1
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
2
|
Jadiya P, Cohen HM, Kolmetzky DW, Kadam AA, Tomar D, Elrod JW. Neuronal loss of NCLX-dependent mitochondrial calcium efflux mediates age-associated cognitive decline. iScience 2023; 26:106296. [PMID: 36936788 PMCID: PMC10014305 DOI: 10.1016/j.isci.2023.106296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Mitochondrial calcium overload contributes to neurodegenerative disease development and progression. We recently reported that loss of the mitochondrial sodium/calcium exchanger (NCLX), the primary mechanism of mCa2+ efflux, promotes mCa2+ overload, metabolic derangement, redox stress, and cognitive decline in models of Alzheimer's disease (AD). However, whether disrupted mCa2+ signaling contributes to neuronal pathology and cognitive decline independent of pre-existing amyloid or tau pathology remains unknown. Here, we generated mice with neuronal deletion of the mitochondrial sodium/calcium exchanger (NCLX, Slc8b1 gene), and evaluated age-associated changes in cognitive function and neuropathology. Neuronal loss of NCLX resulted in an age-dependent decline in spatial and cued recall memory, moderate amyloid deposition, mild tau pathology, synaptic remodeling, and indications of cell death. These results demonstrate that loss of NCLX-dependent mCa2+ efflux alone is sufficient to induce an Alzheimer's disease-like pathology and highlights the promise of therapies targeting mCa2+ exchange.
Collapse
Affiliation(s)
- Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Henry M. Cohen
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ashlesha A. Kadam
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70:87-94. [PMID: 28728834 PMCID: PMC5748019 DOI: 10.1016/j.ceca.2017.06.008] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that regulates various activities in eukaryotic cells. Especially important role calcium plays in excitable cells. Neurons require extremely precise spatial-temporal control of calcium-dependent processes because they regulate such vital functions as synaptic plasticity. Recent evidence indicates that neuronal calcium signaling is abnormal in many of neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD). These diseases represent a major medical, social, financial and scientific problem, but despite enormous research efforts, they are still incurable and only symptomatic relief drugs are available. Thus, new approaches and targets are needed. This review highlight neuronal calcium-signaling abnormalities in these diseases, with particular emphasis on the role of neuronal store-operated Ca2+ entry (SOCE) pathway and its potential relevance as a therapeutic target for treatment of neurodegeneration.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
4
|
Yang G, Yu K, Kubicek J, Labahn J. Expression, purification, and preliminary characterization of human presenilin-2. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer's disease - A therapeutic opportunity? Biochem Biophys Res Commun 2016; 483:998-1004. [PMID: 27641664 DOI: 10.1016/j.bbrc.2016.09.053] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the disease of lost memories. Synaptic loss is a major reason for memory defects in AD. Signaling pathways involved in memory loss in AD are under intense investigation. The role of deranged neuronal calcium (Ca2+) signaling in synaptic loss in AD is described in this review. Familial AD (FAD) mutations in presenilins are linked directly with synaptic Ca2+ signaling abnormalities, most likely by affecting endoplasmic reticulum (ER) Ca2+ leak function of presenilins. Excessive ER Ca2+ release via type 2 ryanodine receptors (RyanR2) is observed in AD spines due to increase in expression and function of RyanR2. Store-operated Ca2+ entry (nSOC) pathway is disrupted in AD spines due to downregulation of STIM2 protein. Because of these Ca2+ signaling abnormalities, a balance in activities of Ca2+-calmodulin-dependent kinase II (CaMKII) and Ca2+-dependent phosphatase calcineurin (CaN) is shifted at the synapse, tilting a balance between long-term potentiation (LTP) and long-term depression (LTD) synaptic mechanisms. As a result, synapses are weakened and eliminated in AD brains by LTD mechanism, causing memory loss. Targeting synaptic calcium signaling pathways offers opportunity for development of AD therapeutic agents.
Collapse
Affiliation(s)
- Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
6
|
Suarez S, McCollum GW, Jayagopal A, Penn JS. High Glucose-induced Retinal Pericyte Apoptosis Depends on Association of GAPDH and Siah1. J Biol Chem 2015; 290:28311-28320. [PMID: 26438826 DOI: 10.1074/jbc.m115.682385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness worldwide, and its prevalence is growing. Current therapies for DR address only the later stages of the disease, are invasive, and have limited effectiveness. Retinal pericyte death is an early pathologic feature of DR. Although it has been observed in diabetic patients and in animal models of DR, the cause of pericyte death remains unknown. A novel pro-apoptotic pathway initiated by the interaction between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the E3 ubiquitin ligase, seven in absentia homolog 1 (Siah1), was recently identified in ocular tissues. In this article we examined the involvement of the GAPDH/Siah1 interaction in human retinal pericyte (hRP) apoptosis. HRP were cultured in 5 mm normal glucose, 25 mm l- or d-glucose for 48 h (osmotic control and high glucose treatments, respectively). Siah1 siRNA was used to down-regulate Siah1 expression. TAT-FLAG GAPDH and/or Siah1-directed peptides were used to block GAPDH and Siah1 interaction. Co-immunoprecipitation assays were conducted to analyze the effect of high glucose on the association of GAPDH and Siah1. Apoptosis was measured by Annexin V staining and caspase-3 enzymatic activity assay. High glucose increased Siah1 total protein levels, induced the association between GAPDH and Siah1, and led to GAPDH nuclear translocation. Our findings demonstrate that dissociation of the GAPDH/Siah1 pro-apoptotic complex can block high glucose-induced pericyte apoptosis, widely considered a hallmark feature of DR. Thus, the work presented in this article can provide a foundation to identify novel targets for early treatment of DR.
Collapse
Affiliation(s)
- Sandra Suarez
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808.
| | - Gary W McCollum
- Departments of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808
| | - Ashwath Jayagopal
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - John S Penn
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808; Departments of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808
| |
Collapse
|
7
|
Kuo IY, Hu J, Ha Y, Ehrlich BE. Presenilin-like GxGD membrane proteases have dual roles as proteolytic enzymes and ion channels. J Biol Chem 2015; 290:6419-27. [PMID: 25609250 DOI: 10.1074/jbc.m114.629584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GxGD proteases function to cleave protein substrates within the membrane. As these proteases contain multiple transmembrane domains typical of ion channels, we examined if GxGD proteases also function as ion channels. We tested the putative dual function by examining two archeobacterial GxGD proteases (PSH and FlaK), with known three-dimensional structures. Both are in the same GxGD family as presenilin, a protein mutated in Alzheimer Disease. Here, we demonstrate that PSH and FlaK form cation channels in lipid bilayers. A mutation that affected the enzymatic activity of FlaK rendered the channel catalytically inactive and altered the ion selectivity, indicating that the ion channel and the catalytic activities are linked. We report that the GxGD proteases, PSH and FlaK, are true "chanzymes" with interdependent ion channel and protease activity conferred by a single structural domain embedded in the membrane, supporting the proposal that higher-order proteases, including presenilin, have channel function.
Collapse
Affiliation(s)
| | - Jian Hu
- From the Departments of Pharmacology and
| | - Ya Ha
- From the Departments of Pharmacology and
| | - Barbara E Ehrlich
- From the Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
8
|
Naon D, Scorrano L. At the right distance: ER-mitochondria juxtaposition in cell life and death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2184-94. [PMID: 24875902 DOI: 10.1016/j.bbamcr.2014.05.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022]
Abstract
The interface between mitochondria and the endoplasmic reticulum is emerging as a crucial hub for calcium signalling, apoptosis, autophagy and lipid biosynthesis, with far reaching implications in cell life and death and in the regulation of mitochondrial and endoplasmic reticulum function. Here we review our current knowledge on the structural and functional aspects of this interorganellar juxtaposition. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Deborah Naon
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy; Department of Biology, University of Padua, Via G. Colombo 3, 35121 Padua, Italy
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy; Department of Biology, University of Padua, Via G. Colombo 3, 35121 Padua, Italy.
| |
Collapse
|
9
|
Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2164-83. [PMID: 24642269 DOI: 10.1016/j.bbamcr.2014.03.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 01/22/2023]
Abstract
Cell-death and -survival decisions are critically controlled by intracellular Ca(2+) homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca(2+) flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca(2+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca(2+), Ca(2+)-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca(2+) store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca(2+) leak. Third, we will review the regulation of the Ca(2+)-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hristina Ivanova
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Humbert De Smedt
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
10
|
Rivabene R, Visentin S, Piscopo P, De Nuccio C, Crestini A, Svetoni F, Rosa P, Confaloni A. Thapsigargin affects presenilin-2 but not presenilin-1 regulation in SK-N-BE cells. Exp Biol Med (Maywood) 2013; 239:213-24. [PMID: 24363250 DOI: 10.1177/1535370213514317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2) are transmembrane proteins widely expressed in the central nervous system, which function as the catalytic subunits of γ-secretase, the enzyme that releases amyloid-β protein (Aβ) from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Mutations in PS1, PS2, and Aβ protein precursor are involved in the etiology of familial Alzheimer's disease (FAD), while the cause of the sporadic form of AD (SAD) is still not known. However, since similar neuropathological changes have been observed in both FAD and SAD, a common pathway in the etiology of the disease has been suggested. Given that age-related deranged Ca(2+) regulation has been hypothesized to play a role in SAD pathogenesis via PS gene regulation and γ-secretase activity, we studied the in vitro regulation of PS1 and PS2 in the human neuron-like SK-N-BE cell line treated with the specific endoplasmic reticulum (ER) calcium ATPase inhibitor Thapsigargin (THG), to introduce intracellular Ca(2+) perturbations and mimic the altered Ca(2+) homeostasis observed in AD. Our results showed a consistent and significant down-regulation of PS2, while PS1 appeared to be unmodulated. These events were accompanied by oxidative stress and a number of morphological alterations suggestive of the induction of apoptotic machinery. The administration of the antioxidant N-acetylcysteine (NAC) did not revert the THG-induced effects reported, while treatment with the Ca(2+)-independent ER stressor Brefeldin A did not modulate basal PS1 and PS2 expression. Collectively, these results suggest that Ca(2+) fluctuation rather than ER stress and/or oxidative imbalance seems to play an essential role in PS2 regulation and confirm that, despite their strong homology, PS1 and PS2 could play different roles in AD.
Collapse
Affiliation(s)
- Roberto Rivabene
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fernández-Morales JC, Arranz-Tagarro JA, Calvo-Gallardo E, Maroto M, Padín JF, García AG. Stabilizers of neuronal and mitochondrial calcium cycling as a strategy for developing a medicine for Alzheimer's disease. ACS Chem Neurosci 2012; 3:873-83. [PMID: 23173068 DOI: 10.1021/cn3001069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
For the last two decades, most efforts on new drug development to treat Alzheimer's disease have been focused to inhibit the synthesis of amyloid beta (Aβ), to prevent Aβ deposition, or to clear up Aβ plaques from the brain of Alzheimer's disease (AD) patients. Other pathogenic mechanisms such as the hyperphosphorylation of the microtubular tau protein (that forms neurofibrillary tangles) have also been addressed as, for instance, with inhibitors of the enzyme glycogen synthase-3 kinase beta (GSK3β). However, in spite of their proven efficacy in animal models of AD, all these compounds have so far failed in clinical trials done in AD patients. It seems therefore desirable to explore new concepts and strategies in the field of drug development for AD. We analyze here our hypothesis that a trifunctional chemical entity acting on the L subtype of voltage-dependent Ca(2+) channels (VDCCs) and on the mitochondrial Na(+)/Ca(2+) exchanger (MNCX), and having additional antioxidant properties, may efficiently delay or stop the death of vulnerable neurons in the brain of AD patients. In recent years, evidence has accumulated indicating that enhanced neuronal Ca(2+) cycling (NCC) and futile mitochondrial Ca(2+) cycling (MCC) are central stage in activating calpain and calcineurin, as well as the intrinsic mitochondrial pathway for apoptosis, leading to death of vulnerable neurons. An additional contributing factor to neuronal death is the excess free radical production linked to distortion of Ca(2+) homeostasis. We propose that an hybrid compound containing a dihydropyridine moiety (to block L channels and mitigate Ca(2+) entry) and a benzothiazepine moiety (to block the MNCX and slow down the rate of Ca(2+) efflux from the mitochondrial matrix into the cytosol), as well as a polyphenol moiety (to sequester excess free radicals) could break down the pathological enhanced NCC and MCC, thus delaying the initiation of apoptosis and the death of vulnerable neurons. In so doing, such a trifunctional compound could eventually become a neuroprotective medicine capable of delaying disease progression in AD patients.
Collapse
Affiliation(s)
| | - Juan-Alberto Arranz-Tagarro
- Departamento de Farmacología,
Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | - Antonio G. García
- Servicio de Farmacología
Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
12
|
D'Amelio M, Sheng M, Cecconi F. Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 2012; 35:700-9. [PMID: 22796265 DOI: 10.1016/j.tins.2012.06.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 01/06/2023]
Abstract
Caspase-3 has been identified as a key mediator of neuronal programmed cell death. This protease plays a central role in the developing nervous system and its activation is observed early in neural tube formation and persists during postnatal differentiation of the neural network. Caspase-3 activation, a crucial event of neuronal cell death program, is also a feature of many chronic neurodegenerative diseases. This traditional apoptotic function of caspase-3 is challenged by recent studies that reveal new cell death-independent roles for mitochondrial-activated caspase-3 in neurite pruning and synaptic plasticity. These findings underscore the need for further research into the mechanism of action and functions of caspase-3 that may prove useful in the development of novel pharmacological treatments for a diverse range of neurological disorders.
Collapse
Affiliation(s)
- Marcello D'Amelio
- Istituto di Ricovero e Cura a Carattere Scientifico, S. Lucia Foundation, via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | | | |
Collapse
|
13
|
van Echten-Deckert G, Walter J. Sphingolipids: Critical players in Alzheimer’s disease. Prog Lipid Res 2012; 51:378-93. [DOI: 10.1016/j.plipres.2012.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
|
14
|
Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol 2012; 3:61. [PMID: 22518105 PMCID: PMC3325487 DOI: 10.3389/fphar.2012.00061] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/26/2012] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca(2+)) plays fundamental and diversified roles in neuronal plasticity. As second messenger of many signaling pathways, Ca(2+) as been shown to regulate neuronal gene expression, energy production, membrane excitability, synaptogenesis, synaptic transmission, and other processes underlying learning and memory and cell survival. The flexibility of Ca(2+) signaling is achieved by modifying cytosolic Ca(2+) concentrations via regulated opening of plasma membrane and subcellular Ca(2+) sensitive channels. The spatiotemporal patterns of intracellular Ca(2+) signals, and the ultimate cellular biological outcome, are also dependent upon termination mechanism, such as Ca(2+) buffering, extracellular extrusion, and intra-organelle sequestration. Because of the central role played by Ca(2+) in neuronal physiology, it is not surprising that even modest impairments of Ca(2+) homeostasis result in profound functional alterations. Despite their heterogeneous etiology neurodegenerative disorders, as well as the healthy aging process, are all characterized by disruption of Ca(2+) homeostasis and signaling. In this review we provide an overview of the main types of neuronal Ca(2+) channels and their role in neuronal plasticity. We will also discuss the participation of Ca(2+) signaling in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Carmen Vivar
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| |
Collapse
|
15
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
16
|
Hedskog L, Petersen CAH, Svensson AI, Welander H, Tjernberg LO, Karlström H, Ankarcrona M. γ-Secretase complexes containing caspase-cleaved presenilin-1 increase intracellular Aβ(42) /Aβ(40) ratio. J Cell Mol Med 2012; 15:2150-63. [PMID: 21054783 PMCID: PMC4394225 DOI: 10.1111/j.1582-4934.2010.01208.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Markers for caspase activation and apoptosis have been shown in brains of Alzheimer's disease (AD) patients and AD-mouse models. In neurons, caspase activation is associated with elevated amyloid β-peptide (Aβ) production. Caspases cleave numerous substrates including presenilin-1 (PS1). The cleavage takes place in the large cytosolic loop of PS1-C-terminal fragment (PS1CTF), generating a truncated PS1CTF lacking half of the loop domain (caspCTF). The loop has been shown to possess important regulatory functions with regard to Aβ(40) and Aβ(42) production. Previously, we have demonstrated that γ-secretase complexes are active during apoptosis regardless of caspase cleavage in the PS1CTF-loop. Here, a PS1/PS2-knockout mouse blastocyst-derived cell line was used to establish stable or transient cell lines expressing either caspCTF or full-length CTF (wtCTF). We show that caspCTF restores γ-secretase activity and forms active γ-secretase complexes together with Nicastrin, Pen-2, Aph-1 and PS1-N-terminal fragment. Further, caspCTF containing γ-secretase complexes have a sustained capacity to cleave amyloid precursor protein (APP) and Notch, generating APP and Notch intracellular domain, respectively. However, when compared to wtCTF cells, caspCTF cells exhibit increased intracellular production of Aβ(42) accompanied by increased intracellular Aβ(42) /Aβ(40) ratio without changing the Aβ secretion pattern. Similarly, induction of apoptosis in wtCTF cells generate a similar shift in intracellular Aβ pattern with increased Aβ(42) /Aβ(40) ratio. In summary, we show that caspase cleavage of PS1 generates a γ-secretase complex that increases the intracellular Aβ(42) /Aβ(40) ratio. This can have implications for AD pathogenesis and suggests caspase inhibitors as potential therapeutic agents.
Collapse
Affiliation(s)
- Louise Hedskog
- KI-Alzheimer's Disease Research Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 2010; 23:305-16. [PMID: 20688156 DOI: 10.1016/j.cellsig.2010.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023]
Abstract
The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for ions such as Ca²(+), for ATP and perhaps for other compounds, in response to physiological and pathological stimuli. Although the physiological role of Panxs as a hemichannel was questioned, there is increasing evidence that Panx play a role in vasodilatation, initiation of inflammatory responses, ischemic death of neurons, epilepsy and in tumor suppression. Moreover, it is intriguing that Panxs may also function at the endoplasmic reticulum (ER) as intracellular Ca²(+)-leak channel and may be involved in ER-related functions. Although the physiological significance and meaning of such Panx-regulated intracellular Ca²(+) leak requires further exploration, this functional property places Panx at the centre of many physiological and pathophysiological processes, given the fundamental role of intracellular Ca²(+) homeostasis and dynamics in a plethora of physiological processes. In this review, we therefore want to focus on Panx as channels at the plasma membrane and at the ER membranes with a particular emphasis on the potential implications of the latter in intracellular Ca²(+) signalling.
Collapse
|
18
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
19
|
Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I. Role of presenilins in neuronal calcium homeostasis. J Neurosci 2010; 30:8566-80. [PMID: 20573903 PMCID: PMC2906098 DOI: 10.1523/jneurosci.1554-10.2010] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/30/2010] [Accepted: 05/09/2010] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder. Familial AD (FAD) mutations in presenilins have been linked to calcium (Ca(2+)) signaling abnormalities. To explain these results, we previously proposed that presenilins function as endoplasmic reticulum (ER) passive Ca(2+) leak channels. To directly investigate the role of presenilins in neuronal ER Ca(2+) homeostasis, we here performed a series of Ca(2+) imaging experiments with primary neuronal cultures from conditional presenilin double-knock-out mice (PS1(dTAG/dTAG), PS2(-/-)) and from triple-transgenic AD mice (KI-PS1(M146V), Thy1-APP(KM670/671NL), Thy1-tau(P301L)). Obtained results provided additional support to the hypothesis that presenilins function as ER Ca(2+) leak channels in neurons. Interestingly, we discovered that presenilins play a major role in ER Ca(2+) leak function in hippocampal but not in striatal neurons. We further discovered that, in hippocampal neurons, loss of presenilin-mediated ER Ca(2+) leak function was compensated by an increase in expression and function of ryanodine receptors (RyanRs). Long-term feeding of the RyanR inhibitor dantrolene to amyloid precursor protein-presenilin-1 mice (Thy1-APP(KM670/671NL), Thy1-PS1(L166P)) resulted in an increased amyloid load, loss of synaptic markers, and neuronal atrophy in hippocampal and cortical regions. These results indicate that disruption of ER Ca(2+) leak function of presenilins may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Suya Sun
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - An Herreman
- Center for Human Genetics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium, and
- Department for Molecular and Developmental Genetics, VIB, Flanders Institute for Biotechnology, B-3000 Leuven, Belgium
| | - Bart De Strooper
- Center for Human Genetics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium, and
- Department for Molecular and Developmental Genetics, VIB, Flanders Institute for Biotechnology, B-3000 Leuven, Belgium
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
20
|
Supnet C, Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S487-98. [PMID: 20413848 PMCID: PMC4996661 DOI: 10.3233/jad-2010-100306] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder among the aged worldwide. AD is characterized by extensive synaptic and neuronal loss that leads to impaired memory and cognitive decline. The cause of AD is not completely understood and no effective therapy has been developed. The accumulation of toxic amyloid-beta42 (Abeta42) peptide oligomers and aggregates in AD brain has been proposed to be primarily responsible for the pathology of the disease, an idea dubbed the 'amyloid hypothesis' of AD etiology. In addition to the increase in Abeta42 levels, disturbances in neuronal calcium (Ca2+) signaling and alterations in expression levels of Ca2+ signaling proteins have been observed in animal models of familial AD and in studies of postmortem brain samples from sporadic AD patients. Based on these data, the 'Ca2+ hypothesis of AD' has been proposed. In particular, familial AD has been linked with enhanced Ca2+ release from the endoplasmic reticulum and elevated cytosolic Ca2+ levels. The augmented cytosolic Ca2+ levels can trigger signaling cascades that affect synaptic stability and function and can be detrimental to neuronal health, such as activation of calcineurin and calpains. Here we review the latest results supporting the 'Ca2+ hypothesis' of AD pathogenesis. We further argue that over time, supranormal cytosolic Ca2+ signaling can impair mitochondrial function in AD neurons. We conclude that inhibitors and stabilizers of neuronal Ca2+ signaling and mitochondrial function may have therapeutic potential for AD treatment. We also discuss latest and planned AD therapeutic trials of agents targeting Ca2+ channels and mitochondria.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
21
|
Bulat N, Widmann C. Caspase substrates and neurodegenerative diseases. Brain Res Bull 2009; 80:251-67. [DOI: 10.1016/j.brainresbull.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 02/08/2023]
|
22
|
Marks N, Berg MJ. BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 2009; 35:181-210. [PMID: 19760173 DOI: 10.1007/s11064-009-0054-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Secretases are named for enzymes processing amyloid precursor protein (APP), a prototypic type-1 membrane protein. This led directly to discovery of novel Aspartyl proteases (beta-secretases or BACE), a tetramer complex gamma-secretase (gamma-SC) containing presenilins, nicastrin, aph-1 and pen-2, and a new role for metalloprotease(s) of the ADAM family as a alpha-secretases. Recent advances in defining pathways that mediate endosomal-lysosomal-autophagic-exosomal trafficking now provide targets for new drugs to attenuate abnormal production of fibril forming products characteristic of AD. A key to success includes not only characterization of relevant secretases but mechanisms for sorting and transport of key metabolites to abnormal vesicles or sites for assembly of fibrils. New developments we highlight include an important role for an 'early recycling endosome' coated in retromer complex containing lipoprotein receptor LRP-II (SorLA) for switching APP to a non-amyloidogenic pathway for alpha-secretases processing, or to shuttle APP to a 'late endosome compartment' to form Abeta or AICD. LRP11 (SorLA) is of particular importance since it decreases in sporadic AD whose etiology otherwise is unknown.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
23
|
Michno K, Knight D, Campusano JM, Campussano JM, van de Hoef D, Boulianne GL. Intracellular calcium deficits in Drosophila cholinergic neurons expressing wild type or FAD-mutant presenilin. PLoS One 2009; 4:e6904. [PMID: 19730737 PMCID: PMC2733141 DOI: 10.1371/journal.pone.0006904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 08/01/2009] [Indexed: 01/07/2023] Open
Abstract
Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellular defects associated with Alzheimer's disease, intracellular calcium deregulation. We show that expression of either wild type or FAD-mutant presenilin in Drosophila CNS neurons has no impact on resting calcium levels but does give rise to deficits in intracellular calcium stores. Furthermore, we show that a loss-of-function mutation in calmodulin, a key regulator of intracellular calcium, can suppress presenilin-induced deficits in calcium stores. Our data support a model whereby presenilin plays a role in regulating intracellular calcium stores and demonstrate that Drosophila can be used to study the link between presenilin and calcium deregulation.
Collapse
Affiliation(s)
- Kinga Michno
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009; 15:89-100. [PMID: 19230774 PMCID: PMC3226745 DOI: 10.1016/j.molmed.2009.01.001] [Citation(s) in RCA: 354] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 01/08/2023]
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and spinocerebellar ataxias (SCAs), present an enormous medical, social, financial and scientific problem. Recent evidence indicates that neuronal calcium (Ca2+) signaling is abnormal in many of these disorders. Similar, but less severe, changes in neuronal Ca2+ signaling occur as a result of the normal aging process. The role of aberrant neuronal Ca2+ signaling in the pathogenesis of neurodegenerative disorders is discussed here. The potential utility of Ca2+ blockers for treatment of these disorders is also highlighted. It is reasoned that Ca2+ blockers will be most beneficial clinically when used in combination with other disease-specific therapeutic approaches.
Collapse
Affiliation(s)
- Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA.
| |
Collapse
|
25
|
Hosotani Y, Kashiwamura SI, Kimura-Shimmyo A, Sekiyama A, Ueda H, Ikeda T, Mimura O, Okamura H. Interleukin-18 prevents apoptosis via PI3K/Akt pathway in normal human keratinocytes. J Dermatol 2008; 35:514-24. [PMID: 18789072 DOI: 10.1111/j.1346-8138.2008.00513.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Interleukin-18 (IL-18) is a pleiotropic cytokine expressed in both immune and non-immune cells. In the present study, we demonstrate an anti-apoptotic role of IL-18 in normal human neonatal foreskin epidermal keratinocytes (NHEK-F). Cultured NHEK-F spontaneously produced the active form of IL-18. Treatment of NHEK-F cells with anti-IL-18 receptor alpha-chain neutralizing antibody increased apoptosis and caspase-3 activity. Exogenous IL-18 augmented phosphorylation of Akt and activation of NF-kappaB. The promotion of Akt phosphorylation by IL-18 was abolished by LY294002, a PI3K inhibitor, but not SN50, an NF-kappaB inhibitor, indicating that IL-18 functions via the PI3K/Akt pathway and independently of NF-kappaB. In addition, IL-18 was found to augment expression of anti-apoptotic proteins, Bcl-2, XIAP and glucose regulated protein78/BiP, while anti-IL-18 receptor alpha-chain neutralizing antibody suppressed expression of Bcl-2, XIAP, glucose regulated protein94 and protein disulfide isomerase. Taken together, these results indicate that IL-18 plays an important role in keratinocyte survival.
Collapse
Affiliation(s)
- Yuka Hosotani
- Department of Ophthalmology, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci 2008; 31:454-63. [PMID: 18675468 PMCID: PMC2566585 DOI: 10.1016/j.tins.2008.06.005] [Citation(s) in RCA: 704] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 12/23/2022]
Abstract
Perturbed neuronal Ca(2+) homeostasis is implicated in age-related cognitive impairment and Alzheimer's disease (AD). With advancing age, neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular Ca(2+) dynamics. Toxic forms of amyloid beta-peptide (Abeta) can induce Ca(2+) influx into neurons by inducing membrane-associated oxidative stress or by forming an oligomeric pore in the membrane, thereby rendering neurons vulnerable to excitotoxicity and apoptosis. AD-causing mutations in the beta-amyloid precursor protein and presenilins can compromise these normal proteins in the plasma membrane and endoplasmic reticulum, respectively. Emerging knowledge of the actions of Ca(2+) upstream and downstream of Abeta provides opportunities to develop novel preventative and therapeutic interventions for AD.
Collapse
Affiliation(s)
- Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| |
Collapse
|
27
|
Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P. The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008; 44:507-18. [PMID: 18440065 DOI: 10.1016/j.ceca.2008.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/17/2023]
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2) form the catalytic core in gamma-secretase complexes and mutations in these proteins result in aberrant cleavage of amyloid precursor protein leading to accumulation of the beta-amyloid in the brain of familial Alzheimer Disease patients. PS2 possesses a hydrophilic cytoplasmic N-terminal domain (PS2 NTF1-87) dispensable for gamma-secretase activity with physiological functions yet to be determined. The effects of this soluble 87 amino acid fragment of mouse PS2 on single channel activity of mouse brain ryanodine receptors (RyR) were determined. PS2 NTF1-87 application to the cytoplasmic side of the RyR significantly increased single channel activity by favoring higher sublevel openings. The Ca(2+) activation and desensitization ranges for RyRs were unchanged. We demonstrate facilitation of RyR gating by PS2 NTF1-87, which might represent a general mechanism of RyR regulation by presenilins potentially prone to be affected by mutations or external stimuli contributing to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Volodya Hayrapetyan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA
| | | | | | | |
Collapse
|
28
|
Joseph SK, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 2008; 12:951-68. [PMID: 17294082 DOI: 10.1007/s10495-007-0719-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) serve to discharge Ca(2+) from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca(2+)-dependent apoptosis. In particular we focus on the regulation of IP(3)Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP(3)Rs in apoptosis may be independent of their ion-channel function. The role of IP(3)Rs in delivering Ca(2+) to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.
Collapse
Affiliation(s)
- Suresh K Joseph
- Department of Pathology & Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
29
|
Dror V, Kalynyak TB, Bychkivska Y, Frey MHZ, Tee M, Jeffrey KD, Nguyen V, Luciani DS, Johnson JD. Glucose and endoplasmic reticulum calcium channels regulate HIF-1beta via presenilin in pancreatic beta-cells. J Biol Chem 2008; 283:9909-16. [PMID: 18174159 DOI: 10.1074/jbc.m710601200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic beta-cell death is a critical event in type 1 diabetes, type 2 diabetes, and clinical islet transplantation. We have previously shown that prolonged block of ryanodine receptor (RyR)-gated release from intracellular Ca(2+) stores activates calpain-10-dependent apoptosis in beta-cells. In the present study, we further characterized intracellular Ca(2+) channel expression and function in human islets and the MIN6 beta-cell line. All three RyR isoforms were identified in human islets and MIN6 cells, and these endoplasmic reticulum channels were observed in close proximity to mitochondria. Blocking RyR channels, but not sarco/endoplasmic reticulum ATPase (SERCA) pumps, reduced the ATP/ADP ratio. Blocking Ca(2+) flux through RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of hypoxia-inducible factor (HIF-1beta). Moreover, inhibition of RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of presenilin-1. Both HIF-1beta and presenilin-1 expression were also induced by low glucose. Overexpression of presenilin-1 increased HIF-1beta, suggesting that HIF is downstream of presenilin. Our results provide the first evidence of a presenilin-HIF signaling network in beta-cells. We demonstrate that this pathway is controlled by Ca(2+) flux through intracellular channels, likely via changes in mitochondrial metabolism and ATP. These findings provide a mechanistic understanding of the signaling pathways activated when intracellular Ca(2+) homeostasis and metabolic activity are suppressed in diabetes and islet transplantation.
Collapse
Affiliation(s)
- Vardit Dror
- Laboratory of Molecular Signaling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marks N, Berg MJ. Neurosecretases provide strategies to treat sporadic and familial Alzheimer disorders. Neurochem Int 2008; 52:184-215. [PMID: 17719698 DOI: 10.1016/j.neuint.2007.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/05/2007] [Indexed: 12/30/2022]
Abstract
Recent discoveries on neurosecretases and their trafficking to release fibril-forming neuropeptides or other products, are of interest to pathology, cell signaling and drug discovery. Nomenclature arose from the use of amyloid precursor protein (APP) as a prototypic type-1 substrate leading to the isolation of beta-secretase (BACE), multimeric complexes (gamma-secretase, gamma-SC) for intramembranal cleavage, and attributing a new function to well-characterized metalloproteases of the ADAM family (alpha-secretase) for normal APP turnover. While purified alpha/beta-secretases facilitate drug discovery, gamma-SC presents greater challenges for characterization and mechanisms of catalysis. The review comments on links between mutation or polymorphisms in relation to enzyme mechanisms and disease. The association between lipoprotein receptor LRP11 variants and sporadic Alzheimer's disease (SAD) offers scope to integrate components of pre- and post-Golgi membranes, or brain clathrin-coated vesicles within pathways for trafficking as targets for intervention. The presence of APP and metabolites in brain clathrin-coated vesicles as significant cargo with lipoproteins and adaptors focuses attention as targets for therapeutic intervention. This overview emphasizes the importance to develop new therapies targeting neurosecretases to treat a major neurological disorder that has vast economic and social implications.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
31
|
van Lunteren E, Spiegler S, Moyer M. Contrast between cardiac left ventricle and diaphragm muscle in expression of genes involved in carbohydrate and lipid metabolism. Respir Physiol Neurobiol 2007; 161:41-53. [PMID: 18207466 DOI: 10.1016/j.resp.2007.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/05/2007] [Accepted: 11/28/2007] [Indexed: 02/06/2023]
Abstract
The heart and diaphragm both need appropriate metabolic machinery to ensure long-term energy supplies, as they must contract rhythmically without cessation for the entire lifetime of the organism to ensure homeostasis of oxygen and carbon dioxide exchange. However, their energy requirements differ due to disparities in mechanical loads. Understanding how these two muscles converge and diverge in their approaches to meeting their metabolic demands may suggest novel strategies for improving cardiac and skeletal muscle long-term performance in health and disease. To assess this at a transcriptional level, expression of genes involved in carbohydrate and lipid metabolism was assessed using microarrays in rats. There were 594 genes with >2-fold differential expression between left ventricle of the heart and diaphragm; 307 were expressed heart>diaphragm and 287 diaphragm>heart. Assignment to gene ontology groups revealed over-representation for "carbohydrate metabolism" (P=0.005, n=32 genes or 5.4% of all genes with differential expression) and "lipid metabolism" (P=0.0012, n=48 genes or 8.1% of all genes with differential expression). For carbohydrate there were 14 genes with heart>diaphragm and 18 genes with diaphragm>heart, and for lipid there were 30 genes with heart>diaphragm and 18 genes with diaphragm>heart. The magnitude of differential expression between heart and diaphragm ranged up to 30-fold for carbohydrate and up to 59-fold for lipid. Carbohydrate-related genes were almost all involved in energy metabolism (e.g. Pfkm, Pgm1, Pgam1, Pfkfb1, Pfkfb2), whereas lipid-related genes were involved in energetics as well as other cellular processes; for both groups this included genes involved in rate-limiting metabolic steps. Data thus indicate that diaphragm and heart have both shared and differential transcriptional strategies for ensuring long-term energy supplies, with a relative favoring of lipid metabolism in the heart and carbohydrate metabolism in the diaphragm.
Collapse
Affiliation(s)
- Erik van Lunteren
- Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
32
|
van Lunteren E, Moyer M. Oxidoreductase, morphogenesis, extracellular matrix, and calcium ion-binding gene expression in streptozotocin-induced diabetic rat heart. Am J Physiol Endocrinol Metab 2007; 293:E759-68. [PMID: 17566115 DOI: 10.1152/ajpendo.00191.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes has far-ranging effects on cardiac structure and function. Previous gene expression studies of the heart in animal models of type 1 diabetes concur that there is altered expression of genes involved in lipid and protein metabolism, but they diverge with regard to expression changes involving many other functional groups of genes of mechanistic importance in diabetes-induced cardiac dysfunction. To obtain additional information about these controversial areas, genome-wide expression was assessed using microarrays in left ventricle from streptozotocin-diabetic and normal rats. There were 261 genes with statistically significant altered expression of at least +/-1.5-fold, of which 124 were increased and 137 reduced by diabetes. Gene ontology assignment testing identified several statistical significantly overrepresented groups among genes with altered expression, which differed for increased compared with reduced expression. Relevant gene groups with increased expression by diabetes included lipid metabolism (P < 0.001, n = 13 genes, fold change 1.5 to 14.6) and oxidoreductase activity (P < 0.001, n = 17, fold change 1.5 to 4.6). Groups with reduced expression by diabetes included morphogenesis (P < 0.00001, n = 28, fold change -1.5 to -5.1), extracellular matrix (P < 0.02, n = 9, fold change -1.5 to -3.9), cell adhesion (P < 0.05, n = 10, fold change -1.5 to -2.7), and calcium ion binding (P < 0.01, n = 13, fold change -1.5 to -3.0). Array findings were verified by quantitative PCR for 36 genes. These data combined with previous findings strengthen the evidence for diabetes-induced cardiac gene expression changes involved in cell growth and development, oxidoreductase activity, and the extracellular matrix and also point out other gene groups not previously identified as being affected, such as those involved in calcium ion homeostasis.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | | |
Collapse
|
33
|
Ito Y, Ishii A, Passmore AP, McIlroy SP. Analysis of alteration of p75NTR processing and signalling by PS2 mutation and gamma-secretase inhibition. Neurobiol Dis 2007; 27:258-64. [PMID: 17582777 DOI: 10.1016/j.nbd.2007.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 04/29/2007] [Accepted: 05/03/2007] [Indexed: 12/31/2022] Open
Abstract
The presenilins (PSs) were identified as causative genes in cases of early-onset familial Alzheimer's disease (AD) and current evidence indicates that PSs are part of the gamma-secretase complex responsible for proteolytic processing of type I membrane proteins. p75NTR, a common neurotrophin receptor, was shown to be subject to gamma-secretase processing. However, it is not clear if the p75NTR downstream signal is altered in response to gamma-secretase cleavage, and further there is a possibility that AD-related PS mutations may affect this cleavage, resulting in pathogenic alterations in signal transduction. In this study, we confirmed that p75NTR downstream signalling is altered by PS2 mutation or gamma-secretase inhibition in SHSY-5Y cells. The activity of the small GTPase RhoA is strongly affected by these treatments. This study demonstrates that gamma-secretase and PS2 play an important role in regulating neurotrophin signal transduction and either mutation of PS2 or inhibition of gamma-secretase disturbs this function.
Collapse
Affiliation(s)
- Yoshio Ito
- Department of Geriatric Medicine, Queen's University Belfast, Whitla Medical Building, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | | | | | | |
Collapse
|