure Center (CHFC) University Clinic Würzburg, Würzburg, Germany
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Paul J.M. Wijnker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Kyungsoo Kim
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Cris dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, The University of Sydney, Sydney, Australia
| | | | - Bjorn C. Knollmann
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Hassoun R, Budde H, Mügge A, Hamdani N. Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. Int J Mol Sci 2021; 22:11154. [PMID: 34681814 PMCID: PMC8541428 DOI: 10.3390/ijms222011154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Inherited cardiomyopathies form a heterogenous group of disorders that affect the structure and function of the heart. Defects in the genes encoding sarcomeric proteins are associated with various perturbations that induce contractile dysfunction and promote disease development. In this review we aimed to outline the functional consequences of the major inherited cardiomyopathies in terms of myocardial contraction and kinetics, and to highlight the structural and functional alterations in some sarcomeric variants that have been demonstrated to be involved in the pathogenesis of the inherited cardiomyopathies. A particular focus was made on mutation-induced alterations in cardiomyocyte mechanics. Since no disease-specific treatments for familial cardiomyopathies exist, several novel agents have been developed to modulate sarcomere contractility. Understanding the molecular basis of the disease opens new avenues for the development of new therapies. Furthermore, the earlier the awareness of the genetic defect, the better the clinical prognostication would be for patients and the better the prevention of development of the disease.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
9
|
Cool AM, Lindert S. Computational Methods Elucidate Consequences of Mutations and Post-translational Modifications on Troponin I Effective Concentration to Troponin C. J Phys Chem B 2021; 125:7388-7396. [PMID: 34213339 DOI: 10.1021/acs.jpcb.1c03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ binding to cardiac troponin C (cTnC) causes a conformational shift that exposes a hydrophobic patch (cTnCHP) for binding of the cTnI switch peptide (cTnISP), ultimately resulting in contraction of the heart. The inhibitory peptide (cTnIIP), attached at the N-terminal end of the cTnISP, serves as a tether for the cTnISP to the rest of the troponin complex. Due to this tethered nature, the cTnISP remains within proximity of the hydrophobic patch region, resulting in the cTnCHP experiencing an elevated "effective concentration" of the cTnISP. Mutations to the cTnIIP region have been hypothesized to cause disease by affecting the ability of the cTnISP to "find" the hydrophobic patch, resulting in alterations to the heart's ability to contract normally. We tested this hypothesis using molecular dynamics (MD) simulations of the troponin complex using a model that contained all three subunits of troponin: C, I, and T. We developed methods that allowed us to quantitatively measure the effective concentration of the cTnISP from the simulations. A significant reduction in the cTnISP effective concentration was observed when the cTnIIP was removed from the system, showcasing the importance of a tethered cTnISP. Through accelerated MD methods, we proposed the minimum effective concentration of a tethered cTnISP to be approximately 21 mM. Modification of the cTnIIP via PKC-mediated phosphorylation of T143 was shown to significantly increase the estimated effective concentration of cTnISP, help the cTnISP find the cTnCHP more effectively, and maintain the relative shape of the cTnIIP when compared to the native model. All of these data indicate that pT143 may be able to help promote binding of cTnISP to the cTnCHP. We then tested six mutations within the cTnIIP region that are known cTnC Ca2+-sensitizing mutations and have been linked with cardiomyopathy. We did not observe a significant reduction in the effective concentration upon the introduction of these mutations; however, we did observe increased variability in the flexibility and dynamics of the cTnIIP region when compared to native. Our observations led us to hypothesize that the mechanism by which these cardiomyopathic mutations affect Ca2+ sensitivity is by altering the off rate of cTnISP from the hydrophobic patch.
Collapse
Affiliation(s)
- Austin M Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Genchev GZ, Kobayashi M, Kobayashi T, Lu H. Molecular dynamics provides new insights into the mechanism of calcium signal transduction and interdomain interactions in cardiac troponin. FEBS Open Bio 2021; 11:1841-1853. [PMID: 33085832 PMCID: PMC8255835 DOI: 10.1002/2211-5463.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding the regulation of cardiac muscle contraction at a molecular level is crucial for the development of therapeutics for heart conditions. Despite the availability of atomic structures of the protein components of cardiac muscle thin filaments, detailed insights into their dynamics and response to calcium are yet to be fully depicted. In this study, we used molecular dynamics simulations of the core domains of the cardiac muscle protein troponin to characterize the equilibrium dynamics of its calcium-bound and calcium-free forms, with a focus on elements of cardiac muscle contraction activation and deactivation, that is, calcium binding to the cardiac troponin Ca2+ -binding subunit (TnC) and the release of the switch region of the troponin inhibitory subunit (TnI) from TnC. The process of calcium binding to the TnC binding site is described as a three-step process commencing with calcium capture by the binding site residues, followed by cooperative residue interplay bringing the calcium ion to the binding site, and finally, calcium-water exchange. Furthermore, we uncovered a set of TnC-TnI interdomain interactions that are critical for TnC N-lobe hydrophobic pocket dynamics. Absence of these interactions allows the closure of the TnC N-lobe hydrophobic pocket while the TnI switch region remains expelled, whereas if the interactions are maintained, the hydrophobic pocket remains open. Modification of these interactions may fine-tune the ability of the TnC N-lobe hydrophobic pocket to close or remain open, modulate cardiac contractility and present potential therapy-relevant targets.
Collapse
Affiliation(s)
- Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria.,Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Minae Kobayashi
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Tomoyoshi Kobayashi
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Tobacman LS, Cammarato A. Cardiomyopathic troponin mutations predominantly occur at its interface with actin and tropomyosin. J Gen Physiol 2021; 153:e202012815. [PMID: 33492345 PMCID: PMC7836260 DOI: 10.1085/jgp.202012815] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023] Open
Abstract
Reversible Ca2+ binding to troponin is the primary on-off switch of the contractile apparatus of striated muscles, including the heart. Dominant missense mutations in human cardiac troponin genes are among the causes of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy. Structural understanding of troponin action has recently advanced considerably via electron microscopy and molecular dynamics studies of the thin filament. As a result, it is now possible to examine cardiomyopathy-inducing troponin mutations in thin-filament structural context, and from that to seek new insight into pathogenesis and into the troponin regulatory mechanism. We compiled from consortium reports a representative set of troponin mutation sites whose pathogenicity was determined using standardized clinical genetics criteria. Another set of sites, apparently tolerant of amino acid substitutions, was compiled from the gnomAD v2 database. Pathogenic substitutions occurred predominantly in the areas of troponin that contact actin or tropomyosin, including, but not limited to, two regions of newly proposed structure and long-known implication in cardiomyopathy: the C-terminal third of troponin I and a part of the troponin T N terminus. The pathogenic mutations were located in troponin regions that prevent contraction under low Ca2+ concentration conditions. These regions contribute to Ca2+-regulated steric hindrance of myosin by the combined effects of troponin and tropomyosin. Loss-of-function mutations within these parts of troponin result in loss of inhibition, consistent with the hypercontractile phenotype characteristic of HCM. Notably, pathogenic mutations are absent in our dataset from the Ca2+-binding, activation-producing troponin C (TnC) N-lobe, which controls contraction by a multi-faceted mechanism. Apparently benign mutations are also diminished in the TnC N-lobe, suggesting mutations are poorly tolerated in that critical domain.
Collapse
Affiliation(s)
- Larry S. Tobacman
- Departments of Medicine and of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Anthony Cammarato
- Departments of Medicine and of Physiology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
12
|
Genetic Restrictive Cardiomyopathy: Causes and Consequences-An Integrative Approach. Int J Mol Sci 2021; 22:ijms22020558. [PMID: 33429969 PMCID: PMC7827163 DOI: 10.3390/ijms22020558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM.
Collapse
|
13
|
Matyushenko AM, Levitsky DI. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. BIOCHEMISTRY (MOSCOW) 2020; 85:S20-S33. [PMID: 32087052 DOI: 10.1134/s0006297920140023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is devoted to tropomyosin (Tpm) - actin-binding protein, which plays a crucial role in the regulation of contraction of skeletal and cardiac muscles. Special attention is paid to myopathies and cardiomyopathies - severe hereditary diseases of skeletal and cardiac muscles associated with point mutations in Tpm genes. The current views on the molecular mechanisms of these diseases and the effects of such mutations on the Tpm structure and functions are considered in detail. Besides, some part of the review is devoted to analysis of the properties of Tpm homodimers and heterodimers with myopathic substitutions of amino acid residues in only one of the two chains of the Tpm dimeric molecule.
Collapse
Affiliation(s)
- A M Matyushenko
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - D I Levitsky
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
14
|
Cimiotti D, Fujita-Becker S, Möhner D, Smolina N, Budde H, Wies A, Morgenstern L, Gudkova A, Sejersen T, Sjöberg G, Mügge A, Nowaczyk MM, Reusch P, Pfitzer G, Stehle R, Schröder RR, Mannherz HG, Kostareva A, Jaquet K. Infantile restrictive cardiomyopathy: cTnI-R170G/W impair the interplay of sarcomeric proteins and the integrity of thin filaments. PLoS One 2020; 15:e0229227. [PMID: 32182250 PMCID: PMC7077804 DOI: 10.1371/journal.pone.0229227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
TNNI3 encoding cTnI, the inhibitory subunit of the troponin complex, is the main target for mutations leading to restrictive cardiomyopathy (RCM). Here we investigate two cTnI-R170G/W amino acid replacements, identified in infantile RCM patients, which are located in the regulatory C-terminus of cTnI. The C-terminus is thought to modulate the function of the inhibitory region of cTnI. Both cTnI-R170G/W strongly enhanced the Ca2+-sensitivity of skinned fibres, as is typical for RCM-mutations. Both mutants strongly enhanced the affinity of troponin (cTn) to tropomyosin compared to wildtype cTn, whereas binding to actin was either strengthened (R170G) or weakened (R170W). Furthermore, the stability of reconstituted thin filaments was reduced as revealed by electron microscopy. Filaments containing R170G/W appeared wavy and showed breaks. Decoration of filaments with myosin subfragment S1 was normal in the presence of R170W, but was irregular with R170G. Surprisingly, both mutants did not affect the Ca2+-dependent activation of reconstituted cardiac thin filaments. In the presence of the N-terminal fragment of cardiac myosin binding protein C (cMyBPC-C0C2) cooperativity of thin filament activation was increased only when the filaments contained wildtype cTn. No effect was observed in the presence of cTn containing R170G/W. cMyBPC-C0C2 significantly reduced binding of wildtype troponin to actin/tropomyosin, but not of both mutant cTn. Moreover, we found a direct troponin/cMyBPC-C0C2 interaction using microscale thermophoresis and identified cTnI and cTnT, but not cTnC as binding partners for cMyBPC-C0C2. Only cTn containing cTnI-R170G showed a reduced affinity towards cMyBPC-C0C2. Our results suggest that the RCM cTnI variants R170G/W impair the communication between thin and thick filament proteins and destabilize thin filaments.
Collapse
Affiliation(s)
- Diana Cimiotti
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Setsuko Fujita-Becker
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Desirée Möhner
- Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Natalia Smolina
- Department of Molecular Biology and Genetics, Almazov Federal Medical Research Center, St. Petersburg, Russia
| | - Heidi Budde
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Aline Wies
- Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Lisa Morgenstern
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Alexandra Gudkova
- Department of Molecular Biology and Genetics, Almazov Federal Medical Research Center, St. Petersburg, Russia
| | - Thomas Sejersen
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gunnar Sjöberg
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Andreas Mügge
- Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Peter Reusch
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany
| | | | - Robert Stehle
- Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rasmus R Schröder
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Hans G Mannherz
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Department of Anatomy and Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Anna Kostareva
- Department of Molecular Biology and Genetics, Almazov Federal Medical Research Center, St. Petersburg, Russia.,Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kornelia Jaquet
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Sparrow AJ, Sievert K, Patel S, Chang YF, Broyles CN, Brook FA, Watkins H, Geeves MA, Redwood CS, Robinson P, Daniels MJ. Measurement of Myofilament-Localized Calcium Dynamics in Adult Cardiomyocytes and the Effect of Hypertrophic Cardiomyopathy Mutations. Circ Res 2020; 124:1228-1239. [PMID: 30732532 PMCID: PMC6485313 DOI: 10.1161/circresaha.118.314600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Subcellular Ca2+ indicators have yet to be developed for the myofilament where disease mutation or small molecules may alter contractility through myofilament Ca2+ sensitivity. Here, we develop and characterize genetically encoded Ca2+ indicators restricted to the myofilament to directly visualize Ca2+ changes in the sarcomere. Objective: To produce and validate myofilament-restricted Ca2+ imaging probes in an adenoviral transduction adult cardiomyocyte model using drugs that alter myofilament function (MYK-461, omecamtiv mecarbil, and levosimendan) or following cotransduction of 2 established hypertrophic cardiomyopathy disease-causing mutants (cTnT [Troponin T] R92Q and cTnI [Troponin I] R145G) that alter myofilament Ca2+ handling. Methods and Results: When expressed in adult ventricular cardiomyocytes RGECO-TnT (Troponin T)/TnI (Troponin I) sensors localize correctly to the sarcomere without contractile impairment. Both sensors report cyclical changes in fluorescence in paced cardiomyocytes with reduced Ca2+ on and increased Ca2+ off rates compared with unconjugated RGECO. RGECO-TnT/TnI revealed changes to localized Ca2+ handling conferred by MYK-461 and levosimendan, including an increase in Ca2+ binding rates with both levosimendan and MYK-461 not detected by an unrestricted protein sensor. Coadenoviral transduction of RGECO-TnT/TnI with hypertrophic cardiomyopathy causing thin filament mutants showed that the mutations increase myofilament [Ca2+] in systole, lengthen time to peak systolic [Ca2+], and delay [Ca2+] release. This contrasts with the effect of the same mutations on cytoplasmic Ca2+, when measured using unrestricted RGECO where changes to peak systolic Ca2+ are inconsistent between the 2 mutations. These data contrast with previous findings using chemical dyes that show no alteration of [Ca2+] transient amplitude or time to peak Ca2+. Conclusions: RGECO-TnT/TnI are functionally equivalent. They visualize Ca2+ within the myofilament and reveal unrecognized aspects of small molecule and disease-associated mutations in living cells.
Collapse
Affiliation(s)
- Alexander J Sparrow
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Kolja Sievert
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Suketu Patel
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Yu-Fen Chang
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Connor N Broyles
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Frances A Brook
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Hugh Watkins
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.)
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, United Kingdom (M.A.G.)
| | - Charles S Redwood
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Paul Robinson
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Matthew J Daniels
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Regenerative Medicine (M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.).,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan (M.J.D.)
| |
Collapse
|
16
|
Li CJ, Chen CS, Yiang GT, Tsai APY, Liao WT, Wu MY. Advanced Evolution of Pathogenesis Concepts in Cardiomyopathies. J Clin Med 2019; 8:520. [PMID: 30995779 PMCID: PMC6518034 DOI: 10.3390/jcm8040520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is a group of heterogeneous cardiac diseases that impair systolic and diastolic function, and can induce chronic heart failure and sudden cardiac death. Cardiomyopathy is prevalent in the general population, with high morbidity and mortality rates, and contributes to nearly 20% of sudden cardiac deaths in younger individuals. Genetic mutations associated with cardiomyopathy play a key role in disease formation, especially the mutation of sarcomere encoding genes and ATP kinase genes, such as titin, lamin A/C, myosin heavy chain 7, and troponin T1. Pathogenesis of cardiomyopathy occurs by multiple complex steps involving several pathways, including the Ras-Raf-mitogen-activated protein kinase-extracellular signal-activated kinase pathway, G-protein signaling, mechanotransduction pathway, and protein kinase B/phosphoinositide 3-kinase signaling. Excess biomechanical stress induces apoptosis signaling in cardiomyocytes, leading to cell loss, which can induce myocardial fibrosis and remodeling. The clinical features and pathophysiology of cardiomyopathy are discussed. Although several basic and clinical studies have investigated the mechanism of cardiomyopathy, the detailed pathophysiology remains unclear. This review summarizes current concepts and focuses on the molecular mechanisms of cardiomyopathy, especially in the signaling from mutation to clinical phenotype, with the aim of informing the development of therapeutic interventions.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Chien-Sheng Chen
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Wan-Ting Liao
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Chinese Medicine Department, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
17
|
Lehman SJ, Tal-Grinspan L, Lynn ML, Strom J, Benitez GE, Anderson ME, Tardiff JC. Chronic Calmodulin-Kinase II Activation Drives Disease Progression in Mutation-Specific Hypertrophic Cardiomyopathy. Circulation 2019; 139:1517-1529. [PMID: 30586744 PMCID: PMC6461395 DOI: 10.1161/circulationaha.118.034549] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/01/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Although the genetic causes of hypertrophic cardiomyopathy (HCM) are widely recognized, considerable lag in the development of targeted therapeutics has limited interventions to symptom palliation. This is in part attributable to an incomplete understanding of how point mutations trigger pathogenic remodeling. As a further complication, similar mutations within sarcomeric genes can result in differential disease severity, highlighting the need to understand the mechanism of progression at the molecular level. One pathway commonly linked to HCM progression is calcium homeostasis dysregulation, though how specific mutations disrupt calcium homeostasis remains unclear. METHODS To evaluate the effects of early intervention in calcium homeostasis, we used 2 mouse models of sarcomeric HCM (cardiac troponin T R92L and R92W) with differential myocellular calcium dysregulation and disease presentation. Two modes of intervention were tested: inhibition of the autoactivated calcium-dependent kinase (calmodulin kinase II [CaMKII]) via the AC3I peptide and diltiazem, an L-type calcium channel antagonist. Two-dimensional echocardiography was used to determine cardiac function and left ventricular remodeling, and atrial remodeling was monitored via atrial mass. Sarcoplasmic reticulum Ca2+ATPase activity was measured as an index of myocellular calcium handling and coupled to its regulation via the phosphorylation status of phospholamban. RESULTS We measured an increase in phosphorylation of CaMKII in R92W animals by 6 months of age, indicating increased autonomous activity of the kinase in these animals. Inhibition of CaMKII led to recovery of diastolic function and partially blunted atrial remodeling in R92W mice. This improved function was coupled to increased sarcoplasmic reticulum Ca2+ATPase activity in the R92W animals despite reduction of CaMKII activation, likely indicating improvement in myocellular calcium handling. In contrast, inhibition of CaMKII in R92L animals led to worsened myocellular calcium handling, remodeling, and function. Diltiazem-HCl arrested diastolic dysfunction progression in R92W animals only, with no improvement in cardiac remodeling in either genotype. CONCLUSIONS We propose a highly specific, mutation-dependent role of activated CaMKII in HCM progression and a precise therapeutic target for clinical management of HCM in selected cohorts. Moreover, the mutation-specific response elicited with diltiazem highlights the necessity to understand mutation-dependent progression at a molecular level to precisely intervene in disease progression.
Collapse
Affiliation(s)
- Sarah J. Lehman
- Department of Physiological Sciences, University of Arizona, Tucson, Arizona 85724, USA
| | - Lauren Tal-Grinspan
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Melissa L. Lynn
- Department of Medicine, University of Arizona, Tucson, Arizona, 85724, USA
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Grace E. Benitez
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85724, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Jil C. Tardiff
- Department of Medicine, University of Arizona, Tucson, Arizona, 85724, USA
| |
Collapse
|
18
|
Pasipoularides A. Morphomechanic phenotypic variability of sarcomeric cardiomyopathies: A multifactorial polygenic perspective. J Mol Cell Cardiol 2018; 126:23-35. [PMID: 30423317 DOI: 10.1016/j.yjmcc.2018.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
Abstract
Morphology underlies subdivision of the primary/heritable sarcomeric cardiomyopathies (CMs) into hypertrophic (HCM) and dilated (DCM). Next-generation DNA-sequencing (NGS) has identified important disease-variants, improving CM diagnosis, management, genetic screening, and prognosis. Although monogenic (Mendelian) analyses directly point at downstream studies, they disregard coexisting genomic variations and gene-by-gene interactions molding detailed CM-phenotypes. In-place of polygenic models, in accounting for observed defective genotype-phenotype correlations, fuzzy concepts having gradations of significance and unsharp domain-boundaries are invoked, including pleiotropy, genetic-heterogeneity, incomplete penetrance, and variable expressivity. HCM and DCM undoubtedly entail cooperativity of unidentified/elusive causative genomic-variants. Modern genomics can exploit comprehensive electronic/digital health records, facilitating consideration of multifactorial variant-models. Genome-wide association studies entailing high-fidelity solid-state catheterization, multimodal-imaging, molecular cardiology, systems biology and bioinformatics, will decipher accurate genotype-phenotype correlations and identify novel therapeutic-targets, fostering personalized medicine/cardiology. This review surveys successes and challenges of genetic/genomic approaches to CMs, and their impact on current and future clinical care.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke/NSF Center for Emerging Cardiovascular Technologies, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC, USA.
| |
Collapse
|
19
|
Janssens JV, Ma B, Brimble MA, Van Eyk JE, Delbridge LMD, Mellor KM. Cardiac troponins may be irreversibly modified by glycation: novel potential mechanisms of cardiac performance modulation. Sci Rep 2018; 8:16084. [PMID: 30382112 PMCID: PMC6208411 DOI: 10.1038/s41598-018-33886-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Dynamic movements of the cardiac troponin complex are an important component of the cardiac cycle. Whether cardiac troponins are subjected to irreversible advanced glycation end-product (AGE) modification is unknown. This study interrogated human and rat cardiac troponin-C, troponin-I and troponin-T to identify endogenous AGE modifications using mass spectrometry (LC-MS/MS). AGE modifications were detected on two amino acid residues of human troponin-C (Lys6, Lys39), thirteen troponin-I residues (Lys36, Lys50, Lys58, Arg79, Lys117, Lys120, Lys131, Arg148, Arg162, Lys164, Lys183, Lys193, Arg204), and three troponin-T residues (Lys107, Lys125, Lys227). AGE modifications of three corresponding troponin-I residues (Lys58, Lys120, Lys194) and two corresponding troponin-T residues (Lys107, Lys227) were confirmed in cardiac tissue extracts from an experimental rodent diabetic model. Additionally, novel human troponin-I phosphorylation sites were detected (Thr119, Thr123). Accelerated AGE modification of troponin-C was evident in vitro with hexose sugar exposure. This study provides the first demonstration of the occurrence of cardiac troponin complex AGE-modifications. These irreversible AGE modifications are situated in regions of the troponin complex known to be important in myofilament relaxation, and may be of particular pathological importance in the pro-glycation environment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | - Brendan Ma
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Margaret A Brimble
- Department of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Australia. .,Department of Physiology, University of Auckland, Auckland, New Zealand. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
20
|
Johnson D, Angus CW, Chalovich JM. Stepwise C-Terminal Truncation of Cardiac Troponin T Alters Function at Low and Saturating Ca 2. Biophys J 2018; 115:702-712. [PMID: 30057009 DOI: 10.1016/j.bpj.2018.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Abstract
Activation of striated muscle contraction occurs in response to Ca2+ binding to troponin C. The resulting reorganization of troponin repositions tropomyosin on actin and permits activation of myosin-catalyzed ATP hydrolysis. It now appears that the C-terminal 14 amino acids of cardiac troponin T (TnT) control the level of activity at both low and high Ca2+. We made a series of C-terminal truncation mutants of human cardiac troponin T, isoform 2, to determine if the same residues of TnT are involved in the low and high Ca2+ effects. We measured the effect of these mutations on the normalized ATPase activity at saturating Ca2+. Changes in acrylodan tropomyosin fluorescence and the degree of Ca2+ stimulation of the rate of binding of rigor myosin subfragment 1 to pyrene-labeled actin-tropomyosin-troponin were measured at low Ca2+. These measurements define the distribution of actin-tropomyosin-troponin among the three regulatory states. Residues SKTR and GRWK of TnT were required for the functioning of TnT at both low and high Ca2+. Thus, the effects on forming the inactive B-state and in retarding formation of the active M-state require the same regions of TnT. We also observed that the rate of binding of rigor subfragment 1 to pyrene-labeled regulated actin at saturating Ca2+ was higher for the truncation mutants than for wild-type TnT. This violated an assumption necessary for determining the B-state population by this kinetic method.
Collapse
Affiliation(s)
- Dylan Johnson
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - C William Angus
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Joseph M Chalovich
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina.
| |
Collapse
|
21
|
The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin. Biophys J 2017; 112:376-387. [PMID: 28122223 DOI: 10.1016/j.bpj.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
We investigated the functional impact of α-tropomyosin (Tm) substituted with one (D137L) or two (D137L/G126R) stabilizing amino acid substitutions on the mechanical behavior of rabbit psoas skeletal myofibrils by replacing endogenous Tm and troponin (Tn) with recombinant Tm mutants and purified skeletal Tn. Force recordings from myofibrils (15°C) at saturating [Ca2+] showed that Tm-stabilizing substitutions did not significantly affect the maximal isometric tension and the rates of force activation (kACT) and redevelopment (kTR). However, a clear effect was observed on force relaxation: myofibrils with D137L/G126R or D137L Tm showed prolonged durations of the slow phase of relaxation and decreased rates of the fast phase. Both Tm-stabilizing substitutions strongly decreased the slack sarcomere length (SL) at submaximal activating [Ca2+] and increased the steepness of the SL-passive tension relation. These effects were reversed by addition of 10 mM 2,3-butanedione 2-monoxime. Myofibrils also showed an apparent increase in Ca2+ sensitivity. Measurements of myofibrillar ATPase activity in the absence of Ca2+ showed a significant increase in the presence of these Tms, indicating that single and double stabilizing substitutions compromise the full inhibition of contraction in the relaxed state. These data can be understood with the three-state (blocked-closed-open) theory of muscle regulation, according to which the mutations increase the contribution of the active open state in the absence of Ca2+ (M-). Force measurements on myofibrils substituted with C-terminal truncated TnI showed similar compromised relaxation effects, indicating the importance of TnI-Tm interactions in maintaining the blocked state. It appears that reducing the flexibility of native Tm coiled-coil structure decreases the optimum interactions of the central part of Tm with the C-terminal region of TnI. This results in a shift away from the blocked state, allowing myosin binding and activity in the absence of Ca2+. This work provides a basis for understanding the effects of disease-producing mutations in muscle proteins.
Collapse
|
22
|
Bollen IAE, Schuldt M, Harakalova M, Vink A, Asselbergs FW, Pinto JR, Krüger M, Kuster DWD, van der Velden J. Genotype-specific pathogenic effects in human dilated cardiomyopathy. J Physiol 2017; 595:4677-4693. [PMID: 28436080 PMCID: PMC5509872 DOI: 10.1113/jp274145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+ -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. ABSTRACT Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation ) and cardiac troponin T (TNNT2p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+ -sensitivity and impaired length-dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3p.98trunc sample. Moreover, upon exchange all functional deficits in the TNNI3p.98trunc and TNNT2p.K217del samples were normalized to control values confirming the pathogenic effects of the troponin mutations. The LMNAp.R331Q mutation resulted in reduced maximal force development due to disease remodelling. Our study shows that different gene mutations induce DCM via diverse cellular pathways.
Collapse
Affiliation(s)
- Ilse A E Bollen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Maike Schuldt
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
23
|
Baxley T, Johnson D, Pinto JR, Chalovich JM. Troponin C Mutations Partially Stabilize the Active State of Regulated Actin and Fully Stabilize the Active State When Paired with Δ14 TnT. Biochemistry 2017; 56:2928-2937. [PMID: 28530094 DOI: 10.1021/acs.biochem.6b01092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Striated muscle contraction is regulated by the actin-associated proteins tropomyosin and troponin. The extent of activation of myosin ATPase activity is lowest in the absence of both Ca2+ and activating cross-bridges (i.e., S1-ADP or rigor S1). Binding of activating species of myosin to actin at a saturating Ca2+ concentration stabilizes the most active state (M state) of the actin-tropomyosin-troponin complex (regulated actin). Ca2+ binding alone produces partial stabilization of the active state. The extent of stabilization at a saturating Ca2+ concentration depends on the isoform of the troponin subunits, the phosphorylation state of troponin, and, in the case of cardiac muscle, the presence of hypertrophic cardiomyopathy-producing mutants of troponin T and troponin I. Cardiac dysfunction is also associated with mutations of troponin C (TnC). Troponin C mutants A8V, C84Y, and D145E increase the Ca2+ sensitivity of ATPase activity. We show that these mutants change the distribution of regulated actin states. The A8V and C84Y TnC mutants decreased the inactive B state distribution slightly at low Ca2+ concentrations, but the D145E mutants had no effect on that state. All TnC mutants increased the level of the active M state compared to that of the wild type, at a saturating Ca2+ concentration. Troponin complexes that contained two mutations that stabilize the active M state, A8V TnC and Δ14 TnT, appeared to be completely in the active state in the presence of only Ca2+. Because Ca2+ gives full activation, in this situation, troponin must be capable of positioning tropomyosin in the active M state without the need for rigor myosin binding.
Collapse
Affiliation(s)
- Tamatha Baxley
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27858, United States
| | - Dylan Johnson
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27858, United States
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine , Tallahassee, Florida 32304, United States
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27858, United States
| |
Collapse
|
24
|
Hwang JW, Jang MA, Jang SY, Seo SH, Seong MW, Park SS, Ki CS, Kim DK. Diverse Phenotypic Expression of Cardiomyopathies in a Family with TNNI3 p.Arg145Trp Mutation. Korean Circ J 2017; 47:270-277. [PMID: 28382084 PMCID: PMC5378035 DOI: 10.4070/kcj.2016.0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/15/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic diagnosis of cardiomyopathies is challenging, due to the marked genetic and allelic heterogeneity and the lack of knowledge of the mutations that lead to clinical phenotypes. Here, we present the case of a large family, in which a single TNNI3 mutation caused variable phenotypic expression, ranging from restrictive cardiomyopathy (RCMP) to hypertrophic cardiomyopathy (HCMP) to near-normal phenotype. The proband was a 57-year-old female with HCMP. Examining the family history revealed that her elder sister had expired due to severe RCMP. Using a next-generation sequencing-based gene panel to analyze the proband, we identified a known TNNI3 gene mutation, c.433C>T, which is predicted to cause an amino acid substitution (p.Arg145Trp) in the highly conserved inhibitory region of the cardiac troponin I protein. Sanger sequencing confirmed that six relatives with RCMP or near-normal phenotypes also carried this mutation. To our knowledge, this is the first genetically confirmed family with diverse phenotypic expression of cardiomyopathies in Korea. Our findings demonstrate familial implications, where a single mutation in a sarcomere protein can cause diverse phenotypic expression of cardiomyopathies.
Collapse
Affiliation(s)
- Ji-Won Hwang
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea
| | - Shin Yi Jang
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Kyung Kim
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Liu X, Zhang L, Pacciulli D, Zhao J, Nan C, Shen W, Quan J, Tian J, Huang X. Restrictive Cardiomyopathy Caused by Troponin Mutations: Application of Disease Animal Models in Translational Studies. Front Physiol 2016; 7:629. [PMID: 28066262 PMCID: PMC5165243 DOI: 10.3389/fphys.2016.00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. Studies have shown that the deficiency of cTnI or mutations in cTnI (particularly in the C-terminus of cTnI) results in diastolic dysfunction (impaired relaxation) due to an increased myofibril sensitivity to calcium. The first clinical study revealing the association between restrictive cardiomyopathy (RCM) with cardiac troponin mutations was reported in 2003. In order to illustrate the mechanisms underlying the cTnI mutation caused cardiomyopathy, we have generated a cTnI gene knockout mouse model and transgenic mouse lines with the reported point mutations in cTnI C-terminus. In this paper, we summarize our studies using these animal models from our laboratory and the other in vitro studies using reconstituted filament and cultured cells. The potential mechanisms underlying diastolic dysfunction and heart failure caused by these cTnI C-terminal mutations are discussed as well. Furthermore, calcium desensitizing in correction of impaired relaxation in myocardial cells due to cTnI mutations is discussed. Finally, we describe a model of translational study, i.e., from bedside to bench and from bench to bedside. These studies may enrich our understanding of the mechanism underlying inherited cardiomyopathies and provide the clues to search for target-oriented medication aiming at the treatment of diastolic dysfunction and heart failure.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Lei Zhang
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Daniel Pacciulli
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Jianquan Zhao
- Department of Cardiology, Bayannaoer City Hospital Bayannaoer, China
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Junjun Quan
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Jie Tian
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| |
Collapse
|
26
|
Salhi HE, Hassel NC, Siddiqui JK, Brundage EA, Ziolo MT, Janssen PML, Davis JP, Biesiadecki BJ. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration. Front Physiol 2016; 7:567. [PMID: 28018230 PMCID: PMC5156683 DOI: 10.3389/fphys.2016.00567] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/08/2016] [Indexed: 11/14/2022] Open
Abstract
Troponin I (TnI) is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate that TnI Ser-23/24 and Ser-150 phosphorylation regulates muscle contraction in part by modulating different TnI interactions in the thin filament and it is the combination of these differential mechanisms that provides understanding of their functional integration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brandon J. Biesiadecki
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
27
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Cheng Y, Lindert S, Oxenford L, Tu AY, McCulloch AD, Regnier M. Effects of Cardiac Troponin I Mutation P83S on Contractile Properties and the Modulation by PKA-Mediated Phosphorylation. J Phys Chem B 2016; 120:8238-53. [PMID: 27150586 PMCID: PMC5001945 DOI: 10.1021/acs.jpcb.6b01859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
cTnI(P82S) (cTnI(P83S) in rodents) resides at the I-T arm of cardiac troponin I (cTnI) and was initially identified as a disease-causing mutation of hypertrophic cardiomyopathy (HCM). However, later studies suggested this may not be true. We recently reported that introduction of an HCM-associated mutation in either inhibitory-peptide (cTnI(R146G)) or cardiac-specific N-terminus (cTnI(R21C)) of cTnI blunts the PKA-mediated modulation on myofibril activation/relaxation kinetics by prohibiting formation of intrasubunit contacts between these regions. Here, we tested whether this also occurs for cTnI(P83S). cTnI(P83S) increased both Ca(2+) binding affinity to cTn (KCa) and affinity of cTnC for cTnI (KC-I), and eliminated the reduction of KCa and KC-I observed for phosphorylated-cTnI(WT). In isolated myofibrils, cTnI(P83S) maintained maximal tension (TMAX) and Ca(2+) sensitivity of tension (pCa50). For cTnI(WT) myofibrils, PKA-mediated phosphorylation decreased pCa50 and sped up the slow-phase relaxation (especially for those Ca(2+) conditions that heart performs in vivo). Those effects were blunted for cTnI(P83S) myofibrils. Molecular-dynamics simulations suggested cTnI(P83S) moderately inhibited an intrasubunit interaction formation between inhibitory-peptide and N-terminus, but this "blunting" effect was weaker than that with cTnI(R146G) or cTnI(R21C). In summary, cTnI(P83S) has similar effects as other HCM-associated cTnI mutations on troponin and myofibril function even though it is in the I-T arm of cTnI.
Collapse
Affiliation(s)
- Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- National Biomedical Computation Resource, University of California San Diego, La Jolla, California 92093, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lucas Oxenford
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - An-yue Tu
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Andrew D. McCulloch
- National Biomedical Computation Resource, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
29
|
Dvornikov AV, Smolin N, Zhang M, Martin JL, Robia SL, de Tombe PP. Restrictive Cardiomyopathy Troponin I R145W Mutation Does Not Perturb Myofilament Length-dependent Activation in Human Cardiac Sarcomeres. J Biol Chem 2016; 291:21817-21828. [PMID: 27557662 DOI: 10.1074/jbc.m116.746172] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
The cardiac troponin I (cTnI) R145W mutation is associated with restrictive cardiomyopathy (RCM). Recent evidence suggests that this mutation induces perturbed myofilament length-dependent activation (LDA) under conditions of maximal protein kinase A (PKA) stimulation. Some cardiac disease-causing mutations, however, have been associated with a blunted response to PKA-mediated phosphorylation; whether this includes LDA is unknown. Endogenous troponin was exchanged in isolated skinned human myocardium for recombinant troponin containing either cTnI R145W, PKA/PKC phosphomimetic charge mutations (S23D/S24D and T143E), or various combinations thereof. Myofilament Ca2+ sensitivity of force, tension cost, LDA, and single myofibril activation/relaxation parameters were measured. Our results show that both R145W and T143E uncouple the impact of S23D/S24D phosphomimetic on myofilament function, including LDA. Molecular dynamics simulations revealed a marked reduction in interactions between helix C of cTnC (residues 56, 59, and 63), and cTnI (residue 145) in the presence of either cTnI RCM mutation or cTnI PKC phosphomimetic. These results suggest that the RCM-associated cTnI R145W mutation induces a permanent structural state that is similar to, but more extensive than, that induced by PKC-mediated phosphorylation of cTnI Thr-143. We suggest that this structural conformational change induces an increase in myofilament Ca2+ sensitivity and, moreover, uncoupling from the impact of phosphorylation of cTnI mediated by PKA at the Ser-23/Ser-24 target sites. The R145W RCM mutation by itself, however, does not impact LDA. These perturbed biophysical and biochemical myofilament properties are likely to significantly contribute to the diastolic cardiac pump dysfunction that is seen in patients suffering from a restrictive cardiomyopathy that is associated with the cTnI R145W mutation.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Nikolai Smolin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Mengjie Zhang
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Jody L Martin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Pieter P de Tombe
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
30
|
Omecamtiv Mecarbil, a Cardiac Myosin Activator, Increases Ca2+ Sensitivity in Myofilaments With a Dilated Cardiomyopathy Mutant Tropomyosin E54K. J Cardiovasc Pharmacol 2016; 66:347-53. [PMID: 26065842 DOI: 10.1097/fjc.0000000000000286] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apart from transplant, there are no satisfactory therapies for the severe depression in contractility in familial dilated cardiomyopathy (DCM). Current heart failure treatments that act by increasing contractility involve signaling cascades that alter calcium homeostasis and induce arrhythmias. Omecamtiv mecarbil is a promising new inotropic agent developed for heart failure that may circumvent such limitations. Omecamtiv is a direct cardiac myosin activator that promotes and prolongs the strong myosin-actin binding conformation to increase the duration of systolic elastance. We tested the effect of omecamtiv on Ca(2+) sensitivity of myofilaments of a DCM mouse model containing a tropomyosin E54K mutation. We compared tension and ATPase activity of detergent-extracted myofilaments with and without treatment with 316 nM omecamtiv at varying pCa values. When transgenic myofilaments were treated with omecamtiv, the pCa50 for activation of tension increased from 5.70 ± 0.02 to 5.82 ± 0.02 and ATPase activity increased from 5.73 ± 0.06 to 6.07 ± 0.04. This significant leftward shift restored Ca(2+) sensitivity to levels no longer significantly different from controls. Proteomic studies lacked changes in sarcomeric protein phosphorylation. Our data demonstrate that omecamtiv can potentially augment cardiac contractility in DCM by increasing Ca(2+) sensitivity. The use of direct myosin activators addresses functional defects without incurring the adverse side effects of Ca(2+)-dependent treatments.
Collapse
|
31
|
Johnson D, Mathur MC, Kobayashi T, Chalovich JM. The Cardiomyopathy Mutation, R146G Troponin I, Stabilizes the Intermediate “C” State of Regulated Actin under High- and Low-Free Ca2+ Conditions. Biochemistry 2016; 55:4533-40. [DOI: 10.1021/acs.biochem.5b01359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dylan Johnson
- Department
of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, United States
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Mohit C. Mathur
- Department
of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, United States
| | - Tomoyoshi Kobayashi
- Department
of Physiology and Biophysics and Center for Cardiovascular Research,
College of Medicine, University of Illinois, Chicago, Illinois 60612-7342, United States
| | - Joseph M. Chalovich
- Department
of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
32
|
Order-Disorder Transitions in the Cardiac Troponin Complex. J Mol Biol 2016; 428:2965-77. [PMID: 27395017 DOI: 10.1016/j.jmb.2016.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/26/2022]
Abstract
The troponin complex is a molecular switch that ties shifting intracellular calcium concentration to association and dissociation of actin and myosin, effectively allowing excitation-contraction coupling in striated muscle. Although there is a long history of muscle biophysics and structural biology, many of the mechanistic details that enable troponin's function remain incompletely understood. This review summarizes the current structural understanding of the troponin complex on the muscle thin filament, focusing on conformational changes in flexible regions of the troponin I subunit. In particular, we focus on order-disorder transitions in the C-terminal domain of troponin I, which have important implications in cardiac disease and could also have potential as a model system for the study of coupled binding and folding.
Collapse
|
33
|
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601:11-21. [PMID: 26851561 PMCID: PMC4899195 DOI: 10.1016/j.abb.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases.
Collapse
Affiliation(s)
- Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, WA, USA.
| |
Collapse
|
34
|
Broughton KM, Li J, Sarmah E, Warren CM, Lin YH, Henze MP, Sanchez-Freire V, Solaro RJ, Russell B. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 2016; 311:H107-17. [PMID: 27199119 DOI: 10.1152/ajpheart.00162.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
We have investigated cardiac myocytes derived from human-induced pluripotent stem cells (iPSC-CMs) from two normal control and two family members expressing a mutant cardiac troponin T (cTnT-R173W) linked to dilated cardiomyopathy (DCM). cTnT is a regulatory protein of the sarcomeric thin filament. The loss of this basic charge, which is strategically located to control tension, has consequences leading to progressive DCM. iPSC-CMs serve as a valuable platform for understanding clinically relevant mutations in sarcomeric proteins; however, there are important questions to be addressed with regard to myocyte adaptation that we model here by plating iPSC-CMs on softer substrates (100 kPa) to create a more physiologic environment during recovery and maturation of iPSC-CMs after thawing from cryopreservation. During the first week of culture of the iPSC-CMs, we have determined structural and functional characteristics as well as actin assembly dynamics. Shortening, actin content, and actin assembly dynamics were depressed in CMs from the severely affected mutant at 1 wk of culture, but by 2 wk differences were less apparent. Sarcomeric troponin and myosin isoform composition were fetal/neonatal. Furthermore, the troponin complex, reconstituted with wild-type cTnT or recombinant cTnT-R173W, depressed the entry of cross-bridges into the force-generating state, which can be reversed by the myosin activator omecamtiv mecarbil. Therapeutic doses of this drug increased both contractility and the content of F-actin in the mutant iPSC-CMs. Collectively, our data suggest the use of a myosin activation reagent to restore function within patient-specific iPSC-CMs may aid in understanding and treating this familial DCM.
Collapse
Affiliation(s)
- K M Broughton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - J Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Sarmah
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - C M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Y-H Lin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - M P Henze
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - V Sanchez-Freire
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - R J Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - B Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
35
|
Hanft LM, Cornell TD, McDonald CA, Rovetto MJ, Emter CA, McDonald KS. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function. Arch Biochem Biophys 2016; 601:22-31. [PMID: 26854722 DOI: 10.1016/j.abb.2016.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA-induced phosphorylation of cMyBP-C and cTnI may contribute to ventricular pump failure.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Timothy D Cornell
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Colin A McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Michael J Rovetto
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Craig A Emter
- Department of Biomedical Sciences, College of Veterinary Medicine University of Missouri, Columbia, MO 65211, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
36
|
ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 2015; 112:E7003-12. [PMID: 26621701 DOI: 10.1073/pnas.1513843112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diastolic dysfunction is general to all idiopathic dilated (IDCM) and hypertrophic cardiomyopathy (HCM) patients. Relaxation deficits may result from increased actin-myosin formation during diastole due to altered tropomyosin position, which blocks myosin binding to actin in the absence of Ca(2+). We investigated whether ADP-stimulated force development (without Ca(2+)) can be used to reveal changes in actin-myosin blockade in human cardiomyopathy cardiomyocytes. Cardiac samples from HCM patients, harboring thick-filament (MYH7mut, MYBPC3mut) and thin-filament (TNNT2mut, TNNI3mut) mutations, and IDCM were compared with sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Myofilament ADP sensitivity was higher in IDCM and HCM compared with donors, whereas it was lower for MYBPC3. Increased ADP sensitivity in IDCM, HCMsmn, and MYH7mut was caused by low phosphorylation of myofilament proteins, as it was normalized to donors by protein kinase A (PKA) treatment. Troponin exchange experiments in a TNNT2mut sample corrected the abnormal actin-myosin blockade. In MYBPC3trunc samples, ADP sensitivity highly correlated with cardiac myosin-binding protein-C (cMyBP-C) protein level. Incubation of cardiomyocytes with cMyBP-C antibody against the actin-binding N-terminal region reduced ADP sensitivity, indicative of cMyBP-C's role in actin-myosin regulation. In the presence of Ca(2+), ADP increased myofilament force development and sarcomere stiffness. Enhanced sarcomere stiffness in sarcomere mutation-positive HCM samples was irrespective of the phosphorylation background. In conclusion, ADP-stimulated contraction can be used as a tool to study how protein phosphorylation and mutant proteins alter accessibility of myosin binding on actin. In the presence of Ca(2+), pathologic [ADP] and low PKA-phosphorylation, high actin-myosin formation could contribute to the impaired myocardial relaxation observed in cardiomyopathies.
Collapse
|
37
|
Warren CM, Karam CN, Wolska BM, Kobayashi T, de Tombe PP, Arteaga GM, Bos JM, Ackerman MJ, Solaro RJ. Green Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy-Associated Mutation in Human Cardiac Troponin I (K206I). ACTA ACUST UNITED AC 2015; 8:765-73. [PMID: 26553696 DOI: 10.1161/circgenetics.115.001234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease characterized by thickening of ventricular walls and decreased left ventricular chamber volume. The majority of HCM-associated mutations are found in genes encoding sarcomere proteins. Herein, we set out to functionally characterize a novel HCM-associated mutation (K206I-TNNI3) and elucidate the mechanism of dysfunction at the level of myofilament proteins. METHODS AND RESULTS The male index case was diagnosed with HCM after an out-of-hospital cardiac arrest, which was followed by comprehensive clinical evaluation, transthoracic echocardiography, and clinical genetic testing. To determine molecular mechanism(s) of the mutant human cardiac troponin I (K206I), we tested the Ca(2+) dependence of thin filament-activated myosin-S1-ATPase activity in a reconstituted, regulated, actomyosin system comparing wild-type human troponin complex, 50% mix of K206I/wildtype, or 100% K206I. We also exchanged native troponin detergent extracted fibers with reconstituted troponin containing either wildtype or a 65% mix of K206I/wildtype and measured force generation. The Ca(2+) sensitivity of the myofilaments containing the K206I variant was significantly increased, and when treated with 20 µmol/L (-)-epigallocatechin gallate (green tea) was restored back to wild-type levels in ATPase and force measurements. The K206I mutation impairs the ability of the troponin I to inhibit ATPase activity in the absence of calcium-bound human cardiac troponin C. The ability of calcium-bound human cardiac troponin C to neutralize the inhibition of K206I was greater than with wild-type TnI. CONCLUSIONS Compromised interactions of K206I with actin and hcTnC may lead to impaired relaxation and HCM.
Collapse
Affiliation(s)
- Chad M Warren
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Chehade N Karam
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Beata M Wolska
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Tomoyoshi Kobayashi
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Pieter P de Tombe
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Grace M Arteaga
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - J Martijn Bos
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - R John Solaro
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
38
|
Zhang M, Martin JL, Kumar M, Khairallah RJ, de Tombe PP. Rapid large-scale purification of myofilament proteins using a cleavable His6-tag. Am J Physiol Heart Circ Physiol 2015; 309:H1509-15. [PMID: 26386113 PMCID: PMC4666967 DOI: 10.1152/ajpheart.00598.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022]
Abstract
With the advent of high-throughput DNA sequencing, the number of identified cardiomyopathy-causing mutations has increased tremendously. As the majority of these mutations affect myofilament proteins, there is a need to understand their functional consequence on contraction. Permeabilized myofilament preparations coupled with protein exchange protocols are a common method for examining into contractile mechanics. However, producing large quantities of myofilament proteins can be time consuming and requires different approaches for each protein of interest. In the present study, we describe a unified automated method to produce troponin C, troponin T, and troponin I as well as myosin light chain 2 fused to a His6-tag followed by a tobacco etch virus (TEV) protease site. TEV protease has the advantage of a relaxed P1' cleavage site specificity, allowing for no residues left after proteolysis and preservation of the native sequence of the protein of interest. After expression in Esherichia coli, cells were lysed by sonication in imidazole-containing buffer. The His6-tagged protein was then purified using a HisTrap nickel metal affinity column, and the His6-tag was removed by His6-TEV protease digestion for 4 h at 30°C. The protease was then removed using a HisTrap column, and complex assembly was performed via column-assisted sequential desalting. This mostly automated method allows for the purification of protein in 1 day and can be adapted to most soluble proteins. It has the advantage of greatly increasing yield while reducing the time and cost of purification. Therefore, production and purification of mutant proteins can be accelerated and functional data collected in a faster, less expensive manner.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Ramzi J Khairallah
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| |
Collapse
|
39
|
Lindert S, Cheng Y, Kekenes-Huskey P, Regnier M, McCammon JA. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations. Biophys J 2015; 108:395-407. [PMID: 25606687 DOI: 10.1016/j.bpj.2014.11.3461] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022] Open
Abstract
Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI(1-39)), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl(137-147)) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Pharmacology, University of California San Diego, La Jolla, California; NSF Center for Theoretical Biological Physics, La Jolla, California.
| | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Peter Kekenes-Huskey
- Department of Pharmacology, University of California San Diego, La Jolla, California; Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J Andrew McCammon
- Department of Pharmacology, University of California San Diego, La Jolla, California; Howard Hughes Medical Institute, University of California San Diego, La Jolla, California; Department of Chemistry and Biochemistry, National Biomedical Computation Resource, University of California San Diego, La Jolla, California; NSF Center for Theoretical Biological Physics, La Jolla, California
| |
Collapse
|
40
|
Wilder T, Ryba DM, Wieczorek DF, Wolska BM, Solaro RJ. N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2015; 309:H1720-30. [PMID: 26432840 DOI: 10.1152/ajpheart.00339.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022]
Abstract
S-glutathionylation of cardiac myosin-binding protein C (cMyBP-C) induces Ca(2+) sensitization and a slowing of cross-bridge kinetics as a result of increased oxidative signaling. Although there is evidence for a role of oxidative stress in disorders associated with hypertrophic cardiomyopathy (HCM), this mechanism is not well understood. We investigated whether oxidative myofilament modifications may be in part responsible for diastolic dysfunction in HCM. We administered N-acetylcysteine (NAC) for 30 days to 1-mo-old wild-type mice and to transgenic mice expressing a mutant tropomyosin (Tm-E180G) and nontransgenic littermates. Tm-E180G hearts demonstrate a phenotype similar to human HCM. After NAC administration, the morphology and diastolic function of Tm-E180G mice was not significantly different from controls, indicating that NAC had reversed baseline diastolic dysfunction and hypertrophy in our model. NAC administration also increased sarco(endo)plasmic reticulum Ca(2+) ATPase protein expression, reduced extracellular signal-related kinase 1/2 phosphorylation, and normalized phosphorylation of phospholamban, as assessed by Western blot. Detergent-extracted fiber bundles from NAC-administered Tm-E180G mice showed nearly nontransgenic (NTG) myofilament Ca(2+) sensitivity. Additionally, we found that NAC increased tension cost and rate of cross-bridge reattachment. Tm-E180G myofilaments were found to have a significant increase in S-glutathionylation of cMyBP-C, which was returned to NTG levels upon NAC administration. Taken together, our results indicate that oxidative myofilament modifications are an important mediator in diastolic function, and by relieving this modification we were able to reverse established diastolic dysfunction and hypertrophy in HCM.
Collapse
Affiliation(s)
- Tanganyika Wilder
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Biology, College of Science and Technology, Florida A & M University, Tallahassee, Florida
| | - David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois; and
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois;
| |
Collapse
|
41
|
Cheng Y, Rao V, Tu AY, Lindert S, Wang D, Oxenford L, McCulloch AD, McCammon JA, Regnier M. Troponin I Mutations R146G and R21C Alter Cardiac Troponin Function, Contractile Properties, and Modulation by Protein Kinase A (PKA)-mediated Phosphorylation. J Biol Chem 2015; 290:27749-66. [PMID: 26391394 DOI: 10.1074/jbc.m115.683045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Two hypertrophic cardiomyopathy-associated cardiac troponin I (cTnI) mutations, R146G and R21C, are located in different regions of cTnI, the inhibitory peptide and the cardiac-specific N terminus. We recently reported that these regions may interact when Ser-23/Ser-24 are phosphorylated, weakening the interaction of cTnI with cardiac TnC. Little is known about how these mutations influence the affinity of cardiac TnC for cTnI (KC-I) or contractile kinetics during β-adrenergic stimulation. Here, we tested how cTnI(R146G) or cTnI(R21C) influences contractile activation and relaxation and their response to protein kinase A (PKA). Both mutations significantly increased Ca(2+) binding affinity to cTn (KCa) and KC-I. PKA phosphorylation resulted in a similar reduction of KCa for all complexes, but KC-I was reduced only with cTnI(WT). cTnI(WT), cTnI(R146G), and cTnI(R21C) were complexed into cardiac troponin and exchanged into rat ventricular myofibrils, and contraction/relaxation kinetics were measured ± PKA phosphorylation. Maximal tension (Tmax) was maintained for cTnI(R146G)- and cTnI(R21C)-exchanged myofibrils, and Ca(2+) sensitivity of tension (pCa50) was increased. PKA phosphorylation decreased pCa50 for cTnI(WT)-exchanged myofibrils but not for either mutation. PKA phosphorylation accelerated the early slow phase relaxation for cTnI(WT) myofibrils, especially at Ca(2+) levels that the heart operates in vivo. Importantly, this effect was blunted for cTnI(R146G)- and cTnI(R21C)-exchanged myofibrils. Molecular dynamics simulations suggest both mutations inhibit formation of intra-subunit contacts between the N terminus and the inhibitory peptide of cTnI that is normally seen with WT-cTn upon PKA phosphorylation. Together, our results suggest that cTnI(R146G) and cTnI(R21C) blunt PKA modulation of activation and relaxation kinetics by prohibiting cardiac-specific N-terminal interaction with the cTnI inhibitory peptide.
Collapse
Affiliation(s)
- Yuanhua Cheng
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105, the National Biomedical Computational Resource and
| | - Vijay Rao
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - An-Yue Tu
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - Steffen Lindert
- Pharmacology, University of California at San Diego, La Jolla, California 92093, and
| | - Dan Wang
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - Lucas Oxenford
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - Andrew D McCulloch
- the National Biomedical Computational Resource and Departments of Bioengineering and
| | - J Andrew McCammon
- the National Biomedical Computational Resource and Pharmacology, University of California at San Diego, La Jolla, California 92093, and
| | - Michael Regnier
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105, the Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98105
| |
Collapse
|
42
|
Wang Y, Youm JB, Jin CZ, Shin DH, Zhao ZH, Seo EY, Jang JH, Kim SJ, Jin ZH, Zhang YH. Modulation of L-type Ca²⁺ channel activity by neuronal nitric oxide synthase and myofilament Ca²⁺ sensitivity in cardiac myocytes from hypertensive rat. Cell Calcium 2015; 58:264-74. [PMID: 26115836 DOI: 10.1016/j.ceca.2015.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/02/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is important in cardiac protection in diseased heart. Recently, we have reported that nNOS is associated with myofilament Ca(2+) desensitization in cardiac myocytes from hypertensive rats. So far, the effect of myofilament Ca(2+) desensitization or nNOS on L-type Ca(2+) channel activity (I(Ca)) in cardiac myocyte is unclear. Here, we examined nNOS regulation of I(Ca) in left ventricular (LV) myocytes from sham and angiotensin II (Ang II)-induced hypertensive rats. Our results showed that basal I(Ca) was not different between sham and hypertension (from -60 to +40 mV, 0.1 Hz). S-methyl-L-thiocitrulline (SMTC), a selective nNOS inhibitor, increased peak I(Ca) similarly in both groups. However, chelation of intracellular Ca(2+) [Ca(2+)]i with BAPTA increased I(Ca) and abolished SMTC-augmentation of I(Ca) only in hypertension. Myofilament Ca(2+) desensitization with butanedione monoxime (BDM), a myosin ATPase inhibitor, decreased I(Ca) in both groups but to a greater extent in hypertension. Intracellular BAPTA or nNOS inhibition reinstated I(Ca) in the presence of BDM to the basal level, suggesting Ca(2+)-dependent inactivation of I(Ca) by nNOS and greater vulnerability in hypertension. Increasing stimulation frequencies (2, 4 and 8 Hz) attenuated myofilament Ca(2+) sensitivity in sham and reduced peak ICa in both groups. Nevertheless, SMTC or BAPTA exerted no effect on I(Ca) at high frequencies in either group. These results suggest that nNOS attenuates I(Ca) via Ca(2+)-dependent mechanism and the vulnerability is greater in hypertension subject to myofilament Ca(2+) desensitization. nNOS or [Ca(2+)]i does not affect I(Ca) at high stimulation frequencies. The results were recapitulated with computer simulation.
Collapse
Affiliation(s)
- Yue Wang
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, South Korea
| | - Jae Boum Youm
- Department of Physiology, Inje University, College of Medicine, Busan, South Korea
| | - Chun Zi Jin
- Yanbian University Hospital, Yanji, Jilin Province, China
| | - Dong Hoon Shin
- Department of Premedical Program, College of Medicine, Chosun University, Gwangju, South Korea
| | - Zai Hao Zhao
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, South Korea
| | - Eun Yeong Seo
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, South Korea
| | - Ji Hyun Jang
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, South Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, South Korea
| | - Zhe Hu Jin
- Yanbian University Hospital, Yanji, Jilin Province, China.
| | - Yin Hua Zhang
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, South Korea; Yanbian University Hospital, Yanji, Jilin Province, China; Institute of Cardiovascular Sciences, University of Manchester, UK.
| |
Collapse
|
43
|
Zhang L, Nan C, Chen Y, Tian J, Jean-Charles PY, Getfield C, Wang X, Huang X. Calcium desensitizer catechin reverses diastolic dysfunction in mice with restrictive cardiomyopathy. Arch Biochem Biophys 2015; 573:69-76. [PMID: 25813360 DOI: 10.1016/j.abb.2015.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/26/2022]
Abstract
Diastolic dysfunction refers to an impaired relaxation and an abnormality in ventricular blood filling during diastole while systolic function is preserved. Cardiac myofibril hypersensitivity to Ca(2+) is a major factor that causes impaired relaxation of myocardial cells. The present study investigates the effect of the green tea extract catechins on myofibril calcium desensitization and restoration of diastolic function in a restrictive cardiomyopathy (RCM) mouse model with cardiac troponin mutations. Wild type (WT) and RCM mice were treated daily with catechin (epigallocatechin-3-gallate, EGCg, 50 mg/kg body weight) for 3 months. Echocardiography and cell based assays were performed to measure cardiac structure and flow-related variables including chamber dimensions, fraction shortening, trans-mitral flow patterns in the experimental mice. In addition, myocyte contractility and calcium dynamics were measured in WT and RCM cardiomyocytes treated in vitro with 5 μM EGCg. Our data indicated that RCM mice treated with EGCg showed an improved diastolic function while systolic function remained unchanged. At the cellular level, sarcomere relaxation and calcium decay were accelerated in RCM myocardial cells treated with EGCg. These results suggest that catechin is effective in reversing the impaired relaxation in RCM myocardial cells and rescuing the RCM mice with diastolic dysfunction.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA; Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Chen
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Pierre-Yves Jean-Charles
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Cecile Getfield
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Xiaoqing Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Xupei Huang
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA; Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
44
|
Nonaka M, Morimoto S. Experimental models of inherited cardiomyopathy and its therapeutics. World J Cardiol 2014; 6:1245-1251. [PMID: 25548614 PMCID: PMC4278159 DOI: 10.4330/wjc.v6.i12.1245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathy is a disease of myocardium categorized into three major forms, hypertrophic (HCM), dilated (DCM) and restrictive cardiomyopathy (RCM), which has recently been demonstrated to be a monogenic disease due to mutations in various proteins expressed in cardiomyocytes. Mutations in HCM and RCM typically increase the myofilament sensitivity to cytoplasmic Ca2+, leading to systolic hyperfunction and diastolic dysfunction. In contrast, mutations in DCM typically decrease the myofilament sensitivity to cytoplasmic Ca2+ and/or force generation/transmission, leading to systolic dysfunction. Creation of genetically-manipulated transgenic and knock-in animals expressing mutant proteins exogenously and endogenously, respectively, in their hearts provides valuable animal models to discover the molecular and cellular mechanisms for pathogenesis and promising therapeutic strategy in vivo. Recently, cardiomyocytes have been differentiated from patient’s induced pluripotent stem cells as a model of inherited cardiomyopathies in vitro. In this review, we provide overview of experimental models of cardiomyopathies with a focus on revealed molecular and cellular pathogenic mechanisms and potential therapeutics.
Collapse
|
45
|
Parvatiyar MS, Pinto JR. Pathogenesis associated with a restrictive cardiomyopathy mutant in cardiac troponin T is due to reduced protein stability and greatly increased myofilament Ca2+ sensitivity. Biochim Biophys Acta Gen Subj 2014; 1850:365-72. [PMID: 25450489 DOI: 10.1016/j.bbagen.2014.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Dilated and hypertrophic cardiomyopathy mutations in troponin can blunt effects of protein kinase A (PKA) phosphorylation of cardiac troponin I (cTnI), decreasing myofilament Ca2+-sensitivity; however this effect has never been tested for restrictive cardiomyopathy (RCM) mutants. This study explores whether an RCM cardiac troponin T mutant (cTnT-ΔE96) interferes with convergent PKA regulation and if TnT instability contributes to greatly enhanced Ca2+-sensitivity in skinned fibers. METHODS Force of contraction in skinned cardiac porcine fiber and spectroscopic studies were performed. RESULTS A decrease of -0.26 and -0.25 pCa units in Ca2+-sensitivity of contraction after PKA incubation was observed for skinned fibers incorporated with WT or cTnT-ΔE96, respectively. To further assess whether cTnT-ΔE96 interferes solely with transmission of cTnI phosphorylation effects, skinned fibers were reconstituted with PKA pseudo-phosphorylated cTnI (cTnI-SS/DD.cTnC). Fibers displaced with cTnT-WT, reconstituted with cTnI-SS/DD.cTnC decreased Ca2+-sensitivity of force (pCa50=5.61) compared to control cTnI-WT.cTnC (pCa50=5.75), similarly affecting cTnT-ΔE96 (pCa50=6.03) compared to control \cTnI-WT.cTnC (pCa50=6.14). Fluorescence studies measuring cTnC(IAANS) Ca2+-affinity changes due to cTnT-ΔE96 indicated that higher complexity (thin filament) better recapitulates skinned fiber Ca2+ sensitive changes. Circular dichroism revealed reduced α-helicity and earlier thermal unfolding for cTnT-ΔE96 compared to WT. CONCLUSIONS Although ineffective in decreasing myofilament Ca2+-sensitivity to normal levels, cTnT-ΔE96 does not interfere with PKA cTnI phosphorylation mediated effects; 2) cTnT-ΔE96 requires actin to increase cTnC Ca2+-affinity; and 3) deletion of E96 reduces cTnT stability, likely disrupting crucial thin filament interactions. GENERAL SIGNIFICANCE The pathological effect of cTnT-ΔE96 is largely manifested by dramatic myofilament Ca2+-sensitization which still persists even after PKA phosphorylation mediated Ca2+-desensitization.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
46
|
Lymperopoulos A, Garcia D, Walklett K. Pharmacogenetics of cardiac inotropy. Pharmacogenomics 2014; 15:1807-1821. [PMID: 25493572 DOI: 10.2217/pgs.14.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability to stimulate cardiac contractility is known as positive inotropy. Endogenous hormones, such as adrenaline and several natural or synthetic compounds possess this biological property, which is invaluable in the modern cardiovascular therapy setting, especially in acute heart failure or in cardiogenic shock. A number of proteins inside the cardiac myocyte participate in the molecular pathways that translate the initial stimulus, that is, the hormone or drug, into the effect of increased contractility (positive inotropy). Genetic variations (polymorphisms) in several genes encoding these proteins have been identified and characterized in humans with potentially significant consequences on cardiac inotropic function. The present review discusses these polymorphisms and their effects on cardiac inotropy, along with the individual pharmacogenomics of the most important positive inotropic agents in clinical use today. Important areas for future investigations in the field are also highlighted.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S. University Drive, HPD (Terry) Bldg/Room 1338, Ft. Lauderdale, FL 33328-2018, USA
| | | | | |
Collapse
|
47
|
Briston SJ, Dibb KM, Solaro RJ, Eisner DA, Trafford AW. Balanced changes in Ca buffering by SERCA and troponin contribute to Ca handling during β-adrenergic stimulation in cardiac myocytes. Cardiovasc Res 2014; 104:347-54. [PMID: 25183792 PMCID: PMC4240166 DOI: 10.1093/cvr/cvu201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/24/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023] Open
Abstract
AIMS During activation of cardiac myocytes, less than 1% of cytosolic Ca is free; the rest is bound to buffers, largely SERCA, and troponin C. Signalling by phosphorylation, as occurs during β-adrenergic stimulation, changes the Ca-binding affinity of these proteins and may affect the systolic Ca transient. Our aim was to determine the effects of β-adrenergic stimulation on Ca buffering and to differentiate between the roles of SERCA and troponin. METHODS AND RESULTS Ca buffering was studied in cardiac myocytes from mice: wild-type (WT), phospholamban-knockout (PLN-KO), and mice expressing slow skeletal troponin I (ssTnI) that is not protein kinase A phosphorylatable. WT cells showed no change in Ca buffering in response to the β-adrenoceptor agonist isoproterenol (ISO). However, ISO decreased Ca buffering in PLN-KO myocytes, presumably unmasking the role of troponin. This effect was confirmed in WT cells in which SERCA activity was blocked with the application of thapsigargin. In contrast, ISO increased Ca buffering in ssTnI cells, presumably revealing the effect of an increase in Ca binding to SERCA. CONCLUSIONS These data indicate the individual roles played by SERCA and troponin in Ca buffering during β-adrenergic stimulation and that these two buffers effectively counterbalance each other so that Ca buffering remains constant during β-adrenergic stimulation, a factor which may be physiologically important. This study also emphasizes the importance of taking into account Ca buffering, particularly in disease states where Ca binding to myofilaments or SERCA may be altered.
Collapse
Affiliation(s)
- Sarah J Briston
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, UK
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, UK
| | - R John Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - David A Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, UK
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, UK
| |
Collapse
|
48
|
Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS One 2014; 9:e109066. [PMID: 25268244 PMCID: PMC4182639 DOI: 10.1371/journal.pone.0109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022] Open
Abstract
Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and invivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While invitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, invivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced invitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness invitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function invivo. These results clearly point out that invitro alterations are muscle-dependent and do not necessarily translate into similar changes invivo.
Collapse
|
49
|
Salhi HE, Walton SD, Hassel NC, Brundage EA, de Tombe PP, Janssen PML, Davis JP, Biesiadecki BJ. Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation. J Mol Cell Cardiol 2014; 76:257-64. [PMID: 25252176 DOI: 10.1016/j.yjmcc.2014.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Troponin I (TnI), the inhibitory subunit of the troponin complex, can be phosphorylated as a key regulatory mechanism to alter the calcium regulation of contraction. Recent work has identified phosphorylation of TnI Tyr-26 in the human heart with unknown functional effects. We hypothesized that TnI Tyr-26N-terminal phosphorylation decreases calcium sensitivity of the thin filament, similar to the desensitizing effects of TnI Ser-23/24 phosphorylation. Our results demonstrate that Tyr-26 phosphorylation and pseudo-phosphorylation decrease calcium binding to troponin C (TnC) on the thin filament and calcium sensitivity of force development to a similar magnitude as TnI Ser-23/24 pseudo-phosphorylation. To investigate the effects of TnI Tyr-26 phosphorylation on myofilament deactivation, we measured the rate of calcium dissociation from TnC. Results demonstrate that filaments containing Tyr-26 pseudo-phosphorylated TnI accelerate the rate of calcium dissociation from TnC similar to that of TnI Ser-23/24. Finally, to assess functional integration of TnI Tyr-26 with Ser-23/24 phosphorylation, we generated recombinant TnI phospho-mimetic substitutions at all three residues. Our biochemical analyses demonstrated no additive effect on calcium sensitivity or calcium-sensitive force development imposed by Tyr-26 and Ser-23/24 phosphorylation integration. However, integration of Tyr-26 phosphorylation with pseudo-phosphorylated Ser-23/24 further accelerated thin filament deactivation. Our findings suggest that TnI Tyr-26 phosphorylation functions similarly to Ser-23/24N-terminal phosphorylation to decrease myofilament calcium sensitivity and accelerate myofilament relaxation. Furthermore, Tyr-26 phosphorylation can buffer the desensitization of Ser-23/24 phosphorylation while further accelerating thin filament deactivation. Therefore, the functional integration of TnI phosphorylation may be a common mechanism to modulate Ser-23/24 phosphorylation function.
Collapse
Affiliation(s)
- Hussam E Salhi
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Shane D Walton
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nathan C Hassel
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth A Brundage
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Pieter P de Tombe
- The Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Paul M L Janssen
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Davis
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Brandon J Biesiadecki
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
Restrictive cardiomyopathy mutations demonstrate functions of the C-terminal end-segment of troponin I. Arch Biochem Biophys 2014; 552-553:3-10. [DOI: 10.1016/j.abb.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 11/22/2022]
|