1
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
2
|
Dejgaard SY, Presley JF. Rab18: new insights into the function of an essential protein. Cell Mol Life Sci 2019; 76:1935-1945. [PMID: 30830238 PMCID: PMC11105521 DOI: 10.1007/s00018-019-03050-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Rab18 is one of the small number of conserved Rab proteins which have been traced to the last eukaryotic common ancestor. It is found in organisms ranging from humans to trypanosomes, and localizes to multiple organelles, including most notably endoplasmic reticulum and lipid droplets. In humans, absence of Rab18 leads to a severe illness known as Warburg-Micro syndrome. Despite this evidence that Rab18 is essential, its role in cells remains mysterious. However, recent studies identifying effectors and interactors of Rab18, are now shedding light on its mechanism of action, suggesting functions related to organelle tethering and to autophagy. In this review, we examine the variety of roles proposed for Rab18 with a focus on new evidence giving insights into the molecular mechanisms it utilizes. Based on this summary of our current understanding, we identify priority areas for further research.
Collapse
Affiliation(s)
- Selma Yilmaz Dejgaard
- Department of Medical Biology, Near East University, Nicosia, Cyprus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
3
|
Teixeira MB, Alborghetti MR, Kobarg J. Fasciculation and elongation zeta proteins 1 and 2: From structural flexibility to functional diversity. World J Biol Chem 2019; 10:28-43. [PMID: 30815230 PMCID: PMC6388297 DOI: 10.4331/wjbc.v10.i2.28] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/02/2019] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Fasciculation and elongation zeta/zygin (FEZ) proteins are a family of hub proteins and share many characteristics like high connectivity in interaction networks, they are involved in several cellular processes, evolve slowly and in general have intrinsically disordered regions. In 1985, unc-76 gene was firstly described and involved in axonal growth in C. elegans, and in 1997 Bloom and Horvitz enrolled also the human homologues genes, FEZ1 and FEZ2, in this process. While nematodes possess one gene (unc-76), mammalians have one more copy (FEZ1 and FEZ2). Several animal models have been used to study FEZ family functions like: C. elegans, D. melanogaster, R. novergicus and human cells. Complementation assays were performed and demonstrated the function conservation between paralogues. Human FEZ1 protein is more studied followed by UNC-76 and FEZ2 proteins, respectively. While FEZ1 and UNC-76 shared interaction partners, FEZ2 evolved and increased the number of protein-protein interactions (PPI) with cytoplasmatic partners. FEZ proteins are implicated in intracellular transport, acting as bivalent cargo transport adaptors in kinesin-mediated movement. Especially in light of this cellular function, this family of proteins has been involved in several processes like neuronal development, neurological disorders, viral infection and autophagy. However, nuclear functions of FEZ proteins have been explored as well, due to high content of PPI with nuclear proteins, correlating FEZ1 expression to Sox2 and Hoxb4 gene regulation and retinoic acid signaling. These recent findings open new avenue to study FEZ proteins functions and its involvement in already described processes. This review intends to reunite aspects of evolution, structure, interaction partners and function of FEZ proteins and correlate them to physiological and pathological processes.
Collapse
Affiliation(s)
- Mariana Bertini Teixeira
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | | | - Jörg Kobarg
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
4
|
Quiñones-Pérez B, VanNoy GE, Towne MC, Shen Y, Singh MN, Agrawal PB, Smith SE. Three-generation family with novel contiguous gene deletion on chromosome 2p22 associated with thoracic aortic aneurysm syndrome. Am J Med Genet A 2018; 176:560-569. [DOI: 10.1002/ajmg.a.38590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Bianca Quiñones-Pérez
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- Division of General Pediatrics; Boston Children's Hospital; Boston Massachusetts
| | - Grace E. VanNoy
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
| | - Meghan C. Towne
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
| | - Yiping Shen
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
| | - Michael N. Singh
- Department of Cardiology; Boston Children's Hospital; Boston Massachusetts
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
- Division of Newborn Medicine; Boston Children's Hospital; Boston Massachusetts
| | - Sharon E. Smith
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
| |
Collapse
|
5
|
Bertini Teixeira M, Figueira ACM, Furlan AS, Aquino B, Alborghetti MR, Paes Leme AF, Wei LN, Kobarg J. Fasciculation and elongation zeta-1 protein (FEZ1) interacts with the retinoic acid receptor and participates in transcriptional regulation of the Hoxb4 gene. FEBS Open Bio 2017; 8:4-14. [PMID: 29321952 PMCID: PMC5757173 DOI: 10.1002/2211-5463.12338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/27/2017] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Fasciculation and elongation zeta‐1 (FEZ1) protein is involved in axon outgrowth and is highly expressed in the brain. It has multiple interaction partners, with functions varying from the regulation of neuronal development and intracellular transport mechanisms to transcription regulation. One of its interactors is retinoic acid receptor (RAR), which is activated by retinoic acid and controls many target genes and physiological process. Based on previous evidence suggesting a possible nuclear role for FEZ1, we wanted to deepen our understanding of this function by addressing the FEZ1–RAR interaction. We performed in vitro binding experiments and assessed the interface of interaction between both proteins. We found that FEZ1–RAR interacted with a similar magnitude as RAR to its responsive element DR5 and that the interaction occurred in the coiled‐coil region of FEZ1 and in the ligand‐binding domain of RAR. Furthermore, cellular experiments were performed in order to confirm the interaction and screen for induced target genes from an 86‐gene panel. The analysis of gene expression showed that only in the presence of retinoic acid did FEZ1 induce hoxb4 gene expression. This finding is consistent with data from the literature showing the hoxb4 gene functionally involved in development and acute myeloid leukemia, as is FEZ1.
Collapse
Affiliation(s)
- Mariana Bertini Teixeira
- Department of Biochemistry and Tissue Biology Institute of Biology University of Campinas Brazil
| | - Ana Carolina M Figueira
- Spectroscopy and Calorimetry Laboratory Brazilian Biosciences National Laboratory Center for Research in Energy and Materials Campinas SP Brazil
| | | | - Bruno Aquino
- Structural Genomics Consortium University of Campinas Brazil
| | - Marcos R Alborghetti
- Department of Pharmaceutical Sciences School of Health Sciences University of Brasilia Brazil
| | - Adriana F Paes Leme
- Mass Spectrometry Laboratory Brazilian Biosciences National Laboratory Center for Research in Energy and Materials Campinas SP Brazil
| | - Li-Na Wei
- Pharmacology Department University of Minnesota Medical School Minneapolis MN USA
| | - Jörg Kobarg
- Department of Biochemistry and Tissue Biology Institute of Biology University of Campinas Brazil.,Faculty of Pharmaceutical Sciences University of Campinas Brazil
| |
Collapse
|
6
|
Wu Q, Tang W, Luo Z, Li Y, Shu Y, Yue Z, Xiao B, Feng L. DISC1 Regulates the Proliferation and Migration of Mouse Neural Stem/Progenitor Cells through Pax5, Sox2, Dll1 and Neurog2. Front Cell Neurosci 2017; 11:261. [PMID: 28900388 PMCID: PMC5581844 DOI: 10.3389/fncel.2017.00261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/11/2017] [Indexed: 11/27/2022] Open
Abstract
Background: Disrupted-in-schizophrenia 1 (DISC1) regulates neurogenesis and is a genetic risk factor for major psychiatric disorders. However, how DISC1 dysfunction affects neurogenesis and cell cycle progression at the molecular level is still unknown. Here, we investigated the role of DISC1 in regulating proliferation, migration, cell cycle progression and apoptosis in mouse neural stem/progenitor cells (MNSPCs) in vitro. Methods: MNSPCs were isolated and cultured from mouse fetal hippocampi. Retroviral vectors or siRNAs were used to manipulate DISC1 expression in MNSPCs. Proliferation, migration, cell cycle progression and apoptosis of altered MNSPCs were analyzed in cell proliferation assays (MTS), transwell system and flow cytometry. A neurogenesis specific polymerase chain reaction (PCR) array was used to identify genes downstream of DISC1, and functional analysis was performed through transfection of expression plasmids and siRNAs. Results: Loss of DISC1 reduced proliferation and migration of MNSPCs, while an increase in DISC1 led to increased proliferation and migration. Meanwhile, an increase in the proportion of cells in G0/G1 phase was concomitant with reduced levels of DISC1, but significant changes were not observed in the number MNSPCs undergoing apoptosis. Paired box gene 5 (Pax5), sex determining region Y-box 2 (Sox2), delta-like1 (Dll1) and Neurogenin2 (Neurog2) emerged as candidate molecules downstream of DISC1, and rescue experiments demonstrated that increased or decreased expression of either molecule regulated proliferation and migration in DISC1-altered MNSPCs. Conclusion: These results suggest that Pax5, Sox2, Dll1 and Neurog2 mediate DISC1 activity in MNSPC proliferation and migration.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical UniversityKunming, China
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Weiting Tang
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yi Li
- Department of Neurology, University of Massachusetts Medical SchoolWorcester, MA, United States
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Zongwei Yue
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Neurology, Yale University School of MedicineNew Haven, CT, United States
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Neurology, Yale University School of MedicineNew Haven, CT, United States
| |
Collapse
|
7
|
Interaction of an esophageal MEG protein from schistosomes with a human S100 protein involved in inflammatory response. Biochim Biophys Acta Gen Subj 2016; 1861:3490-3497. [PMID: 27639541 DOI: 10.1016/j.bbagen.2016.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND The Micro-Exon Gene-14 (MEG-14) displays a remarkable structure that allows the generation of antigenic variation in Schistosomes. Previous studies showed that the soluble portion of the MEG-14 protein displays features of an intrinsically disordered protein and is expressed exclusively in the parasite esophageal gland. These features indicated a potential for interaction with host proteins present in the plasma and cells from ingested blood. METHODS A yeast two-hybrid experiment using as bait the soluble domain of Schistosoma mansoni MEG-14 (sMEG-14) against a human leukocyte cDNA library was performed. Pull-down and surface plasmon resonance (SPR) experiments were used to validate the interaction between sMEG-14 and human S100A9. Synchrotron radiation circular dichroism (SRCD) were used to detect structural changes upon interaction between sMEG-14 and human S100A9. Feeding of live parasites with S100A9 attached to a fluorophore allowed the tracking of the fate of this protein in the parasite digestive system. RESULTS S100A9 interacted with sMEG-14 consistently in yeast two-hybrid assay, pull-down and SPR experiments. SRCD suggested that MEG-14 acquired a more regular structure as a result of the interaction with S100A9. Accumulation of recombinant S100A9 in the parasite's esophageal gland, when ingested by live worms suggests that such interaction may occur in vivo. CONCLUSION S100A9, a protein previously described to be involved in modulation of inflammatory response, was found to interact with sMEG-14. GENERAL SIGNIFICANCE Our results allow proposing a mechanism involving MEG-14 for the parasite to block inflammatory signaling, which would occur upon release of S100A9 when ingested blood cells are lysed.
Collapse
|
8
|
Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V, Hiebel C, Koziollek-Drechsler I, Clement AM, Moosmann B, Jung J, Behrends C, Dikic I, Kern A, Behl C. RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy 2015; 10:2297-309. [PMID: 25495476 PMCID: PMC4502700 DOI: 10.4161/15548627.2014.994359] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.
Collapse
Key Words
- ATG, autophagy-related
- ATG16L1
- ATG3
- BSA, bovine serum albumin
- Bafi, bafilomycin A1
- C. elegans, Caenorhabditis elegans
- CALCOCO2, calcium binding and coiled-coil domain 2
- DAPI, 4’, 6-diamidino-2-phenylindole
- DMSO, dimethyl sulfoxide
- DPH, 1, 6-diphenyl-1, 3, 5-hexatriene
- FEZ, fasciculation and elongation protein zeta
- FEZ1
- FEZ2
- GABARAP, GABA(A) receptor-associated protein
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- MAP1LC3, microtubule-associated protein 1 light chain 3
- NBR1, neighbor of BRCA1 gene 1
- PBS, phosphate-buffered saline
- PE, phosphatidylethanolamine
- RAB3GAP1
- RAB3GAP2
- RABGAP, RAB GTPase activating protein
- SQSTM1, sequestosome 1
- TBC domain, TRE2-BUB2-CDC16 domain
- autophagy
- eV, empty vector
- lipid droplets
- proteostasis
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Natalie Spang
- a Institute for Pathobiochemistry ; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
RBFOX1 cooperates with MBNL1 to control splicing in muscle, including events altered in myotonic dystrophy type 1. PLoS One 2014; 9:e107324. [PMID: 25211016 PMCID: PMC4161394 DOI: 10.1371/journal.pone.0107324] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022] Open
Abstract
With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First, a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse models of DM1. Second, using cell cultures from human embryonic muscle, we noted that DM1-associated splicing alterations were significantly enriched in cytoskeleton (e.g. SORBS1, TACC2, TTN, ACTN1 and DMD) and channel (e.g. KCND3 and TRPM4) genes. Third, of the splicing alterations occurring in adult DM1 tissues, one produced a dominant negative variant of the splicing regulator RBFOX1. Notably, half of the splicing events controlled by MBNL1 were co-regulated by RBFOX1, and several events in this category were mis-spliced in DM1 tissues. Our results suggest that reduced RBFOX1 activity in DM1 tissues may amplify several of the splicing alterations caused by the deficiency in MBNL1.
Collapse
|
10
|
Zhang L, Yang S, Wennmann DO, Chen Y, Kremerskothen J, Dong J. KIBRA: In the brain and beyond. Cell Signal 2014; 26:1392-9. [PMID: 24642126 DOI: 10.1016/j.cellsig.2014.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/28/2014] [Indexed: 01/16/2023]
Abstract
In mammals, the KIBRA locus has been associated with memory performance and cognition by genome-wide single nucleotide polymorphism screening. Genetic studies in Drosophila and human cells have identified KIBRA as a novel regulator of the Hippo signaling pathway, which plays a critical role in human tumorigenesis. Recent studies also indicated that KIBRA is involved in other physiological processes including cell polarity, membrane/vesicular trafficking, mitosis and cell migration. At the biochemical level, KIBRA protein is highly phosphorylated by various kinases in epithelial cells. Here, we discuss the updates concerning the function and regulation of KIBRA in the brain and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuping Yang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Alborghetti MR, Furlan ADS, da Silva JC, Sforça ML, Honorato RV, Granato DC, dos Santos Migueleti DL, Neves JL, de Oliveira PSL, Paes-Leme AF, Zeri ACDM, de Torriani ICL, Kobarg J. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO). PLoS One 2013; 8:e76602. [PMID: 24116125 PMCID: PMC3792052 DOI: 10.1371/journal.pone.0076602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/29/2013] [Indexed: 01/15/2023] Open
Abstract
Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.
Collapse
Affiliation(s)
- Marcos Rodrigo Alborghetti
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Ariane da Silva Furlan
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Júlio César da Silva
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Maurício Luís Sforça
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Rodrigo Vargas Honorato
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Daniela Campos Granato
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Deivid Lucas dos Santos Migueleti
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
- Departamento de Genética, Evolução e Bioagentes, Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Jorge L. Neves
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Paulo Sergio Lopes de Oliveira
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Adriana Franco Paes-Leme
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
| | - Ana Carolina de Mattos Zeri
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | - Jörg Kobarg
- Laboratório Nacional de Biociências-LNBio, Centro Nacional de Pesquisa em Energia e Materiais-CNPEM, Campinas, SP, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
- Departamento de Genética, Evolução e Bioagentes, Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
12
|
Behrens C, Binotti B, Schmidt C, Robinson CV, Chua JJE, Kühnel K. Crystal structure of the human short coiled coil protein and insights into SCOC-FEZ1 complex formation. PLoS One 2013; 8:e76355. [PMID: 24098481 PMCID: PMC3788124 DOI: 10.1371/journal.pone.0076355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/23/2013] [Indexed: 01/18/2023] Open
Abstract
The short coiled coil protein (SCOC) forms a complex with fasciculation and elongation protein zeta 1 (FEZ1). This complex is involved in autophagy regulation. We determined the crystal structure of the coiled coil domain of human SCOC at 2.7 Å resolution. SCOC forms a parallel left handed coiled coil dimer. We observed two distinct dimers in the crystal structure, which shows that SCOC is conformationally flexible. This plasticity is due to the high incidence of polar and charged residues at the core a/d-heptad positions. We prepared two double mutants, where these core residues were mutated to either leucines or valines (E93V/K97L and N125L/N132V). These mutations led to a dramatic increase in stability and change of oligomerisation state. The oligomerisation state of the mutants was characterized by multi-angle laser light scattering and native mass spectrometry measurements. The E93V/K97 mutant forms a trimer and the N125L/N132V mutant is a tetramer. We further demonstrate that SCOC forms a stable homogeneous complex with the coiled coil domain of FEZ1. SCOC dimerization and the SCOC surface residue R117 are important for this interaction.
Collapse
Affiliation(s)
- Caroline Behrens
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Beyenech Binotti
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - John Jia En Chua
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Karin Kühnel
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Premature expression of a muscle fibrosis axis in chronic HIV infection. Skelet Muscle 2012; 2:10. [PMID: 22676806 PMCID: PMC3407733 DOI: 10.1186/2044-5040-2-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023] Open
Abstract
Background Despite the success of highly active antiretroviral therapy (HAART), HIV infected individuals remain at increased risk for frailty and declines in physical function that are more often observed in older uninfected individuals. This may reflect premature or accelerated muscle aging. Methods Skeletal muscle gene expression profiles were evaluated in three uninfected independent microarray datasets including young (19 to 29 years old), middle aged (40 to 45 years old) and older (65 to 85 years old) subjects, and a muscle dataset from HIV infected subjects (36 to 51 years old). Using Bayesian analysis, a ten gene muscle aging signature was identified that distinguished young from old uninfected muscle and included the senescence and cell cycle arrest gene p21/Cip1 (CDKN1A). This ten gene signature was then evaluated in muscle specimens from a cohort of middle aged (30 to 55 years old) HIV infected individuals. Expression of p21/Cip1 and related pathways were validated and further analyzed in a rodent model for HIV infection. Results We identify and replicate the expression of a set of muscle aging genes that were prematurely expressed in HIV infected, but not uninfected, middle aged subjects. We validated select genes in a rodent model of chronic HIV infection. Because the signature included p21/Cip1, a cell cycle arrest gene previously associated with muscle aging and fibrosis, we explored pathways related to senescence and fibrosis. In addition to p21/Cip1, we observed HIV associated upregulation of the senescence factor p16INK4a (CDKN2A) and fibrosis associated TGFβ1, CTGF, COL1A1 and COL1A2. Fibrosis in muscle tissue was quantified based on collagen deposition and confirmed to be elevated in association with infection status. Fiber type composition was also measured and displayed a significant increase in slow twitch fibers associated with infection. Conclusions The expression of genes associated with a muscle aging signature is prematurely upregulated in HIV infection, with a prominent role for fibrotic pathways. Based on these data, therapeutic interventions that promote muscle function and attenuate pro-fibrotic gene expression should be considered in future studies.
Collapse
|
14
|
McKnight NC, Jefferies HBJ, Alemu EA, Saunders RE, Howell M, Johansen T, Tooze SA. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J 2012; 31:1931-46. [PMID: 22354037 PMCID: PMC3343327 DOI: 10.1038/emboj.2012.36] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 01/23/2012] [Indexed: 01/10/2023] Open
Abstract
Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP-LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation.
Collapse
Affiliation(s)
- Nicole C McKnight
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Harold B J Jefferies
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Endalkachew A Alemu
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Rebecca E Saunders
- High-Throughput Screening Lab, London Research Institute, Cancer Research UK, London, UK
| | - Michael Howell
- High-Throughput Screening Lab, London Research Institute, Cancer Research UK, London, UK
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sharon A Tooze
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
15
|
Phosphorylation-regulated axonal dependent transport of syntaxin 1 is mediated by a Kinesin-1 adapter. Proc Natl Acad Sci U S A 2012; 109:5862-7. [PMID: 22451907 DOI: 10.1073/pnas.1113819109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Presynaptic nerve terminals are formed from preassembled vesicles that are delivered to the prospective synapse by kinesin-mediated axonal transport. However, precisely how the various cargoes are linked to the motor proteins remains unclear. Here, we report a transport complex linking syntaxin 1a (Stx) and Munc18, two proteins functioning in synaptic vesicle exocytosis at the presynaptic plasma membrane, to the motor protein Kinesin-1 via the kinesin adaptor FEZ1. Mutation of the FEZ1 ortholog UNC-76 in Caenorhabditis elegans causes defects in the axonal transport of Stx. We also show that binding of FEZ1 to Kinesin-1 and Munc18 is regulated by phosphorylation, with a conserved site (serine 58) being essential for binding. When expressed in C. elegans, wild-type but not phosphorylation-deficient FEZ1 (S58A) restored axonal transport of Stx. We conclude that FEZ1 operates as a kinesin adaptor for the transport of Stx, with cargo loading and unloading being regulated by protein kinases.
Collapse
|
16
|
Migueleti DLS, Smetana JHC, Nunes HF, Kobarg J, Zanchin NIT. Identification and characterization of an alternatively spliced isoform of the human protein phosphatase 2Aα catalytic subunit. J Biol Chem 2011; 287:4853-62. [PMID: 22167190 DOI: 10.1074/jbc.m111.283341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation.
Collapse
Affiliation(s)
- Deivid L S Migueleti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, SãoPaulo, Brazil
| | | | | | | | | |
Collapse
|
17
|
Yu Z, Ono C, Kim HB, Komatsu H, Tanabe Y, Sakae N, Nakayama KI, Matsuoka H, Sora I, Bunney WE, Tomita H. Four mood stabilizers commonly induce FEZ1 expression in human astrocytes. Bipolar Disord 2011; 13:486-99. [PMID: 22017218 DOI: 10.1111/j.1399-5618.2011.00946.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Mood stabilizers influence the morphology, chemotaxis, and survival of neurons, which are considered to be related to the mood-stabilizing effects of these drugs. Although previous studies suggest glial abnormalities in patients with bipolar disorder and an effect of mood stabilizers on certain genes in astrocytes, less is known about the effects of mood stabilizers in astrocytes than in neurons. The present study identifies a common underlying response to mood stabilizers in astrocytes. METHODS Human astrocyte-derived cells (U-87 MG) were treated with the four most commonly used mood stabilizers (lithium, valproic acid, carbamazepine, and lamotrigine) and subjected to microarray gene expression analyses. The most prominently regulated genes were validated by qRT-PCR and western blot analysis. The intercellular localization of one of these regulated genes, fasciculation and elongation protein zeta 1 (FEZ1), was evaluated by immunofluorescence staining. RESULTS The microarray data indicated that FEZ1 was the only gene commonly induced by the four mood stabilizers in human astrocyte-derived cells. An independent experiment confirmed astrocytic FEZ1 induction at both the transcript and protein levels following mood stabilizer treatments. FEZ1 localized to the cytoplasm of transformed and primary astrocytes from the human adult brain. CONCLUSIONS Our data suggest that FEZ1 may play important roles in human astrocytes, and that mood stabilizers might exert their cytoprotective and mood-stabilizing effects by inducing FEZ1 expression in astrocytes.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Alborghetti MR, Furlan AS, Kobarg J. FEZ2 has acquired additional protein interaction partners relative to FEZ1: functional and evolutionary implications. PLoS One 2011; 6:e17426. [PMID: 21408165 PMCID: PMC3050892 DOI: 10.1371/journal.pone.0017426] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/04/2011] [Indexed: 12/16/2022] Open
Abstract
Background The FEZ (fasciculation and elongation protein zeta) family designation was purposed by Bloom and Horvitz by genetic analysis of C. elegans unc-76. Similar human sequences were identified in the expressed sequence tag database as FEZ1 and FEZ2. The unc-76 function is necessary for normal axon fasciculation and is required for axon-axon interactions. Indeed, the loss of UNC-76 function results in defects in axonal transport. The human FEZ1 protein has been shown to rescue defects caused by unc-76 mutations in nematodes, indicating that both UNC-76 and FEZ1 are evolutionarily conserved in their function. Until today, little is known about FEZ2 protein function. Methodology/Principal Findings Using the yeast two-hybrid system we demonstrate here conserved evolutionary features among orthologs and non-conserved features between paralogs of the FEZ family of proteins, by comparing the interactome profiles of the C-terminals of human FEZ1, FEZ2 and UNC-76 from C. elegans. Furthermore, we correlate our data with an analysis of the molecular evolution of the FEZ protein family in the animal kingdom. Conclusions/Significance We found that FEZ2 interacted with 59 proteins and that of these only 40 interacted with FEZ1. Of the 40 FEZ1 interacting proteins, 36 (90%), also interacted with UNC-76 and none of the 19 FEZ2 specific proteins interacted with FEZ1 or UNC-76. This together with the duplication of unc-76 gene in the ancestral line of chordates suggests that FEZ2 is in the process of acquiring new additional functions. The results provide also an explanation for the dramatic difference between C. elegans and D. melanogaster unc-76 mutants on one hand, which cause serious defects in the nervous system, and the mouse FEZ1 -/- knockout mice on the other, which show no morphological and no strong behavioural phenotype. Likely, the ubiquitously expressed FEZ2 can completely compensate the lack of neuronal FEZ1, since it can interact with all FEZ1 interacting proteins and additional 19 proteins.
Collapse
Affiliation(s)
- Marcos R. Alborghetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Ariane S. Furlan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
19
|
Chen F, Lam R, Shaywitz D, Hendrickson RC, Opiteck GJ, Wishengrad D, Liaw A, Song Q, Stewart AJ, Cummings CE, Beals C, Yarasheski KE, Reicin A, Ruddy M, Hu X, Yates NA, Menetski J, Herman GA. Evaluation of early biomarkers of muscle anabolic response to testosterone. J Cachexia Sarcopenia Muscle 2011; 2:45-56. [PMID: 21475673 PMCID: PMC3063869 DOI: 10.1007/s13539-011-0021-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/31/2011] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND: Early biomarkers of skeletal muscle anabolism will facilitate the development of therapies for sarcopenia and frailty. METHODS AND RESULTS: We examined plasma type III collagen N-terminal propeptide (P3NP), skeletal muscle protein fractional synthesis rate, and gene and protein expression profiles to identify testosterone-induced changes in muscle anabolism. Two placebo-controlled studies enrolled community-dwelling men (study 1, 60-75 years; study 2, 18-40 years) with low to normal testosterone levels. Men were randomized to lower dose (study 1, 100 mg; study 2, 200 mg) or higher dose (study 1, 300 mg; study 2, 600 mg) single intramuscular testosterone or saline injection. After 1 week, testosterone acutely increased plasma P3NP levels in a dose-dependent manner and altered the expression of several skeletal muscle transcripts and proteins. Though not statistically significant, mixed muscle protein fractional synthesis rate tended to increase (1.08-fold with 100 mg testosterone, 1.12-fold with 300 mg testosterone). Testosterone exposure also increased skeletal muscle expression of the collagen type III gene that encodes P3NP. CONCLUSION: P3NP is a potentially useful early biomarker for muscle anabolic therapy. Skeletal muscle protein and RNA profiling are useful tools for the discovery of novel muscle anabolic biomarkers.
Collapse
Affiliation(s)
- Fabian Chen
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Raymond Lam
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - David Shaywitz
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
- Present Address: Theravance Inc., South San Francisco, CA 94080 USA
| | - Ronald C. Hendrickson
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Gregory J. Opiteck
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Dana Wishengrad
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Andy Liaw
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Qinghua Song
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | | | | | - Chan Beals
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | | | - Alise Reicin
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Marcella Ruddy
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Xuguang Hu
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Nathan A. Yates
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Joseph Menetski
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| | - Gary A. Herman
- Merck Research Laboratories, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065 USA
| |
Collapse
|
20
|
Nakahira M, Macedo JNA, Seraphim TV, Cavalcante N, Souza TACB, Damalio JCP, Reyes LF, Assmann EM, Alborghetti MR, Garratt RC, Araujo APU, Zanchin NIT, Barbosa JARG, Kobarg J. A draft of the human septin interactome. PLoS One 2010; 5:e13799. [PMID: 21082023 PMCID: PMC2970546 DOI: 10.1371/journal.pone.0013799] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/13/2010] [Indexed: 11/18/2022] Open
Abstract
Background Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins. Methodology/Principal Findings Here, we performed yeast two-hybrid screens with human septins 1–10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments. Conclusions/Significance If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the “group rule”, i.e. members of the same group (e.g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.
Collapse
Affiliation(s)
- Marcel Nakahira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
| | | | - Thiago Vargas Seraphim
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
| | - Nayara Cavalcante
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Tatiana A. C. B. Souza
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | | | - Luis Fernando Reyes
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Eliana M. Assmann
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Marcos R. Alborghetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
| | - Richard C. Garratt
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Ana Paula U. Araujo
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Nilson I. T. Zanchin
- Centro de Biologia Molecular e Engenharia Genética e Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brasil
| | - João A. R. G. Barbosa
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brasil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
- * E-mail:
| |
Collapse
|
21
|
dos Santos MT, Trindade DM, Gonçalves KDA, Bressan GC, Anastassopoulos F, Yunes JA, Kobarg J. Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase. MOLECULAR BIOSYSTEMS 2010; 7:180-93. [PMID: 21042649 DOI: 10.1039/c0mb00088d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.
Collapse
Affiliation(s)
- Marcos Tadeu dos Santos
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, CP6192, 13084-971 Campinas, SP, Brasil.
| | | | | | | | | | | | | |
Collapse
|
22
|
Vaz Meirelles G, Ferreira Lanza DC, da Silva JC, Santana Bernachi J, Paes Leme AF, Kobarg J. Characterization of hNek6 interactome reveals an important role for its short N-terminal domain and colocalization with proteins at the centrosome. J Proteome Res 2010; 9:6298-316. [PMID: 20873783 DOI: 10.1021/pr100562w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Physical protein-protein interactions are fundamental to all biological processes and are organized in complex networks. One branch of the kinome network is the evolutionarily conserved NIMA-related serine/threonine kinases (Neks). Most of the 11 mammalian Neks studied so far are related to cell cycle regulation, and due to association with diverse human pathologies, Neks are promising chemotherapeutic targets. Human Nek6 was associated to carcinogenesis, but its interacting partners and signaling pathways remain elusive. Here we introduce hNek6 as a highly connected member in the human kinase interactome. In a more global context, we performed a broad data bank comparison based on degree distribution analysis and found that the human kinome is enriched in hubs. Our networks include a broad set of novel hNek6 interactors as identified by our yeast two-hybrid screens classified into 18 functional categories. All of the tested interactions were confirmed, and the majority of tested substrates were phosphorylated in vitro by hNek6. Notably, we found that hNek6 N-terminal is important to mediate the interactions with its partners. Some novel interactors also colocalized with hNek6 and γ-tubulin in human cells, pointing to a possible centrosomal interaction. The interacting proteins link hNek6 to novel pathways, for example, Notch signaling and actin cytoskeleton regulation, or give new insights on how hNek6 may regulate previously proposed pathways such as cell cycle regulation, DNA repair response, and NF-κB signaling. Our findings open new perspectives in the study of hNek6 role in cancer by analyzing its novel interactions in specific pathways in tumor cells, which may provide important implications for drug design and cancer therapy.
Collapse
Affiliation(s)
- Gabriela Vaz Meirelles
- Laboratório Nacional de Biociências, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Teixeira FR, Yokoo S, Gartner CG, Manfiolli AO, Baqui MMA, Assmann EM, Maragno ALGC, Yu H, de Lanerolle P, Kobarg J, Gygi SP, Gomes MD. Identification of FBXO25-interacting proteins using an integrated proteomics approach. Proteomics 2010; 10:2746-57. [PMID: 20473970 PMCID: PMC3034404 DOI: 10.1002/pmic.200900419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 04/28/2010] [Indexed: 01/28/2023]
Abstract
FBXO25 is one of the 68 human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of s-phase-kinase associated protein 1, really interesting new gene-box 1, Cullin 1, and F-box protein (SCF1) that are involved in targeting proteins for destruction across the ubiquitin proteasome system. We recently reported that the FBXO25 protein accumulates in novel subnuclear structures named FBXO25-associated nuclear domains (FAND). Combining two-step affinity purification followed by MS with a classical two-hybrid screen, we identified 132 novel potential FBXO25 interacting partners. One of the identified proteins, beta-actin, physically interacts through its N-terminus with FBXO25 and is enriched in the FBXO25 nuclear compartments. Inhibitors of actin polymerization promote a significant disruption of FAND, indicating that they are compartments influenced by the organizational state of actin in the nucleus. Furthermore, FBXO25 antibodies interfered with RNA polymerase II transcription in vitro. Our results open new perspectives for the understanding of this novel compartment and its nuclear functions.
Collapse
Affiliation(s)
- Felipe R. Teixeira
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Sami Yokoo
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos G. Gartner
- Cell Biology Department of Harvard Medical School, Harvard University, Boston, USA
| | - Adriana O. Manfiolli
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Munira M. A. Baqui
- Department of Cellular and Molecular Biology of the Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliana M. Assmann
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | | | - Huijun Yu
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, USA
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, USA
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Steven P. Gygi
- Cell Biology Department of Harvard Medical School, Harvard University, Boston, USA
| | - Marcelo D. Gomes
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Lanza DCF, Meirelles GV, Alborghetti MR, Abrile CH, Lenz G, Kobarg J. FEZ1 interacts with CLASP2 and NEK1 through coiled-coil regions and their cellular colocalization suggests centrosomal functions and regulation by PKC. Mol Cell Biochem 2009; 338:35-45. [PMID: 19924516 DOI: 10.1007/s11010-009-0317-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/03/2009] [Indexed: 01/02/2023]
Abstract
FEZ1 was initially described as a neuronal protein that influences axonal development and cell polarization. CLASP2 and NEK1 proteins are present in a centrosomal complex and participate in cell cycle and cell division mechanisms, but their functions were always described individually. Here, we report that NEK1 and CLASP2 colocalize with FEZ1 in a perinuclear region in mammalian cells, and observed that coiled-coil interactions occur between FEZ1/CLASP2 and FEZ1/NEK1 in vitro. These three proteins colocalize and interact with endogenous gamma-tubulin. Furthermore, we found that CLASP2 is phosphorylated and interacts with active PKC isoforms, and that FEZ1/CLASP2 colocalization is inhibited by PMA treatment. Our results provide evidence that these three proteins cooperate in centrosomal functions and open new directions for future studies.
Collapse
Affiliation(s)
- Daniel C F Lanza
- Centro de Biologia Molecular Estrutural, Associação Brasileira de Tecnologia de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Trindade DM, Silva JC, Navarro MS, Torriani ICL, Kobarg J. Low-resolution structural studies of human Stanniocalcin-1. BMC STRUCTURAL BIOLOGY 2009; 9:57. [PMID: 19712479 PMCID: PMC2744999 DOI: 10.1186/1472-6807-9-57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 08/27/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Stanniocalcins (STCs) represent small glycoprotein hormones, found in all vertebrates, which have been functionally implicated in Calcium homeostasis. However, recent data from mammalian systems indicated that they may be also involved in embryogenesis, tumorigenesis and in the context of the latter especially in angiogenesis. Human STC1 is a 247 amino acids protein with a predicted molecular mass of 27 kDa, but preliminary data suggested its di- or multimerization. The latter in conjunction with alternative splicing and/or post-translational modification gives rise to forms described as STC50 and "big STC", which molecular weights range from 56 to 135 kDa. RESULTS In this study we performed a biochemical and structural analysis of STC1 with the aim of obtaining low resolution structural information about the human STC1, since structural information in this protein family is scarce. We expressed STC1 in both E. coli and insect cells using the baculo virus system with a C-terminal 6 x His fusion tag. From the latter we obtained reasonable amounts of soluble protein. Circular dichroism analysis showed STC1 as a well structured protein with 52% of alpha-helical content. Mass spectroscopy analysis of the recombinant protein allowed to assign the five intramolecular disulfide bridges as well as the dimerization Cys202, thereby confirming the conservation of the disulfide pattern previously described for fish STC1. SAXS data also clearly demonstrated that STC1 adopts a dimeric, slightly elongated structure in solution. CONCLUSION Our data reveal the first low resolution, structural information for human STC1. Theoretical predictions and circular dichroism spectroscopy both suggested that STC1 has a high content of alpha-helices and SAXS experiments revealed that STC1 is a dimer of slightly elongated shape in solution. The dimerization was confirmed by mass spectrometry as was the highly conserved disulfide pattern, which is identical to that found in fish STC1.
Collapse
Affiliation(s)
- Daniel M Trindade
- Centro de Biologia Molecular Estrutural (CEBIME), Campinas, SP, Brazil
- Instituto de Biologia, Departamento de Bioquímica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Júlio C Silva
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brazil
- Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, SP, Brazil
| | | | - Iris CL Torriani
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brazil
- Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, SP, Brazil
| | - Jörg Kobarg
- Centro de Biologia Molecular Estrutural (CEBIME), Campinas, SP, Brazil
- Instituto de Biologia, Departamento de Bioquímica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
26
|
Arginine methylation analysis of the splicing-associated SR protein SFRS9/SRP30C. Cell Mol Biol Lett 2009; 14:657-69. [PMID: 19557313 PMCID: PMC6275941 DOI: 10.2478/s11658-009-0024-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 06/10/2009] [Indexed: 11/20/2022] Open
Abstract
The human SFRS9/SRp30c belongs to the SR family of splicing regulators. Despite evidence that members of this protein family may be targeted by arginine methylation, this has yet to be experimentally addressed. In this study, we found that SFRS9 is a target for PRMT1-mediated arginine methylation in vitro, and that it is immunoprecipitated from HEK-293 lysates by antibodies that recognize both mono- and dimethylated arginines. We further observed that upon treatment with the methylation inhibitor Adox, the fluorescent EGFP-SFRS9 re-localizes to dot-like structures in the cell nucleus. In subsequent confocal analyses, we found that EGFP-SFRS9 localizes to nucleoli in Adox-treated cells. Our findings indicate the importance of arginine methylation for the subnuclear localization of SFRS9.
Collapse
|
27
|
Kahle J, Piaia E, Neimanis S, Meisterernst M, Doenecke D. Regulation of nuclear import and export of negative cofactor 2. J Biol Chem 2009; 284:9382-93. [PMID: 19204005 PMCID: PMC2666590 DOI: 10.1074/jbc.m805694200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 01/20/2009] [Indexed: 12/21/2022] Open
Abstract
The negative cofactor 2 (NC2) is a protein complex composed of two subunits, NC2alpha and NC2beta, and plays a key role in transcription regulation. Here we investigate whether each subunit contains a nuclear localization signal (NLS) that permits individual crossing of the nuclear membrane or whether nuclear import of NC2alpha and NC2beta depends on heterodimerization. Our results from in vitro binding studies and transfection experiments in cultured cells show that each subunit contains a classical NLS (cNLS) that is recognized by the importin alpha/beta heterodimer. Regardless of the individual cNLSs the two NC2 subunits are translocated as a preassembled complex as co-transfection experiments with wild-type and cNLS-deficient NC2 subunits demonstrate. Ran-dependent binding of the nuclear export receptor Crm1/exportin 1 confirmed the presence of a leucine-rich nuclear export signal (NES) in NC2beta. In contrast, NC2alpha does not exhibit a NES. Our results from interspecies heterokaryon assays suggest that heterodimerization with NC2alpha masks the NES in NC2beta, which prevents nuclear export of the NC2 complex. A mutation in either one of the two cNLSs decreases the extent of importin alpha/beta-mediated nuclear import of the NC2 complex. In addition, the NC2 complex can enter the nucleus via a second pathway, facilitated by importin 13. Because importin 13 binds exclusively to the NC2 complex but not to the individual subunits this alternative import pathway depends on sequence elements distributed among the two subunits.
Collapse
Affiliation(s)
- Joerg Kahle
- Institute of Biochemistry and Molecular Cell Biology, Department of Molecular Biology, Georg-August-University, Humboldtalle 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
28
|
Quaresma AJ, Bressan G, Gava L, Lanza D, Ramos C, Kobarg J. Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments. Exp Cell Res 2009; 315:968-80. [DOI: 10.1016/j.yexcr.2009.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 01/13/2009] [Accepted: 01/17/2009] [Indexed: 12/15/2022]
|
29
|
He J, Liu J, Zhang Z, Sun M, Zhu T, Xia C. Expression of fasciculation and elongation protein zeta-1 (FEZ1) in cultured rat neonatal astrocytes. Mol Cell Biochem 2009; 325:159-67. [PMID: 19199094 DOI: 10.1007/s11010-009-0030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/15/2009] [Indexed: 01/18/2023]
Abstract
Astrocytes play a more important role than simply providing physical support for neurons, however, the function(s) of type 1 and type 2 astrocytes (T1As, T2As), remains unclear. A DNA microarray was used to identify gene expression in cultured T1As and T2As isolated from postnatal day 1 rat cortex. Ninety-nine of the 138 differentially expressed genes were involved in a diverse number of processes. The fasciculation and elongation protein zeta-1 (FEZ1) gene was studied further because it has been suggested that it is not expressed by astrocytes. RT-PCR and Western blots confirmed the microarray data and showed that FEZ1 was present in T1 and T2As and is more highly expressed in T2As. Immunocytochemistry revealed that FEZ1 was located in the astrocytic cytoplasm and cell processes but not the nucleus. The results contribute to a clearer understanding of the two types of astrocytes.
Collapse
Affiliation(s)
- Jianghong He
- Cytoneurobiology Unit & Laboratory of Aging and Nervous Diseases, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, JS, 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Lanza DCF, Silva JC, Assmann EM, Quaresma AJC, Bressan GC, Torriani IL, Kobarg J. Human FEZ1 has characteristics of a natively unfolded protein and dimerizes in solution. Proteins 2009; 74:104-21. [PMID: 18615714 DOI: 10.1002/prot.22135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The fasciculation and elongation protein Zeta 1 (FEZ1) is the mammalian orthologue of the Caenorhabditis elegans protein UNC-76, which is necessary for axon growth. Human FEZ1 interacts with Protein Kinase C (PKC) and several regulatory proteins involved in functions ranging from microtubule associated transport to transcriptional regulation. Theoretical prediction, circular dichroism, fluorescence spectroscopy, and limited proteolysis of recombinant FEZ1 suggest that it contains disordered regions, especially in its N-terminal region, and that it may belong to the group of natively unfolded proteins. Small angle X-ray scattering experiments indicated a mainly disordered conformation, proved that FEZ1 is a dimer of elongated shape and provided overall dimensional parameters for the protein. In vitro pull down experiments confirmed these results and demonstrated that dimerization involves the N-terminus. Ab-initio 3D low resolution models of the full-length conformation of the dimeric constructs 6xHis-FEZ1(1-392) and 6xHis-FEZ1(1-227) were obtained. Furthermore, we performed in vitro phosphorylation assays of FEZ1 with PKC. The phosphorylation occurred mainly in its C-terminal region, and does not cause any significant conformational changes, but nonetheless inhibited its interaction with the FEZ1 interacting domain of the protein CLASP2 in vitro. The C terminus of FEZ1 has been reported to bind to several interacting proteins. This suggests that FEZ1 binding and transport function of interacting proteins may be subject to regulation by phosphorylation.
Collapse
|
31
|
Sakae N, Yamasaki N, Kitaichi K, Fukuda T, Yamada M, Yoshikawa H, Hiranita T, Tatsumi Y, Kira JI, Yamamoto T, Miyakawa T, Nakayama KI. Mice lacking the schizophrenia-associated protein FEZ1 manifest hyperactivity and enhanced responsiveness to psychostimulants. Hum Mol Genet 2008; 17:3191-203. [PMID: 18647754 DOI: 10.1093/hmg/ddn215] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
FEZ1 (fasciculation and elongation protein zeta 1), a mammalian ortholog of Caenorhabditis elegans UNC-76, interacts with DISC1 (disrupted in schizophrenia 1), a schizophrenia susceptibility gene product, and polymorphisms of human FEZ1 have been associated with schizophrenia. We have now investigated the role of FEZ1 in brain development and the pathogenesis of schizophrenia by generating mice that lack Fez1. Immunofluorescence staining revealed FEZ1 to be located predominantly in gamma-aminobutyric acid-containing interneurons. The Fez1(-/-) mice showed marked hyperactivity in a variety of behavioral tests as well as enhanced behavioral responses to the psychostimulants MK-801 and methamphetamine. In vivo microdialysis revealed that the methamphetamine-induced release of dopamine in the nucleus accumbens was exaggerated in the mutant mice, suggesting that enhanced mesolimbic dopaminergic transmission contributes to their hyperactivity phenotype. These observations implicate impairment of FEZ1 function in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Nobutaka Sakae
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-2-2 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lanza DCF, Trindade DM, Assmann EM, Kobarg J. Over-expression of GFP-FEZ1 causes generation of multi-lobulated nuclei mediated by microtubules in HEK293 cells. Exp Cell Res 2008; 314:2028-39. [PMID: 18439996 DOI: 10.1016/j.yexcr.2008.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/20/2008] [Accepted: 02/26/2008] [Indexed: 12/17/2022]
Abstract
FEZ1 (Fasciculation and elongation protein zeta 1) is an ortholog of the Caenorhabditis elegans protein UNC-76, involved in neuronal development and axon outgrowth, in that worm. Mammalian FEZ1 has already been reported to cooperate with PKC-zeta in the differentiation and polarization of PC12 neuronal cells. Furthermore, FEZ1 is associated with kinesin 1 and JIP1 to form a cargo-complex responsible for microtubule based transport of mitochondria along axons. FEZ1 can also be classified as a hub protein, since it was reported to interact with over 40 different proteins in yeast two-hybrid screens, including at least nine nuclear proteins. Here, we transiently over-expressed GFP-FEZ1full in human HEK293 and HeLa cells in order to study the sub-cellular localization of GFP-FEZ1. We observed that over 40% of transiently transfected cells at 3 days post-transfection develop multi-lobulated nuclei, which are also called flower-like nuclei. We further demonstrated that GFP-FEZ1 localizes either to the cytoplasm or the nuclear fraction, and that the appearance of the flower-like nuclei depends on intact microtubule function. Finally, we show that FEZ1 co-localizes with both, alpha- and especially with gamma-tubulin, which localizes as a centrosome like structure at the center of the multiple lobules. In summary, our data suggest that FEZ1 has an important centrosomal function and supply new mechanistic insights to the formation of flower-like nuclei, which are a phenotypical hallmark of human leukemia cells.
Collapse
Affiliation(s)
- Daniel C F Lanza
- Laboratório Nacional de Luz Síncrotron, Campinas SP, Brazil; Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
33
|
Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH. BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem 2008; 283:11924-34. [PMID: 18303029 DOI: 10.1074/jbc.m705401200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the tumor-suppressing mechanism of the SWI/SNF chromatin remodeling complex, we investigated its molecular relationship with p53. Using the pREP4-luc episomal reporter, we first demonstrated that p53 utilizes the chromatin remodeling activity of the SWI/SNF complex to initiate transcription from the chromatin-structured promoter. Among the components of the SWI/SNF complex, we identified BAF60a as a mediator of the interaction with p53 by the yeast two-hybrid assay. p53 directly interacted only with BAF60a, but not with other components of the SWI/SNF complex, such as BRG1, SRG3, SNF5, or BAF57. We found out that multiple residues at the amino acid 108-150 region of BAF60a were involved in the interaction with the tetramerization domain of p53. The N-terminal fragment of BAF60a containing the p53-interacting region as well as small interfering RNA for baf60a inhibited the SWI/SNF complex-mediated transcriptional activity of p53. The uncoupling of p53 with the SWI/SNF complex resulted in the repression of both p53-dependent apoptosis and cell cycle arrest by the regulation of target genes. These results suggest that the SWI/SNF chromatin remodeling complex is involved in the suppression of tumors by the interaction with p53.
Collapse
Affiliation(s)
- Jaehak Oh
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Fujita T, Maturana AD, Ikuta J, Hamada J, Walchli S, Suzuki T, Sawa H, Wooten MW, Okajima T, Tatematsu K, Tanizawa K, Kuroda S. Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem Biophys Res Commun 2007; 361:605-10. [PMID: 17669366 DOI: 10.1016/j.bbrc.2007.07.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/12/2007] [Indexed: 12/23/2022]
Abstract
Fasciculation and elongation protein zeta-1 (FEZ1) promotes efficiently the neurite elongation of rat phaeochromocytoma PC12 cells. We here characterized FEZ1 in PC12 cells. Nerve growth factor (NGF) stimulation induces significant expression of endogenous FEZ1 in PC12 cells. Upon NGF stimulation FEZ1 localizes in both cytoplasm and neuritis, co-localizing with mitochondria. Silencing of FEZ1 by RNA interference efficiently reduces NGF-induced neurite elongation and the anterograde motility of mitochondria in PC12 cells. Immunoprecipitation and pulldown assay shows that FEZ1 interacts with kinesin superfamily protein 5 (KIF5) and tubulin. Thus, our results suggest that the FEZ1/kinesin complex functions for the transport of mitochondria along microtubules toward the extending neurites in differentiating PC12 cells.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Structural Molecular Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ikuta J, Maturana A, Fujita T, Okajima T, Tatematsu K, Tanizawa K, Kuroda S. Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun 2006; 353:127-32. [PMID: 17173861 DOI: 10.1016/j.bbrc.2006.11.142] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 11/29/2006] [Indexed: 12/21/2022]
Abstract
The fasciculation and elongation protein zeta-1 (FEZ1), a mammalian orthologue of Caenorhabditis elegans UNC-76 protein, is a 45-kDa protein with four coiled-coiled domains and efficiently promotes the neurite elongation in the rat phaeochromocytoma PC12 cells. UNC-76 proteins of C. elegans and Drosophila have been genetically demonstrated to be involved in the axonal guidance. We here show that FEZ1 RNA interference (RNAi) represses the formation of axon in rat embryo hippocampal neurons. An anterograde mitochondrial movement is also retarded in neurites of the RNAi-treated hippocampal neurons. Moreover, the size of mitochondria is considerably elongated by the RNAi treatment. The transport of mitochondria from soma to axon or dendrites is essential for the neuronal differentiation. Therefore, our results strongly suggest that FEZ1 participates in the establishment of neuronal polarity by controlling the mitochondrial motility along axon.
Collapse
Affiliation(s)
- Junko Ikuta
- Department of Structural Molecular Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Quaresma AJC, Oyama S, Barbosa JARG, Kobarg J. The acidic domain of hnRNPQ (NSAP1) has structural similarity to Barstar and binds to Apobec1. Biochem Biophys Res Commun 2006; 350:288-97. [PMID: 17010310 DOI: 10.1016/j.bbrc.2006.09.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 09/11/2006] [Indexed: 11/18/2022]
Abstract
Apobec1 edits the ApoB mRNA by deaminating nucleotide C(6666), which results in a codon change from Glutamate to stop, and subsequent expression of a truncated protein. Apobec1 is regulated by ACF (Apobec1 complementation factor) and hnRNPQ, which contains an N-terminal "acidic domain" (AcD) of unknown function, three RNA recognition motifs, and an Arg/Gly-rich region. Here, we modeled the structure of AcD using the bacterial protein Barstar as a template. Furthermore, we demonstrated by in vitro pull-down assays that 6xHis-AcD alone is able to interact with GST-Apobec1. Finally, we performed in silico phosphorylation of AcD and molecular dynamics studies, which indicate conformational changes in the phosphorylated form. The results of the latter studies were confirmed by in vitro phosphorylation of 6xHis-AcD by protein kinase C, mass spectrometry, and spectroscopic analyses. Our data suggest hnRNPQ interactions via its AcD with Apobec1 and that this interaction is regulated by the AcD phosphorylation.
Collapse
Affiliation(s)
- Alexandre J C Quaresma
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro 10,000, C.P. 6192, 13084-971 Campinas, SP, Brazil
| | | | | | | |
Collapse
|