1
|
Manivannan K, Fathy Mohamed Y, Fernandez RC. Determining the Bordetella LPS structural features that influence TLR4 downstream signaling. Front Microbiol 2025; 16:1540534. [PMID: 40071202 PMCID: PMC11895810 DOI: 10.3389/fmicb.2025.1540534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Upon recognizing bacterial lipopolysaccharide (LPS), human TLR4 initiates two distinct signaling pathways: the MyD88 pathway from the cell surface or the TRIF pathway following endocytosis. While the first is associated with strong pro-inflammatory responses, the latter is linked to dendritic cell maturation and T cell priming. Changes in LPS structure can influence the activation of either or both pathways. This study investigates the influence of specific structural features of Bordetella LPS on these pathways: the O antigen, the number of acyl chains in lipid A and the glucosamine modification of the phosphates of the lipid A diglucosamine backbone. Systematically engineered Bordetella LPS differing in one or more of these features were studied by quantifying NFκB and IRF3 activation-indicators of MyD88 and TRIF pathway activation, respectively. The findings reveal that the glucosamine modification of lipid A plays a dominant role in TLR4-mediated signaling, overriding the influence of the O antigen and lipid A acylation. The absence of glucosamine modification significantly reduced the activation of both MyD88 and TRIF pathways, underscoring its importance in promoting TLR4 dimerization. Furthermore, under-acylation of LPS (with 4 or 5 acyl chains) partially reduced NFκB activation, while completely abrogating TRIF pathway activation. In contrast, hexa-and hepta-acylated LPS equally and robustly activated both pathways. Lastly, the Bordetella O antigen selectively biased signaling towards the TRIF pathway without affecting the MyD88 pathway. This study provides valuable insights into how specific LPS structural modifications can be leveraged to tailor TLR4-mediated signaling.
Collapse
Affiliation(s)
- Kiruthika Manivannan
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Yasmine Fathy Mohamed
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rachel C. Fernandez
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Tian G, Hu J, Qin C, Li L, Ning Y, Zhu S, Xie S, Zou X, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of an Aminoglycoside Trisaccharide Repeating Unit of Pseudomonas aeruginosa Serotype O5 O-Antigen Containing a Rare Dimeric-Man pN3NA. J Am Chem Soc 2024; 146:18427-18439. [PMID: 38946080 DOI: 10.1021/jacs.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-β-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The β-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Yunzhan Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Suqing Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
3
|
Patiño P, Gallego C, Martínez N, Iregui C, Rey A. Effect of carbohydrates on the adhesion of Bordetella bronchiseptica to the respiratory epithelium in rabbits. Vet Res Commun 2024; 48:1481-1495. [PMID: 38336962 PMCID: PMC11147920 DOI: 10.1007/s11259-024-10307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
This study proposes an ecological approach for preventing respiratory tract infections caused by Bordetella bronchiseptica in mammals using a mixture of carbohydrates. In an in vivo study, 51-day-old New Zealand rabbits were treated with a solution containing 1 × 107 CFUs of B. bronchiseptica and 250 μg of one of the following carbohydrates: N acetylglucosamine (GlcNAc), N acetylgalactosamine (GalNAc), alpha methyl mannose (AmeMan), alpha methyl glucose (AmeGlc) and sialic acid (Neu5AC). Positive (B. bronchiseptica) and negative (Physiological Saline Solution (PSS)) controls were included. Animals treated with GlcNAc or AmeGlc showed no clinical signs of infection and exhibited a significant reduction (p < 0.05) in the severity of microscopic lesions evaluated in the nasal cavity and lung compared with the positive controls. Additionally, the presence of bacteria was not detected through microbiological isolation or PCR in the lungs of animals treated with these sugars. Use of a mixture of GlcNAc and AmeGlc resulted in greater inhibition of microscopic lesions, with a significant reduction (p < 0.05) in the severity of these lesions compared to the results obtained using individual sugars. Furthermore, the bacterium was not detected through microbiological isolation, Polymerase Chain Reaction (PCR) or indirect immunoperoxidase (IIP) in this group.
Collapse
Affiliation(s)
- Pilar Patiño
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Carolina Gallego
- Laboratory of Veterinary Pathology, Universidad de Ciencias Aplicadas y Ambientales, Bogotá D.C., Colombia
| | - Nhora Martínez
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Carlos Iregui
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Alba Rey
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia.
- Faculty of Agricultural Sciences, Veterinary Medicine Program, Fundación Universitaria Agraria de Colombia, Bogotá D.C., Colombia.
| |
Collapse
|
4
|
Wu X, Zheng Z, Wang L, Xue Y, Liao J, Liu H, Liu D, Sun JS, Zhang Q. Stereoselective Synthesis of 2,3‐diamino‐2,3‐dideoxyglycosides from 3‐O‐acetyl‐2‐nitroglycals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaopei Wu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Zhichao Zheng
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Liming Wang
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Yunxia Xue
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jinxi Liao
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Hui Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Deyong Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jian-Song Sun
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Qingju Zhang
- Jiangxi Normal University National Research Centre for Carbohydrate Synthesis 99 Ziyang Avenue 330022 Nanchang CHINA
| |
Collapse
|
5
|
Pérez-Ortega J, Van Harten RM, Van Boxtel R, Plisnier M, Louckx M, Ingels D, Haagsman HP, Tommassen J. Reduction of endotoxicity in Bordetella bronchiseptica by lipid A engineering: Characterization of lpxL1 and pagP mutants. Virulence 2021; 12:1452-1468. [PMID: 34053396 PMCID: PMC8168481 DOI: 10.1080/21505594.2021.1929037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/28/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
Whole-cell vaccines against Gram-negative bacteria commonly display high reactogenicity caused by the endotoxic activity of lipopolysaccharide (LPS), one of the major components of the bacterial outer membrane. Underacylation of the lipid A moiety of LPS has been related with reduced endotoxicity in several Gram-negative species. Here, we evaluated whether the inactivation of two genes encoding lipid A acylases of Bordetella bronchiseptica, i.e. pagP and lpxL1, could be used for the development of less reactogenic vaccines against this pathogen for livestock and companion animals. Inactivation of pagP resulted in the loss of the secondary palmitate chain at position 3' of lipid A, but hardly affected the potency of the LPS to activate the Toll-like receptor 4 (TLR4). Inactivation of lpxL1 resulted in the loss of the secondary 2-hydroxy laurate group present at position 2 of lipid A and, unexpectedly, in the additional loss of the glucosamines that decorate the phosphate groups at positions 1 and 4' and in an increase in LPS molecules carrying O-antigen. The resulting LPS showed greatly reduced potency to activate TLR4 in HEK-Blue reporter cells expressing human or mouse TLR4 as well as in porcine macrophages. Characterization of the lpxL1 mutant revealed many pleiotropic phenotypes, including increased resistance to SDS and rifampicin, increased susceptibility to cationic antimicrobial peptides, decreased auto-aggregation and biofilm formation, and a tendency to decreased infectivity of macrophages, which are all related to the altered LPS structure. We suggest that the lpxL1 mutant will be useful for the generation of safer vaccines.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Roel M. Van Harten
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ria Van Boxtel
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | | | | | - Henk P. Haagsman
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Balhuizen MD, van Dijk A, Jansen JWA, van de Lest CHA, Veldhuizen EJA, Haagsman HP. Outer Membrane Vesicles Protect Gram-Negative Bacteria against Host Defense Peptides. mSphere 2021; 6:e0052321. [PMID: 34232080 PMCID: PMC8386409 DOI: 10.1128/msphere.00523-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023] Open
Abstract
Host defense peptides (HDPs) are part of the innate immune system and constitute a first line of defense against invading pathogens. They possess antimicrobial activity against a broad spectrum of pathogens. However, pathogens have been known to adapt to hostile environments. Therefore, the bacterial response to treatment with HDPs was investigated. Previous observations suggested that sublethal concentrations of HDPs increase the release of outer membrane vesicles (OMVs) in Escherichia coli. First, the effects of sublethal treatment with HDPs CATH-2, PMAP-36, and LL-37 on OMV release of several Gram-negative bacteria were analyzed. Treatment with PMAP-36 and CATH-2 induced release of OMVs, but treatment with LL-37 did not. The OMVs were further characterized with respect to morphological properties. The HDP-induced OMVs often had disc-like shapes. The beneficial effect of bacterial OMV release was studied by determining the susceptibility of E. coli toward HDPs in the presence of OMVs. The minimal bactericidal concentration was increased in the presence of OMVs. It is concluded that OMV release is a means of bacteria to dispose of HDP-affected membrane. Furthermore, OMVs act as a decoy for HDPs and thereby protect the bacterium. IMPORTANCE Antibiotic resistance is a pressing problem and estimated to be a leading cause of mortality by 2050. Antimicrobial peptides, also known as host defense peptides (HDPs), and HDP-derived antimicrobials have potent antimicrobial activity and high potential as alternatives to antibiotics due to low resistance development. Some resistance mechanisms have developed in bacteria, and complete understanding of bacterial defense against HDPs will aid their use in the clinic. This study provides insight into outer membrane vesicles (OMVs) as potential defense mechanisms against HDPs, which will allow anticipation of unforeseen resistance to HDPs in clinical use and possibly prevention of bacterial resistance by the means of OMVs.
Collapse
Affiliation(s)
- Melanie D. Balhuizen
- Section of Molecular Host Defence, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Section of Molecular Host Defence, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen W. A. Jansen
- Section of Cell Biology, Metabolism and Cancer, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chris H. A. van de Lest
- Section of Cell Biology, Metabolism and Cancer, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J. A. Veldhuizen
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P. Haagsman
- Section of Molecular Host Defence, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Ucieklak K, Koj S, Niedziela T. Conserved Structural Features of Core Oligosaccharides among the Lipopolysaccharides of Respiratory Pathogens from the Genus Bordetella Analyzed Exclusively by NMR Spectroscopy. Int J Mol Sci 2021; 22:1029. [PMID: 33494150 PMCID: PMC7864354 DOI: 10.3390/ijms22031029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/05/2022] Open
Abstract
Bacterial pathogens expose on the cell surface a variety of complex carbohydrate molecules. Gram-negative bacteria produce lipopolysaccharides, which are the main components of the outer membrane of bacterial envelopes and play a major role in host-pathogen interactions. B. pertussis, B. parapertussis, B. bronchiseptica, and B. holmesii, are mammalian respiratory pathogens, having substantial economic impact on human health and agriculture. B. pertussis is responsible for whooping cough (pertussis) and B. holmesii is the second pertussis etiological factor, but the current anti-pertussis vaccines do not provide cross-protection. The structural data on any given hypothetical carbohydrate antigen is a prerequisite for further analysis of structure-related activities and their interaction with hosts. 1H NMR spectra constitute fingerprints of the analyzed glycans and provide unique identity information. The concept of structure-reporter groups has now been augmented by 1H,13C-correlation spectra of the Bordetella oligosaccharides. The comparative analysis of Bordetellae oligosaccharides (OS) revealed that the hexasaccharide, comprising the α-GlcpN, α-GlcpA, 4,6-disubstituted-β-Glcp, 2,7-disubstituted-l-α-d-Hepp, 3,4-disubstituted-l-α-d-Hepp, and Kdo, constitute the least variable OS segment. This minimal common element in the structure of lipopolysaccharides of Bordetellae could be used to devise a universal cross-protective vaccine component against infections with various bacteria from the genus Bordetella.
Collapse
Affiliation(s)
| | | | - Tomasz Niedziela
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (K.U.); (S.K.)
| |
Collapse
|
8
|
Ucieklak K, Koj S, Niedziela T. Bordetella holmesii Lipopolysaccharide Hide and Seek Game with Pertussis: Structural Analysis of the O-Specific Polysaccharide and the Core Oligosaccharide of the Type Strain ATCC 51541. Int J Mol Sci 2020; 21:E6433. [PMID: 32899371 PMCID: PMC7504554 DOI: 10.3390/ijms21176433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
Whooping cough is a highly contagious disease caused predominantly by Bordetella pertussis, but it also comprises of a pertussis-like illness caused by B. holmesii. The virulence factors of B. holmesii and their role in the pathogenesis remain unknown. Lipopolysaccharide is the main surface antigen of all Bordetellae. Data on the structural features of the lipopolysaccharide (LPS) of B. holmesii are scarce. The poly- and oligosaccharide components released by mild acidic hydrolysis of the LPS were separated and investigated by 1H and 13C NMR spectroscopy, mass spectrometry, and chemical methods. The structures of the O-specific polysaccharide and the core oligosaccharide of B. holmesii ATCC 51541 have been identified for the first time. The novel pentasaccharide repeating unit of the B. holmesii O-specific polysaccharide has the following structure: {→2)-α-l-Rhap-(1→6)-α-d-Glcp-(1→4)-[β-d-GlcpNAc-(1→3]-α-d-Galp-(1→3)-α-d-GlcpNAc-(1→}n. The SDS-PAGE and serological cross-reactivities of the B. holmesii LPS suggested the similarity between the core oligosaccharides of B. holmesii ATCC 51541 and B. pertussis strain 606. The main oligosaccharide fraction contained a nonasaccharide. The comparative analysis of the NMR spectra of B. holmesii core oligosaccharide fraction with this of the B. pertussis strain 606 indicated that the investigated core oligosaccharides were identical.
Collapse
Affiliation(s)
| | | | - Tomasz Niedziela
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (K.U.); (S.K.)
| |
Collapse
|
9
|
Casabuono AC, Sisti F, Fernández J, Hozbor D, Couto AS. Bordetella bronchiseptica Glycosyltransferase Core Mutants Trigger Changes in Lipid A Structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1679-1689. [PMID: 31190311 DOI: 10.1007/s13361-019-02233-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Bordetella bronchiseptica, known to infect animals and rarely humans, expresses a lipopolysaccharide that plays an essential role in host interactions, being critical for early clearance of the bacteria. On a B. bronchiseptica 9.73 isolate, mutants defective in the expression of genes involved in the biosynthesis of the core region were previously constructed. Herein, a comparative detailed structural analysis of the expressed lipids A by MALDI-TOF mass spectrometry was performed. The Bb3394 LPS defective in a 2-amino-2-deoxy-D-galacturonic acid lateral residue of the core presented a penta-acylated diglucosamine backbone modified with two glucosamine phosphates, similar to the wild-type lipid A. In contrast, BbLP39, resulting in the interruption of the LPS core oligosaccharide synthesis, presented lipid A species consisting in a diglucosamine backbone N-substituted with C14:0(3-O-C12:0) in C-2 and C14:0(3-O-C14:0) in C-2', O-acylated with C14:0(3-O-C10:0(3-OH) in C-3' and with a pyrophosphate in C-1. Regarding Bb3398 also presenting a rough LPS, the lipid A is formed by a hexa-acylated diglucosamine backbone carrying one pyrophosphate group in C-1 and one phosphate in C-4', both substituted with ethanolamine groups. As far as we know, this is the first description of a phosphoethanolamine modification in B. bronchiseptica lipid A. Our results demonstrate that although gene deletions were not directed to the lipid A moiety, each mutant presented different modifications. MALDI-TOF mass spectrometry was an excellent tool to highlight the structural diversity of the lipid A structures biosynthesized during its transit through the periplasm to the final localization in the outer surface of the outer membrane. Graphical Abstract.
Collapse
Affiliation(s)
- Adriana C Casabuono
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428GA, Buenos Aires, Argentina
| | - Federico Sisti
- Instituto de Biotecnología y Biología Molecular CCT La Plata CONICET, Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Julieta Fernández
- Instituto de Biotecnología y Biología Molecular CCT La Plata CONICET, Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Daniela Hozbor
- Instituto de Biotecnología y Biología Molecular CCT La Plata CONICET, Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Alicia S Couto
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428GA, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Novikov A, Marr N, Caroff M. A comparative study of the complete lipopolysaccharide structures and biosynthesis loci of Bordetella avium, B. hinzii, and B. trematum. Biochimie 2018; 159:81-92. [PMID: 30578925 DOI: 10.1016/j.biochi.2018.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
A dozen species of human and animal pathogens have been described to date in the Bordetella genus, with the majority being respiratory tract pathogens. Bordetella avium lipopolysaccharides have been shown to be important virulence factors for this bird pathogen. B. hinzii is closely related to the B. avium species, but has also been isolated from humans. B. trematum is associated to ear and blood infections in humans. Its lipid A structure, the biological active moiety of LPS, was found to be closely related to those of B. avium and B. hinzii. It is important to unveil the subtle structural modifications orchestrated during the LPS biosynthetic pathway to better understand host adaptation. The present data are also important in the context of deciphering the virulence pathways of this important genus containing the major pathogens B. pertussis and B. parapertussis, responsible for whooping cough. We recently reported the isolated lipid A structures of the three presented species, following the previously identified O-chain structures. In the present study, we provide details on the free and O-chain-linked core oligosaccharides which were required to characterize the complete LPS structures. Data are presented here in relation to relevant biosynthesis genes. The present characterization of the three species is well illustrated by Matrix Assisted Laser Desorption Mass Spectrometry experiments, and data were obtained mainly on native LPS molecules for the first time.
Collapse
Affiliation(s)
- Alexey Novikov
- LPS-BioSciences, Bâtiment 409, Université de Paris-Sud, Paris-Saclay, F-91405, Orsay, France
| | | | - Martine Caroff
- LPS-BioSciences, Bâtiment 409, Université de Paris-Sud, Paris-Saclay, F-91405, Orsay, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Paris-Sud, Université Paris-Saclay, F-91405, Orsay, France.
| |
Collapse
|
11
|
Structure of the LPS O-chain from Fusobacterium nucleatum strain ATCC 23726 containing a novel 5,7-diamino-3,5,7,9-tetradeoxy-l-gluco-non-2-ulosonic acid presumably having the d-glycero-l-gluco configuration. Carbohydr Res 2018; 468:69-72. [PMID: 30153554 DOI: 10.1016/j.carres.2018.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of a spontaneous streptomycin resistant (SmR) mutant of F. nucleatum strain ATCC 23726: -4-β-Non5Am7Ac-4-β-d-GlcNAcyl3NFoAN-3-β-d-FucNAc4N- where GlcNAcyl3NFoAN indicates 2,3-diamino-2,3-dideoxyglucuronic acid amide with Fo at N-3 being formyl and Acyl at N-2 being propanoyl (∼70%) or butanoyl (∼30%); Non5Am7Ac indicates 7-acetamido-5-acetimidoylamino-3,5,7,9-tetradeoxy-l-gluco-non-2-ulosonic acid presumably having the d-glycero-l-gluco configuration. To our knowledge, no l-gluco isomer of higher sugars of this class as well as no N-propanoyl or N-butanoyl group have so far been found in bacterial polysaccharides.
Collapse
|
12
|
Vinogradov E, St Michael F, Cox AD. Structure of the LPS O-chain from Fusobacterium nucleatum strain MJR 7757 B. Carbohydr Res 2018; 463:37-39. [PMID: 29753950 DOI: 10.1016/j.carres.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/22/2023]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of F. nucleatum strain MJR 7757 B:where Lac is (R)-1-carboxyethyl (lactic acid residue); all monosaccharides are in the pyranose form. ManNAc4Lac, analogue of N-acetylmuramic acid, is found for the first time in natural sources.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
13
|
Thiriard A, Raze D, Locht C. Diversion of complement-mediated killing by Bordetella. Microbes Infect 2018; 20:512-520. [PMID: 29454132 DOI: 10.1016/j.micinf.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Abstract
The complement cascade participates in protection against bacterial infections, and pathogens, including Bordetella pertussis, have developed complement-evading strategies. Here we discuss current knowledge on B. pertussis complement evasion strategies and the role of antibody-dependent complement-mediated killing in protection against B. pertussis infection pointing out important knowledge gaps for further research to improve current pertussis vaccines.
Collapse
Affiliation(s)
- Anaïs Thiriard
- Université de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Dominique Raze
- Université de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Camille Locht
- Université de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
14
|
Ectopic Expression of O Antigen in Bordetella pertussis by a Novel Genomic Integration System. mSphere 2018; 3:mSphere00417-17. [PMID: 29404410 PMCID: PMC5784241 DOI: 10.1128/msphere.00417-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022] Open
Abstract
Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella. We describe a novel genome integration system that enables the introduction of DNA fragments as large as 50 kbp into the chromosomes of recipient bacteria. This system, named BPI, comprises a bacterial artificial chromosome vector and phage-derived gene integration machinery. We introduced the wbm locus of Bordetella bronchiseptica, which is required for O antigen biosynthesis, into the chromosome of B. pertussis, which intrinsically lacks O antigen, using the BPI system. After the introduction of the wbm locus, B. pertussis presented an additional substance in the lipooligosaccharide fraction that was specifically recognized by the anti-B. bronchiseptica antibody but not the anti-B. pertussis antibody, indicating that B. pertussis expressed O antigen corresponding to that of B. bronchiseptica. O antigen-expressing B. pertussis was less sensitive to the bactericidal effects of serum and polymyxin B than the isogenic parental strain. In addition, an in vivo competitive infection assay showed that O antigen-expressing B. pertussis dominantly colonized the mouse respiratory tract over the parental strain. These results indicate that the BPI system provides a means to alter the phenotypes of bacteria by introducing large exogenous DNA fragments. IMPORTANCE Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella.
Collapse
|
15
|
Membrane Vesicles Derived from Bordetella bronchiseptica: Active Constituent of a New Vaccine against Infections Caused by This Pathogen. Appl Environ Microbiol 2018; 84:AEM.01877-17. [PMID: 29180369 DOI: 10.1128/aem.01877-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica, a Gram-negative bacterium, causes chronic respiratory tract infections in a wide variety of mammalian hosts, including humans (albeit rarely). We recently designed Bordetella pertussis and Bordetella parapertussis experimental vaccines based on outer membrane vesicles (OMVs) derived from each pathogen, and we obtained protection against the respective infections in mice. Here, we demonstrated that OMVs derived from virulent-phase B. bronchiseptica (OMVBbvir+) protected mice against sublethal infections with different B. bronchiseptica strains, two isolated from farm animals and one isolated from a human patient. In all infections, we observed that the B. bronchiseptica loads were significantly reduced in the lungs of vaccinated animals; the lung-recovered CFU were decreased by ≥4 log units, compared with those detected in the lungs of nonimmunized animals (P < 0.001). In the OMVBbvir+-immunized mice, we detected IgG antibody titers against B. bronchiseptica whole-cell lysates, along with an immune serum having bacterial killing activity that both recognized B. bronchiseptica lipopolysaccharides and polypeptides such as GroEL and outer membrane protein C (OMPc) and demonstrated an essential protective capacity against B. bronchiseptica infection, as detected by passive in vivo transfer experiments. Stimulation of cultured splenocytes from immunized mice with OMVBbvir+ resulted in interleukin 5 (IL-5), gamma interferon (IFN-γ), and IL-17 production, indicating that the vesicles induced mixed Th2, Th1, and Th17 T-cell immune responses. We detected, by adoptive transfer assays, that spleen cells from OMVBbvir+-immunized mice also contributed to the observed protection against B. bronchiseptica infection. OMVs from avirulent-phase B. bronchiseptica and the resulting induced immune sera were also able to protect mice against B. bronchiseptica infection.IMPORTANCEBordetella bronchiseptica, a Gram-negative bacterium, causes chronic respiratory tract infections in a wide variety of mammalian hosts, including humans (albeit rarely). Several vaccines aimed at preventing B. bronchiseptica infection have been developed and used, but a safe effective vaccine is still needed. The significance and relevance of our research lie in the characterization of the OMVs derived from B. bronchiseptica as the source of a new experimental vaccine. We demonstrated here that our formulation based on OMVs derived from virulent-phase B. bronchiseptica (OMVBbvir+) was effective against infections caused by B. bronchiseptica isolates obtained from different hosts (farm animals and a human patient). In vitro and in vivo characterization of humoral and cellular immune responses induced by the OMVBbvir+ vaccine enabled a better understanding of the mechanism of protection necessary to control B. bronchiseptica infection. Here we also demonstrated that OMVs derived from B. bronchiseptica in the avirulent phase and the corresponding induced humoral immune response were able to protect mice from B. bronchiseptica infection. This realization provides the basis for the development of novel vaccines not only against the acute stages of the disease but also against stages of the disease or the infectious cycle in which avirulence factors could play a role.
Collapse
|
16
|
Sisti F, Fernández J, Cordero A, Casabuono A, Couto A, Hozbor D. Modifications of Bordetella bronchiseptica core lipopolysaccharide influence immune response without affecting protective activity. Bioorg Med Chem Lett 2016; 27:432-436. [PMID: 28040392 DOI: 10.1016/j.bmcl.2016.12.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Bordetella bronchiseptica produces respiratory disease primarily in mammals including humans. Although a considerably amount of research has been generated regarding lipopolysaccharide (LPS) role during infection and stimulating innate and adaptive immune response, mechanisms involved in LPS synthesis are still unknown. In this context we searched in B. bronchiseptica genome for putative glycosyltransferases. We found possible genes codifying for enzymes involved in sugar substitution of the LPS structure. We decided to analyse BB3394 to BB3400 genes, closed to a previously described LPS biosynthetic locus in B. pertussis. Particularly, conservation of BB3394 in sequenced B. bronchiseptica genomes suggests the importance of this gene for bacteria normal physiology. Deletion of BB3394 abolished resistance to naive serum as described for other LPS mutants. When purified LPS was analyzed, differences in the LPS core structure were found. Particularly, a GalNA branched sugar substitution in the core was absent in the LPS obtained from BB3394 deletion mutant. Absence of GalNA in core LPS alters immune response in vivo but is able to induce protective response against B. bronchiseptica infection.
Collapse
Affiliation(s)
- Federico Sisti
- Instituto de Biotecnología y Biología Molecular, CCT La Plata CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina.
| | - Julieta Fernández
- Instituto de Biotecnología y Biología Molecular, CCT La Plata CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina
| | - Andrés Cordero
- Instituto de Biotecnología y Biología Molecular, CCT La Plata CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina
| | - Adriana Casabuono
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Cs Exactas y Naturales, Universidad de Buenos Aires, 1428 Bs. As., Argentina
| | - Alicia Couto
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Cs Exactas y Naturales, Universidad de Buenos Aires, 1428 Bs. As., Argentina
| | - Daniela Hozbor
- Instituto de Biotecnología y Biología Molecular, CCT La Plata CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina
| |
Collapse
|
17
|
Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin Microbiol Rev 2016; 29:449-86. [PMID: 27029594 PMCID: PMC4861987 DOI: 10.1128/cmr.00083-15] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pertussis is a severe respiratory infection caused by Bordetella pertussis, and in 2008, pertussis was associated with an estimated 16 million cases and 195,000 deaths globally. Sizeable outbreaks of pertussis have been reported over the past 5 years, and disease reemergence has been the focus of international attention to develop a deeper understanding of pathogen virulence and genetic evolution of B. pertussis strains. During the past 20 years, the scientific community has recognized pertussis among adults as well as infants and children. Increased recognition that older children and adolescents are at risk for disease and may transmit B. pertussis to younger siblings has underscored the need to better understand the role of innate, humoral, and cell-mediated immunity, including the role of waning immunity. Although recognition of adult pertussis has increased in tandem with a better understanding of B. pertussis pathogenesis, pertussis in neonates and adults can manifest with atypical clinical presentations. Such disease patterns make pertussis recognition difficult and lead to delays in treatment. Ongoing research using newer tools for molecular analysis holds promise for improved understanding of pertussis epidemiology, bacterial pathogenesis, bioinformatics, and immunology. Together, these advances provide a foundation for the development of new-generation diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abdulbaset M Salim
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marcus J Zervos
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System and Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Heinz-Josef Schmitt
- Medical and Scientific Affairs, Pfizer Vaccines, Paris, France Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
18
|
Vinnitskiy DZ, Ustyuzhanina NE, Nifantiev NE. Natural bacterial and plant biomolecules bearing α-d-glucuronic acid residues. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1010-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Fingermann M, Hozbor D. Acid tolerance response of Bordetella bronchiseptica in avirulent phase. Microbiol Res 2015; 181:52-60. [DOI: 10.1016/j.micres.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023]
|
20
|
Geurtsen J, Fae KC, van den Dobbelsteen GPJM. Importance of (antibody-dependent) complement-mediated serum killing in protection against Bordetella pertussis. Expert Rev Vaccines 2014; 13:1229-40. [PMID: 25081731 DOI: 10.1586/14760584.2014.944901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pertussis is a highly contagious respiratory disease that is caused by Bordetella pertussis. Despite being vaccine preventable, pertussis rates have been rising steadily over the last decades, even in areas with high vaccine uptake. Recently, experiments with infant baboons indicated that although vaccination with acellular pertussis vaccines prevented disease, no apparent effect was observed on infection and transmission. One explanation may be that current acellular pertussis vaccines do not induce high levels of opsonophagocytic and/or bactericidal activity, implying that engineering of vaccines that promote bacterial killing may improve efficacy. Here, we discuss the importance of complement-mediated killing in vaccine-induced protection against B. pertussis. We first examine how B. pertussis may have evolved different complement evasion strategies. Second, we explore the benefits of opsonophagocytic and/or bactericidal killing in vaccine-induced protection and discuss whether or not inclusion of new opsonophagocytic or bactericidal target antigens in pertussis vaccines may benefit efficacy.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Crucell Holland B.V, one of the Janssen Pharmaceutical Companies of Johnson & Johnson - Bacterial Vaccines Research and Development, PO Box 2048, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
Abstract
Pertussis, also known as whooping cough, has recently re-emerged as a major public health threat despite high levels of vaccination against the aetiological agent Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into B. pertussis virulence-factor function. We also discuss the changing epidemiology of pertussis and the challenges facing vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies.
Collapse
|
22
|
Abstract
To overcome the limitations of the current pertussis vaccines, those of limited duration of action and failure to induce direct killing of Bordetella pertussis, a synthetic scheme was devised for preparing a conjugate vaccine composed of the Bordetella bronchiseptica core oligosaccharide with one terminal trisaccharide to aminooxylated BSA via their terminal ketodeoxyoctanate residues. Conjugate-induced antibodies, by a fraction of an estimated human dose injected into young outbred mice as a saline solution, were bactericidal against B. pertussis, and their titers correlated with their ELISA values. The carrier protein is planned to be genetically altered pertussis toxoid. Such conjugates are easy to prepare, stable, and should add both to the level and duration of immunity induced by current vaccine-induced pertussis antibodies and reduce the circulation of B. pertussis.
Collapse
|
23
|
Hester SE, Park J, Goodfield LL, Feaga HA, Preston A, Harvill ET. Horizontally acquired divergent O-antigen contributes to escape from cross-immunity in the classical bordetellae. BMC Evol Biol 2013; 13:209. [PMID: 24067113 PMCID: PMC3849452 DOI: 10.1186/1471-2148-13-209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background Horizontal gene transfer (HGT) allows for rapid spread of genetic material between species, increasing genetic and phenotypic diversity. Although HGT contributes to adaptation and is widespread in many bacteria, others show little HGT. This study builds on previous work to analyze the evolutionary mechanisms contributing to variation within the locus encoding a prominent antigen of the classical bordetellae. Results We observed amongst classical bordetellae discrete regions of the lipopolysaccharide O-antigen locus with higher sequence diversity than the genome average. Regions of this locus had less than 50% sequence similarity, low dN/dS ratios and lower GC content compared to the genome average. Additionally, phylogenetic tree topologies based on genome-wide SNPs were incongruent with those based on genes within these variable regions, suggesting portions of the O-antigen locus may have been horizontally transferred. Furthermore, several predicted recombination breakpoints correspond with the ends of these variable regions. To examine the evolutionary forces that might have selected for this rare example of HGT in bordetellae, we compared in vitro and in vivo phenotypes associated with different O-antigen types. Antibodies against O1- and O2-serotypes were poorly cross-reactive, and did not efficiently kill or mediate clearance of alternative O-type bacteria, while a distinct and poorly immunogenic O-antigen offered no protection against colonization. Conclusions This study suggests that O-antigen variation was introduced to the classical bordetellae via HGT through recombination. Additionally, genetic variation may be maintained within the O-antigen locus because it can provide escape from immunity to different O-antigen types, potentially allowing for the circulation of different Bordetella strains within the same host population.
Collapse
Affiliation(s)
- Sara E Hester
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, W-210 Millennium Science Complex, University Park, PA, 16802, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Haemophilus parainfluenzae expresses diverse lipopolysaccharide O-antigens using ABC transporter and Wzy polymerase-dependent mechanisms. Int J Med Microbiol 2013; 303:603-17. [PMID: 24035104 PMCID: PMC3989065 DOI: 10.1016/j.ijmm.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide O-antigens are the basis of serotyping schemes for Gram negative bacteria and help to determine the nature of host–bacterial interactions. Haemophilus parainfluenzae is a normal commensal of humans but is also an occasional pathogen. The prevalence, diversity and biosynthesis of O-antigens were investigated in this species for the first time. 18/18 commensal H. parainfluenzae isolates contain a O-antigen biosynthesis gene cluster flanked by glnA and pepB, the same position as the hmg locus for tetrasaccharide biosynthesis in Haemophilus influenzae. The O-antigen loci show diverse restriction digest patterns but fall into two main groups: (1) those encoding enzymes for the synthesis and transfer of FucNAc4N in addition to the Wzy-dependent mechanism of O-antigen synthesis and transport and (2) those encoding galactofuranose synthesis/transfer enzymes and an ABC transporter. The other glycosyltransferase genes differ between isolates. Three H. parainfluenzae isolates fell outside these groups and are predicted to synthesise O-antigens containing ribitol phosphate or deoxytalose. Isolates using the ABC transporter system encode a putative O-antigen ligase, required for the synthesis of O-antigen-containing LPS glycoforms, at a separate genomic location. The presence of an O-antigen contributes significantly to H. parainfluenzae resistance to the killing effect of human serum in vitro. The discovery of O-antigens in H. parainfluenzae is striking, as its close relative H. influenzae lacks this cell surface component.
Collapse
|
25
|
Kubler-Kielb J, Vinogradov E. The study of the core part and non-repeating elements of the O-antigen of Brucella lipopolysaccharide. Carbohydr Res 2013; 366:33-7. [PMID: 23261780 PMCID: PMC3540177 DOI: 10.1016/j.carres.2012.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
Brucella is an animal and human pathogen that expresses several virulence factors required for host cell invasion and intracellular survival. It produces LPS with unusually low toxicity, which hampers the detection of bacteria by the host immune system and thus provides resistance against intracellular antimicrobial mechanisms of the host. By chemical and spectroscopic methods we determined the structure of the LPS core and of a non-repetitive oligosaccharide fragment at the reducing end of the O-specific polysaccharide. These data should be useful for understanding the biological role of the Brucella LPS.
Collapse
Affiliation(s)
- Joanna Kubler-Kielb
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
26
|
Bordetella parapertussis survives the innate interaction with human neutrophils by impairing bactericidal trafficking inside the cell through a lipid raft-dependent mechanism mediated by the lipopolysaccharide O antigen. Infect Immun 2012; 80:4309-16. [PMID: 23027528 DOI: 10.1128/iai.00662-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Whooping cough is a reemerging disease caused by two closely related pathogens, Bordetella pertussis and Bordetella parapertussis. The incidence of B. parapertussis in whooping cough cases has been increasing since the introduction of acellular pertussis vaccines containing purified antigens that are common to both strains. Recently published results demonstrated that these vaccines do not protect against B. parapertussis due to the presence of the O antigen on the bacterial surface that impairs antibody access to shared antigens. We have investigated the effect of the lack of opsonization of B. parapertussis on the outcome of its interaction with human neutrophils (polymorphonuclear leukocytes [PMNs]). In the absence of opsonic antibodies, PMN interaction with B. parapertussis resulted in nonbactericidal trafficking upon phagocytosis. A high percentage of nonopsonized B. parapertussis was found in nonacidic lysosome marker (lysosome-associated membrane protein [LAMP])-negative phagosomes with access to the host cell-recycling pathway of external nutrients, allowing bacterial survival as determined by intracellular CFU counts. The lipopolysaccharide (LPS) O antigen was found to be involved in directing B. parapertussis to PMN lipid rafts, eventually determining the nonbactericidal fate inside the PMN. IgG opsonization of B. parapertussis drastically changed this interaction by not only inducing efficient PMN phagocytosis but also promoting PMN bacterial killing. These data provide new insights into the immune mechanisms of hosts against B. parapertussis and document the crucial importance of opsonic antibodies in immunity to this pathogen.
Collapse
|
27
|
Sisti F, Fernández J, Higgins SC, Casabuono A, Couto A, Mills KHG, Hozbor D. A deep rough type structure in Bordetella bronchiseptica lipopolysaccharide modulates host immune responses. Microbiol Immunol 2012; 55:847-54. [PMID: 22039958 DOI: 10.1111/j.1348-0421.2011.00395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present authors have previously obtained the Bordetella bronchiseptica mutant BbLP39, which contains a deep-rough lipopolysaccharide (LPS) instead the wild type smooth LPS with O antigen. This mutant was found to be altered in the expression of some proteins and in its ability to colonize mouse lungs. Particularly, in BbLP39 the expression of pertactin is decreased. To differentiate the contribution of each bacterial component to the observed phenotype, here mice defective in the LPS sensing receptor TLR4 (TLR4-defective mice) were used. In contrast to wild-type mice, infection of TLR4-defective mice with BbLP39 resulted in lung infection, which persisted for more than 10 days post-challenge. Comparative analysis of the immune responses induced by purified mutant and wild type LPSs showed that the mutant LPS induced significantly higher degrees of expression of TNF-α and IL-10 mRNA than did the wild type. UV matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry analysis revealed that both LPSs had the same penta-acylated lipid A structure. However, the lipid A from BbLP39 contained pyrophosphate instead of phosphate at position 1. This structural difference, in addition to the lack of O-antigen in BbLP39, may explain the functional differences between BbLP39 and wild type strains.
Collapse
Affiliation(s)
- Federico Sisti
- VacSal Laboratory, Biotechnology and Molecular Biology Institute, Department of Biological Sciences, Faculty of Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Calles 47 y 115 (1900) La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang Q, Perepelov AV, Beutin L, Senchenkova SN, Xu Y, Shashkov AS, Ding P, Knirel YA, Feng L. Structural and genetic characterization of the Escherichia coli O180 O antigen and identification of a UDP-GlcNAc 6-dehydrogenase. Glycobiology 2012; 22:1321-31. [PMID: 22730467 DOI: 10.1093/glycob/cws098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The O antigen is an essential component of the lipopolysaccharides on the surface of Gram-negative bacteria and its variation provides a major basis for serotyping schemes. The Escherichia coli O-antigen form O180 was first designated in 2004, and O180 strains were found to contain virulence factors and cause diarrhea. Different O-antigen forms are almost entirely due to genetic variations in the O-antigen gene clusters. In this study, the chemical structure and gene cluster of E. coli O180 O antigen were investigated. A tetrasaccharide repeating unit with the following structure: →4)-β-D-ManpNAc3NAcA-(1 → 2)-α-L-Rhap(I)-(1 → 3)-β-L-Rhap(II)-(1 → 4)-α-D-GlcpNAc-(1→was identified in the E. coli O180 O antigen, including the residue D-ManpNAc3NAcA (2,3-diacetamido-2,3-dideoxy-D-mannopyranuronic acid) that had not been hitherto identified in E. coli. Genes in the O-antigen gene cluster were assigned functions based on their similarities with those from available databases, and five genes involved in the synthesis of UDP-D-ManpNAc3NAcA (the nucleotide-activated form of D-ManpNAc3NAcA) were identified. The gnaA gene, encoding the enzyme involved in the initial step of the UDP-D-ManpNAc3NAcA biosynthetic pathway, was cloned and the enzyme product was expressed, purified and assayed for its activity. GnaA was characterized using capillary electrophoresis and electrospray ionization mass spectrometry and identified as a UDP-GlcNAc 6-dehydrogenase. The kinetic and physicochemical parameters of GnaA also were determined.
Collapse
Affiliation(s)
- Quan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ahmad TA, Haroun M, Hussein AA, El Ashry ESH, El-Sayed LH. Development of a new trend conjugate vaccine for the prevention of Klebsiella pneumoniae. Infect Dis Rep 2012; 4:e33. [PMID: 24470947 PMCID: PMC3892636 DOI: 10.4081/idr.2012.e33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/23/2012] [Accepted: 04/28/2012] [Indexed: 12/04/2022] Open
Abstract
Klebsiella pneumoniae is a major cause of nosocomial pneumonia, septicemia and urinary tract infections, especially in newborns, blood cancer patients, and other immunocompromised candidates. The control of K. pneumoniae is a complicated issue due to its tight pathogenesis. Immuno-prophylactic preparations, especially those directed toward the bacterium O-antigen, showed to be the most successful way to prevent the infection incidence. However, all previously proposed preparations were either of limited spectrum or non-maternal, and hence not targeting the main Klebsiella patients. Moreover, all preparations were directed only to prevent the respiratory diseases due to that pathogen. This article addresses the development of a method originally used to purify the non-capsular bacterial-endotoxins, as a new and easy method for vaccine production against K. pneumoniae. The application of this method was preceded by a biotechnological control of capsular polysaccharide production in K. pneumoniae. The new produced natural conjugate between the bacterial O-antigen and its outer membrane proteins was evaluated by physicochemical and immunological methods to investigate its purity, integrity, safety and immunogenicity. It showed to be pure, stable, safe for use, and able to elicit a protective immunoglobulin titer against different Klebsiella infections. This immune-response proved to be transferable to the offspring of the vaccinated experimental rabbits via placenta.
Collapse
Affiliation(s)
- Tarek A Ahmad
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University
| | - Ahmad A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University
| | | | - Laila H El-Sayed
- Department of Immunology, Institute of Medical Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 2012; 356:12-24. [PMID: 22475157 DOI: 10.1016/j.carres.2012.02.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/10/2023]
Abstract
The O-polysaccharide (O-PS; O-antigen) of bacterial lipopolysaccharides is made up of repeating units of one or more sugar residues and displays remarkable structural diversity. Despite the structural variations, there are only three strategies for O-PS assembly. The ATP-binding cassette (ABC)-transporter-dependent mechanism of O-PS biosynthesis is widespread. The Escherichia coli O9a and Klebsiella pneumoniae O2a antigens provide prototypes, which are distinguished by the fine details that link glycan polymerization and chain termination at the cytoplasmic face of the inner membrane to its export via the ABC transporter. Here, we describe the current understanding of these processes. Since glycoconjugate assembly complexes that utilize an ABC transporter-dependent pathway are widespread among the bacterial kingdom, the models described here are expected to extend beyond O-PS biosynthesis systems.
Collapse
Affiliation(s)
- Laura K Greenfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
31
|
Miyamoto DM, Ruff K, Beach NM, Stockwell SB, Dorsey-Oresto A, Masters I, Temple LM. Bordetella avium causes induction of apoptosis and nitric oxide synthase in turkey tracheal explant cultures. Microbes Infect 2011; 13:871-9. [PMID: 21609777 DOI: 10.1016/j.micinf.2011.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/18/2023]
Abstract
Bordetellosis is an upper respiratory disease of turkeys caused by Bordetella avium in which the bacteria attach specifically to ciliated respiratory epithelial cells. Little is known about the mechanisms of pathogenesis of this disease, which has a negative impact in the commercial turkey industry. In this study, we produced a novel explant organ culture system that was able to successfully reproduce pathogenesis of B. avium in vitro, using tracheal tissue derived from 26 day-old turkey embryos. Treatment of the explants with whole cells of B. avium virulent strain 197N and culture supernatant, but not lipopolysaccharide (LPS) or tracheal cytotoxin (TCT), specifically induced apoptosis in ciliated cells, as shown by annexin V and TUNEL staining. LPS and TCT are known virulence factors of Bordetella pertussis, the causative agent of whooping cough. Treatment with whole cells of B. avium and LPS specifically induced NO response in ciliated cells, shown by uNOS staining and diaphorase activity. The explant system is being used as a model to elucidate specific molecules responsible for the symptoms of bordetellosis.
Collapse
|
32
|
Basheer SM, Guiso N, Tirsoaga A, Caroff M, Novikov A. Structural modifications occurring in lipid A of Bordetella bronchiseptica clinical isolates as demonstrated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1075-1081. [PMID: 21452385 DOI: 10.1002/rcm.4960] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 05/30/2023]
Abstract
Bordetella bronchiseptica is a respiratory pathogen in mammal species and its cell surface lipopolysaccharide-endotoxin is a potent virulence factor. In order to better characterize the endotoxin structure to virulence relationships, we studied the lipid A structures of B. bronchiseptica isolates from human and rabbit origins as a function of their virulence phases. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been widely used for the structural characterization of bacterial endotoxins and their lipid A moieties. This method combined with chemical analytical methods proved to be essential for the characterization of small samples and discrete but essential structural modifications. The occurrence of palmitate (C(16)) in the B. bronchiseptica lipid A structures is shown for the first time at two sites. Their presence was also demonstrated for the first time in correlation with the virulence phase of B. bronchiseptica clinical isolates. The recently identified glucosamine modifications of Bordetella lipids A are also reported in these isolates.
Collapse
Affiliation(s)
- Soorej M Basheer
- Endotoxines, Structures et Activités, UMR 8621, GDR 3048, du CNRS, Institut de Génétique et Microbiologie, Université de Paris-Sud, 91405, Orsay, France
| | | | | | | | | |
Collapse
|
33
|
Oligosaccharide conjugates of Bordetella pertussis and bronchiseptica induce bactericidal antibodies, an addition to pertussis vaccine. Proc Natl Acad Sci U S A 2011; 108:4087-92. [PMID: 21367691 DOI: 10.1073/pnas.1100782108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pertussis is a highly contagious respiratory disease that is especially dangerous for infants and children. Despite mass vaccination, reported pertussis cases have increased in the United States and other parts of the world, probably because of increased awareness, improved diagnostic means, and waning vaccine-induced immunity among adolescents and adults. Licensed vaccines do not kill the organism directly; the addition of a component inducing bactericidal antibodies would improve vaccine efficacy. We investigated Bordetella pertussis and Bordetella bronchiseptica LPS-derived core oligosaccharide (OS) protein conjugates for their immunogenicity in mice. B. pertussis and B. bronchiseptica core OS were bound to aminooxylated BSA via their terminal Kdo residues. The two conjugates induced similar anti-B. pertussis LPS IgG levels in mice. B. bronchiseptica was investigated because it is easier to grow than B. pertussis. Using B. bronchiseptica genetically modified strains deficient in the O-specific polysaccharide, we isolated fractions of core OS with one to five repeats of the terminal trisaccharide, having at the nonreducing end a GlcNAc or GalNAc, and bound them to BSA at different densities. The highest antibody levels in mice were elicited by conjugates containing an average of 8-17 OS chains per protein and with one repeat of the terminal trisaccharide. Conjugate-induced antisera were bactericidal against B. pertussis, and the titers correlated with ELISA-measured antibody levels (r = 0.74). Such conjugates are easy to prepare and standardize; added to a recombinant pertussis toxoid, they may induce antibacterial and antitoxin immunity.
Collapse
|
34
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
35
|
Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A. Antigenic Variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem 2010; 285:26869-26877. [PMID: 20592026 DOI: 10.1074/jbc.m110.115121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The O chain polysaccharide (O PS) of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharide is a homopolymer of 2,3-diacetamido-2,3-dideoxygalacturonic acid (GalNAc3NAcA) in which some of the sugars are present as uronamides. The terminal residue contains several unusual modifications. To date, two types of modification have been characterized, and a survey of numerous strains demonstrated that each contained one of these two modification types. Host antibody responses against the O PS are directed against the terminal residue modifications, and there is little cross-reactivity between the two types. This suggests that Bordetella O PS modifications represent a means of antigenic variation. Here we report the characterization of the O PS of B. bronchiseptica strain MO149. It consists of a novel two-sugar repeating unit and a novel terminal residue modification, with the structure Me-4-alpha-L-GalNAc3NAcA-(4-beta-D-GlcNAc3NAcA-4-alpha-L-GalNAc3NAcA-)(5-6)-, which we propose be defined as the B. bronchiseptica O3 PS. We show that the O3 PS is very poorly immunogenic and that the MO149 strain contains a novel wbm (O PS biosynthesis) locus. Thus, there is greater diversity among Bordetella O PSs than previously recognized, which is likely to be a result of selection pressure from host immunity. We also determine experimentally, for the first time, the absolute configuration of the diacetimido-uronic acid sugars in Bordetella O PS.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashutosh K Pathak
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Eric T Harvill
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Andrew Preston
- Department of Clinical Veterinary Science, University of Bristol, Langford, North Somerset BS40 5DU, United Kingdom.
| |
Collapse
|
36
|
King JD, Vinogradov E, Tran V, Lam JS. Biosynthesis of uronamide sugars in Pseudomonas aeruginosa O6 and Escherichia coli O121 O antigens. Environ Microbiol 2010; 12:1531-44. [PMID: 20192967 DOI: 10.1111/j.1462-2920.2010.02182.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major component of the outer leaflet of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS). The outermost domain of LPS is a polysaccharide called O antigen. Pseudomonas aeruginosa establishes biofilms on wet surfaces in a wide range of habitats and mutations in O-antigen biosynthesis genes affect bacterial adhesion and the structure of these biofilms. The P. aeruginosa O6 O antigen contains a 2-acetamido-2-deoxy-d-galacturonamide (d-GalNAcAN) residue. O-antigen biosynthesis in this serotype requires the wbpS gene, which encodes a protein with conserved domains of the glutamine-dependent amidotransferase family. Replacement of conserved amino acids in the N-terminal glutaminase conserved domain of WbpS inhibited O-antigen biosynthesis under restricted-ammonia conditions, but not in rich media; suggesting that this domain functions to provide ammonia for O-antigen biosynthesis under restricted-ammonia conditions, by hydrolysis of glutamine. Escherichia coli O121 also produces a d-GalNAcAN-containing O antigen, and possesses a homologue of wbpS called wbqG. An E. coli O121 wbqG mutant was cross-complemented by providing wbpS in trans, and vice versa, showing that these two genes are functionally interchangeable. The E. coli O121 wbqG mutant O antigen contains 2-acetamido-2-deoxy-d-galacturonate (d-GalNAcA), instead of d-GalNAcAN, demonstrating that wbqG is specifically required for biosynthesis of the carboxamide in this sugar.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
37
|
The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 2009; 191:7063-73. [PMID: 19767427 DOI: 10.1128/jb.00892-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dlt operon encodes proteins that alanylate teichoic acids, the major components of cell walls of gram-positive bacteria. This generates a net positive charge on bacterial cell walls, repulsing positively charged molecules and conferring resistance to animal and human cationic antimicrobial peptides (AMPs) in gram-positive pathogenic bacteria. AMPs damage the bacterial membrane and are the most effective components of the humoral immune response against bacteria. We investigated the role of the dlt operon in insect virulence by inactivating this operon in Bacillus cereus, which is both an opportunistic human pathogen and an insect pathogen. The Delta dlt(Bc) mutant displayed several morphological alterations but grew at a rate similar to that for the wild-type strain. This mutant was less resistant to protamine and several bacterial cationic AMPs, such as nisin, polymyxin B, and colistin, in vitro. It was also less resistant to molecules from the insect humoral immune system, lysozyme, and cationic AMP cecropin B from Spodoptera frugiperda. Delta dlt(Bc) was as pathogenic as the wild-type strain in oral infections of Galleria mellonella but much less virulent when injected into the hemocoels of G. mellonella and Spodoptera littoralis. We detected the dlt operon in three gram-negative genera: Erwinia (Erwinia carotovora), Bordetella (Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), and Photorhabdus (the entomopathogenic bacterium Photorhabdus luminescens TT01, the dlt operon of which did not restore cationic AMP resistance in Delta dlt(Bc)). We suggest that the dlt operon protects B. cereus against insect humoral immune mediators, including hemolymph cationic AMPs, and may be critical for the establishment of lethal septicemia in insects and in nosocomial infections in humans.
Collapse
|
38
|
The O antigen is a critical antigen for the development of a protective immune response to Bordetella parapertussis. Infect Immun 2009; 77:5050-8. [PMID: 19737902 DOI: 10.1128/iai.00667-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite excellent vaccine coverage in developed countries, whooping cough is a reemerging disease that can be caused by two closely related pathogens, Bordetella pertussis and B. parapertussis. The two are antigenically distinct, and current vaccines, containing only B. pertussis-derived antigens, confer efficient protection against B. pertussis but not against B. parapertussis. B. pertussis does not express the O antigen, while B. parapertussis retains it as a dominant surface antigen. Since the O antigen is a protective antigen for many pathogenic bacteria, we examined whether this factor is a potential protective antigen for B. parapertussis. In a mouse model of infection, immunization with wild-type B. parapertussis elicited a strong antibody response to the O antigen and conferred efficient protection against a subsequent B. parapertussis challenge. However, immunization with an isogenic mutant lacking the O antigen, B. parapertussis Deltawbm, induced antibodies that recognized other antigens but did not efficiently mediate opsonophagocytosis of B. parapertussis. The passive transfer of sera raised against B. parapertussis, but not B. parapertussis Deltawbm, reduced B. parapertussis loads in the lower respiratory tracts of mice. The addition of 10 microg of purified B. parapertussis lipopolysaccharide (LPS), which contains the O antigen, but not B. parapertussis Deltawbm LPS drastically improved the efficacy of the acellular vaccine Adacel against B. parapertussis. These data suggest that the O antigen is a critical protective antigen of B. parapertussis and its inclusion can substantially improve whooping cough vaccine efficacy against this pathogen.
Collapse
|
39
|
Clarke BR, Greenfield LK, Bouwman C, Whitfield C. Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J Biol Chem 2009; 284:30662-72. [PMID: 19734145 DOI: 10.1074/jbc.m109.052878] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for O-PS synthesis and export by the ATP-binding cassette transporter-dependent pathway. Comparable systems are widespread in Gram-negative bacteria. The polymannose O9a O-PS is assembled on a polyisoprenoid lipid intermediate by mannosyltransferases located at the cytoplasmic membrane, and the final polysaccharide chain length is determined by the chain terminating dual kinase/methyltransferase, WbdD. The WbdD protein is tethered to the membrane via a C-terminal region containing amphipathic helices located between residues 601 and 669. Here, we establish that the C-terminal domain of WbdD plays an additional pivotal role in assembly of the O-PS by forming a complex with the chain-extending mannosyltransferase, WbdA. Membrane preparations from a DeltawbdD mutant had severely diminished mannosyltransferase activity in vitro, and no significant amounts of the WbdA protein are targeted to the membrane fraction. Expression of a polypeptide comprising the WbdD C-terminal region was sufficient to restore both proper localization of WbdA and mannosyltransferase activity. In contrast to WbdA, the other required mannosyltransferases (WbdBC) are targeted to the membrane independent of WbdD. A bacterial two-hybrid system confirmed the interaction of WbdD and WbdA and identified two regions in the C terminus of WbdD that contributed to the interaction. Therefore, in the O9a assembly export system, the WbdD protein orchestrates the critical localization and coordination of activities involved in O-PS chain extension and termination at the cytoplasmic membrane.
Collapse
Affiliation(s)
- Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
40
|
King JD, Kocíncová D, Westman EL, Lam JS. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 2009; 15:261-312. [PMID: 19710102 DOI: 10.1177/1753425909106436] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa causes serious nosocomial infections, and an important virulence factor produced by this organism is lipopolysaccharide (LPS). This review summarizes knowledge about biosynthesis of all three structural domains of LPS - lipid A, core oligosaccharide, and O polysaccharides. In addition, based on similarities with other bacterial species, this review proposes new hypothetical pathways for unstudied steps in the biosynthesis of P. aeruginosa LPS. Lipid A biosynthesis is discussed in relation to Escherichia coli and Salmonella, and the biosyntheses of core sugar precursors and core oligosaccharide are summarised. Pseudomonas aeruginosa attaches a Common Polysaccharide Antigen and O-Specific Antigen polysaccharides to lipid A-core. Both forms of O polysaccharide are discussed with respect to their independent synthesis mechanisms. Recent advances in understanding O-polysaccharide biosynthesis since the last major review on this subject, published nearly a decade ago, are highlighted. Since P. aeruginosa O polysaccharides contain unusual sugars, sugar-nucleotide biosynthesis pathways are reviewed in detail. Knowledge derived from detailed studies in the O5, O6 and O11 serotypes is applied to predict biosynthesis pathways of sugars in poorly-studied serotypes, especially O1, O4, and O13/O14. Although further work is required, a full understanding of LPS biosynthesis in P. aeruginosa is almost within reach.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Evidence for horizontal gene transfer of two antigenically distinct O antigens in Bordetella bronchiseptica. Infect Immun 2009; 77:3249-57. [PMID: 19528223 DOI: 10.1128/iai.01448-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Host immunity is a major driving force of antigenic diversity, resulting in pathogens that can evade immunity induced by closely related strains. Here we show that two Bordetella bronchiseptica strains, RB50 and 1289, express two antigenically distinct O-antigen serotypes (O1 and O2, respectively). When 18 additional B. bronchiseptica strains were serotyped, all were found to express either the O1 or O2 serotype. Comparative genomic hybridization and PCR screening showed that the expression of either the O1 or O2 serotype correlated with the strain containing either the classical or alternative O-antigen locus, respectively. Multilocus sequence typing analysis of 49 B. bronchiseptica strains was used to build a phylogenetic tree, which revealed that the two O-antigen loci did not associate with a particular lineage, evidence that these loci are horizontally transferred between B. bronchiseptica strains. From experiments using mice vaccinated with purified lipopolysaccharide from strain RB50 (O1), 1289 (O2), or RB50Deltawbm (O antigen deficient), our data indicate that these O antigens do not confer cross-protection in vivo. The lack of cross-immunity between O-antigen serotypes appears to contribute to inefficient antibody-mediated clearance between strains. Together, these data are consistent with the idea that the O-antigen loci of B. bronchiseptica are horizontally transferred between strains and encode antigenically distinct serotypes, resulting in inefficient cross-immunity.
Collapse
|
42
|
Synthesis, characterization, and immunogenicity in mice of Shigella sonnei O-specific oligosaccharide-core-protein conjugates. Proc Natl Acad Sci U S A 2009; 106:7974-8. [PMID: 19346477 DOI: 10.1073/pnas.0900891106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigellosis, an enteric disease, is on the World Health Organization's priority prevention list. In one study, the Shigella sonnei O-specific polysaccharide (O-SP)-protein conjugate showed 72% protection against disease in Israeli army recruits exposed to high rates (8-14%) of infection. The protection was related to vaccine-induced IgG anti-O-SP levels. Synthetic oligosaccharides of Shigella dysenteriae type 1, bound by their reducing ends to a carrier protein ("sun"-type configuration), induced significantly higher antibody levels than the native O-SP bound to protein by multiple-point attachments ("lattice"-type configuration). Attempts to synthesize the S. sonnei O-SP based oligosaccharides were not successful. Here, we describe the isolation, characterization, and conjugation of low-molecular-mass O-SP-core (O-SPC) fragments. The O-SPC fragments were bound by their reducing ends similar to the preparation of the synthetic S. dysenteriae type 1 conjugates. The O-SPC conjugates used oxime linkages between the terminal Kdo residues at the reducing ends of the S. sonnei saccharides and aminooxy linkers bound to BSA or a recombinant diphtheria toxin. The coupling reaction was carried out at a neutral pH and room temperature. IgG antibody levels induced in young outbred mice by the S. sonnei O-SPC conjugates were significantly higher then those elicited by the O-SP conjugates. Accordingly, we propose to evaluate clinically these conjugates.
Collapse
|
43
|
Wolfe DN, Buboltz AM, Harvill ET. Inefficient Toll-like receptor-4 stimulation enables Bordetella parapertussis to avoid host immunity. PLoS One 2009; 4:e4280. [PMID: 19169359 PMCID: PMC2627931 DOI: 10.1371/journal.pone.0004280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 11/24/2008] [Indexed: 01/09/2023] Open
Abstract
The recognition of bacterial lipopolysaccharide (LPS) by host Toll-like receptor (TLR)4 is a crucial step in developing protective immunity against several gram negative bacterial pathogens. Bordetella bronchiseptica and B. pertussis stimulate robust TLR4 responses that are required to control the infection, but a close relative, B. parapertussis, poorly stimulates this receptor, and TLR4 deficiency does not affect its course of infection. This led us to hypothesize that inefficient TLR4 stimulation enables B. parapertussis to evade host immunity. In a mouse model of infection, B. parapertussis grew rapidly in the lungs, but no measurable increase in TLR4-mediated cytokine, chemokine, or leukocyte responses were observed over the first few days of infection. Delivery of a TLR4 stimulant in the inoculum resulted in a robust inflammatory response and a 10- to 100-fold reduction of B. parapertussis numbers. As we have previously shown, B. parapertussis grows efficiently during the first week of infection even in animals passively immunized with antibodies. We show that this evasion of antibody-mediated clearance is dependent on the lack of TLR4 stimulation by B. parapertussis as co-inoculation with a TLR4 agonist resulted in 10,000-fold lower B. parapertussis numbers on day 3 in antibody-treated wild type, but not TLR4-deficient, mice. Together, these results indicate that inefficient TLR4 stimulation by B. parapertussis enables it to avoid host immunity and grow to high numbers in the respiratory tract of naïve and immunized hosts.
Collapse
Affiliation(s)
- Daniel N. Wolfe
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anne M. Buboltz
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
King JD, Vinogradov E, Preston A, Li J, Maskell DJ. Post-assembly modification of Bordetella bronchiseptica O polysaccharide by a novel periplasmic enzyme encoded by wbmE. J Biol Chem 2008; 284:1474-83. [PMID: 19015265 PMCID: PMC2615507 DOI: 10.1074/jbc.m807729200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bordetella bronchiseptica is a pathogen of humans and animals that
colonizes the respiratory tract. It produces a lipopolysaccharide O antigen
that contains a homopolymer of
2,3-dideoxy-2,3-diacetamido-l-galacturonic acid
(l-GalNAc3NAcA). Some of these sugars are found in the uronamide
form (l-GalNAc3NAcAN), and there is no discernible pattern in the
distribution of amides along the chain. A B. bronchiseptica wbmE
mutant expresses an O polysaccharide unusually rich in uronamides. The WbmE
protein localizes to the periplasm and catalyzes the deamidation of
uronamide-rich O chains in lipopolysaccharide purified from the mutant, to
attain a wild-type uronamide/uronic acid ratio. WbmE is a member of the
papain-like transglutaminase superfamily, and this categorization is
consistent with a deamidase role. The periplasmic location of WbmE and its
acceptance of complete lipopolysaccharide as substrate indicate that it
operates at a late stage in lipopolysaccharide biosynthesis, after
polymerization and export of the O chain from the cytoplasm. This is the first
report of such a modification of O antigen after assembly. The expression of
wbmE is controlled by the Bordetella virulence gene
two-component regulatory system, BvgAS, suggesting that this deamidation is a
novel mechanism by which these bacteria modify their cell surface charge in
response to environmental stimuli.
Collapse
Affiliation(s)
- Jerry D King
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Biosynthesis of a rare di-N-acetylated sugar in the lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis occurs via an identical scheme despite different gene clusters. J Bacteriol 2008; 190:6060-9. [PMID: 18621892 DOI: 10.1128/jb.00579-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa and Bordetella pertussis produce lipopolysaccharide (LPS) that contains 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid (D-ManNAc3NAcA). A five-enzyme biosynthetic pathway that requires WbpA, WbpB, WbpE, WbpD, and WbpI has been proposed for the production of this sugar in P. aeruginosa, based on analysis of genes present in the B-band LPS biosynthesis cluster. In the analogous B. pertussis cluster, homologs of wbpB to wbpI were present, but a putative dehydrogenase gene was missing; therefore, the biosynthetic mechanism for UDP-D-ManNAc3NAcA was unclear. Nonpolar knockout mutants of each P. aeruginosa gene were constructed. Complementation analysis of the mutants demonstrated that B-band LPS production was restored to P. aeruginosa knockout mutants when the relevant B. pertussis genes were supplied in trans. Thus, the genes that encode the putative oxidase, transaminase, N-acetyltransferase, and epimerase enzymes in B. pertussis are functional homologs of those in P. aeruginosa. Two candidate dehydrogenase genes were located by searching the B. pertussis genome; these have 80% identity to P. aeruginosa wbpO (serotype O6) and 32% identity to wbpA (serotype O5). These genes, wbpO(1629) and wbpO(3150), were shown to complement a wbpA knockout of P. aeruginosa. Capillary electrophoresis was used to characterize the enzymatic activities of purified WbpO(1629) and WbpO(3150), and mass spectrometry analysis confirmed that the two enzymes are dehydrogenases capable of converting UDP-D-GlcNAc, UDP-D-GalNAc, to a lesser extent, and UDP-D-Glc, to a much lesser extent. Together, these results suggest that B. pertussis produces UDP-D-ManNAc3NAcA through the same pathway proposed for P. aeruginosa, despite differences in the genomic context of the genes involved.
Collapse
|
46
|
Kubler-Kielb J, Vinogradov E, Ben-Menachem G, Pozsgay V, Robbins JB, Schneerson R. Saccharide/protein conjugate vaccines for Bordetella species: preparation of saccharide, development of new conjugation procedures, and physico-chemical and immunological characterization of the conjugates. Vaccine 2008; 26:3587-93. [PMID: 18539367 DOI: 10.1016/j.vaccine.2008.04.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/17/2022]
Abstract
Bordetellae are Gram-negative bacilli causing respiratory tract infections of mammals and birds. Clinically important are B. pertussis, B. parapertussis and B. bronchiseptica. B. pertussis vaccines have been successful in preventing pertussis in infants and children. Veterinary vaccines against B. bronchiseptica are available, but their efficacy and mode of action are not established. There is no vaccine against B. parapertussis. Based on the concept that immunity to non-capsulated Gram-negative bacteria may be conferred by serum IgG anti-LPS we studied chemical, serological and immunological properties of the O-specific polysaccharides (O-SP) of B. bronchiseptica and B. parapertussis obtained by different degradation procedures. One type of the B. parapertussis and two types of B. bronchiseptica O-SP were recognized based on the structure of their non-reducing end saccharide; no cross-reaction between the two B. bronchiseptica types was observed. Competitive inhibition assays showed the immunodominance of the non-reducing end of these O-SP. Conjugates of B. bronchiseptica and B. parapertussis O-SP were prepared by two methods: using the anhydro-Kdo residue exposed by mild acid hydrolysis of the LPS or the 2,5-anhydromannose residue exposed by deamination of the core glucosamine of the LPS, for binding to an aminooxylated protein. Both coupling methods were carried out at a neutral pH, room temperature, and in a short time. All conjugates, injected as saline solutions at a fraction of an estimated human dose, induced antibodies in mice to the homologous O-SP. These methodologies can be applied to prepare O-SP-based vaccines against other Gram-negative bacteria.
Collapse
Affiliation(s)
- Joanna Kubler-Kielb
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J Bacteriol 2008; 190:4281-90. [PMID: 18424515 DOI: 10.1128/jb.01875-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endotoxins are amphipathic lipopolysaccharides (LPSs), major constituents of the outer membrane of gram-negative bacteria. They consist of a lipid region, covalently linked to a core oligosaccharide, to which may be linked a repetitive glycosidic chain carrying antigenic determinants. Most of the biological activities of endotoxins have been associated with the lipid moiety of the molecule: unique to gram-negative bacteria, LPS is a ligand of the mammalian TLR4-MD2-CD14 pathogen recognition receptor complex. Lipid A preparations are often heterogeneous with respect to both the numbers and the lengths of fatty acids and the natures of substituents on the phosphate groups when present. The variants can significantly affect host immune responses. Nine species in the Bordetella genus have been described, and the fine LPS structures of seven of them have been published. In this report, lipids A from Bordetella pertussis Tohama I and B. bronchiseptica strain 4650 were further characterized and revealed to have a glucosamine substituting both lipid A phosphate groups of the diglucosamine backbone. These substitutions have not been previously described for bordetellae. Moreover, a B. pertussis transposon mutation that maps within a gene encoding a Bordetella ArnT (formerly PmrK) glycosyl transferase ortholog does not carry this substitution, thus providing a genetic basis for the modification. Reverse transcriptase PCR of this locus showed that it is Bvg regulated, suggesting that the ability of Bordetella to modify lipid A via this glucosamine modification is a potential virulence trait.
Collapse
|
48
|
Abstract
Bordetella pertussis, a causative agent of whooping cough, expresses BrkA, which confers serum resistance, but the closely related human pathogen that also causes whooping cough, Bordetella parapertussis, does not. Interestingly, B. parapertussis, but not B. pertussis, produces an O antigen, a factor shown in other models to confer serum resistance. Using a murine model of infection, we determined that O antigen contributes to the ability of B. parapertussis to colonize the respiratory tract during the first week of infection, but not thereafter. Interestingly, an O antigen-deficient strain of B. parapertussis was not defective in colonizing mice lacking the complement cascade. O antigen prevented both complement component C3 deposition on the surface and complement-mediated killing of B. parapertussis. In addition, O antigen was required for B. parapertussis to systemically spread in complement-sufficient mice, but not complement-deficient mice. These data indicate that O antigen enables B. parapertussis to efficiently colonize the lower respiratory tract by protecting against complement-mediated control and clearance.
Collapse
|
49
|
King JD, Harmer NJ, Preston A, Palmer CM, Rejzek M, Field RA, Blundell TL, Maskell DJ. Predicting protein function from structure--the roles of short-chain dehydrogenase/reductase enzymes in Bordetella O-antigen biosynthesis. J Mol Biol 2007; 374:749-63. [PMID: 17950751 PMCID: PMC2279256 DOI: 10.1016/j.jmb.2007.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 11/16/2022]
Abstract
The pathogenic bacteria Bordetella parapertussis and Bordetella bronchiseptica express a lipopolysaccharide O antigen containing a polymer of 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. The O-antigen cluster contains three neighbouring genes that encode proteins belonging to the short-chain dehydrogenase/reductase (SDR) family, wbmF, wbmG and wbmH, and we aimed to elucidate their individual functions. Mutation and complementation implicate each gene in O-antigen expression but, as their putative sugar nucleotide substrates are not currently available, biochemical characterisation of WbmF, WbmG and WbmH is impractical at the present time. SDR family members catalyse a wide range of chemical reactions including oxidation, reduction and epimerisation. Because they typically share low sequence conservation, however, catalytic function cannot be predicted from sequence analysis alone. In this context, structural characterisation of the native proteins, co-crystals and small-molecule soaks enables differentiation of the functions of WbmF, WbmG and WbmH. These proteins exhibit typical SDR architecture and coordinate NAD. In the substrate-binding domain, all three enzymes bind uridyl nucleotides. WbmG contains a typical SDR catalytic TYK triad, which is required for oxidoreductase function, but the active site is devoid of additional acid-base functionality. Similarly, WbmH possesses a TYK triad, but an otherwise feature-poor active site. Consequently, 3,5-epimerase function can probably be ruled out for these enzymes. The WbmF active site contains conserved 3,5-epimerase features, namely, a positionally conserved cysteine (Cys133) and basic side chain (His90 or Asn213), but lacks the serine/threonine component of the SDR triad and therefore may not act as an oxidoreductase. The data suggest a pathway for synthesis of the O-antigen precursor UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid and illustrate the usefulness of structural data in predicting protein function.
Collapse
Affiliation(s)
- Jerry D King
- Department of Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge CB3 0ES, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Vinogradov E. The structure of the core–O-chain linkage region of the lipopolysaccharide from Bordetella hinzii. Carbohydr Res 2007; 342:638-42. [PMID: 17123490 DOI: 10.1016/j.carres.2006.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/20/2006] [Accepted: 10/20/2006] [Indexed: 11/28/2022]
Abstract
Linkage region between core and the O-chain of the lipopolysaccharide from Bordetella hinzii has been analyzed by NMR and MS analysis of the products, obtained by anhydrous HF treatment or consecutive ammonia and AcOH treatment of the LPS. The following structure of this region was deduced from the experimental results: [structure: see text] This structure is identical to the structure of the respective region of Bordetella parapertussis LPS. Polysaccharide part (PS) consists of not more than 15 2,3-diacetamido-2,3-dideoxyhexuronamides, methylated at the only hydroxyl group of the non-reducing terminal monosaccharide.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, 100 Sussex Dr., Ottawa, Ont., Canada K1A 0R6.
| |
Collapse
|