1
|
Drzymała-Czyż S, Walkowiak J, Colombo C, Alicandro G, Storrösten OT, Kolsgaard M, Bakkeheim E, Strandvik B. Fatty acid abnormalities in cystic fibrosis-the missing link for a cure? iScience 2024; 27:111153. [PMID: 39620135 PMCID: PMC11607544 DOI: 10.1016/j.isci.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The care for cystic fibrosis (CF) has dramatically changed with the development of modulators, correctors, and potentiators of the CFTR molecule, which lead to improved clinical status of most people with CF (pwCF). The modulators influence phospholipids and ceramides, but not linoleic acid (LA) deficiency, associated with more severe phenotypes of CF. The LA deficiency is associated with upregulation of its transfer to arachidonic acid (AA). The AA release from membranes is increased and associated with increase of pro-inflammatory prostanoids and the characteristic inflammation is present before birth and bacterial infections. Docosahexaenoic acid is often decreased, especially in associated liver disease Some endogenously synthesized fatty acids are increased. Cholesterol and ceramide metabolisms are disturbed. The lipid abnormalities are present at birth, and before feeding in transgenic pigs and ferrets. This review focus on the lipid abnormalities and their associations to clinical symptoms in CF, based on clinical studies and experimental research.
Collapse
Affiliation(s)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olav Trond Storrösten
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Magnhild Kolsgaard
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Egil Bakkeheim
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
Cui Y, Wang Y, Song X, Ning H, Zhang Y, Teng Y, Wang J, Yang X. Brain endothelial PTEN/AKT/NEDD4-2/MFSD2A axis regulates blood-brain barrier permeability. Cell Rep 2021; 36:109327. [PMID: 34233198 DOI: 10.1016/j.celrep.2021.109327] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
The low level of transcytosis is a unique feature of cerebrovascular endothelial cells (ECs), ensuring restrictive blood-brain barrier (BBB) permeability. Major facilitator superfamily domain-containing 2a (MFSD2A) is a key regulator of the BBB function by suppressing caveolae-mediated transcytosis. However, the mechanisms regulating MFSD2A at the BBB have been barely explored. Here, we show that cerebrovascular EC-specific deletion of Pten (phosphatase and tensin homolog) results in a dramatic increase in vesicular transcytosis by the reduction of MFSD2A, leading to increased transcellular permeability of the BBB. Mechanistically, AKT signaling inhibits E3 ubiquitin ligase NEDD4-2-mediated MFSD2A degradation. Consistently, cerebrovascular Nedd4-2 overexpression decreases MFSD2A levels, increases transcytosis, and impairs BBB permeability, recapitulating the phenotypes of Pten-deficient mice. Furthermore, Akt deletion decreases phosphorylated NEDD4-2 levels, restores MFSD2A levels, and normalizes BBB permeability in Pten-mutant mice. Altogether, our work reveals the essential physiological function of the PTEN/AKT/NEDD4-2/MFSD2A axis in the regulation of BBB permeability.
Collapse
Affiliation(s)
- Yaxiong Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanxiao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaopeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huimin Ning
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
3
|
Gelzo M, Iacotucci P, Carnovale V, Castaldo A, Comegna M, Cernera G, Corso G, Castaldo G. Impaired Ratio of Unsaturated to Saturated Non-Esterified Fatty Acids in Saliva from Patients with Cystic Fibrosis. Diagnostics (Basel) 2020; 10:915. [PMID: 33171650 PMCID: PMC7695280 DOI: 10.3390/diagnostics10110915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Impaired salivary non-esterified fatty acids (NEFA) levels have been previously observed in cystic fibrosis (CF). This study aimed to characterize the salivary NEFA profile in CF and to examine whether the alterations are related to the pancreatic status and/or lung disease severity. We analyzed salivary NEFA, cholesterol and interleukin-6 (IL-6) in CF patients (n = 66) and healthy subjects (n = 48). CF patients showed higher salivary levels of cholesterol, total NEFA (that was negatively correlated with serum triglycerides), unsaturated NEFA/saturated NEFA (U/S NEFA) ratio and IL-6 than controls. The U/S NEFA ratio was positively correlated with IL-6 in both patients and controls, suggesting an association between this parameter and local inflammation independently from the disease. No correlation between salivary lipids and pancreatic status was observed, while the U/S NEFA ratio was higher in patients with severe lung disease than mild/moderate severity and may represent a prognostic marker of lung disease in CF.
Collapse
Affiliation(s)
- Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (M.G.); (M.C.); (G.C.)
- CEINGE-Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Paola Iacotucci
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, 80131 Napoli, Italy; (P.I.); (V.C.)
| | - Vincenzo Carnovale
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, 80131 Napoli, Italy; (P.I.); (V.C.)
| | - Alice Castaldo
- CEINGE-Biotecnologie Avanzate, 80145 Napoli, Italy;
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, 80131 Napoli, Italy; (P.I.); (V.C.)
- Dipartimento di Sanità Pubblica, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Marika Comegna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (M.G.); (M.C.); (G.C.)
- CEINGE-Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (M.G.); (M.C.); (G.C.)
- CEINGE-Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71121 Foggia, Italy;
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (M.G.); (M.C.); (G.C.)
- CEINGE-Biotecnologie Avanzate, 80145 Napoli, Italy;
| |
Collapse
|
4
|
Lara-Reyna S, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci 2020; 77:4485-4503. [PMID: 32367193 PMCID: PMC7599191 DOI: 10.1007/s00018-020-03540-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may eventually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in cells with CFTR mutations.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
- Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
5
|
Rymut SM, Lu B, Perez A, Corey DA, Lamb K, Cotton CU, Kelley TJ. Acetyl-CoA carboxylase inhibition regulates microtubule dynamics and intracellular transport in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1081-L1093. [PMID: 30892081 DOI: 10.1152/ajplung.00369.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of high-dose ibuprofen as an anti-inflammatory therapy in cystic fibrosis (CF) has been shown to be an effective intervention although use is limited due to potential adverse events. Identifying the mechanism of ibuprofen efficacy would aid in the development of new therapies that avoid these adverse events. Previous findings demonstrated that ibuprofen treatment restores the regulation of microtubule dynamics in CF epithelial cells through a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent mechanism. The goal of this study is to define the AMPK pathway that leads to microtubule regulation. Here, it is identified that inhibition of acetyl-CoA carboxylase (ACC) is the key step in mediating the AMPK effect. ACC inhibition with 5-(tetradecyloxy)-2-furoic acid (TOFA) increases microtubule reformation rates in cultured and primary CF epithelial cells to wild-type (WT) rates. TOFA treatment also restores microtubule-dependent distribution of cholesterol and Rab7-positive organelles, as well as reduces expression of the proinflammatory signaling molecule RhoA to WT levels. ACC activation with citrate replicates these CF phenotypes in WT cells further supporting the role of AMPK signaling through ACC as a key mediator in CF cell signaling. It is concluded that ACC inhibition is the key step in the efficacy of AMPK activation at the cellular level and could represent a novel site of therapeutic intervention to address inflammation in CF.
Collapse
Affiliation(s)
- Sharon M Rymut
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Binyu Lu
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Aura Perez
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Deborah A Corey
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Kata Lamb
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Calvin U Cotton
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Thomas J Kelley
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
6
|
Harun-Or-Rashid M, Inman DM. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J Neuroinflammation 2018; 15:313. [PMID: 30424795 PMCID: PMC6234605 DOI: 10.1186/s12974-018-1346-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background Glaucoma is a chronic degenerative disease for which inflammation is considered to play a pivotal role in the pathogenesis and progression. In this study, we examined the impact of a ketogenic diet on the inflammation evident in glaucoma as a follow-up to a recent set of experiments in which we determined that a ketogenic diet protected retinal ganglion cell structure and function. Methods Both sexes of DBA/2J (D2) mice were placed on a ketogenic diet (keto) or standard rodent chow (untreated) for 8 weeks beginning at 9 months of age. DBA/2J-Gpnmb+ (D2G) mice were also used as a non-pathological genetic control for the D2 mice. Retina and optic nerve (ON) tissues were micro-dissected and used for the analysis of microglia activation, expression of pro- and anti-inflammatory molecules, and lactate- or ketone-mediated anti-inflammatory signaling. Data were analyzed by immunohistochemistry, quantitative RT-PCR, ELISA, western blot, and capillary tube-based electrophoresis techniques. Results Microglia activation was observed in D2 retina and ON as documented by intense microglial-specific Iba1 immunolabeling of rounded-up and enlarged microglia. Ketogenic diet treatment reduced Iba1 expression and the activated microglial phenotype. We detected low energy-induced AMP-activated protein kinase (AMPK) phosphorylation in D2 retina and ON that triggered NF-κB p65 signaling through its nuclear translocation. NF-κB induced pro-inflammatory TNF-α, IL-6, and NOS2 expression in D2 retina and ON. However, treatment with the ketogenic diet reduced AMPK phosphorylation, NF-κB p65 nuclear translocation, and expression of pro-inflammatory molecules. The ketogenic diet also induced expression of anti-inflammatory agents Il-4 and Arginase-1 in D2 retina and ON. Increased expression of hydroxycarboxylic acid receptor 1 (HCAR1) after ketogenic diet treatment was observed. HCAR1 stimulation by lactate or ketones from the ketogenic diet reduced inflammasome formation, as shown by reduced mRNA and protein expression of NLRP3 and IL-1β. We also detected increased levels of Arrestin β-2 protein, an adapter protein required for HCAR1 signaling. Conclusion Our data demonstrate that the AMPK activation apparent in the glaucomatous retina and ON triggers NF-κB signaling and consequently induces a pro-inflammatory response. The ketogenic diet resolves energy demand and ameliorates the inflammation by inhibition of AMPK activation and stimulation of HCAR1-ARRB2 signaling that inhibits NLRP3 inflammasome-mediated inflammation. Thus, these findings depict a neuroprotective mechanism of the ketogenic diet in controlling inflammation and suggest potential therapeutic targets for inflammatory neurodegenerative diseases, including glaucoma.
Collapse
Affiliation(s)
- Mohammad Harun-Or-Rashid
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
7
|
Bederman IR, Pora G, O'Reilly M, Poleman J, Spoonhower K, Puchowicz M, Perez A, Erokwu BO, Rodriguez-Palacios A, Flask CA, Drumm ML. Absence of leptin signaling allows fat accretion in cystic fibrosis mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G685-G698. [PMID: 30118352 PMCID: PMC6293256 DOI: 10.1152/ajpgi.00344.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/31/2023]
Abstract
Negative energy balance is a prevalent feature of cystic fibrosis (CF). Pancreatic insufficiency, elevated energy expenditure, lung disease, and malnutrition, all characteristic of CF, contribute to the negative energy balance causing low body-growth phenotype. As low body weight and body mass index strongly correlate with poor lung health and survival of patients with CF, improving energy balance is an important clinical goal (e.g., high-fat diet). CF mouse models also exhibit negative energy balance (growth retardation and high energy expenditure), independent from exocrine pancreatic insufficiency, lung disease, and malnutrition. To improve energy balance through increased caloric intake and reduced energy expenditure, we disrupted leptin signaling by crossing the db/db leptin receptor allele with mice carrying the R117H Cftr mutation. Compared with db/db mice, absence of leptin signaling in CF mice (CF db/db) resulted in delayed and moderate hyperphagia with lower de novo lipogenesis and lipid deposition, producing only moderately obese CF mice. Greater body length was found in db/db mice but not in CF db/db, suggesting CF-dependent effect on bone growth. The db/db genotype resulted in lower energy expenditure regardless of Cftr genotype leading to obesity. Despite the db/db genotype, the CF genotype exhibited high respiratory quotient indicating elevated carbohydrate oxidation, thus limiting carbohydrates for lipogenesis. In summary, db/db-linked hyperphagia, elevated lipogenesis, and morbid obesity were partially suppressed by reduced CFTR activity. CF mice still accrued large amounts of adipose tissue in contrast to mice fed a high-fat diet, thus highlighting the importance of dietary carbohydrates and not simply fat for energy balance in CF. NEW & NOTEWORTHY We show that cystic fibrosis (CF) mice are able to accrue fat under conditions of carbohydrate overfeeding, increased lipogenesis, and decreased energy expenditure, although length was unaffected. High-fat diet feeding failed to improve growth in CF mice. Morbid db/db-like obesity was reduced in CF double-mutant mice by reduced CFTR activity.
Collapse
Affiliation(s)
- Ilya R Bederman
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Gavriella Pora
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Maureen O'Reilly
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - James Poleman
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | | | - Michelle Puchowicz
- Department of Nutrition, Case Western Reserve University , Cleveland, Ohio
| | - Aura Perez
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | | | - Alex Rodriguez-Palacios
- Department of Medicine, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Chris A Flask
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
- Department of Radiology, Case Western Reserve University , Cleveland, Ohio
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Mitchell L Drumm
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
8
|
Cysteine modifiers suggest an allosteric inhibitory site on the CAL PDZ domain. Biosci Rep 2018; 38:BSR20180231. [PMID: 29472314 PMCID: PMC6435542 DOI: 10.1042/bsr20180231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 01/28/2023] Open
Abstract
Protein-protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL). We develop and validate biochemical screens and identify methyl-3,4-dephostatin (MD) and its analog ethyl-3,4-dephostatin (ED) as CAL PDZ inhibitors. Depending on conditions, MD can bind either covalently or non-covalently. Crystallographic and NMR data confirm that MD attacks a pocket at a site distinct from the canonical peptide-binding groove, and suggests an allosteric connection between target residue Cys319 and the conserved Leu291 in the GLGI motif. MD and ED thus appear to represent the first examples of small-molecule allosteric regulation of PDZ:peptide affinity. Their mechanism of action may exploit the known conformational plasticity of the PDZ domains and suggests that allosteric modulation may represent a strategy for targeting of this family of protein-protein binding modules.
Collapse
|
9
|
Raraigh KS, Han ST, Davis E, Evans TA, Pellicore MJ, McCague AF, Joynt AT, Lu Z, Atalar M, Sharma N, Sheridan MB, Sosnay PR, Cutting GR. Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity. Am J Hum Genet 2018; 102:1062-1077. [PMID: 29805046 DOI: 10.1016/j.ajhg.2018.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022] Open
Abstract
Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated <10% wild-type CFTR (WT-CFTR) function, a conservative threshold for the development of life-limiting CF lung disease, and five variants had moderately decreased function (10% to ∼25% WT-CFTR). The remaining three variants in this group unexpectedly had >25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.
Collapse
|
10
|
Guo S, Meng XW, Yang XS, Liu XF, Ou-Yang CH, Liu C. Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharmacol Sin 2018; 39:195-204. [PMID: 28905939 PMCID: PMC5800475 DOI: 10.1038/aps.2017.92] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/05/2017] [Indexed: 12/29/2022]
Abstract
Cardiac fibrosis is considered the initial change of diabetic cardiomyopathy (DCM). We have shown that curcumin alleviates collagen deposition in DCM, but the mechanism remains unknown. In this study we sought to investigate the effects of curcumin on cardiac fibrosis in vivo and in vitro and to elucidate the underlying mechanisms. Experimental diabetes was induced in rats by injection of low-dose streptozotocin (STZ) combined with high energy diet. The rats were orally treated with curcumin (300 mg·kg-1·d-1) for 16 weeks. Curcumin administration significantly suppressed the deposition of type I and type III collagens in the heart tissues of diabetic rats, accompanied by markedly reduced TGF-β1 production, suppressed TβR II levels and Smad2/3 phosphorylation, and increased Smad7 expression. Similar effects were observed in human cardiac fibroblasts exposed to high glucose (HG, 30 mmol/L) or exogenous TGF-β1 (5 ng/mL). Furthermore, TGF-β1 or HG treatment significantly increased the phosphorylation levels of AMPK and p38 MAPK in the fibroblasts. Application of curcumin (25 μmol/L) inhibited TGF-β1- or HG-induced AMPK/p38 MAPK activation and suppressed collagen synthesis in the fibroblasts. These effects were similar to those of the AMPK inhibitor compound C (10 μmol/L) but opposite to the effects of the AMPK activator metformin (2 mmol/L) in the fibroblasts. Our results demonstrate that curcumin suppresses diabetes-associated collagen synthesis in rat myocardium not only by inhibiting TGF-β1 production and canonical Smad signaling but also by blocking the non-canonical AMPK/p38 MAPK pathway.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiang-wen Meng
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiao-song Yang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiu-fen Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Chang-han Ou-Yang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
11
|
AICAR suppresses TNF-α-induced complement factor B in RPE cells. Sci Rep 2017; 7:17651. [PMID: 29247196 PMCID: PMC5732305 DOI: 10.1038/s41598-017-17744-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/29/2017] [Indexed: 11/08/2022] Open
Abstract
Age related macular degeneration is the leading cause of blindness in the developed world. Although its precise cause remains elusive, dysfunction of the retinal pigment epithelium (RPE) and dysregulation of complement have been implicated in its pathogenesis. The goal of this study was to evaluate the role of an AMP-dependent kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide riboside (AICAR), on tumor necrosis factor alpha (TNF-α) induction of complement factor B (CFB) in RPE cells. We found that AICAR inhibited TNF-α-induced CFB expression in ARPE-19 and human primary RPE cells in a dose-dependent fashion. Treatment of cells with dipyridamole, which blocks AICAR cellular uptake abolished these effects. In contrast, the adenosine kinase inhibitor, 5-iodotubericidin, which inhibits the conversion of AICAR to the direct activator of AMPK, ZMP, did not reverse the effects on TNF-α-induced CFB expression, suggesting AMPK-independent effects. Indeed, knockout of AMPK in RPE cells using Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 did not abolish the inhibitory effects of AICAR on RPE CFB expression. Collectively, our results suggest that AICAR can suppress TNF-α-induced CFB expression in RPE cells in an AMPK-independent mechanism, and could be used as a therapeutic target in certain complement over-activation scenarios.
Collapse
|
12
|
Santoro A, Ciaglia E, Nicolin V, Pescatore A, Prota L, Capunzo M, Ursini MV, Nori SL, Bifulco M. The isoprenoid end product N6-isopentenyladenosine reduces inflammatory response through the inhibition of the NFκB and STAT3 pathways in cystic fibrosis cells. Inflamm Res 2017; 67:315-326. [PMID: 29230506 PMCID: PMC5843674 DOI: 10.1007/s00011-017-1123-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/03/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Objective N6-isopentenyladenosine (iPA) is an intermediate of the mevalonate pathway that exhibits various anti-cancer effects. However, studies on its anti-inflammatory activity are scarce and underlying molecular mechanisms are unknown. Therefore, we aimed to investigate the ability of iPA to exert anti-inflammatory effects in the human cystic fibrosis (CF) cell model of exacerbated inflammation. Materials and methods TNFα-stimulated CF cells CuFi-1 and its normal counterpart NuLi-1 were pre-treated with increasing concentrations of iPA and cell viability and proliferation were assessed by MTT and BrdU assays. The effect of iPA on IL-8 and RANTES secretion was determined by ELISA, and the activation and expression of signaling molecules and selenoproteins were studied by Western blot. To assess the direct effect of iPA on NFκB activity, luciferase assay was performed on TNFα-stimulated HEK293/T cells transfected with a NFκB reporter plasmid. Results We demonstrated for the first time that iPA prevents IL-8 and RANTES release in TNFα-stimulated CF cells and this effect is mediated by increasing the expression of the direct NFκB inhibitor IκBα and decreasing the levels of STAT3. Consistent with this, we showed that iPA inhibited TNFα-mediated NFκB activation in HEK/293T cells. Finally, we also found that iPA improved the levels of glutathione peroxidase 1 and thioredoxin reductase 1 only in CF cells suggesting its ability to maintain sufficient expression of these anti-oxidant selenoproteins. Conclusions Our findings indicate that iPA can exert anti-inflammatory activity especially in the cases of excessive inflammatory response as in CF.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" CNR, Via P. Castellino, 80131, Naples, Italy
| | - Lucia Prota
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Matilde V Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" CNR, Via P. Castellino, 80131, Naples, Italy
| | - Stefania L Nori
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy.
| | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy. .,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, 80131, Naples, Italy.
| |
Collapse
|
13
|
Sheikh Z, Ong HX, Pozzoli M, Young PM, Traini D. Is there a role for inhaled anti-inflammatory drugs in cystic fibrosis treatment? Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michele Pozzoli
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, Wang D, Yang Y. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev 2017; 38:18-27. [PMID: 28709692 DOI: 10.1016/j.arr.2017.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023]
Abstract
Fibrosis is a common process characterized by excessive extracellular matrix (ECM) accumulation after inflammatory injury, which is also a crucial cause of aging. The process of fibrosis is involved in the pathogenesis of most diseases of the heart, liver, kidney, lung, and other organs/tissues. However, there are no effective therapies for this pathological alteration. Annually, fibrosis represents a huge financial burden for the USA and the world. 5'-AMP-activated protein kinase (AMPK) is a pivotal energy sensor that alleviates or delays the process of fibrogenesis. In this review, we first present basic background information on AMPK and fibrogenesis and describe the protective roles of AMPK in three fibrogenic phases. Second, we analyze the protective action of AMPK during fibrosis in myocardial, hepatic, renal, pulmonary, and other organs/tissues. Third, we present a comprehensive discussion of AMPK during fibrosis and draw a conclusion. This review highlights recent advances, vital for basic research and clinical drug design, in the regulation of AMPK during fibrosis.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
15
|
Shields PG, Berman M, Brasky TM, Freudenheim JL, Mathe E, McElroy JP, Song MA, Wewers MD. A Review of Pulmonary Toxicity of Electronic Cigarettes in the Context of Smoking: A Focus on Inflammation. Cancer Epidemiol Biomarkers Prev 2017; 26:1175-1191. [PMID: 28642230 PMCID: PMC5614602 DOI: 10.1158/1055-9965.epi-17-0358] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
The use of electronic cigarettes (e-cigs) is increasing rapidly, but their effects on lung toxicity are largely unknown. Smoking is a well-established cause of lung cancer and respiratory disease, in part through inflammation. It is plausible that e-cig use might affect similar inflammatory pathways. E-cigs are used by some smokers as an aid for quitting or smoking reduction, and by never smokers (e.g., adolescents and young adults). The relative effects for impacting disease risk may differ for these groups. Cell culture and experimental animal data indicate that e-cigs have the potential for inducing inflammation, albeit much less than smoking. Human studies show that e-cig use in smokers is associated with substantial reductions in blood or urinary biomarkers of tobacco toxicants when completely switching and somewhat for dual use. However, the extent to which these biomarkers are surrogates for potential lung toxicity remains unclear. The FDA now has regulatory authority over e-cigs and can regulate product and e-liquid design features, such as nicotine content and delivery, voltage, e-liquid formulations, and flavors. All of these factors may impact pulmonary toxicity. This review summarizes current data on pulmonary inflammation related to both smoking and e-cig use, with a focus on human lung biomarkers. Cancer Epidemiol Biomarkers Prev; 26(8); 1175-91. ©2017 AACR.
Collapse
Affiliation(s)
- Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio.
| | - Micah Berman
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Public Health, Ohio
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Ewy Mathe
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Joseph P McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Min-Ae Song
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Mark D Wewers
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Anti-inflammatory activities of fenoterol through β-arrestin-2 and inhibition of AMPK and NF-κB activation in AICAR-induced THP-1 cells. Biomed Pharmacother 2016; 84:185-190. [PMID: 27657826 DOI: 10.1016/j.biopha.2016.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 02/03/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) pathway has been shown to be able to regulate inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, inhibited lipopolysaccharide (LPS)-induced AMPK activation and inflammatory cytokine production in THP-1 cells, a monocytic cell line in previous studies. 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an agonist of AMPK. Whether AICAR induced AMPK activation and inflammatory cytokine production in THP-1 cells can be inhibited by fenoterol is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in AICAR-induced inflammatory cytokine secretion in THP-1 cells. We studied AMPK activation using p-AMPK and AMPK antibodies, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion in THP-1 cells stimulated by β2-AR in the presence or absence of AICAR and small interfering RNA (siRNA)-mediated knockdown of β-arrestin-2 or AMPKα1 subunit. AICAR-induced AMPK activation, NF-κB activation and tumor necrosis factor (TNF)-α release were reduced by fenoterol. In addition, siRNA-mediated knockdown of β-arrestin-2 abolished fenoterol's inhibition of AICAR-induced AMPK activation and TNF-α release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol in AICAR-treated THP-1 cells. Furthermore, siRNA-mediated knockdown of AMPKα1 significantly attenuated AICAR-induced NF-κB activation and TNF-α release, so AMPKα1 was a key signaling molecule involved in AICAR-induced inflammatory cytokine production. These data suggested that fenoterol inhibited AICAR-induced AMPK activation and TNF-α release through β-arrestin-2 in THP-1 cells. Management especially inhibition of AMPK signaling may provide new approaches and strategies for the treatments of immune diseases including inflammatory diseases and other critical illness.
Collapse
|
17
|
Rymut SM, Kampman CM, Corey DA, Endres T, Cotton CU, Kelley TJ. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L317-27. [PMID: 27317686 DOI: 10.1152/ajplung.00126.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/12/2016] [Indexed: 11/22/2022] Open
Abstract
High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF.
Collapse
Affiliation(s)
- Sharon M Rymut
- Departments of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Claire M Kampman
- Departments of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Deborah A Corey
- Departments of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Tori Endres
- Departments of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Calvin U Cotton
- Departments of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Thomas J Kelley
- Departments of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
18
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
19
|
Pastor-Soler NM, Sutton TA, Mang HE, Kinlough CL, Gendler SJ, Madsen CS, Bastacky SI, Ho J, Al-Bataineh MM, Hallows KR, Singh S, Monga SP, Kobayashi H, Haase VH, Hughey RP. Muc1 is protective during kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 2015; 308:F1452-62. [PMID: 25925251 PMCID: PMC4469889 DOI: 10.1152/ajprenal.00066.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/20/2015] [Indexed: 01/01/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells.
Collapse
Affiliation(s)
- Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy A Sutton
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry E Mang
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol L Kinlough
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sandra J Gendler
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Comprehensive Cancer Center, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Cathy S Madsen
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Comprehensive Cancer Center, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Sheldon I Bastacky
- Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Pediatric Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mohammad M Al-Bataineh
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hanako Kobayashi
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee; Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Volker H Haase
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee; Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Loureiro CA, Matos AM, Dias-Alves Â, Pereira JF, Uliyakina I, Barros P, Amaral MD, Matos P. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Sci Signal 2015; 8:ra48. [PMID: 25990958 DOI: 10.1126/scisignal.aaa1580] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral protein quality control (PPQC) checkpoint removes improperly folded proteins from the plasma membrane through a mechanism involving the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70 interacting protein). PPQC limits the efficacy of some cystic fibrosis (CF) drugs, such as VX-809, that improve trafficking to the plasma membrane of misfolded mutants of the CF transmembrane conductance regulator (CFTR), including F508del-CFTR, which retains partial functionality. We investigated the PPQC checkpoint in lung epithelial cells with F508del-CFTR that were exposed to VX-809. The conformation of the scaffold protein NHERF1 (Na(+)/H(+) exchange regulatory factor 1) determined whether the PPQC recognized "rescued" F508del-CFTR (the portion that reached the cell surface in VX-809-treated cells). Activation of the cytoskeletal regulator Rac1 promoted an interaction between the actin-binding adaptor protein ezrin and NHERF1, triggering exposure of the second PDZ domain of NHERF1, which interacted with rescued F508del-CFTR. Because binding of F508del-CFTR to the second PDZ of NHERF1 precluded the recruitment of CHIP, the coexposure of airway cells to Rac1 activator nearly tripled the efficacy of VX-809. Interference with the NHERF1-ezrin interaction prevented the increase of efficacy of VX-809 by Rac1 activation, but the actin-binding domain of ezrin was not required for the increase in efficacy. Thus, rather than mainly directing anchoring of F508del-CFTR to the actin cytoskeleton, induction of ezrin activation by Rac1 signaling triggered a conformational change in NHERF1, which was then able to bind and stabilize misfolded CFTR at the plasma membrane. These insights into the cell surface stabilization of CFTR provide new targets to improve treatment of CF.
Collapse
Affiliation(s)
- Cláudia A Loureiro
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ana Margarida Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ângela Dias-Alves
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Joana F Pereira
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Inna Uliyakina
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
21
|
Idrovo JP, Yang WL, Jacob A, Aziz M, Nicastro J, Coppa GF, Wang P. AICAR attenuates organ injury and inflammatory response after intestinal ischemia and reperfusion. Mol Med 2015; 20:676-83. [PMID: 25611433 DOI: 10.2119/molmed.2014.00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022] Open
Abstract
Intestinal ischemia and reperfusion (I/R) is encountered in various clinical conditions and contributes to multiorgan failure and mortality as high as 60% to 80%. Intestinal I/R not only injures the intestine, but affects remote organs such as the lung leading to acute lung injury. The development of novel and effective therapies for intestinal I/R are critical for the improvement of patient outcome. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) is a cell-permeable compound that has been shown to possess antiinflammatory effects. The objective is to determine that treatment with AICAR attenuates intestinal I/R injury and subsequent acute lung injury (ALI). Male Sprague Dawley rats (275 to 325 g) underwent intestinal I/R injury with blockage of the superior mesenteric artery for 90 min and subsequent reperfusion. At the initiation of reperfusion, vehicle or AICAR (30 mg/kg BW) was given intravenously (IV) for 30 min. At 4 h after reperfusion, blood and tissues were collected for further analyses. Treatment with AICAR significantly decreased the gut damage score and the water content, indicating improvement in histological integrity. The treatment also attenuated tissue injury and proinflammatory cytokines, and reduced bacterial translocation to the gut. AICAR administration after intestinal I/R maintained lung integrity, attenuated neutrophil chemotaxis and infiltration to the lungs and decreased lung levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Inflammatory mediators, lung-inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, were decreased in the lungs and lung apoptosis was significantly reduced after AICAR treatment. These data indicate that AICAR could be developed as an effective and novel therapeutic for intestinal I/R and subsequent ALI.
Collapse
Affiliation(s)
- Juan-Pablo Idrovo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Asha Jacob
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Monowar Aziz
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Gene F Coppa
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
22
|
Seegmiller AC. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: biochemical mechanisms and clinical implications. Int J Mol Sci 2014; 15:16083-99. [PMID: 25216340 PMCID: PMC4200767 DOI: 10.3390/ijms150916083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be linked to cystic fibrosis mutations via stimulation of the AMP-activated protein kinase in the absence of functional CFTR protein. There is evidence that these abnormalities may contribute to disease pathophysiology by increasing production of eicosanoids, such as prostaglandins and leukotrienes, of which arachidonate is a key substrate. Understanding these underlying mechanisms provides key insights that could potentially impact the diagnosis, clinical monitoring, nutrition, and therapy of patients suffering from this deadly disease.
Collapse
Affiliation(s)
- Adam C Seegmiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 4918B TVC, 1301 Medical Center Dr., Nashville, TN 37027, USA.
| |
Collapse
|
23
|
Umunakwe OC, Seegmiller AC. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase. J Lipid Res 2014; 55:1489-97. [PMID: 24859760 DOI: 10.1194/jlr.m050369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism.
Collapse
Affiliation(s)
- Obi C Umunakwe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Adam C Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
24
|
Dërmaku-Sopjani M, Abazi S, Faggio C, Kolgeci J, Sopjani M. AMPK-sensitive cellular transport. J Biochem 2014; 155:147-58. [PMID: 24440827 DOI: 10.1093/jb/mvu002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The energy sensing AMP-activated protein kinase (AMPK) regulates cellular and whole-body energy balance through stimulating catabolic ATP-generating and suppressing anabolic ATP-consuming pathways thereby helping cells survive during energy depletion. The kinase has previously been reported to be either directly or indirectly involved in the regulation of several carriers, channels and pumps of high significance in cellular physiology. Thus AMPK provides a necessary link between cellular energy metabolism and cellular transport activity. Better understanding of the AMPK role in cellular transport offers a potential for improved therapies in various human diseases and disorders. In this review, we discuss recent advances in understanding the role and function of AMPK in transport regulation under physiological and pathological states.
Collapse
Affiliation(s)
- Miribane Dërmaku-Sopjani
- Faculty of Medicine, University of Prishtina, Str. Bulevardi i Dëshmorëve, p.n. 10 000 Prishtina, Kosova; Department of Chemistry, University of Prishtina, Str. 'Nëna Terezë' p.n. 10 000 Prishtina, Kosova; Department of Chemistry, University of Tirana, Tirana, Albania; and Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S.Agata-Messina, Italy
| | | | | | | | | |
Collapse
|
25
|
Jacquot J, Tabary O, Clement A. Hyperinflammation in airways of cystic fibrosis patients: what’s new? Expert Rev Mol Diagn 2014; 8:359-63. [DOI: 10.1586/14737159.8.4.359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
MAŁGORZEWICZ SYLWIA, DARDZIŃSKA JOLANTAANNA, GNACIŃSKA MARIA, JANKUN JERZY, BRYL EWA, SWORCZAK KRZYSZTOF. Complex interaction between the immune system and adipose tissue (Review). Int J Mol Med 2013; 33:3-7. [DOI: 10.3892/ijmm.2013.1537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
|
27
|
Garnett JP, Baker EH, Naik S, Lindsay JA, Knight GM, Gill S, Tregoning JS, Baines DL. Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose. Thorax 2013; 68:835-45. [PMID: 23709760 PMCID: PMC3756442 DOI: 10.1136/thoraxjnl-2012-203178] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diabetes is a risk factor for respiratory infection, and hyperglycaemia is associated with increased glucose in airway surface liquid and risk of Staphylococcus aureus infection. OBJECTIVES To investigate whether elevation of basolateral/blood glucose concentration promotes airway Staphylococcus aureus growth and whether pretreatment with the antidiabetic drug metformin affects this relationship. METHODS Human airway epithelial cells grown at air-liquid interface (±18 h pre-treatment, 30 μM-1 mM metformin) were inoculated with 5×10(5) colony-forming units (CFU)/cm(2) S aureus 8325-4 or JE2 or Pseudomonas aeruginosa PA01 on the apical surface and incubated for 7 h. Wild-type C57BL/6 or db/db (leptin receptor-deficient) mice, 6-10 weeks old, were treated with intraperitoneal phosphate-buffered saline or 40 mg/kg metformin for 2 days before intranasal inoculation with 1×10(7) CFU S aureus. Mice were culled 24 h after infection and bronchoalveolar lavage fluid collected. RESULTS Apical S aureus growth increased with basolateral glucose concentration in an in vitro airway epithelia-bacteria co-culture model. S aureus reduced transepithelial electrical resistance (RT) and increased paracellular glucose flux. Metformin inhibited the glucose-induced growth of S aureus, increased RT and decreased glucose flux. Diabetic (db/db) mice infected with S aureus exhibited a higher bacterial load in their airways than control mice after 2 days and metformin treatment reversed this effect. Metformin did not decrease blood glucose but reduced paracellular flux across ex vivo murine tracheas. CONCLUSIONS Hyperglycaemia promotes respiratory S aureus infection, and metformin modifies glucose flux across the airway epithelium to limit hyperglycaemia-induced bacterial growth. Metformin might, therefore, be of additional benefit in the prevention and treatment of respiratory infection.
Collapse
Affiliation(s)
- James P Garnett
- Division of Biomedical Sciences, Centre for Cell Physiology and Pharmacology, St George's, University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012; 53:2043-53. [PMID: 23000245 PMCID: PMC3604744 DOI: 10.1016/j.freeradbiomed.2012.09.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 12/21/2022]
Abstract
The cell renews, adapts, or expands its mitochondrial population during episodes of cell damage or periods of intensified energy demand by the induction of mitochondrial biogenesis. This bigenomic program is modulated by redox-sensitive signals that respond to physiological nitric oxide (NO), carbon monoxide (CO), and mitochondrial reactive oxygen species production. This review summarizes our current ideas about the pathways involved in the activation of mitochondrial biogenesis by the physiological gases leading to changes in the redox milieu of the cell, with an emphasis on the responses to oxidative stress and inflammation. The cell's energy supply is protected from conditions that damage mitochondria by an inducible transcriptional program of mitochondrial biogenesis that operates in large part through redox signals involving the nitric oxide synthase and the heme oxygenase-1/CO systems. These redox events stimulate the coordinated activities of several multifunctional transcription factors and coactivators also involved in the elimination of defective mitochondria and the expression of counterinflammatory and antioxidant genes, such as IL10 and SOD2, as part of a unified damage-control network. The redox-regulated mechanisms of mitochondrial biogenesis schematically outlined in the graphical abstract link mitochondrial quality control to an enhanced capacity to support the cell's metabolic needs while improving its resistance to metabolic failure and avoidance of cell death during periods of oxidative stress.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center and the Durham VA Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
29
|
Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJV, Hanrahan JW, Lukacs GL. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell 2012; 23:4188-202. [PMID: 22973054 PMCID: PMC3484098 DOI: 10.1091/mbc.e12-06-0424] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functional expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuates expression and secretion of the proinflammatory cytokines IL-6, IL-8, and CXCL1/2 in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport may contribute to lung inflammation in cystic fibrosis. Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air–liquid but not liquid–liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr∆F508/∆F508 immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor–mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
King JD, Lee J, Riemen CE, Neumann D, Xiong S, Foskett JK, Mehta A, Muimo R, Hallows KR. Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase. J Biol Chem 2012; 287:33389-400. [PMID: 22869372 PMCID: PMC3460441 DOI: 10.1074/jbc.m112.396036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel mutations cause cystic fibrosis lung disease. A better understanding of CFTR regulatory mechanisms could suggest new therapeutic strategies. AMP-activated protein kinase (AMPK) binds to and phosphorylates CFTR, attenuating PKA-activated CFTR gating. However, the requirement for AMPK binding to CFTR and the potential role of other proteins in this regulation are unclear. We report that nucleoside diphosphate kinase A (NDPK-A) interacts with both AMPK and CFTR in overlay blots of airway epithelial cell lysates. Binding studies in Xenopus oocytes and transfected HEK-293 cells revealed that a CFTR peptide fragment that binds AMPK (CFTR-1420-57) disrupted the AMPK-CFTR interaction. Introduction of CFTR-1420-57 into human bronchial Calu-3 cells enhanced forskolin-stimulated whole cell conductance in patch clamp measurements. Similarly, injection of CFTR-1420-57 into Xenopus oocytes blocked the inhibition of cAMP-stimulated CFTR conductance by AMPK in two-electrode voltage clamp studies. AMPK also inhibited CFTR conductance with co-expression of WT NDPK-A in two-electrode voltage clamp studies, but co-expression of a catalytically inactive H118F mutant or various Ser-120 NDPK-A mutants prevented this inhibition. In vitro phosphorylation of WT NDPK-A was enhanced by purified active AMPK, but phosphorylation was prevented in H118F and phosphomimic Ser-120 NDPK-A mutants. AMPK does not appear to phosphorylate NDPK-A directly but rather promotes an NDPK-A autophosphorylation event that involves His-118 and Ser-120. Taken together, these results suggest that NDPK-A exists in a functional cellular complex with AMPK and CFTR in airway epithelia, and NDPK-A catalytic function is required for the AMPK-dependent regulation of CFTR.
Collapse
Affiliation(s)
- J Darwin King
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Deji N, Kume S, Araki SI, Isshiki K, Araki H, Chin-Kanasaki M, Tanaka Y, Nishiyama A, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T. Role of angiotensin II-mediated AMPK inactivation on obesity-related salt-sensitive hypertension. Biochem Biophys Res Commun 2012; 418:559-64. [PMID: 22293193 DOI: 10.1016/j.bbrc.2012.01.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
Salt-sensitive hypertension is a characteristic of the metabolic syndrome. Given the links to cardiovascular events, the mechanisms underlying sodium metabolism may represent an important therapeutic target for this disorder. Angiotensin II (AII) is a key peptide underlying sodium retention. However, 5'AMP-activated protein kinase (AMPK) has also been reported to participate in the regulation of ion transport. In this study we examined the relationship between AII and AMPK on the development of hypertension in two salt-sensitive mouse models. In the first model, the mice were maintained on a high-fat diet (HFD) for 12 weeks, in order to develop features similar to the metabolic syndrome, including salt-sensitive hypertension. HFD-induced obese mice showed elevated systolic blood pressure and lower sodium excretion in response to salt loading, along with an increase in AII contents and inactivation of AMPK in the kidney, which were significantly improved by the treatment of an angiotensin II antagonist, losartan, for 2 weeks. To clarify the effects of AII, a second group of mice was infused with AII via an osmotic pump, which led to higher systolic blood pressure, and decreases in urinary sodium excretion and the expression of AMPK, in a manner similar to those observed in the HFD mice. However, treatment with an AMPK activator, metformin, improved the changes induced by the AII, suggesting that AII induced sodium retention works by acting on AMPK activity. Finally, we evaluated the changes in salt-sensitivity by performing 2-week salt loading experiments with or without metformin. AII infusion elevated blood pressure by salt loading but metformin prevented it. These findings indicate that AII suppresses AMPK activity in the kidney, leading to sodium retention and enhanced salt-sensitivity, and that AMPK activation may represent a new therapeutic target for obesity-related salt-sensitive hypertension.
Collapse
Affiliation(s)
- Naoko Deji
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Piantadosi CA, Suliman HB. Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. Biochim Biophys Acta Gen Subj 2012; 1820:532-41. [PMID: 22265687 DOI: 10.1016/j.bbagen.2012.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/23/2011] [Accepted: 01/07/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cells avoid major mitochondrial damage and energy failure during systemic inflammatory states, such as severe acute infections, by specific targeting of the inflammatory response and by inducing anti-inflammatory and anti-oxidant defenses. Recent evidence indicates that these cell defenses also include mitochondrial biogenesis and the clearance of damaged mitochondria through autophagy. SCOPE OF REVIEW This review addresses a group of transcriptional signaling mechanisms that engage mitochondrial biogenesis, including energy-sensing and redox-regulated transcription factors and co-activators, after major inflammatory events. MAJOR CONCLUSIONS Stimulation of the innate immune system by activation of toll-like receptors (TLR) generates pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α)and interleukin-1β (IL-1β), necessary for optimal host defense, but which also contribute to mitochondrial damage through oxidative stress and other mechanisms. To protect its energy supply, host cells sense mitochondrial damage and initiate mitochondrial biogenesis under the control of an inducible transcriptional program that also activates anti-oxidant and anti-inflammatory gene expression. This multifunctional network not only increases cellular resistance to metabolic failure, oxidative stress, and cell death, but promotes immune tolerance as shown in the graphical abstract. GENERAL SIGNIFICANCE The post-inflammatory induction of mitochondrial biogenesis supports metabolic function and cell viability while helping to control inflammation. In clinical settings, patients recovering from severe systemic infections may develop transient immune suppression, placing them at risk for recurrent infection, but there may be therapeutic opportunities to enhance mitochondrial quality control that would improve the resolution of life-threatening host responses to such infections.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, and Durham VA Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
34
|
Bae CH, Kim JW, Ye SB, Song SY, Kim YW, Park SY, Kim YD. AMPK induces MUC5B expression via p38 MAPK in NCI-H292 airway epithelial cells. Biochem Biophys Res Commun 2011; 409:669-74. [DOI: 10.1016/j.bbrc.2011.05.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
|
35
|
Dauletbaev N, Eklove D, Mawji N, Iskandar M, Di Marco S, Gallouzi IE, Lands LC. Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 mitogen-activated protein kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms. J Biol Chem 2011; 286:15998-6007. [PMID: 21454676 DOI: 10.1074/jbc.m110.205724] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.
Collapse
Affiliation(s)
- Nurlan Dauletbaev
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Alesutan I, Föller M, Sopjani M, Dërmaku-Sopjani M, Zelenak C, Fröhlich H, Velic A, Fraser S, Kemp BE, Seebohm G, Völkl H, Lang F. Inhibition of the heterotetrameric K+ channel KCNQ1/KCNE1 by the AMP-activated protein kinase. Mol Membr Biol 2011; 28:79-89. [PMID: 21231794 DOI: 10.3109/09687688.2010.520037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The heterotetrameric K(+)-channel KCNQ1/KCNE1 is expressed in heart, skeletal muscle, liver and several epithelia including the renal proximal tubule. In the heart, it contributes to the repolarization of cardiomyocytes. The repolarization is impaired in ischemia. Ischemia stimulates the AMP-activated protein kinase (AMPK), a serine/threonine kinase, sensing energy depletion and stimulating several cellular mechanisms to enhance energy production and to limit energy utilization. AMPK has previously been shown to downregulate the epithelial Na(+) channel ENaC, an effect mediated by the ubiquitin ligase Nedd4-2. The present study explored whether AMPK regulates KCNQ1/KCNE1. To this end, cRNA encoding KCNQ1/KCNE1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1 + AMPKβ1 + AMPKγ1), of the constitutively active (γR70Q)AMPK (α1β1γ1(R70Q)), of the kinase dead mutant (αK45R)AMPK (α1(K45R)β1γ1), or of the ubiquitin ligase Nedd4-2. KCNQ1/KCNE1 activity was determined in two electrode voltage clamp experiments. Moreover, KCNQ1 abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result, wild type and constitutively active AMPK significantly reduced KCNQ1/KCNE1-mediated currents and reduced KCNQ1 abundance in the cell membrane. Similarly, Nedd4-2 decreased KCNQ1/KCNE1-mediated currents and KCNQ1 protein abundance in the cell membrane. Activation of AMPK in isolated perfused proximal renal tubules by AICAR (10 mM) was followed by significant depolarization. In conclusion, AMPK is a potent regulator of KCNQ1/KCNE1.
Collapse
Affiliation(s)
- Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Alzamora R, Gong F, Rondanino C, Lee JK, Smolak C, Pastor-Soler NM, Hallows KR. AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 2010; 299:F1308-19. [PMID: 20861072 PMCID: PMC3006313 DOI: 10.1152/ajprenal.00423.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/21/2010] [Indexed: 01/13/2023] Open
Abstract
The KCNQ1 K(+) channel plays a key role in the regulation of several physiological functions, including cardiac excitability, cardiovascular tone, and body electrolyte homeostasis. The metabolic sensor AMP-activated protein kinase (AMPK) has been shown to regulate a growing number of ion transport proteins. To determine whether AMPK regulates KCNQ1, we studied the effects of AMPK activation on KCNQ1 currents in Xenopus laevis oocytes and collecting duct epithelial cells. AMPK activation decreased KCNQ1 currents and channel surface expression in X. laevis oocytes, but AMPK did not phosphorylate KCNQ1 in vitro, suggesting an indirect regulatory mechanism. As it has been recently shown that the ubiquitin-protein ligase Nedd4-2 inhibits KCNQ1 plasma membrane expression and that AMPK regulates epithelial Na(+) channels via Nedd4-2, we examined the role of Nedd4-2 in the AMPK-dependent regulation of KCNQ1. Channel inhibition by AMPK was blocked in oocytes coexpressing either a dominant-negative or constitutively active Nedd4-2 mutant, or a Nedd4-2 interaction-deficient KCNQ1 mutant, suggesting that Nedd4-2 participates in the regulation of KCNQ1 by AMPK. KCNQ1 is expressed at the basolateral membrane in mouse polarized kidney cortical collecting duct (mpkCCD(c14)) cells and in rat kidney. Treatment with the AMPK activators AICAR (2 mM) or metformin (1 mM) reduced basolateral KCNQ1 currents in apically permeabilized polarized mpkCCD(c14) cells. Moreover, AICAR treatment of rat kidney slices ex vivo induced AMPK activation and intracellular redistribution of KCNQ1 from the basolateral membrane in collecting duct principal cells. AICAR treatment also induced increased ubiquitination of KCNQ1 immunoprecipitated from kidney slice homogenates. These results indicate that AMPK inhibits KCNQ1 activity by promoting Nedd4-2-dependent channel ubiquitination and retrieval from the plasma membrane.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 2010; 285:24676-85. [PMID: 20525692 PMCID: PMC2915704 DOI: 10.1074/jbc.m110.106278] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/13/2010] [Indexed: 01/16/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V(1) sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO(3)(-)-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H(+) secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO(3)(-)-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- From the Renal-Electrolyte Division, Departments of Medicine and
| | - Ramon F. Thali
- the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Fan Gong
- From the Renal-Electrolyte Division, Departments of Medicine and
| | - Christy Smolak
- From the Renal-Electrolyte Division, Departments of Medicine and
| | - Hui Li
- From the Renal-Electrolyte Division, Departments of Medicine and
| | - Catherine J. Baty
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Carol A. Bertrand
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yolanda Auchli
- the Functional Genomics Center Zurich (FGCZ), University of Zurich, 8057 Zurich, Switzerland
| | - René A. Brunisholz
- the Functional Genomics Center Zurich (FGCZ), University of Zurich, 8057 Zurich, Switzerland
| | - Dietbert Neumann
- the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Kenneth R. Hallows
- From the Renal-Electrolyte Division, Departments of Medicine and
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Núria M. Pastor-Soler
- From the Renal-Electrolyte Division, Departments of Medicine and
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
39
|
Hunter MJ, Treharne KJ, Winter AK, Cassidy DM, Land S, Mehta A. Expression of wild-type CFTR suppresses NF-kappaB-driven inflammatory signalling. PLoS One 2010; 5:e11598. [PMID: 20644644 PMCID: PMC2904384 DOI: 10.1371/journal.pone.0011598] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutation of the cystic fibrosis transmembrane-conductance regulator (CFTR) causes cystic fibrosis (CF) but not all CF aspects can easily be explained by deficient ion transport. CF-inflammation provides one example but its pathogenesis remains controversial. Here, we tested the simple but fundamental hypothesis that wild-type CFTR is needed to suppress NF-kappaB activity. METHODOLOGY/PRINCIPAL FINDINGS In lung epithelial (H441) and engineered (H57) cell lines; we report that inflammatory markers are significantly suppressed by wild-type CFTR. Transient-transfection of wild-type CFTR into CFTR-naïve H441 cells, dose-dependently down-regulates both basal and Tumour Necrosis Factor-alpha evoked NF-kappaB activity when compared to transfection with empty vector alone (p<0.01, n>5). This effect was also observed in CFTR-naïve H57-HeLa cells which stably express a reporter of NF-kappaB activity, confirming that the CFTR-mediated repression of inflammation was not due to variable reporter gene transfection efficiency. In contrast, H57 cells transfected with a control cyano-fluorescent protein show a significantly elevated basal level of NF-kappaB activity above control. Initial cell seeding density may be a critical factor in mediating the suppressive effects of CFTR on inflammation as only at a certain density (1x10(5) cells/well) did we observe the reduction in NF-kappaB activity. CFTR channel activity may be necessary for this suppression because the CFTR specific inhibitor CFTR(inh172) significantly stimulates NF-kappaB activity by approximately 30% in CFTR expressing 16HBE14o- cells whereas pharmacological elevation of cyclic-AMP depresses activity by approximately 25% below baseline. CONCLUSIONS/SIGNIFICANCE These data indicate that CFTR has inherent anti-inflammatory properties. We propose that the hyper-inflammation found in CF may arise as a consequence of disrupted repression of NF-kappaB signalling which is normally mediated by CFTR. Our data therefore concur with in vivo and in vitro data from Vij and colleagues which highlights CFTR as a suppressor of basal inflammation acting through NF-kappaB, a central hub in inflammatory signalling.
Collapse
Affiliation(s)
- Mairi J. Hunter
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Kate J. Treharne
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Alexandra K. Winter
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Diane M. Cassidy
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Stephen Land
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Anil Mehta
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Chang MY, Ho FM, Wang JS, Kang HC, Chang Y, Ye ZX, Lin WW. AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1-p38 mitogen-activated protein kinase signaling pathway. Biochem Pharmacol 2010; 80:1210-20. [PMID: 20615388 DOI: 10.1016/j.bcp.2010.06.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/27/2010] [Accepted: 06/28/2010] [Indexed: 01/13/2023]
Abstract
AMP-activated protein kinase (AMPK), a critical signaling molecule for regulating energy homeostasis, might bi-directionally regulate inflammation, and its action mechanism leading to inflammation is not fully understood. We utilized 5-aminoimidazole-4-carboxamide riboside (AICAR) as a pharmacological activator of AMPK to unveil the effects of and signaling cascades mediated by AMPK on cyclooxygenase (COX)-2 gene expression in rat aortic vascular smooth muscle cells (VSMCs), murine macrophage cell line (J774), and human umbilical vein endothelial cells (HUVECs). Biochemical approaches were further conducted to elucidate interactions among signaling molecules. We found that AICAR could induce COX-2 protein expression in the cell types tested. This event was mediated by COX-2 gene transcription, and abrogated by compound C and 5'-iodotubercidin, suggesting the essential role of AMPK in COX-2 induction. Pharmacological and biochemical studies indicated that p38 mitogen-activated protein kinase (MAPK) activation is the common downstream signal of AMPK in COX-2 expression in all three cell types. Furthermore, we also found that TAK1 is associated with AMPKalpha2, and this binding requires an interaction between the kinase domains of both molecules. Notably data of TAK1 phosphorylation indicate that the activating state is enhanced upon AMPK activation in vivo and in vitro. Our data for the first time prove a pivotal role of TAK1 in the AMPK signaling axis. Such interaction gives AMPK an additional pathway for regulating cellular functions. Via a downstream p38 MAPK signaling cascade, AMPK-dependent TAK1 activation leads to the expression of the inflammatory COX-2 gene in various cell types.
Collapse
Affiliation(s)
- Mei-Ying Chang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Li H, Thali RF, Smolak C, Gong F, Alzamora R, Wallimann T, Scholz R, Pastor-Soler NM, Neumann D, Hallows KR. Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells. Am J Physiol Renal Physiol 2010; 299:F167-77. [PMID: 20462973 PMCID: PMC2904179 DOI: 10.1152/ajprenal.00162.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/06/2010] [Indexed: 11/22/2022] Open
Abstract
The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process critical for total body creatine homeostasis. Creatine and phosphocreatine provide an intracellular, high-energy phosphate-buffering system essential for maintaining ATP supply in tissues with high energy demands. To test our hypothesis that CRT is regulated by AMPK in the kidney, we examined CRT and AMPK distribution in the kidney and the regulation of CRT by AMPK in cells. By immunofluorescence staining, we detected CRT at the apical pole in a polarized mouse S3 proximal tubule cell line and in native rat kidney proximal tubules, a distribution overlapping with AMPK. Two-electrode voltage-clamp (TEV) measurements of Na(+)-dependent creatine uptake into CRT-expressing Xenopus laevis oocytes demonstrated that AMPK inhibited CRT via a reduction in its Michaelis-Menten V(max) parameter. [(14)C]creatine uptake and apical surface biotinylation measurements in polarized S3 cells demonstrated parallel reductions in creatine influx and CRT apical membrane expression after AMPK activation with the AMP-mimetic compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. In oocyte TEV experiments, rapamycin and the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) inhibited CRT currents, but there was no additive inhibition of CRT by ZMP, suggesting that AMPK may inhibit CRT indirectly via the mammalian target of rapamycin pathway. We conclude that AMPK inhibits apical membrane CRT expression in kidney proximal tubule cells, which could be important in reducing cellular energy expenditure and unnecessary creatine reabsorption under conditions of local and whole body metabolic stress.
Collapse
Affiliation(s)
- Hui Li
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Myerburg MM, King JD, Oyster NM, Fitch AC, Magill A, Baty CJ, Watkins SC, Kolls JK, Pilewski JM, Hallows KR. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 2010; 42:676-84. [PMID: 19617399 PMCID: PMC2891496 DOI: 10.1165/2009-0147oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 06/05/2009] [Indexed: 12/13/2022] Open
Abstract
The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.
Collapse
Affiliation(s)
- Michael M. Myerburg
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - J Darwin King
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicholas M. Oyster
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adam C. Fitch
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amy Magill
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J. Baty
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simon C. Watkins
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jay K. Kolls
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph M. Pilewski
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth R. Hallows
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Mailhot G, Rabasa-Lhoret R, Moreau A, Berthiaume Y, Levy E. CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal Caco 2/15 cells. PLoS One 2010; 5:e10446. [PMID: 20463919 PMCID: PMC2864762 DOI: 10.1371/journal.pone.0010446] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 04/11/2010] [Indexed: 12/24/2022] Open
Abstract
Background Abnormal fatty acid composition (FA) in plasma and tissue lipids frequently occurs in homozygous and even in heterozygous carriers of cystic fibrosis transmembrane conductance regulator (CFTR) mutations. The mechanism(s) underlying these abnormalities remained, however, poorly understood despite the potentially CFTR contributing role. Methodology/Principal Findings The aim of the present study was to investigate the impact of CFTR depletion on FA uptake, composition and metabolism using the intestinal Caco-2/15 cell line. shRNA-mediated cftr gene silencing induced qualitative and quantitative modifications in FA composition in differentiated enterocytes as determined by gas-liquid chromatography. With the cftr gene disruption, there was a 1,5 fold increase in the total FA amount, largely attributable to monounsaturated and saturated FA compared to controls. The activity of delta-7 desaturase, estimated by the 16:1(n-7)/16:0, was significantly higher in knockdown cells and consistent with the striking elevation of the n-7 FA family. When incubated with [14C]-oleic acid, CFTR-depleted cells were capable of quick incorporation and export to the medium concomitantly with the high protein expression of L-FABP known to promote intracellular FA trafficking. Accordingly, lipoprotein vehicles (CM, VLDL, LDL and HDL), isolated from CFTR knockdown cells, exhibited higher levels of radiolabeled FA. Moreover, in the presence of [14C]-acetate, knockdown cells exhibited enhanced secretion of newly synthesized phospholipids, triglycerides, cholesteryl esters and free FA, thereby suggesting a stimulation of the lipogenic pathway. Conformably, gene expression of SREBP-1c, a key lipogenic transcription factor, was increased while protein expression of the phosphorylated and inactive form of acetylCoA carboxylase was reduced, confirming lipogenesis induction. Finally, CFTR-depleted cells exhibited lower gene expression of transcription factors (PPARα, LXRα, LXRβ and RXRα). Conclusions/Significance Collectively, our results indicate that CFTR depletion may disrupt FA homeostasis in intestinal cells through alterations in FA uptake and transport combined with stimulation of lipogenesis that occurs by an LXR/RXR-independent mechanism. These findings exclude a contributing role of CFTR in CF-associated fat malabsorption.
Collapse
Affiliation(s)
- Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Rémi Rabasa-Lhoret
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Diabetes and Metabolic Diseases Research Group, Institut de Recherches Cliniques and Centre Hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Université de Montréal, Montreal, Quebec, Canada
| | - Alain Moreau
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Cystic Fibrosis Clinic, Centre Hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
44
|
Mailhot G, Ravid Z, Barchi S, Moreau A, Rabasa-Lhoret R, Levy E. CFTR knockdown stimulates lipid synthesis and transport in intestinal Caco-2/15 cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1239-49. [PMID: 19808659 DOI: 10.1152/ajpgi.00206.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel highly expressed in epithelial cells of the gastrointestinal tract. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease characterized by pancreatic insufficiency, fat malabsorption, and steatorrhea. Despite the administration of pancreatic enzymes to normalize malabsorption, CF patients still experienced lipid fecal loss, nutritional deficiencies, and abnormalities in serum lipid profile, suggesting the presence of intrinsic defects in the intestinal handling of nutrients. The objective of the present study was to assess the impact of CFTR gene knockdown on intracellular lipid metabolism of the intestinal Caco-2/15 cell line. Partial CFTR gene inactivation led to cellular lipid accretion of phospholipids, triglycerides, and cholesteryl esters. Likewise, secretion of these lipid fractions was significantly increased following CFTR gene manipulation. As expected from these findings, the output of triglyceride-rich lipoproteins showed the same increasing pattern. Investigation of the mechanisms underlying these changes revealed that CFTR knockdown resulted in raised levels of apolipoproteins in cells and media and microsomal transfer protein activity, two important factors for the efficient assembly and secretion of lipoproteins. Similarly, scrutiny of the enzymatic monoacylglycerol acyltransferase and diacylglycerol acyltransferase, which exhibit dynamic function in triacylglycerol resynthesis and chylomicron formation in enterocytes, revealed a significant augmentation in their activity. Conversely, cholesterol uptake mediated by Niemann-Pick C1 like 1, Scavenger Receptor Class B Type I, and ATP-binding cassette G8 remains unaffected by genetic modification of CFTR. Collectively, these results highlight the role played by CFTR in intestinal handling of lipids and may suggest that factors other than defective CFTR are responsible for the abnormal intracellular events leading to fat malabsorption in CF patients.
Collapse
Affiliation(s)
- Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, Université de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Klein H, Garneau L, Trinh NTN, Privé A, Dionne F, Goupil E, Thuringer D, Parent L, Brochiero E, Sauvé R. Inhibition of the KCa3.1 channels by AMP-activated protein kinase in human airway epithelial cells. Am J Physiol Cell Physiol 2009; 296:C285-95. [PMID: 19052260 PMCID: PMC2643852 DOI: 10.1152/ajpcell.00418.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/01/2008] [Indexed: 12/25/2022]
Abstract
The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5'-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral membrane of a large variety of epithelial cells. Inside-out patch-clamp experiments performed on human embryonic kidney (HEK) cells stably transfected with KCa3.1 first revealed a decrease in KCa3.1 activity following the internal addition of AMP at a fixed ATP concentration. This effect was dose dependent with half inhibition at 140 muM AMP in 1 mM ATP. Evidence for an interaction between the COOH-terminal region of KCa3.1 and the gamma1-subunit of AMPK was next obtained by two-hybrid screening and pull-down experiments. Our two-hybrid analysis confirmed in addition that the amino acids extending from Asp(380) to Ala(400) in COOH-terminal were essential for the interaction AMPK-gamma1/KCa3.1. Inside-out experiments on cells coexpressing KCa3.1 with the dominant negative AMPK-gamma1-R299G mutant showed a reduced sensitivity of KCa3.1 to AMP, arguing for a functional link between KCa3.1 and the gamma1-subunit of AMPK. More importantly, coimmunoprecipitation experiments carried out on bronchial epithelial NuLi cells provided direct evidence for the formation of a KCa3.1/AMPK-gamma1 complex at endogenous AMPK and KCa3.1 expression levels. Finally, treating NuLi monolayers with the membrane permeant AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) caused a significant decrease of the KCa3.1-mediated short-circuit currents, an effect reversible by coincubation with the AMPK inhibitor Compound C. These observations argue for a regulation of KCa3.1 by AMPK in a functional epithelium through protein/protein interactions involving the gamma1-subunit of AMPK.
Collapse
Affiliation(s)
- Hélène Klein
- Groupe d'étude sur les protéines membranaires, Département de physiologie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C3J7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kongsuphol P, Cassidy D, Hieke B, Treharne KJ, Schreiber R, Mehta A, Kunzelmann K. Mechanistic insight into control of CFTR by AMPK. J Biol Chem 2008; 284:5645-53. [PMID: 19095655 PMCID: PMC2645823 DOI: 10.1074/jbc.m806780200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP
and protein kinase A (PKA)-regulated Cl– channel in the
apical membrane of epithelial cells. The metabolically regulated and adenosine
monophosphate-stimulated kinase (AMPK) is colocalized with CFTR and attenuates
its function. However, the sites for CFTR phosphorylation and the precise
mechanism of inhibition of CFTR by AMPK remain obscure. We demonstrate that
CFTR normally remains closed at baseline, but nevertheless, opens after
inhibition of AMPK. AMPK phosphorylates CFTR in vitro at two
essential serines (Ser737 and Ser768) in the R domain,
formerly identified as “inhibitory” PKA sites. Replacement of both
serines by alanines (i) reduced phosphorylation of the R domain, with
Ser768 having dramatically greater impact, (ii) produced CFTR
channels that were partially open in the absence of any stimulation, (iii)
significantly augmented their activation by IBMX/forskolin, and (iv)
eliminated CFTR inhibition post AMPK activation. Attenuation of CFTR by AMPK
activation was detectable in the absence of cAMP-dependent stimulation but
disappeared in maximally stimulated oocytes. Our data also suggest that AMP is
produced by local phosphodiesterases in close proximity to CFTR. Thus we
propose that CFTR channels are kept closed in nonstimulated epithelia with
high baseline AMPK activity but CFTR may be basally active in tissues with
lowered endogenous AMPK activity.
Collapse
Affiliation(s)
- Patthara Kongsuphol
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Schwarzer C, Fischer H, Kim EJ, Barber KJ, Mills AD, Kurth MJ, Gruenert DC, Suh JH, Machen TE, Illek B. Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells. Free Radic Biol Med 2008; 45:1653-62. [PMID: 18845244 PMCID: PMC2628806 DOI: 10.1016/j.freeradbiomed.2008.09.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/25/2008] [Accepted: 09/01/2008] [Indexed: 11/22/2022]
Abstract
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Horst Fischer
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Eun-Jin Kim
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Katharine J. Barber
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Aaron D. Mills
- Department of Chemistry, University of California, Davis, California
| | - Mark J. Kurth
- Department of Chemistry, University of California, Davis, California
| | - Dieter C. Gruenert
- California Pacific Medical Center Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Jung H. Suh
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Beate Illek
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|
48
|
Regulation of Cl(-) secretion by AMPK in vivo. Pflugers Arch 2008; 457:1071-8. [PMID: 18752001 DOI: 10.1007/s00424-008-0577-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator for transport-metabolism coupling in epithelial tissues. All previous studies have been performed in vitro and thus little is known about the regulation of Cl(-) secretion by AMPK in vivo. Using AMPKalpha1(-/-) mice and wild-type littermates, we demonstrate that phenformin, an activator of AMPK, strongly inhibits cAMP-activated Cl(-) secretion in mouse airways and colon, when examined in ex vivo in Ussing chamber recordings. However, phenformin was equally effective in AMPKalpha1(-/-) and wild-type animals, suggesting additional AMPK-independent action of phenformin. Phenformin inhibited CFTR Cl(-) conductance in basolaterally permeabilized colonic epithelium from AMPKalpha1(+/+) but not AMPKalpha1(-/-) mice. The inhibitor of AMPK compound C enhanced CFTR-mediated Cl(-) secretion in epithelial tissues of AMPKalpha1(-/-) mice, but not in wild-type littermates. There was no effect on Ca(2+)-mediated Cl(-) secretion, activated by adenosine triphosphate or carbachol. Moreover CFTR-dependent Cl(-) secretion was enhanced in the colon of AMPKalpha1(-/-) mice, as indicated in Ussing chamber ex vivo and rectal PD measurements in vivo. Taken together, these data suggest that epithelial Cl(-) secretion mediated by CFTR is controlled by AMPK in vivo.
Collapse
|
49
|
Dixit VD. Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J Leukoc Biol 2008; 84:882-92. [PMID: 18579754 DOI: 10.1189/jlb.0108028] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests a tight coupling of metabolic and immune systems. This cross-talk mediated by neuroendocrine peptides as well as numerous cytokines and chemokines is believed to be responsible for integrating energy balance to immune function. These neuroendocrine-immune interactions are heightened during the state of chronic positive energy balance, as seen during obesity, and negative energy balance caused by caloric restriction (CR). Emerging evidence suggests that obesity may be associated with an immunodeficient state and chronic inflammation, which contribute to an increased risk of premature death. The direct interactions between expanded leukocyte populations within the adipose tissue during obesity and an increased number of adipocytes within an aging lymphoid microenvironment may constitute an important adaptive or pathological response as a result of change in energy balance. In stark contrast to obesity, CR causes negative energy balance and robustly prolongs a healthy lifespan in all of the species studied to date. Therefore, the endogenous neuroendocrine-metabolic sensors elevated or suppressed as a result of changes in energy balance may offer an important mechanism in understanding the antiaging and potential immune-enhancing nature of CR. Ghrelin, one such sensor of negative energy balance, is reduced during obesity and increased by CR. Ghrelin also regulates immune function by reducing proinflammatory cytokines and promotes thymopoiesis during aging and thus, may be a new CR mimetic target. The identification of immune effects and molecular pathways used by such orexigenic metabolic factors could offer potentially novel approaches to enhance immunity and increase healthy lifespan.
Collapse
Affiliation(s)
- Vishwa Deep Dixit
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
50
|
Abstract
The epithelial sodium channel (ENaC) represents the rate-limiting step of sodium absorption across airway epithelia and thereby constitutes the major pathway for volume absorption from the airway surface liquid compartment. ENaC dysregulation leads to dehydration of airway surfaces in patients with cystic fibrosis, which in turn disrupts the primary innate lung defense mechanism, mucus clearance. The development of treatment strategies that address this defect is a logical and promising means of preventing or delaying the onset of this lethal lung disease.
Collapse
Affiliation(s)
- Scott H Donaldson
- Cystic Fibrosis Research and Treatment Center, 6007B Thurston Bowles Building, CB# 7248, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|