1
|
Wang Y, Ren K, Tan J, Mao Y. Alginate oligosaccharide alleviates aging-related intestinal mucosal barrier dysfunction by blocking FGF1-mediated TLR4/NF-κB p65 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154806. [PMID: 37236046 DOI: 10.1016/j.phymed.2023.154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Alginate oligosaccharide (AOS) has been reported to exert a crucial role in maintaining the intestinal mucosal barrier (IMB) function. The current study aimed at ascertaining the protective effects of AOS on aging-induced IMB dysfunction and to elucidate the underlying molecular mechanisms. METHODS An aging mouse model and a senescent NCM460 cell model were established using d-galactose. AOS was administered to aging mice and senescent cells, and IMB permeability, inflammatory response and tight junction proteins were assessed. In silico analysis was conducted to identify factors regulated by AOS. Using gain- and loss-of-function approaches, we evaluated the roles of FGF1, TLR4 and NF-κB p65 in the aging-induced IMB dysfunction and NCM460 cell senescence. RESULTS AOS protected the IMB function of aging mice and NCM460 cells by reducing permeability and increasing tight junction proteins. In addition, AOS up-regulated FGF1, which blocked the TLR4/NF-κB p65 pathway, and identified as the mechanism responsible for the protective effect of AOS. CONCLUSION AOS blocks the TLR4/NF-κB p65 pathway via inducing FGF1, ultimately reducing the risk of IMB dysfunction in aging mice. This study highlights the potential of AOS as a protective agent against aging-induced IMB disorder and provides insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Keyu Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Junying Tan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
2
|
Clark GT, Yu Y, Urban CA, Fu G, Wang C, Zhang F, Linhardt RJ, Hurley JM. Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genet 2022; 18:e1009994. [PMID: 35143487 PMCID: PMC8830681 DOI: 10.1371/journal.pgen.1009994] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's Disease (AD) is a neuroinflammatory disease characterized partly by the inability to clear, and subsequent build-up, of amyloid-beta (Aβ). AD has a bi-directional relationship with circadian disruption (CD) with sleep disturbances starting years before disease onset. However, the molecular mechanism underlying the relationship of CD and AD has not been elucidated. Myeloid-based phagocytosis, a key component in the metabolism of Aβ, is circadianly-regulated, presenting a potential link between CD and AD. In this work, we revealed that the phagocytosis of Aβ42 undergoes a daily circadian oscillation. We found the circadian timing of global heparan sulfate proteoglycan (HSPG) biosynthesis was the molecular timer for the clock-controlled phagocytosis of Aβ and that both HSPG binding and aggregation may play a role in this oscillation. These data highlight that circadian regulation in immune cells may play a role in the intricate relationship between the circadian clock and AD.
Collapse
Affiliation(s)
- Gretchen T. Clark
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Yanlei Yu
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
| | - Cooper A. Urban
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Guo Fu
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Now at the Innovation and Integration Center of New Laser Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wang
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Robert J. Linhardt
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Jennifer M. Hurley
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| |
Collapse
|
3
|
Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci Ther 2020; 27:26-35. [PMID: 33377610 PMCID: PMC7804892 DOI: 10.1111/cns.13560] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
The blood‐brain barrier is a dynamic and complex neurovascular unit that protects neurons from somatic circulatory factors as well as regulates the internal environmental stability of the central nervous system. Endothelial glycocalyx is a critical component of an extended neurovascular unit that influences the structure of the blood‐brain barrier and plays various physiological functions, including an important role in maintaining normal neuronal homeostasis. Specifically, glycocalyx acts in physical and charge barriers, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation. Since intact glycocalyx is necessary to maintain the stability and integrity of the internal environment of the blood‐brain barrier, damage to glycocalyx can lead to the dysfunction of the blood‐brain barrier. This review discusses the role of glycocalyx in the context of the substantial literature regarding the blood‐brain barrier research, in order to provide a theoretical basis for the diagnosis and treatment of neurological diseases as well as point to new breakthroughs and innovations in glycocalyx‐dependent blood‐brain barrier function.
Collapse
Affiliation(s)
- Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Revuelta J, Aranaz I, Acosta N, Civera C, Bastida A, Peña N, Monterrey DT, Doncel-Pérez E, Garrido L, Heras Á, García-Junceda E, Fernández-Mayoralas A. Unraveling the Structural Landscape of Chitosan-Based Heparan Sulfate Mimics Binding to Growth Factors: Deciphering Structural Determinants for Optimal Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25534-25545. [PMID: 32426965 DOI: 10.1021/acsami.0c03074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan sulfates have demonstrated the ability to mimic heparan sulfate (HS) function. In this context, it is crucial to understand how the specific structural properties of HS domains determine their functionalities and biological activities. In this study, several HS-mimicking chitosans have been prepared to mimic the structure of HS domains that have proved to be functionally significant in cell processes. The results presented herein are in concordance with the hypothesis that sulfated chitosan-growth factor (GF) interactions are controlled by a combination of two effects: the electrostatic interactions and the conformational adaptation of the polysaccharide. Thus, we found that highly charged O-sulfated S-CS and S-DCS polysaccharides with a low degree of contraction interacted more strongly with GFs than N-sulfated N-DCS, with a higher degree of contraction and a low charge. Finally, the evidence gathered suggests that N-DCS would be able to bind to an allosteric zone and is likely to enhance GF signaling activity. This is because the bound protein remains able to bind to its cognate receptor, promoting an effect on cell proliferation as has been shown for PC12 cells. However, S-CS and S-DCS would sequester the protein, decreasing the GF signaling activity by depleting the protein or locally blocking its active site.
Collapse
Affiliation(s)
- Julia Revuelta
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Inmaculada Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Niuris Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Concepción Civera
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nerea Peña
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Dianelis T Monterrey
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ernesto Doncel-Pérez
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Leoncio Garrido
- Departamento de Química Física, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ángeles Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Eduardo García-Junceda
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alfonso Fernández-Mayoralas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
5
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
6
|
Jeanneret RA, Dalton CE, Gardiner JM. Synthesis of Heparan Sulfate- and Dermatan Sulfate-Related Oligosaccharides via Iterative Chemoselective Glycosylation Exploiting Conformationally Disarmed [2.2.2] l-Iduronic Lactone Thioglycosides. J Org Chem 2019; 84:15063-15078. [PMID: 31674785 DOI: 10.1021/acs.joc.9b01594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heparan sulfate (HS) and dermatan sulfate (DS) are l-iduronic acid containing glycosaminoglycans (GAGs) which are implicated in a number of biological processes and conditions including cancer and viral infection. Chemical synthesis of HS and DS is required to generate structurally defined oligosaccharides for a biological study. Herein, we present a new synthetic approach to HS and DS oligosaccharides using chemoselective glycosylation which relies on a disarmed [2.2.2] l-ido lactone motif. The strategy provides a general approach for iterative-reducing end chain extension, using only shelf-stable thioglycoside building blocks, exploiting a conformational switch to control reactivity, and thus requires no anomeric manipulation steps between glycosylations.
Collapse
Affiliation(s)
- Robin A Jeanneret
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Charlotte E Dalton
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - John M Gardiner
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
7
|
Nurcombe V, Ling L, Hondermarck H, Cool SM, Smith RAA. Bringing Heparan Sulfate Glycomics Together with Proteomics for the Design of Novel Therapeutics: A Historical Perspective. Proteomics 2019; 19:e1800466. [PMID: 31197945 DOI: 10.1002/pmic.201800466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Indexed: 01/29/2023]
Abstract
Increasing knowledge of how peptides bind saccharides, and of how saccharides bind peptides, is starting to revolutionize understanding of cell-extracellular matrix relationships. Here, a historical perspective is taken of the relationship between heparan sulfate glycosaminoglycans and how they interact with peptide growth factors in order to both drive and modulate signaling through the appropriate cognate receptors. Such knowledge is guiding the preparation of targeted sugar mimetics that will impact the treatment of many different kinds of diseases, including cancer.
Collapse
Affiliation(s)
- Victor Nurcombe
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University-Imperial College London, 636921, Singapore
| | - Ling Ling
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, 2308, Australia
| | - Simon M Cool
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Raymond A A Smith
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore
| |
Collapse
|
8
|
Dual roles of heparanase in human carotid plaque calcification. Atherosclerosis 2019; 283:127-136. [DOI: 10.1016/j.atherosclerosis.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
|
9
|
A mutant-cell library for systematic analysis of heparan sulfate structure-function relationships. Nat Methods 2018; 15:889-899. [PMID: 30377379 PMCID: PMC6214364 DOI: 10.1038/s41592-018-0189-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS) is a complex linear polysaccharide that modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Here we report the generation of an HS-mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell. We used this library to (1) determine that the strictly defined fine structure of HS, not its overall degree of sulfation, is more important for FGF2-FGFR1 signaling; (2) define the epitope features of commonly used anti-HS phage display antibodies; and (3) delineate the fine inter-regulation networks by which HS genes modify HS and chain length in mammalian cells at a cell-type-specific level. Our mutant-cell library will allow robust and systematic interrogation of the roles and related structures of HS in a cellular context.
Collapse
|
10
|
Naticchia MR, Laubach LK, Tota EM, Lucas TM, Huang ML, Godula K. Embryonic Stem Cell Engineering with a Glycomimetic FGF2/BMP4 Co-Receptor Drives Mesodermal Differentiation in a Three-Dimensional Culture. ACS Chem Biol 2018; 13:2880-2887. [PMID: 30157624 DOI: 10.1021/acschembio.8b00436] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell surface glycans, such as heparan sulfate (HS), are increasingly identified as co-regulators of growth factor signaling in early embryonic development; therefore, chemical tailoring of HS activity within the cellular glycocalyx of stem cells offers an opportunity to control their differentiation. The growth factors FGF2 and BMP4 are involved in mediating the exit of murine embryonic stem cells (mESCs) from their pluripotent state and their differentiation toward mesodermal cell types, respectively. Here, we report a method for remodeling the glycocalyx of mutant Ext1-/- mESCs with defective biosynthesis of HS to drive their mesodermal differentiation in an embryoid body culture. Lipid-functionalized synthetic HS-mimetic glycopolymers with affinity for both FGF2 and BMP4 were introduced into the plasma membrane of Ext1-/- mESCs, where they acted as functional co-receptors of these growth factors and facilitated signal transduction through associated MAPK and Smad signaling pathways. We demonstrate that these materials can be employed to remodel Ext1-/- mESCs within three-dimensional embryoid body structures, providing enhanced association of BMP4 at the cell surface and driving mesodermal differentiation. As a more complete understanding of the function of HS in regulating development continues to emerge, this simple glycocalyx engineering method is poised to enable precise control over growth factor signaling activity and outcomes of differentiation in stem cells.
Collapse
Affiliation(s)
- Matthew R. Naticchia
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Logan K. Laubach
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Ember M. Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Mia L. Huang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
11
|
Kjellén L, Lindahl U. Specificity of glycosaminoglycan–protein interactions. Curr Opin Struct Biol 2018; 50:101-108. [DOI: 10.1016/j.sbi.2017.12.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
12
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
13
|
Minsky BB, Dubin PL, Kaltashov IA. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:758-767. [PMID: 28211013 PMCID: PMC5808462 DOI: 10.1007/s13361-017-1596-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 05/24/2023]
Abstract
The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Burcu Baykal Minsky
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Paul L Dubin
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Beccati D, Lech M, Ozug J, Gunay NS, Wang J, Sun EY, Pradines JR, Farutin V, Shriver Z, Kaundinya GV, Capila I. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure. Glycoconj J 2016; 34:107-117. [PMID: 27771794 PMCID: PMC5266780 DOI: 10.1007/s10719-016-9734-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/18/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.
Collapse
Affiliation(s)
- Daniela Beccati
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Miroslaw Lech
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Jennifer Ozug
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Nur Sibel Gunay
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Jing Wang
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Elaine Y Sun
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Joël R Pradines
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Victor Farutin
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Zachary Shriver
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Ganesh V Kaundinya
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Ishan Capila
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
15
|
Melleby AO, Strand ME, Romaine A, Herum KM, Skrbic B, Dahl CP, Sjaastad I, Fiane AE, Filmus J, Christensen G, Lunde IG. The Heparan Sulfate Proteoglycan Glypican-6 Is Upregulated in the Failing Heart, and Regulates Cardiomyocyte Growth through ERK1/2 Signaling. PLoS One 2016; 11:e0165079. [PMID: 27768722 PMCID: PMC5074531 DOI: 10.1371/journal.pone.0165079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pressure overload is a frequent cause of heart failure. Heart failure affects millions of patients worldwide and is a major cause of morbidity and mortality. Cell surface proteoglycans are emerging as molecular players in cardiac remodeling, and increased knowledge about their regulation and function is needed for improved understanding of cardiac pathogenesis. Here we investigated glypicans (GPC1-6), a family of evolutionary conserved heparan sulfate proteoglycans anchored to the extracellular leaflet of the cell membrane, in experimental and clinical heart failure, and explored the function of glypican-6 in cardiac cells in vitro. In mice subjected to pressure overload by aortic banding (AB), we observed elevated glypican-6 levels during hypertrophic remodeling and dilated, end-stage heart failure. Consistently, glypican-6 mRNA was elevated in left ventricular myocardium from explanted hearts of patients with end-stage, dilated heart failure with reduced ejection fraction. Glypican-6 levels correlated negatively with left ventricular ejection fraction in patients, and positively with lung weight after AB in mice. Glypican-6 mRNA was expressed in both cardiac fibroblasts and cardiomyocytes, and the corresponding protein displayed different sizes in the two cell types due to tissue-specific glycanation. Importantly, adenoviral overexpression of glypican-6 in cultured cardiomyocytes increased protein synthesis and induced mRNA levels of the pro-hypertrophic signature gene ACTA1 and the hypertrophy and heart failure signature genes encoding natriuretic peptides, NPPA and NPPB. Overexpression of GPC6 induced ERK1/2 phosphorylation, and co-treatment with the ERK inhibitor U0126 attenuated the GPC6-induced increase in NPPA, NPPB and protein synthesis. In conclusion, our data suggests that glypican-6 plays a role in clinical and experimental heart failure progression by regulating cardiomyocyte growth through ERK signaling.
Collapse
Affiliation(s)
- Arne O. Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| | - Mari E. Strand
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Kate M. Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Biljana Skrbic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Christen P. Dahl
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arnt E. Fiane
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Jorge Filmus
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Mooney MA, McWeeney SK, Faraone SV, Hinney A, Hebebrand J, IMAGE2 Consortium, German ADHD GWAS Group, Nigg JT, Wilmot B. Pathway analysis in attention deficit hyperactivity disorder: An ensemble approach. Am J Med Genet B Neuropsychiatr Genet 2016; 171:815-26. [PMID: 27004716 PMCID: PMC4983253 DOI: 10.1002/ajmg.b.32446] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 12/21/2022]
Abstract
Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael A. Mooney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon,OHSU Knight Cancer Institute, Portland, Oregon
| | - Shannon K. McWeeney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon,OHSU Knight Cancer Institute, Portland, Oregon,Oregon Clinical and Translational Research Institute, Portland, Oregon
| | - Stephen V. Faraone
- Departments of Psychiatry and Neuroscience & Physiology, State University of New York, Syracuse, New York,K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Joel T. Nigg
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Beth Wilmot
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon,OHSU Knight Cancer Institute, Portland, Oregon,Oregon Clinical and Translational Research Institute, Portland, Oregon,Correspondence to: Beth Wilmot, Ph.D., Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail code: CR145, Portland, OR 97239.
| |
Collapse
|
17
|
Avizienyte E, Cole CL, Rushton G, Miller GJ, Bugatti A, Presta M, Gardiner JM, Jayson GC. Synthetic Site-Selectively Mono-6-O-Sulfated Heparan Sulfate Dodecasaccharide Shows Anti-Angiogenic Properties In Vitro and Sensitizes Tumors to Cisplatin In Vivo. PLoS One 2016; 11:e0159739. [PMID: 27490176 PMCID: PMC4973927 DOI: 10.1371/journal.pone.0159739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022] Open
Abstract
Heparan sulphate (HS), a ubiquitously expressed glycosaminoglycan (GAG), regulates multiple cellular functions by mediating interactions between numerous growth factors and their cell surface cognate receptors. However, the structural specificity of HS in these interactions remains largely undefined. Here, we used completely synthetic, structurally defined, alternating N-sulfated glucosamine (NS) and 2-O-sulfated iduronate (IS) residues to generate dodecasaccharides ([NSIS]6) that contained no, one or six glucosamine 6-O-sulfates (6S). The aim was to address how 6S contributes to the potential of defined HS dodecasaccharides to inhibit the angiogenic growth factors FGF2 and VEGF165, in vitro and in vivo. We show that the addition of a single 6S at the non-reducing end of [NSIS]6, i.e. [NSIS6S]-[NSIS]5, significantly augments the inhibition of FGF2-dependent endothelial cell proliferation, migration and sprouting in vitro when compared to the non-6S variant. In contrast, the fully 6-O-sulfated dodecasaccharide, [NSIS6S]6, is not a potent inhibitor of FGF2. Addition of a single 6S did not significantly improve inhibitory properties of [NSIS]6 when tested against VEGF165-dependent endothelial cell functions.In vivo, [NSIS6S]-[NSIS]5 blocked FGF2-dependent blood vessel formation without affecting tumor growth. Reduction of non-FGF2-dependent ovarian tumor growth occurred when [NSIS6S]-[NSIS]5 was combined with cisplatin. The degree of inhibition by [NSIS6S]-[NSIS]5 in combination with cisplatin in vivo equated with that induced by bevacizumab and sunitinib when administered with cisplatin. Evaluation of post-treatment vasculature revealed that [NSIS6S]-[NSIS]5 treatment had the greatest impact on tumor blood vessel size and lumen formation. Our data for the first time demonstrate that synthetic, structurally defined oligosaccharides have potential to be developed as active anti-angiogenic agents that sensitize tumors to chemotherapeutic agents.
Collapse
Affiliation(s)
- Egle Avizienyte
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
- * E-mail: (EA); (GCJ)
| | - Claire L. Cole
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Graham Rushton
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Gavin J. Miller
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7ND, United Kingdom
| | - Antonella Bugatti
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - John M. Gardiner
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7ND, United Kingdom
| | - Gordon C. Jayson
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
- * E-mail: (EA); (GCJ)
| |
Collapse
|
18
|
Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:215-73. [PMID: 27241222 DOI: 10.1016/bs.ircmb.2016.02.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) are ubiquitously expressed on cell surfaces and in the extracellular matrix of most animal tissues, having essential functions in development and homeostasis, as well as playing various roles in disease processes. The functions of HSPGs are mainly dependent on interactions between the HS-side chains with a variety of proteins including cytokines, growth factors, and their receptors. In a given HS polysaccharide, negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The mode of HS-protein interactions is assessed through binding experiments using saccharides of defined composition in vitro, signaling assays in cell models where HS structures are manipulated, and targeted disruption of genes for biosynthetic enzymes in animals (mouse, zebrafish, Drosophila, and Caenorhabditis elegans) followed by phenotype analysis. Whereas some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis and the potential for development of therapeutics targeting HS-protein interactions.
Collapse
Affiliation(s)
- J-P Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden; SciLifeLab, University of Uppsala, Uppsala, Sweden.
| | | |
Collapse
|
19
|
Gomes AM, Sinkeviciute D, Multhaupt HAB, Yoneda A, Couchman JR. Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. TRENDS GLYCOSCI GLYC 2016; 28:E79-E90. [DOI: 10.4052/tigg.1422.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Angélica Maciel Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Dovile Sinkeviciute
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Hinke A. B. Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| | - John R. Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
- Dept. Biomedical Sciences, University of Copenhagen, Biocenter
| |
Collapse
|
20
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
21
|
Gomes AM, Sinkeviciute D, Multhaupt HAB, Yoneda A, Couchman JR. Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1422.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Angélica Maciel Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Dovile Sinkeviciute
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Hinke A. B. Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| | - John R. Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
- Dept. Biomedical Sciences, University of Copenhagen, Biocenter
| |
Collapse
|
22
|
Jayson GC, Hansen SU, Miller GJ, Cole CL, Rushton G, Avizienyte E, Gardiner JM. Synthetic heparan sulfate dodecasaccharides reveal single sulfation site interconverts CXCL8 and CXCL12 chemokine biology. Chem Commun (Camb) 2015; 51:13846-9. [PMID: 26234943 PMCID: PMC4608306 DOI: 10.1039/c5cc05222j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multigram-scale synthesis of a sulfation-site programmed heparin-like dodecasaccharide is described. Evaluation alongside dodecasaccharides lacking this single glucosamine O6-sulfation, or having per-O6-sulfation, shows that site-specific modification of the terminal glucosamine dramatically interconverts regulation of in vitro and in vivo biology mediated by the two important chemokines, CXCL12 (SDF1α) or CXCL8 (IL-8).
Collapse
Affiliation(s)
- Gordon C Jayson
- Christie Hospital, Institute of Cancer Studies, University of Manchester, Manchester, M20 4BX, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Ryan CNM, Sorushanova A, Lomas AJ, Mullen AM, Pandit A, Zeugolis DI. Glycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy. Bioconjug Chem 2015; 26:1237-51. [DOI: 10.1021/acs.bioconjchem.5b00091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Préchoux A, Halimi C, Simorre JP, Lortat-Jacob H, Laguri C. C5-epimerase and 2-O-sulfotransferase associate in vitro to generate contiguous epimerized and 2-O-sulfated heparan sulfate domains. ACS Chem Biol 2015; 10:1064-71. [PMID: 25594747 DOI: 10.1021/cb501037a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS), a complex polysaccharide of the cell surface, is endowed with the remarkable ability to bind numerous proteins and, as such, regulates a large variety of biological processes. Protein binding depends on HS structure; however, in the absence of a template driving its biosynthesis, the mechanism by which protein binding sequences are assembled remains poorly known. Here, we developed a chemically defined 13C-labeled substrate and NMR based experiments to simultaneously follow in real time the activity of HS biosynthetic enzymes and characterize the reaction products. Using this new approach, we report that the association of C5-epimerase and 2-O-sulfotransferase, which catalyze the production of iduronic acid and its 2-O-sulfation, respectively, is necessary to processively generate extended sequences of contiguous IdoA2S-containing disaccharides, whereas modifications are randomly introduced when the enzymes are uncoupled. These data shed light on the mechanisms by which HS motifs are generated during biosynthesis. They support the view that HS structure assembly is controlled not only by the availability of the biosynthetic enzymes but also by their physical association, which in the case of the C5-epimerase and 2-O-sulfotransferase was characterized by an affinity of 80 nM as demonstrated by surface plasmon resonance experiments.
Collapse
Affiliation(s)
- Aurélie Préchoux
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
- CNRS, IBS, F-38027 Grenoble, France
- CEA, DSV, IBS, F-38027 Grenoble, France
| | - Célia Halimi
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
- CNRS, IBS, F-38027 Grenoble, France
- CEA, DSV, IBS, F-38027 Grenoble, France
| | - Jean-Pierre Simorre
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
- CNRS, IBS, F-38027 Grenoble, France
- CEA, DSV, IBS, F-38027 Grenoble, France
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
- CNRS, IBS, F-38027 Grenoble, France
- CEA, DSV, IBS, F-38027 Grenoble, France
| | - Cédric Laguri
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
- CNRS, IBS, F-38027 Grenoble, France
- CEA, DSV, IBS, F-38027 Grenoble, France
| |
Collapse
|
25
|
Modular synthesis of heparin-related tetra-, hexa- and octasaccharides with differential o-6 protections: programming for regiodefined 6-o-modifications. Molecules 2015; 20:6167-6180. [PMID: 25859776 PMCID: PMC4421873 DOI: 10.3390/molecules20046167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 01/19/2023] Open
Abstract
Heparin and heparan sulphate (H/HS) are important members of the glycosaminoglycan family of sugars that regulate a substantial number of biological processes. Such biological promiscuity is underpinned by hetereogeneity in their molecular structure. The degree of O-sulfation, particularly at the 6-position of constituent D-GlcN units, is believed to play a role in modulating the effects of such sequences. Synthetic chemistry is essential to be able to extend the diversity of HS-like fragments with defined molecular structure, and particularly to deconvolute the biological significance of modifications at O6. Here we report a synthetic approach to a small matrix of protected heparin-type oligosaccharides, containing orthogonal D-GlcN O-6 protecting groups at programmed positions along the chain, facilitating access towards programmed modifications at specific sites, relevant to sulfation or future mimetics.
Collapse
|
26
|
Alhasan AA, Spielhofer J, Kusche-Gullberg M, Kirby JA, Ali S. Role of 6-O-sulfated heparan sulfate in chronic renal fibrosis. J Biol Chem 2014; 289:20295-306. [PMID: 24878958 DOI: 10.1074/jbc.m114.554691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-β induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection.
Collapse
Affiliation(s)
- Abd A Alhasan
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| | - Julia Spielhofer
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| | - Marion Kusche-Gullberg
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - John A Kirby
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| | - Simi Ali
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| |
Collapse
|
27
|
Vijaya Kumar A, Salem Gassar E, Spillmann D, Stock C, Sen YP, Zhang T, Van Kuppevelt TH, Hülsewig C, Koszlowski EO, Pavao MS, Ibrahim SA, Poeter M, Rescher U, Kiesel L, Koduru S, Yip GW, Götte M. HS3ST2
modulates breast cancer cell invasiveness via MAP kinase- and Tcf4 (Tcf7l2)-dependent regulation of protease and cadherin expression. Int J Cancer 2014; 135:2579-92. [DOI: 10.1002/ijc.28921] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/15/2014] [Accepted: 04/08/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Archana Vijaya Kumar
- Department of Gynecology and Obstetrics; Münster University Hospital; Münster Germany
| | - Ezeddin Salem Gassar
- Department of Gynecology and Obstetrics; Münster University Hospital; Münster Germany
- Department of Physiology; Faculty of Medicine; Benghazi University; Libya
| | - Dorothe Spillmann
- Department of Medical Biochemistry and Microbiology; The Biomedical Center, Uppsala University; Uppsala Sweden
| | - Christian Stock
- Institute of Physiology II, University of Münster; Münster Germany
| | - Yin-Ping Sen
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Ting Zhang
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Toin H. Van Kuppevelt
- Department of Biochemistry; NCMLS; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Carolin Hülsewig
- Department of Gynecology and Obstetrics; Münster University Hospital; Münster Germany
| | | | - Mauro S.G. Pavao
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro; Brazil
| | - Sherif A. Ibrahim
- Department of Zoology; Faculty of Science; Cairo University; Giza Egypt
| | - Michaela Poeter
- Institute of Medical Biochemistry, ZMBE, University of Münster; Münster Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, ZMBE, University of Münster; Münster Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics; Münster University Hospital; Münster Germany
| | - Suresh Koduru
- School of Medical Sciences, University of Hyderabad; Hyderabad India
| | - George W. Yip
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Martin Götte
- Department of Gynecology and Obstetrics; Münster University Hospital; Münster Germany
| |
Collapse
|
28
|
Minsky BB, Nguyen TV, Peyton SR, Kaltashov IA, Dubin PL. Heparin decamer bridges a growth factor and an oligolysine by different charge-driven interactions. Biomacromolecules 2013; 14:4091-8. [PMID: 24107074 DOI: 10.1021/bm401227p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Full-length heparin is widely used in tissue engineering applications due its multiple protein-binding sites that allow it to retain growth factor affinity while associating with oligopeptide components of the tissue scaffold. However, the extent to which oligopeptide coupling interferes with cognate protein binding is difficult to predict. To investigate such simultaneous interactions, we examined a well-defined ternary system comprised of acidic fibroblast growth factor (FGF), tetralysine (K4), with a heparin decamer (dp10) acting as a noncovalent coupler. Electrospray ionization mass spectrometry was used to assess binding affinities and complex stoichiometries as a function of ionic strength for dp10·K4 and FGF·dp10. The ionic strength dependence of K4·dp10 formation is qualitatively consistent with binding driven by the release of condensed counterions previously suggested for native heparin with divalent oligopeptides (Mascotti, D. P.; Lohman, T. M. Biochemistry 1995, 34, 2908-2915). On the other hand, FGF binding displays more complex ionic strength dependence, with higher salt resistance. Remarkably, dp10 that can bind two FGF molecules can only bind one tetralysine. The limited binding of K4 to dp10 suggests that the tetralysine might not block growth factor binding, and the 1:1:1 ternary complex is indeed observed. The analysis of mass distribution of the bound dp10 chains in FGF·dp10, FGF2·dp10, and FGF·dp10·K4 complexes indicated that higher degrees of dp10 sulfation promote the formation of FGF2·dp10 and FGF·dp10·K4. Thus, the selectivity of appropriately chosen short heparin chains could be used to modulate growth factor sequestration and release in a way not feasible with heterogeneous native heparin. In support of this, human hepatocellular carcinoma cells (HEP3Bs) treated with FGF·dp10·K4 were found to exhibit biological activity similar to cells treated with FGF.
Collapse
Affiliation(s)
- Burcu Baykal Minsky
- Departments of †Chemistry and ‡Chemical Engineering, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | | | | | | | | |
Collapse
|
29
|
Abstract
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Collapse
Affiliation(s)
- Arye Elfenbein
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
30
|
Abstract
Heparan sulphate (HS) polysaccharides are covalently attached to the core proteins of various proteoglycans at cell surfaces and in the extracellular matrix. They are composed of alternating units of hexuronic acid and glucosamine, with sulphate substituents in complex and variable yet cell-specific patterns. Whereas HS is produced by virtually all cells in the body, heparin, a highly sulphated HS variant, is confined to connective-tissue-type mast cells. The polysaccharides interact with a multitude of proteins, mainly through ionic binding, and thereby control key processes in development and homoeostasis. Similar interactions also implicate HS in various pathophysiological settings, including cancer, amyloid diseases, infectious diseases, inflammatory conditions and some developmental disorders. Prospects for the development of HS-based drugs, which are still largely unrealized, are discussed.
Collapse
Affiliation(s)
- U Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
31
|
Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu Y. Protein–polyelectrolyte interactions. SOFT MATTER 2013; 9:2553. [DOI: 10.1039/c2sm27002a] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 2012; 32:9429-37. [PMID: 22764251 DOI: 10.1523/jneurosci.0394-12.2012] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specific transfer of (orthodenticle homeobox 2) Otx2 homeoprotein into GABAergic interneurons expressing parvalbumin (PV) is necessary and sufficient to open, then close, a critical period (CP) of plasticity in the developing mouse visual cortex. The accumulation of endogenous Otx2 in PV cells suggests the presence of specific Otx2 binding sites. Here, we find that perineuronal nets (PNNs) on the surfaces of PV cells permit the specific, constitutive capture of Otx2. We identify a 15 aa domain containing an arginine-lysine doublet (RK peptide) within Otx2, bearing prototypic traits of a glycosaminoglycan (GAG) binding sequence that mediates Otx2 binding to PNNs, and specifically to chondroitin sulfate D and E, with high affinity. Accordingly, PNN hydrolysis by chondroitinase ABC reduces the amount of endogenous Otx2 in PV cells. Direct infusion of RK peptide similarly disrupts endogenous Otx2 localization to PV cells, reduces PV and PNN expression, and reopens plasticity in adult mice. The closure of one eye during this transient window reduces cortical acuity and is specific to the RK motif, as an Alanine-Alanine variant or a scrambled peptide fails to reactivate plasticity. Conversely, this transient reopening of plasticity in the adult restores binocular vision in amblyopic mice. Thus, one function of PNNs is to facilitate the persistent internalization of Otx2 by PV cells to maintain CP closure. The pharmacological use of the Otx2 GAG binding domain offers a novel, potent therapeutic tool with which to restore cortical plasticity in the mature brain.
Collapse
|
33
|
Shi X, Huang Y, Mao Y, Naimy H, Zaia J. Tandem mass spectrometry of heparan sulfate negative ions: sulfate loss patterns and chemical modification methods for improvement of product ion profiles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1498-511. [PMID: 22825743 PMCID: PMC4146577 DOI: 10.1007/s13361-012-0429-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 05/05/2023]
Abstract
Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO(3)) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO(3) loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO(3) from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Heparan sulphate (HS), discovered in 1948 in heparin by-products, only emerged slowly from the shadow of heparin. Its inauspicious beginning was followed by the gradual realisation that HS was a separate entity with distinctive features. Both HS and heparin follow a common biosynthetic route but while heparin reaches full maturity, HS holds on to some of its youthful traits. The novel design and complex patterning of sulphation in HS enable it fulfil key roles in many, diverse biological processes.
Collapse
|
35
|
Lieleg O, Ribbeck K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol 2011; 21:543-51. [PMID: 21727007 PMCID: PMC3164742 DOI: 10.1016/j.tcb.2011.06.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 12/15/2022]
Abstract
The controlled exchange of molecules between organelles, cells, or organisms and their environment is crucial for life. Biological gels such as mucus, the extracellular matrix (ECM), and the biopolymer barrier within the nuclear pore are well suited to achieve such a selective exchange, allowing passage of particular molecules while rejecting many others. Although hydrogel-based filters are integral parts of biology, clear concepts of how their barrier function is controlled at a microscopic level are still missing. We summarize here our current understanding of how selective filtering is established by different biopolymer-based hydrogels. We ask if the modulation of microscopic particle transport in biological hydrogels is based on a generic filtering principle which employs biochemical/biophysical interactions with the filtered molecules rather than size-exclusion effects.
Collapse
Affiliation(s)
- Oliver Lieleg
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Shah MM, Sakurai H, Gallegos TF, Sweeney DE, Bush KT, Esko JD, Nigam SK. Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Dev Biol 2011; 356:19-27. [PMID: 21600196 PMCID: PMC3130836 DOI: 10.1016/j.ydbio.2011.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).
Collapse
Affiliation(s)
- Mita M. Shah
- Department of Medicine (Division of Nephrology and Hypertension), San Diego, La Jolla, California, 92093
| | - Hiroyuki Sakurai
- Department of Medicine (Division of Nephrology and Hypertension), San Diego, La Jolla, California, 92093
| | - Thomas F. Gallegos
- Department of Medicine (Division of Nephrology and Hypertension), San Diego, La Jolla, California, 92093
| | - Derina E. Sweeney
- Department of Medicine (Division of Nephrology and Hypertension), San Diego, La Jolla, California, 92093
| | - Kevin T. Bush
- Department of Pediatrics, San Diego, La Jolla, California, 92093
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, San Diego, La Jolla, California, 92093
- Department of Glycobiology Research and Training Center, San Diego, La Jolla, California, 92093
| | - Sanjay K. Nigam
- Department of Medicine (Division of Nephrology and Hypertension), San Diego, La Jolla, California, 92093
- Department of Pediatrics, San Diego, La Jolla, California, 92093
- Department of Cellular and Molecular Medicine, San Diego, La Jolla, California, 92093
- Department of Bioengineering University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
37
|
Sapay N, Cabannes E, Petitou M, Imberty A. Molecular modeling of the interaction between heparan sulfate and cellular growth factors: bringing pieces together. Glycobiology 2011; 21:1181-93. [PMID: 21572110 DOI: 10.1093/glycob/cwr052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heparan sulfate is a polysaccharide belonging to the glycaminoglycan family. It interacts with numerous proteins of the extracellular matrix, in particular cellular growth factors. The number of experimental protein-heparin sulfate complexes obtained by crystallography or nuclear magnetic resonance is limited. Alternatively, computational approaches can be employed. Generally, they restrain the conformation of the glycosidic rings and linkages in order to reduce the complexity of the problem. Modeling the interaction between protein and heparan sulfate is indeed challenging because of the large size of the fragment needed for a strong binding, the flexibility brought by the glycosidic rings and linkages and the high density of negative charges. We propose a two-step method based on molecular docking and molecular dynamics simulation. Molecular docking allows exploring the positioning of a rigid heparin sulfate fragment on the protein surface. Molecular dynamics refine selected docking models by explicitly representing solvent molecules and not restraining the polysaccharide backbone. The interaction of a hexamer of heparin sulfate was studied in interaction with fibroblast growth factor 2 and stromal cell-derived factor 1α. This approach shed light on the plasticity of the growth factors interacting with heparan sulfate. This approach can be extended to the study of other protein/glycosaminoglycan complexes.
Collapse
Affiliation(s)
- Nicolas Sapay
- Centre de Recherches sur les Macromolécules Végétales-CNRS, 601 rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
38
|
Naimy H, Buczek-Thomas JA, Nugent MA, Leymarie N, Zaia J. Highly sulfated nonreducing end-derived heparan sulfate domains bind fibroblast growth factor-2 with high affinity and are enriched in biologically active fractions. J Biol Chem 2011; 286:19311-9. [PMID: 21471211 DOI: 10.1074/jbc.m110.204693] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human fibroblast growth factor-2 (FGF2) regulates cellular processes including proliferation, adhesion, motility, and angiogenesis. FGF2 exerts its biological function by binding and dimerizing its receptor (FGFR), which activates signal transduction cascades. Effective binding of FGF2 to its receptor requires the presence of heparan sulfate (HS), a linear polysaccharide with N-sulfated domains (NS) localized at the cell surface and extracellular matrix. HS acts as a platform facilitating the formation of a functional FGF-FGFR-HS ternary complex. Crystal structures of the signaling ternary complex revealed two conflicting architectures. In the asymmetrical model, two FGFs and two FGFRs bind a single HS chain. In contrast, the symmetrical model postulates that one FGF and one FGFR bind to the free end of the HS chain and dimerization require these ends to join, bringing the two half-complexes together. In this study, we screened a hexasaccharide HS library for compositions that are able to bind FGF2. The library was composed primarily of NS domains internal to the HS chain with minor presence of non-reducing end (NRE) NS. The binders were categorized into low versus high affinity binders. The low affinity fraction contained primarily hexasaccharides with low degree of sulfation that were internal to the HS chains. In contrast, the high affinity bound fraction was enriched in NRE oligosaccharides that were considerably more sulfated and had the ability to promote FGFR-mediated cell proliferation. The results suggest a role of the NRE of HS in FGF2 signaling and favor the formation of the symmetrical architecture on short NS domains.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
39
|
Qu X, Carbe C, Tao C, Powers A, Lawrence R, van Kuppevelt TH, Cardoso WV, Grobe K, Esko JD, Zhang X. Lacrimal gland development and Fgf10-Fgfr2b signaling are controlled by 2-O- and 6-O-sulfated heparan sulfate. J Biol Chem 2011; 286:14435-44. [PMID: 21357686 DOI: 10.1074/jbc.m111.225003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heparan sulfate, an extensively sulfated glycosaminoglycan abundant on cell surface proteoglycans, regulates intercellular signaling through its binding to various growth factors and receptors. In the lacrimal gland, branching morphogenesis depends on the interaction of heparan sulfate with Fgf10-Fgfr2b. To address if lacrimal gland development and FGF signaling depends on 2-O-sulfation of uronic acids and 6-O-sulfation of glucosamine residues, we genetically ablated heparan sulfate 2-O and 6-O sulfotransferases (Hs2st, Hs6st1, and Hs6st2) in developing lacrimal gland. Using a panel of phage display antibodies, we confirmed that these mutations disrupted 2-O and/or 6-O but not N-sulfation of heparan sulfate. The Hs6st mutants exhibited significant lacrimal gland hypoplasia and a strong genetic interaction with Fgf10, demonstrating the importance of heparan sulfate 6-O sulfation in lacrimal gland FGF signaling. Altering Hs2st caused a much less severe phenotype, but the Hs2st;Hs6st double mutants completely abolished lacrimal gland development, suggesting that both 2-O and 6-O sulfation of heparan sulfate contribute to FGF signaling. Combined Hs2st;Hs6st deficiency synergistically disrupted the formation of Fgf10-Fgfr2b-heparan sulfate complex on the cell surface and prevented lacrimal gland induction by Fgf10 in explant cultures. Importantly, the Hs2st;Hs6st double mutants abrogated FGF downstream ERK signaling. Therefore, Fgf10-Fgfr2b signaling during lacrimal gland development is sensitive to the content or arrangement of O-sulfate groups in heparan sulfate. To our knowledge, this is the first study to show that simultaneous deletion of Hs2st and Hs6st exhibits profound FGF signaling defects in mammalian development.
Collapse
Affiliation(s)
- Xiuxia Qu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jastrebova N, Vanwildemeersch M, Lindahl U, Spillmann D. Heparan sulfate domain organization and sulfation modulate FGF-induced cell signaling. J Biol Chem 2010; 285:26842-26851. [PMID: 20576609 DOI: 10.1074/jbc.m109.093542] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Heparan sulfates (HSs) modulate various developmental and homeostatic processes by binding to protein ligands. We have evaluated the structural characteristics of porcine HS in cellular signaling induced by basic fibroblast growth factor (FGF2), using CHO745 cells devoid of endogenous glycosaminoglycans as target. Markedly enhanced stimulation of cell signaling, measured as phosphorylation of ERK1/2 and protein kinase B, was only observed with the shortest HS chains isolated from liver, whereas the longer chains from either liver or intestine essentially prolonged duration of signals induced by FGF2 in the absence of polysaccharide. Structural analysis showed that contiguous sulfated domains were most abundant in the shortest HS chains and were more heavily sulfated in HS from liver than in HS from intestine. Moreover, the shortest chains from either source entered into ternary complexes with FGF2 and FGF receptor-1c more efficiently than the corresponding longer chains. In addition to authentic HSs, decasaccharide libraries generated by chemo-enzymatic modification of heparin were probed for effect on FGF2 signaling. Only the most highly sulfated decamers, previously found most efficient in ternary complex formation (Jastrebova, N., Vanwildemeersch, M., Rapraeger, A. C., Giménez-Gallego, G., Lindahl, U., and Spillmann, D. (2006) J. Biol. Chem. 281, 26884-26892), promoted FGF2 cellular signaling as efficiently as short HS chains from liver. Together these results suggest that the effects of HS on FGF2 signaling are determined by both the structure of the highly sulfated domains and by the organization/availability of such domains within the HS chain. These findings underpin the need for regulation of HS biosynthesis in relation to control of growth factor-induced signaling pathways.
Collapse
Affiliation(s)
- Nadja Jastrebova
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Maarten Vanwildemeersch
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Ulf Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Dorothe Spillmann
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
41
|
Saxena K, Schieborr U, Anderka O, Duchardt-Ferner E, Elshorst B, Gande SL, Janzon J, Kudlinzki D, Sreeramulu S, Dreyer MK, Wendt KU, Herbert C, Duchaussoy P, Bianciotto M, Driguez PA, Lassalle G, Savi P, Mohammadi M, Bono F, Schwalbe H. Influence of heparin mimetics on assembly of the FGF.FGFR4 signaling complex. J Biol Chem 2010; 285:26628-40. [PMID: 20547770 DOI: 10.1074/jbc.m109.095109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF.FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM(6)), octasaccharide (HM(8)), and decasaccharide (HM(10)), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM(8) and HM(10) are significantly more potent than HM(6) in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1.FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2.FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1.FGFR4 interaction site and a direct FGFR4.FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF.FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM(8) relative to HM(6) in stimulating FGF2.FGFR4 signaling correlates with the higher affinity of HM(8) to bind and dimerize FGF2. Notably FGF2.HM(8) exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF.FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.
Collapse
Affiliation(s)
- Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Naimy H, Leymarie N, Zaia J. Screening for anticoagulant heparan sulfate octasaccharides and fine structure characterization using tandem mass spectrometry. Biochemistry 2010; 49:3743-52. [PMID: 20345121 PMCID: PMC3251171 DOI: 10.1021/bi100135d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heparan sulfate (HS) is a sulfated glycosaminoglycan located on the surface and extracellular matrix of mammalian cells. HS is constituted of highly N-sulfated domains (NS domains) interrupted by lower sulfation domains. The arrangement of these domains dictates the function of HS which is mainly involved in binding proteins and regulating their biological activities. Heparin, a heparan sulfate analogue present in mast cells, resembles the NS domains of HS but lacks the alternating high and low sulfation architecture. Because the NS domains that range up to hexadecasaccharide in size are the main protein binders, heparin has been used as a model for HS in protein binding studies. Heparan sulfate, however, is the more physiologically relevant modulator of growth factor-receptor interactions. In this work, liquid chromatography and mass spectrometry (LC-MS) were used to compare the compositions of affinity-purified heparin and HS octasaccharides with anticoagulant activities versus library octasaccharides. The fine structures of the biologically active HS compositions were then compared against those of library octasaccharides using low-energy collision-induced dissociation tandem mass spectrometry. This approach confirmed isomeric enrichment of these compositions and, most importantly, produces ions diagnostic of their biological activity.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Nancy Leymarie
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| |
Collapse
|
43
|
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. AN ACAD BRAS CIENC 2010; 81:409-29. [PMID: 19722012 DOI: 10.1590/s0001-37652009000300007] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
44
|
Varchalama E, Rodolakis A, Strati A, Papageorgiou T, Valavanis C, Vorgias G, Lianidou E, Antsaklis A. Quantitative analysis of heparanase gene expression in normal cervical, cervical intraepithelial neoplastic, and cervical carcinoma tissues. Int J Gynecol Cancer 2009; 19:1614-9. [PMID: 19955948 DOI: 10.1111/igc.0b013e3181ae3f40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heparanase is an endoglycosidase that specifically cleaves heparan sulfate side chains of heparan sulfate proteoglycans, the major proteoglycans in the extracellular matrix and cell surfaces. Traditionally, heparanase activity was implicated in cellular invasion associated with angiogenesis, inflammation, and cancer metastasis. More recently, heparanase up-regulation was documented in an increasing number of primary human tumors. Iotan this study, we sought to investigate the expression of heparanase messenger RNA (mRNA) in normal cervical tissue and intraepithelial cervical lesion and its clinicopathologic importance in invasive cervical cancer. Gene expression of heparanase was assessed by quantitative real-time reverse transcriptase polymerase chain reaction in 28 normal cervical, 26 intraepithelial neoplastic, and 48 cervical cancer tissue samples. Heparanase mRNA expression was different between the 3 groups and lower in normal cervical specimens in relationship with intraepithelial cervical lesions and invasive cervical cancer tissue samples (P = 0.048). Gradually increasing expression of heparanase was evident as the cells progressed from low-grade to high-grade squamous intraepithelial lesions (P = 0.002). In invasive cervical cancer cases, there was a direct correlation between heparanase expression and tumor size (P = 0.002). In cases treated with radical hysterectomy and pelvic lymphadenectomy, the heparanase mRNA expression was significantly higher in tumors exhibiting lymph vascular space invasion (P = 0.044) and in cases with big tumor size (P = 0.005). In our study, we did not find any significant correlation between disease-free and overall survival rates and expression of heparanase (P = 0.396 and P = 0.712, respectively). The results of this study suggest that the gene expression of heparanase in cervical cancer enhances growth, invasion, and angiogenesis of the tumor and may have therapeutic applications.
Collapse
Affiliation(s)
- Eugene Varchalama
- 1st Department of Obstetrics and Gynecology, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Osterholm C, Barczyk MM, Busse M, Grønning M, Reed RK, Kusche-Gullberg M. Mutation in the heparan sulfate biosynthesis enzyme EXT1 influences growth factor signaling and fibroblast interactions with the extracellular matrix. J Biol Chem 2009; 284:34935-43. [PMID: 19850926 DOI: 10.1074/jbc.m109.005264] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Heparan sulfate (HS) chains bind and modulate the signaling efficiency of many ligands, including members of the fibroblast growth factor (FGF) and platelet-derived growth factor families. We previously reported the structure of HS synthesized by embryonic fibroblasts from mice with a gene trap mutation of Ext1 that encodes a glycosyltransferase involved in HS chain elongation. The gene trap mutation results in low expression of Ext1, and, as a consequence, HS chain length is substantially reduced. In the present study, Ext1 mutant and wild-type mouse embryonic fibroblasts were analyzed for the functional consequences of the Ext1 mutation for growth factor signaling and interaction with the extracellular matrix. Here, we show that the phosphorylation of ERK1/2 in response to FGF2 stimulation was markedly decreased in the Ext1 mutant fibroblasts, whereas neither PDGF-BB nor FGF10 signaling was significantly affected. Furthermore, Ext1 mutants displayed reduced ability to attach to collagen I and to contract collagen lattices, even though no differences in the expression of collagen-binding integrins were observed. Reintroduction of Ext1in the Ext1 mutant fibroblasts rescued HS chain length, FGF2 signaling, and the ability of the fibroblasts to contract collagen. These data suggest that the length of the HS chains is a critical determinant of HS-protein interactions and emphasize the essential role of EXT1 in providing specific binding sites for growth factors and extracellular matrix proteins.
Collapse
Affiliation(s)
- Cecilia Osterholm
- Department of Biomedicine, University of Bergen, NO-5009 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
46
|
Zhang F, Zhang Z, Lin X, Beenken A, Eliseenkova AV, Mohammadi M, Linhardt RJ. Compositional analysis of heparin/heparan sulfate interacting with fibroblast growth factor.fibroblast growth factor receptor complexes. Biochemistry 2009; 48:8379-86. [PMID: 19591432 PMCID: PMC3348549 DOI: 10.1021/bi9006379] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) interact with a number of extracellular signaling proteins, thereby playing an essential role in the regulation of many physiological processes. One major function of HS is to interact with fibroblast growth factors (FGFs) and their receptors (FGFRs) and form FGF.HS.FGFR signaling complexes. Past studies primarily examined the selectivity of HS for FGF or FGFR. In this report, we used a new strategy to study the structural specificity of HS binding to 10 different FGF.FGFR complexes. Oligosaccharide libraries prepared from heparin, 6-desulfated heparin, and HS were used for the interaction studies by solution competition surface plasmon resonance (SPR) and filter trapping assays. Specific oligosaccharides binding to FGF.FGFR complexes were subjected to polyacrylamide gel electrophoresis (PAGE) analysis and disaccharide compositional analysis using liquid chromatography and mass spectrometry. The competition SPR studies using sized oligosaccharide mixtures showed that binding of each of the tested FGFs or FGF.FGFR complexes to heparin immobilized to an SPR chip was size-dependent. The 6-desulfated heparin oligosaccharides exhibited a reduced level of inhibition of FGF and FGF.FGFR complex binding to heparin in the competition experiments. Heparin and the 6-desulfated heparin exhibited higher levels of inhibition of the FGF.FGFR complex binding to heparin than of FGF binding to heparin. In the filter trapping experiments, PAGE analysis showed different affinities between the FGF.FGFR complexes and oligosaccharides. Disaccharide analysis showed that HS disaccharides with a degree of polymerization of 10 (dp10) had high binding selectivity, while dp10 heparin and dp10 6-desulfated heparin showed reduced or no selectivity for the different FGF.FGFR complexes tested.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Jia J, Maccarana M, Zhang X, Bespalov M, Lindahl U, Li JP. Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem 2009; 284:15942-50. [PMID: 19336402 DOI: 10.1074/jbc.m809577200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HSEPI (glucuronyl C5-epimerase) catalyzes the conversion of d-glucuronic acid to l-iduronic acid in heparan sulfate (HS) biosynthesis. Disruption of the Hsepi gene in mice yielded a lethal phenotype with selective organ defects but had remarkably little effect on other organ systems. We have approached the underlying mechanisms by examining the course and effects of FGF2 signaling in a mouse embryonic fibroblast (MEF) cell line derived from the Hsepi(-)(/)(-) mouse. The HS produced by these cells is devoid of l-iduronic acid residues but shows up-regulated N- and 6-O-sulfation compared with wild type (WT) MEF HS. In medium fortified with 10% fetal calf serum, the Hsepi(-)(/)(-) MEFs proliferated and migrated similarly to WT cells. Under starvation conditions, both cell types showed attenuated proliferation and migration that could be restored by the addition of FGF2 to WT cells, whereas Hsepi(-)(/)(-) cells were resistant. Moreover, ERK phosphorylation following FGF2 stimulation was delayed in Hsepi(-)(/)(-) compared with WT cells. Assessment of HS-growth factor interaction by nitrocellulose filter trapping revealed a strikingly aberrant binding property of FGF2 and glia-derived neurotropic factor to Hsepi(-)(/)(-) but not to WT HS. glia-derived neurotropic factor has a key role in kidney development, defective in Hsepi(-)(/)(-) mice. By contrast, Hsepi(-)(/)(-) and WT HS interacted similarly and in conventional mode with FGF10. These findings correlate defective function of growth factors with their mode of HS interaction and may help explain the partly modest organ phenotypes observed after genetic ablation of selected enzymes in HS biosynthesis.
Collapse
Affiliation(s)
- Juan Jia
- Department of Medical Biochemistry and Microbiology, University of Uppsala, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Ashikari-Hada S, Habuchi H, Sugaya N, Kobayashi T, Kimata K. Specific inhibition of FGF-2 signaling with 2-O-sulfated octasaccharides of heparan sulfate. Glycobiology 2009; 19:644-54. [PMID: 19254961 DOI: 10.1093/glycob/cwp031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In fibroblast growth factor (FGF)-2 signaling, the formation of a ternary complex of FGF-2, tyrosine-kinase fibroblast growth factor receptor (FGFR)-1, and cell surface heparan sulfate (HS) proteoglycan is known to be critical for the activation of FGFR-1 and downstream signal transduction. Exogenous heparin polymer and some octasaccharides inhibited FGF-2-induced phosphorylation both of FGFR-1 and of extracellular signal-regulated kinase (ERK1/2) in Chinese hamster ovary (CHO)-K1 cells transfected with FGFR-1, which present HS on their cell surface. The inhibitory effect of octasaccharide was dependent on the number of 2-O-sulfate groups within a molecule but independent of the number of 6-O-sulfate groups. Sulfation at the 2-O-position was a prerequisite not only for the binding of HS to FGF-2 but also for regulation of FGF-2 signaling and competitive inhibition with endogenous HS. Interestingly, FGF-4-induced phosphorylation was impeded only by specific octasaccharides containing both 2-O- and 6-O-sulfated groups, which were necessary for binding FGF-4. In CHO-677 cells deficient in HS biosynthesis, heparin enhanced FGF-2-induced phosphorylation of ERK1/2. On the other hand, an FGF-2-binding octasaccharide inhibited the phosphorylation. Our data suggest that the activity of particular heparin-binding factors can be inhibited by distinctive oligosaccharides that can bind the factors but cannot form functional signaling complexes irrespective of whether cells have a normal complement of HS or lack HS.
Collapse
Affiliation(s)
- Satoko Ashikari-Hada
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi, Japan
| | | | | | | | | |
Collapse
|
49
|
Udit AK, Everett C, Gale AJ, Kyle JR, Ozkan M, Finn MG. Heparin antagonism by polyvalent display of cationic motifs on virus-like particles. Chembiochem 2009; 10:503-10. [PMID: 19156786 PMCID: PMC2751660 DOI: 10.1002/cbic.200800493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Indexed: 11/06/2022]
Abstract
Particles to the rescue! The construction of cationic amino acid motifs on the surface of bacteriophage Qbeta by genetic engineering or chemical conjugation gives particles that are potent inhibitors of the anticoagulant action of heparin, which is a common anticlotting agent subject to clinical overdose.Polyvalent interactions allow biological structures to exploit low-affinity ligand-receptor binding events to affect physiological responses. We describe here the use of bacteriophage Qbeta as a multivalent platform for the display of polycationic motifs that act as heparin antagonists. Point mutations to the coat protein allowed us to generate capsids bearing the K16M, T18R, N10R, or D14R mutations; because 180 coat proteins form the capsid, the mutants provide a spectrum of particles differing in surface charge by as much as +540 units (K16M vs. D14R). Whereas larger poly-Arg insertions (for example, C-terminal Arg(8)) did not yield intact virions, it was possible to append chemically synthesized oligo-Arg peptides to stable wild-type (WT) and K16M platforms. Heparin antagonism by the particles was evaluated by using the activated partial thrombin time (aPTT) clotting assay; this revealed that T18R, D14R, and WT-(R(8)G(2))(95) were the most effective at disrupting heparin-mediated anticoagulation (>95 % inhibition). This activity agreed with measurements of zeta potential (ZP) and retention time on cation exchange chromatography for the genetic constructs, which distribute their added positive charge over the capsid surface (+180 and +360 for T18R and D14R relative to WT). The potent activity of WT-(R(8)G(2))(95), despite its relatively diminished overall surface charge is likely a consequence of the particle's presentation of locally concentrated regions with high positive charge density that interact with heparin's extensively sulfated domains. The engineered cationic capsids retained their ability to inhibit heparin at high concentrations and showed no anticlotting activity of the kind that limits the utility of antiheparin polycationic agents that are currently in clinical use.
Collapse
Affiliation(s)
- Andrew K. Udit
- Dr. A. K. Udit, C. Everett, Prof. M. G. Finn, Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+ 1)858-784-8850, E-mail: ,
| | - Chris Everett
- Dr. A. K. Udit, C. Everett, Prof. M. G. Finn, Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+ 1)858-784-8850, E-mail: ,
| | - Andrew J. Gale
- Prof. A. J. Gale, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Jennifer Reiber Kyle
- J. Reiber Kyle, Prof. M. Ozkan, Department of Electrical Engineering, University of California, Riverside, CA 92521 (USA)
| | - Mihri Ozkan
- J. Reiber Kyle, Prof. M. Ozkan, Department of Electrical Engineering, University of California, Riverside, CA 92521 (USA)
| | - M. G. Finn
- Dr. A. K. Udit, C. Everett, Prof. M. G. Finn, Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+ 1)858-784-8850, E-mail: ,
| |
Collapse
|
50
|
Lindahl U, Li JP. Interactions between heparan sulfate and proteins-design and functional implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:105-59. [PMID: 19584012 DOI: 10.1016/s1937-6448(09)76003-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) proteoglycans at cell surfaces and in the extracellular matrix of most animal tissues are essential in development and homeostasis, and variously implicated in disease processes. Functions of HS polysaccharide chains depend on ionic interactions with a variety of proteins including growth factors and their receptors. Negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The level of specificity of HS-protein interactions is assessed through binding experiments in vitro using saccharides of defined composition, signaling assays in cell culture, and targeted disruption of genes for biosynthetic enzymes followed by phenotype analysis. While some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without any apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis.
Collapse
Affiliation(s)
- Ulf Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | | |
Collapse
|