1
|
Sosnovtseva AO, Le TH, Karpov DS, Vorobyev PO, Gumennaya YD, Alekseeva ON, Chumakov PM, Lipatova AV. Establishment of a Panel of Human Cell Lines to Identify Cellular Receptors Used by Enteroviruses to Infect Cells. Int J Mol Sci 2025; 26:923. [PMID: 39940693 PMCID: PMC11817244 DOI: 10.3390/ijms26030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Non-pathogenic natural and recombinant strains of human Enteroviruses are the subject of ongoing study with some strains having been approved for use as anticancer agents. The efficacy of oncolytic virotherapy depends upon identifying the receptor utilized by a specific strain for cell entry, and the presence of this receptor on the surface of cancer cells. Accordingly, a rapid and straightforward approach to determining the enteroviral receptors is necessary for developing an effective patient-specific, virus-based cancer therapy. To this end, we created a panel of seven lines with double knockouts on the background of the HEK293T cell line, which lacks the IFNAR1 gene. In these lines, the main viral receptor genes, including PVR, CXADR, CD55, ITGA2, SCARB2, ICAM1, and FCGRT, were knocked out using the CRISPR/Cas9 system. The panel of lines was validated on twelve different Enteroviruses types, providing a basis for studying the molecular mechanisms of enterovirus entry into cells, and for developing new therapeutic strains.
Collapse
Affiliation(s)
- Anastasiia O. Sosnovtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Thi Hoa Le
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Anastasia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| |
Collapse
|
2
|
Casasnovas JM. Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells. Subcell Biochem 2024; 105:533-566. [PMID: 39738957 DOI: 10.1007/978-3-031-65187-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The virus particles described in the previous chapters of this book are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cell cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles of animal viruses or bacteriophages attach initially to specific receptors on the host cell surface. These viral receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus-host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and viral variants with distinct receptor-binding specificities and tropism can appear. The identification of viral receptors and the characterization of virus-receptor interactions have been major research goals in virology. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus cell entry.
Collapse
Affiliation(s)
- José M Casasnovas
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Andino R, Kirkegaard K, Macadam A, Racaniello VR, Rosenfeld AB. The Picornaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S427-S445. [PMID: 37849401 DOI: 10.1093/infdis/jiac426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.
Collapse
Affiliation(s)
- Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew Macadam
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Vincent R Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amy B Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Heffron J, McDermid B, Maher E, McNamara PJ, Mayer BK. Mechanisms of virus mitigation and suitability of bacteriophages as surrogates in drinking water treatment by iron electrocoagulation. WATER RESEARCH 2019; 163:114877. [PMID: 31349091 DOI: 10.1016/j.watres.2019.114877] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 05/03/2023]
Abstract
Emerging water treatment technologies using ferrous and zero-valent iron show promising virus mitigation by both inactivation and adsorption. In this study, iron electrocoagulation was investigated for virus mitigation in drinking water via bench-scale batch experiments. Relative contributions of physical removal and inactivation, as determined by recovery via pH 9.5 beef broth elution, were investigated for three mammalian viruses (adenovirus, echovirus, and feline calicivirus) and four bacteriophage surrogates (fr, MS2, P22, and ΦX174). Though no one bacteriophage exactly represented mitigation of the mammalian viruses in all water matrices, bacteriophage ΦX174 was the only surrogate that showed overall removal comparable to that of the mammalian viruses. Bacteriophages fr, MS2, and P22 were all more susceptible to inactivation than the three mammalian viruses, raising concerns about the suitability of these common surrogates as indicators of virus mitigation. To determine why some bacteriophages were particularly susceptible to inactivation, mechanisms of bacteriophage mitigation due to electrocoagulation were investigated. Physical removal was primarily due to inclusion in flocs, while inactivation was primarily due to ferrous iron oxidation. Greater electrostatic attraction, virus aggregation, and capsid durability were proposed as reasons for virus susceptibility to ferrous-based inactivation. Results suggest that overall treatment claims based on bacteriophage mitigation for any iron-based technology should be critically considered due to higher susceptibility of bacteriophages to inactivation via ferrous oxidation.
Collapse
Affiliation(s)
- Joe Heffron
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Brad McDermid
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Emily Maher
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA.
| |
Collapse
|
5
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
6
|
Li MF, Sun L. Characterization of a teleost membrane-associated protein that is involved in the regulation of complement activation and bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:142-149. [PMID: 29066398 DOI: 10.1016/j.dci.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
In mammals, membrane-associated complement regulatory proteins (MCRP) can protect host cells from the damaging of the activated complement. In teleost, few studies on the function of MCRP have been documented. In the present report, we identified a MCRP (named CsMCRP) from the teleost fish tongue sole Cynoglossus semilaevis and examined its immune function. CsMCRP shares moderate sequence identities with fish DAF-like molecules. CsMCRP was predicted to be a transmembrane protein with three short consensus repeats located in the extracellular region. CsMCRP expression occurred in nine different tissues, especially blood, and in peripheral blood leukocytes (PBL). Recombinant CsMCRP inhibited complement activation and interacted with bacterial pathogen, the latter in a highly selective manner. Antibody blocking the CsMCRP on PBL significantly inhibited bacterial infection of PBL. These results indicate that teleost CsMCRP is both a regulator of complement activation and a cellular receptor involved in bacterial invasion.
Collapse
Affiliation(s)
- Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
8
|
Bhella D. The role of cellular adhesion molecules in virus attachment and entry. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140035. [PMID: 25533093 PMCID: PMC4275905 DOI: 10.1098/rstb.2014.0035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
As obligate intracellular parasites, viruses must traverse the host-cell plasma membrane to initiate infection. This presents a formidable barrier, which they have evolved diverse strategies to overcome. Common to all entry pathways, however, is a mechanism of specific attachment to cell-surface macromolecules or ‘receptors’. Receptor usage frequently defines viral tropism, and consequently, the evolutionary changes in receptor specificity can lead to emergence of new strains exhibiting altered pathogenicity or host range. Several classes of molecules are exploited as receptors by diverse groups of viruses, including, for example, sialic acid moieties and integrins. In particular, many cell-adhesion molecules that belong to the immunoglobulin-like superfamily of proteins (IgSF CAMs) have been identified as viral receptors. Structural analysis of the interactions between viruses and IgSF CAM receptors has not shown binding to specific features, implying that the Ig-like fold may not be key. Both proteinaceous and enveloped viruses exploit these proteins, however, suggesting convergent evolution of this trait. Their use is surprising given the usually occluded position of CAMs on the cell surface, such as at tight junctions. Nonetheless, the reason for their widespread involvement in virus entry most probably originates in their functional rather than structural characteristics.
Collapse
Affiliation(s)
- David Bhella
- Medical Research Council-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Abstract
The virus particles described in previous chapters are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles attach initially to specific molecules on the host cell surface. These virus receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and virus variants with distinct receptor-binding specificities and tropism can appear. The identification of virus receptors and the characterization of virus-receptor interactions have been major research goals in virology for the last two decades. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus entry.
Collapse
|
11
|
Buranda T, Swanson S, Bondu V, Schaefer L, Maclean J, Mo Z, Wycoff K, Belle A, Hjelle B. Equilibrium and kinetics of Sin Nombre hantavirus binding at DAF/CD55 functionalized bead surfaces. Viruses 2014; 6:1091-111. [PMID: 24618810 PMCID: PMC3970141 DOI: 10.3390/v6031091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/13/2014] [Accepted: 02/23/2014] [Indexed: 12/14/2022] Open
Abstract
Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)2-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24–30 nM; kon ~ 105 M−1s−1, koff ~ 0.0045 s−1). The bivalent (DAF)2-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (Kd = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| | - Scarlett Swanson
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| | - Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| | - Leah Schaefer
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - James Maclean
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Zhenzhen Mo
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Keith Wycoff
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Archana Belle
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Brian Hjelle
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| |
Collapse
|
12
|
Rusnati M, Chiodelli P, Bugatti A, Urbinati C. Bridging the past and the future of virology: surface plasmon resonance as a powerful tool to investigate virus/host interactions. Crit Rev Microbiol 2013; 41:238-60. [PMID: 24059853 DOI: 10.3109/1040841x.2013.826177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of antiviral drug research and development, viruses still remain a top global healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers of proteins that, nevertheless, set up multiple interactions with cellular components, allowing the virus to take control of the infected cell. Each virus/host interaction can be considered as a therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so huge number of interactions is time-consuming and expensive, calling for models overcoming these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time by detecting reflected light from a prism-gold film interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology, spanning from the study of biological interactions to the identification of putative antiviral drugs. From the literature available, SPR emerges as an ideal link between conventional biological experimentation and system biology studies functional to the identification of highly connected viral or host proteins that act as nodal points in virus life cycle and thus considerable as therapeutical targets for the development of innovative antiviral strategies.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | | | | |
Collapse
|
13
|
Bergelson JM, Coyne CB. Picornavirus entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:24-41. [PMID: 23884584 DOI: 10.1007/978-1-4614-7651-1_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The essential event in picornavirus entry is the delivery of the RNA genome to the cytoplasm of a target cell, where replication occurs. In the past several years progress has been made in understanding the structural changes in the virion important for uncoating and RNA release. In addition, for several viruses the endocytic mechanisms responsible for internalization have been identified, as have the cellular sites at which uncoating occurs. It has become clear that entry is not a passive process, and that viruses initiate specific signals required for entry. And we have begun to recognize that for a given virus, there may be multiple routes of entry, depending on the particular target cell and the receptors available on that cell.
Collapse
Affiliation(s)
- Jeffrey M Bergelson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
14
|
The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J Virol 2012; 86:12571-81. [PMID: 22973031 DOI: 10.1128/jvi.01592-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coxsackievirus-adenovirus receptor (CAR) and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). The first described DAF-binding isolate was obtained during passage of the prototype strain, Nancy, on rhabdomyosarcoma (RD) cells, which express DAF but very little CAR. Here, the structure of the resulting variant, CVB3-RD, has been solved by X-ray crystallography to 2.74 Å, and a cryo-electron microscopy reconstruction of CVB3-RD complexed with DAF has been refined to 9.0 Å. This new high-resolution structure permits us to correct an error in our previous view of DAF-virus interactions, providing a new footprint of DAF that bridges two adjacent protomers. The contact sites between the virus and DAF clearly encompass CVB3-RD residues recently shown to be required for binding to DAF; these residues interact with DAF short consensus repeat 2 (SCR2), which is known to be essential for virus binding. Based on the new structure, the mode of the DAF interaction with CVB3 differs significantly from the mode reported previously for DAF binding to echoviruses.
Collapse
|
15
|
Sobo K, Rubbia-Brandt L, Brown TDK, Stuart AD, McKee TA. Decay-accelerating factor binding determines the entry route of echovirus 11 in polarized epithelial cells. J Virol 2011; 85:12376-86. [PMID: 21917947 PMCID: PMC3209408 DOI: 10.1128/jvi.00016-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 09/04/2011] [Indexed: 01/21/2023] Open
Abstract
The interaction between echovirus 11 strain 207 (EV11-207) and decay-accelerating factor (DAF or CD55) at the apical surface of polarized Caco-2 cells results in rapid transport of the virus to tight junctions and in its subsequent uptake. A virus mutant (EV11-207R) which differs at 6 amino acids and whose affinity for DAF is apparently significantly lower remains at the apical surface, from where its uptake occurs. Binding of EV11-207 to DAF and its transport to tight junctions result in a loss of function of the junctions. In contrast, the mutant virus EV11-207R is not transferred to tight junctions, nor does it impair the integrity of these junctions. Cholesterol depletion from the apical membrane leads to DAF aggregation and, presumably, internalization and inhibits infection by EV11-207. However, infection by EV11-207R is significantly less sensitive to cholesterol depletion than infection by EV11-207, confirming the DAF requirement for EV11-207, but not EV11-207R, to infect cells. These data strongly indicate that in the case of infection of polarized epithelial cells by echovirus 11, DAF binding appears be a key determinant in the choice of entry pathway, at least in cell culture.
Collapse
Affiliation(s)
- Komla Sobo
- Department of Clinical Pathology, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Echovirus 7 (EV7) belongs to the Enterovirus genus within the family Picornaviridae. Many picornaviruses use IgG-like receptors that bind in the viral canyon and are required to initiate viral uncoating during infection. However, in addition, some of the enteroviruses use an alternative or additional receptor that binds outside the canyon. Decay-accelerating factor (DAF) has been identified as a cellular receptor for EV7. The crystal structure of EV7 has been determined to 3.1-Å resolution and used to interpret the 7.2-Å-resolution cryo-electron microscopy reconstruction of EV7 complexed with DAF. Each DAF binding site on EV7 is near a 2-fold icosahedral symmetry axis, which differs from the binding site of DAF on the surface of coxsackievirus B3, indicating that there are independent evolutionary processes by which DAF was selected as a picornavirus accessory receptor. This suggests that there is an advantage for these viruses to recognize DAF during the initial process of infection.
Collapse
|
17
|
Vitiello M, Finamore E, Raieta K, Kampanaraki A, Mignogna E, Galdiero E, Galdiero M. Cellular cholesterol involvement in Src, PKC, and p38/JNK transduction pathways by porins. J Interferon Cytokine Res 2010; 29:791-800. [PMID: 19929574 DOI: 10.1089/jir.2009.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biological membranes are described as a mosaic of different domains where interactions between membrane components induce the formation of subdomains with different characteristics and functions. Lipids play an important role in the formation of lipid-enriched microdomains where they dynamically associate to form platforms important for membrane protein sorting and construction of signaling complexes. Cholesterol confined in lipid domains is a crucial component required by microorganisms, directly or indirectly, to enter or exit the intracellular compartment. Cellular activation mediated by superficial bacterial component may be modified by local cholesterol depletion. Therefore, new perspectives for unconventional therapeutic intervention in Gram-negative infections may be envisaged. We tested this hypothesis by using methyl-beta-cyclodextrin (mbetaCD) as a cholesterol-complexing agent to alter the U937 plasma membrane cholesterol content. Our results demonstrate that cholesterol depletion of U937 cells inhibited Salmonella enterica serovar Typhimurium porins-mediated phosphorylation of Src kinase family, protein kinase C (PKC), JNK, and p38, while cholesterol repletion restored the phosphorylation. Lipopolysaccharide (LPS) extracted from the same bacterial strain has been used as a control. Our data demonstrate that the lack of activation of signal transduction pathway observed following cholesterol depletion differently modulates the release of interleukin-6 (IL-6) or tumor necrosis factor-alpha (TNF-alpha), suggesting that Src, associated to lipid domains, may represent an important pathway in Gram-negative-induced cellular signal.
Collapse
Affiliation(s)
- Mariateresa Vitiello
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples 80138, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Two clusters of mutations map distinct receptor-binding sites of echovirus 11 for the decay-accelerating factor (CD55) and for canyon-binding receptors. Virus Res 2009; 145:74-9. [PMID: 19540285 DOI: 10.1016/j.virusres.2009.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/07/2009] [Accepted: 06/08/2009] [Indexed: 11/21/2022]
Abstract
In this study we present the comparative sequence analysis of the parental haemagglutinating (daf+) and mutant non-haemagglutinating (daf-) clones of echovirus 11 (EV11) isolated from the prototype strain Gregory. The sequence comparison revealed only a single amino acid substitution in the capsid protein VP2 of each mutant clone. These substitutions were located in the area of viral receptor-binding site for DAF. Since daf- mutants of EV11 did not interact with DAF, they used an alternative receptor for the cell entry. To elucidate the nature of the alternative receptor we used subvariant clones of EV11 adapted to human rhabdomyosarcoma (RD), human carcinoma (HEp-2) and African Green monkey kidney (BGM) cell lines. The usage of the subvariant clones with altered host range and the cell cultures of human and simian origin allowed us to map the amino acid substitutions associated with the adaptation of EV11 to the alternative cellular receptors. These amino acid substitutions were located on the surface of the virion in the canyon area. Hence the virus canyon may serve as the receptor-binding site for the alternative (in respect to DAF) cellular receptor(s).
Collapse
|
19
|
Role of class I human leukocyte antigen molecules in early steps of echovirus infection of rhabdomyosarcoma cells. Virology 2008; 381:203-14. [PMID: 18823925 DOI: 10.1016/j.virol.2008.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/23/2008] [Accepted: 08/04/2008] [Indexed: 11/20/2022]
Abstract
Several echoviruses use decay accelerating factor (DAF) as a cell surface receptor. However, most of them require additional cell surface coreceptors. We investigated the respective roles of DAF and class I human leukocyte antigen (HLA) molecules in the early steps of the echovirus 11 (EV11) lifecycle in rhabdomyosarcoma (RD) cells. EV11 infection was inhibited at an early stage by anti-beta2-microglobulin (beta2m) and anti-HLA monoclonal antibodies and by a soluble monochain HLA class I molecule. Expression of class I HLA molecules restored the early steps of the EV11 lifecycle, but its expression was not sufficient for EV11 replication and particle production. Expression of HLA class I molecules was associated with leukocyte cell line permissiveness to EV11 infection. In conclusion, HLA class I molecules are involved in the early steps of EV11 infection of RD cells and appear to participate in a complex interplay of surface molecules acting as coreceptors, including DAF.
Collapse
|
20
|
Bhella D, Gatherer D, Chaudhry Y, Pink R, Goodfellow IG. Structural insights into calicivirus attachment and uncoating. J Virol 2008; 82:8051-8. [PMID: 18550656 PMCID: PMC2519574 DOI: 10.1128/jvi.00550-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022] Open
Abstract
The Caliciviridae family comprises positive-sense RNA viruses of medical and veterinary significance. In humans, caliciviruses are a major cause of acute gastroenteritis, while in animals respiratory illness, conjunctivitis, stomatitis, and hemorrhagic disease are documented. Investigation of virus-host interactions is limited by a lack of culture systems for many viruses in this family. Feline calicivirus (FCV), a member of the Vesivirus genus, provides a tractable model, since it may be propagated in cell culture. Feline junctional adhesion molecule 1 (fJAM-1) was recently identified as a functional receptor for FCV. We have analyzed the structure of this virus-receptor complex by cryo-electron microscopy and three-dimensional image reconstruction, combined with fitting of homology modeled high-resolution coordinates. We show that domain 1 of fJAM-1 binds to the outer face of the P2 domain of the FCV capsid protein VP1, inducing conformational changes in the viral capsid. This study provides the first structural view of a native calicivirus-protein receptor complex and insights into the mechanisms of virus attachment and uncoating.
Collapse
Affiliation(s)
- David Bhella
- Medical Research Council Virology Unit, Glasgow University, Church St., Glasgow G11 5JR, United Kingdom.
| | | | | | | | | |
Collapse
|
21
|
Hafenstein S, Bowman VD, Chipman PR, Bator Kelly CM, Lin F, Medof ME, Rossmann MG. Interaction of decay-accelerating factor with coxsackievirus B3. J Virol 2007; 81:12927-35. [PMID: 17804498 PMCID: PMC2169128 DOI: 10.1128/jvi.00931-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 08/24/2007] [Indexed: 11/20/2022] Open
Abstract
Many entero-, parecho-, and rhinoviruses use immunoglobulin (Ig)-like receptors that bind into the viral canyon and are required to initiate viral uncoating during infection. However, some of these viruses use an alternative or additional receptor that binds outside the canyon. Both the coxsackievirus-adenovirus receptor (CAR), an Ig-like molecule that binds into the viral canyon, and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). A cryoelectron microscopy reconstruction of a variant of CVB3 complexed with DAF shows full occupancy of the DAF receptor in each of 60 binding sites. The DAF molecule bridges the canyon, blocking the CAR binding site and causing the two receptors to compete with one another. The binding site of DAF on CVB3 differs from the binding site of DAF on the surface of echoviruses, suggesting independent evolutionary processes.
Collapse
Affiliation(s)
- Susan Hafenstein
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ricklin D, Lambris JD. Exploring the complement interaction network using surface plasmon resonance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:260-78. [PMID: 17892218 DOI: 10.1007/978-0-387-71767-8_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104-6100, USA.
| | | |
Collapse
|
23
|
Lévêque N, Norder H, Zreik Y, Cartet G, Falcon D, Rivat N, Chomel JJ, Hong SS, Lina B. Echovirus 6 strains derived from a clinical isolate show differences in haemagglutination ability and cell entry pathway. Virus Res 2007; 130:1-9. [PMID: 17566587 DOI: 10.1016/j.virusres.2007.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 11/25/2022]
Abstract
Two echovirus 6 (EV6) strains were isolated from a clinical sample after successive sub-cultures in PLC (human hepatocellular carcinoma) and HeLa (human cervical adenocarcinoma) cells. The first strain retained its haemagglutinating capacity (HAEV6) while the second became non-haemagglutinating (NHAEV6). Virus binding assay showed that HAEV6 was capable of binding to DAF-expressing cells but not NHAEV6 confirming the role of DAF in EV6 haemagglutination. The lack of competition between the two viral strains during coinfections suggested that each strain used a different cell entry pathway. We provide evidence showing that HAEV6 used preferentially the lipid raft-dependent caveolae pathway, whereas NHAEV6 followed the clathrin-mediated pathway. Comparison of the sequences of HAEV6 and NHAEV6 revealed five amino acid changes in the VP1, VP2 and VP3 capsid proteins distributed in domains which are known to be highly immunogenic or suggested to be involved in receptor binding, virion stability and pathogenicity.
Collapse
Affiliation(s)
- Nicolas Lévêque
- Centre National de Référence des Entérovirus, Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Institut de Microbiologie, Hospices Civils de Lyon, 69677 Bron, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Korotkova N, Chattopadhyay S, Tabata TA, Beskhlebnaya V, Vigdorovich V, Kaiser BK, Strong RK, Dykhuizen DE, Sokurenko EV, Moseley SL. Selection for functional diversity drives accumulation of point mutations in Dr adhesins of Escherichia coli. Mol Microbiol 2007; 64:180-94. [PMID: 17376081 DOI: 10.1111/j.1365-2958.2007.05648.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune escape is considered to be the driving force behind structural variability of major antigens on the surface of bacterial pathogens, such as fimbriae. In the Dr family of Escherichia coli adhesins, structural and adhesive functions are carried out by the same subunit. Dr adhesins have been shown to bind decay-accelerating factor (DAF), collagen IV, and carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). We show that genes encoding Dr adhesins from 100 E. coli strains form eight structural groups with a high level of amino acid sequence diversity between them. However, genes comprising each group differ from each other by only a small number of point mutations. Out of 66 polymorphisms identified within the groups, only three were synonymous mutations, indicating strong positive selection for amino acid replacements. Functional analysis of intragroup variants comprising the Dr haemagglutinin (DraE) group revealed that the point mutations result in distinctly different binding phenotypes, with a tendency of increased affinity to DAF, decreased sensitivity of DAF binding to inhibition by chloramphenicol, and loss of binding capability to collagen, CEACAM3 and CEACAM6. Thus, variability by point mutation of major antigenic proteins on the bacterial surface can be a signature of selection for functional modification.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Harris CL, Pettigrew DM, Lea SM, Morgan BP. Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay. THE JOURNAL OF IMMUNOLOGY 2007; 178:352-9. [PMID: 17182573 DOI: 10.4049/jimmunol.178.1.352] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Decay-accelerating factor (DAF; CD55) inhibits the complement (C) cascade by dissociating the multimolecular C3 convertase enzymes central to amplification. We have previously demonstrated using surface plasmon resonance (Biacore International) that DAF mediates decay of the alternative pathway C3 convertase, C3bBb, but not of the inactive proenzyme, C3bB, and have shown that the major site of interaction is with the larger cleavage subunit factor B (Bb) subunit. In this study, we dissect these interactions and demonstrate that the second short consensus repeat (SCR) domain of DAF (SCR2) interacts only with Bb, whereas SCR4 interacts with C3b. Despite earlier studies that found SCR3 to be critical to DAF activity, we find that SCR3 does not directly interact with either subunit. Furthermore, we demonstrate that properdin, a positive regulator of the alternative pathway, does not directly interact with DAF. Extending from studies of binding to decay-accelerating activity, we show that truncated forms of DAF consisting of SCRs 2 and 3 bind the convertase stably via SCR2-Bb interactions but have little functional activity. In contrast, an SCR34 construct mediates decay acceleration, presumably due to SCR4-C3b interactions demonstrated above, because SCR3 alone has no binding or functional effect. We propose that DAF interacts with C3bBb through major sites in SCR2 and SCR4. Binding to Bb via SCR2 increases avidity of binding, concentrating DAF on the active convertase, whereas more transient interactions through SCR4 with C3b directly mediate decay acceleration. These data provide new insights into the mechanisms involved in C3 convertase decay by DAF.
Collapse
Affiliation(s)
- Claire L Harris
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
26
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|