1
|
Lentini G, Querqui A, Giuliani A, Verna R, Bizzarri M. Inositol and PIP2/PIP3 Ratio: At the Crossroad of the Biodynamic Interface Between Cells and Their Microenvironment. Biomolecules 2025; 15:451. [PMID: 40149987 PMCID: PMC11940430 DOI: 10.3390/biom15030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides-namely PIP2 and PIP3-can accommodate the requirements of the dynamic interface, which mediates the interplay between cells and their microenvironment. The fine-tuned balance between the two phosphoinositides is instrumental in regulating cytoskeleton organization, motility, ion channel activation, and membrane traffic. The balanced expression of PIP2/PIP3 fulfills these functions by activating pathways through several transporter and receptor proteins. These dynamic interactions modulate the interplay with the extracellular environment by decreasing/increasing their exposure on the cell surface. In this way, lipid structures can rapidly either dismiss or recruit specific proteins, eventually favoring their cooperation with membrane receptors and ion channels. Particularly, exposure of proteins can be managed through the internalization of plasma membrane segments, while receptor signaling can be desensitized by their removal from the cell surface. Notably, the equilibrium between PIP2 and PIP3 is largely dependent on inositol availability, as inositol addition enhances PIP2 content while reducing PIP3 via PI3K inhibition. Pharmacological modulation of PIP2/PIP3 balance promises to be an interesting target in different clinical settings.
Collapse
Affiliation(s)
- Guglielmo Lentini
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Querqui
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Roberto Verna
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Mariano Bizzarri
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| |
Collapse
|
2
|
Qiu H, Ye C. Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism. Biol Cell 2025; 117:e70002. [PMID: 40123381 DOI: 10.1111/boc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Glycerophospholipid biosynthesis is crucial not only for providing structural components required for membrane biogenesis during cell proliferation but also for facilitating membrane remodeling under stress conditions. The biosynthetic pathways for glycerophospholipid tails, glycerol backbones, and diverse head group classes intersect with various other metabolic processes, sharing intermediary metabolites. Recent studies have revealed intricate connections between glycerophospholipid synthesis and nuclear metabolism, including metabolite-mediated crosstalk with the epigenome, signaling pathways that govern genome integrity, and CTP-involved regulation of nucleotide and antioxidant biosynthesis. This review highlights recent advances in understanding the functional roles of glycerophospholipid biosynthesis beyond their structural functions in budding yeast and mammalian cells. We propose that glycerophospholipid biosynthesis plays an integrative role in metabolic regulation, providing a new perspective on lipid biology.
Collapse
Affiliation(s)
- Hong Qiu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| |
Collapse
|
3
|
Zhu Y, Tong X, Xue J, Qiu H, Zhang D, Zheng DQ, Tu ZC, Ye C. Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity. Nat Chem Biol 2025; 21:35-46. [PMID: 39060393 DOI: 10.1038/s41589-024-01689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.
Collapse
Affiliation(s)
- Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomeng Tong
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
4
|
Laquel P, Ayciriex S, Doignon F, Camougrand N, Fougère L, Rocher C, Wattelet-Boyer V, Bessoule JJ, Testet E. Mlg1, a yeast acyltransferase located in ER membranes associated with mitochondria (MAMs), is involved in de novo synthesis and remodelling of phospholipids. FEBS J 2024; 291:2683-2702. [PMID: 38297966 DOI: 10.1111/febs.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.
Collapse
Affiliation(s)
- Patricia Laquel
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | - Sophie Ayciriex
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ISA, UMR 5280, Villeurbanne, France
| | | | | | - Louise Fougère
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | | | | | | | - Eric Testet
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
- Bordeaux INP, LBM, UMR 5200, Villenave d'Ornon, France
| |
Collapse
|
5
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
6
|
Fernández-Murray JP, Tavasoli M, Williams J, McMaster CR. The leucine zipper domain of the transcriptional repressor Opi1 underlies a signal transduction mechanism regulating lipid synthesis. J Biol Chem 2023; 299:105417. [PMID: 37918807 PMCID: PMC10709064 DOI: 10.1016/j.jbc.2023.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the transcriptional repressor Opi1 regulates the expression of genes involved in phospholipid synthesis responding to the abundance of the phospholipid precursor phosphatidic acid at the endoplasmic reticulum. We report here the identification of the conserved leucine zipper (LZ) domain of Opi1 as a hot spot for gain of function mutations and the characterization of the strongest variant identified, Opi1N150D. LZ modeling posits asparagine 150 embedded on the hydrophobic surface of the zipper and specifying dynamic parallel homodimerization by allowing electrostatic bonding across the hydrophobic dimerization interface. Opi1 variants carrying any of the other three ionic residues at amino acid 150 were also repressing. Genetic analyses showed that Opi1N150D variant is dominant, and its phenotype is attenuated when loss of function mutations identified in the other two conserved domains are present in cis. We build on the notion that membrane binding facilitates LZ dimerization to antagonize an intramolecular interaction of the zipper necessary for repression. Dissecting Opi1 protein in three polypeptides containing each conserved region, we performed in vitro analyses to explore interdomain interactions. An Opi11-190 probe interacted with Opi1291-404, the C terminus that bears the activator interacting domain (AID). LZ or AID loss of function mutations attenuated the interaction of the probes but was unaffected by the N150D mutation. We propose a model for Opi1 signal transduction whereby synergy between membrane-binding events and LZ dimerization antagonizes intramolecular LZ-AID interaction and transcriptional repression.
Collapse
Affiliation(s)
| | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason Williams
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
7
|
Shan C, Xia T, Liu J, Wang Y, Bai P, Xu L, Li Z, Zhao J, Bao X. The impacts of nicotinamide and inositol on the available cells and product performance of industrial baker's yeasts. BIORESOUR BIOPROCESS 2023; 10:41. [PMID: 38647809 PMCID: PMC10991249 DOI: 10.1186/s40643-023-00661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/25/2023] [Indexed: 04/25/2024] Open
Abstract
A suitable nutrient supply, especially of vitamins, is very significant for the deep display of the inherent genetic properties of microorganisms. Here, using the chemically defined minimal medium (MM) for yeast, nicotinamide and inositol were confirmed to be more beneficial for the performance of two industrial baker's yeasts, a conventional and a high-sugar-tolerant strain. Increasing nicotinamide or inositol to proper levels could enhance the both strains on cell growth and activity and product performance, including trehalose accumulation and leavening performance. The activity of key enzymes (PCK, TPS) and the content of intermediate metabolites (G6P, UDPG) in the trehalose synthesis pathway were promoted by a moderate supply of nicotinamide and inositol. That were also proved that an appropriate amount of niacinamide promoted the transcription of longevity-related genes (PNC1, SIR2), and the proper concentration of inositol altered the phospholipid composition in cells, namely, phosphatidylinositol and phosphatidyl choline. Furthermore, the cell growth and the leavening performance of the both strains were promoted after adjusting inositol to choline to the proper ratio, resulting directly in content changes of phosphatidylinositol and phosphatidyl choline in the cells. While the two strains responded to the different proper ratio of inositol to choline probably due to their specific physiological characteristics. Such beneficial effects of increased nicotinamide levels were confirmed in natural media, molasses and corn starch hydrolyzed sugar media. Meanwhile, such adjustment of inositol to choline ratio could lessen the inhibition of excess inositol on cell growth of the two tested strains in corn starch hydrolyzed sugar media. However, in molasse, such phenomenon was not observed probably since there was higher Ca2+ in it. The results indicated that the effects of nutrient factors, such as vitamins, on cell growth and other properties found out from the simple chemically defined minimal medium were an effective measure to use in improving the recipe of natural media at least for baker's yeast.
Collapse
Affiliation(s)
- Chengpeng Shan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Tianqing Xia
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Jiao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Shandong Shouguang Juneng Golden Corn Co., Ltd, Shouguang, 262711, Shandong, People's Republic of China.
| | - Ying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Penggang Bai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Lili Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Zailu Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| |
Collapse
|
8
|
Hrach VL, King WR, Nelson LD, Conklin S, Pollock JA, Patton-Vogt J. The acyltransferase Gpc1 is both a target and an effector of the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 2023; 299:104884. [PMID: 37269946 PMCID: PMC10331479 DOI: 10.1016/j.jbc.2023.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The unfolded protein response (UPR) is sensitive to proteotoxic and membrane bilayer stress, both of which are sensed by the ER protein Ire1. When activated, Ire1 splices HAC1 mRNA, producing a transcription factor that targets genes involved in proteostasis and lipid metabolism, among others. The major membrane lipid phosphatidylcholine (PC) is subject to phospholipase-mediated deacylation, producing glycerophosphocholine (GPC), followed by reacylation of GPC through the PC deacylation/reacylation pathway (PC-DRP). The reacylation events occur via a two-step process catalyzed first by the GPC acyltransferase Gpc1, followed by acylation of the lyso-PC molecule by Ale1. However, whether Gpc1 is critical for ER bilayer homeostasis is unclear. Using an improved method for C14-choline-GPC radiolabeling, we first show that loss of Gpc1 results in abrogation of PC synthesis through PC-DRP and that Gpc1 colocalizes with the ER. We then probe the role of Gpc1 as both a target and an effector of the UPR. Exposure to the UPR-inducing compounds tunicamycin, DTT, and canavanine results in a Hac1-dependent increase in GPC1 message. Further, cells lacking Gpc1 exhibit increased sensitivity to those proteotoxic stressors. Inositol limitation, known to induce the UPR via bilayer stress, also induces GPC1 expression. Finally, we show that loss of GPC1 induces the UPR. A gpc1Δ mutant displays upregulation of the UPR in strains expressing a mutant form of Ire1 that is unresponsive to unfolded proteins, indicating that bilayer stress is responsible for the observed upregulation. Collectively, our data indicate an important role for Gpc1 in yeast ER bilayer homeostasis.
Collapse
Affiliation(s)
- Victoria Lee Hrach
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - William R King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Laura D Nelson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Shane Conklin
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - John A Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
9
|
Gaspar ML, Aregullin MA, Chang YF, Jesch SA, Henry SA. Phosphatidic acid species 34:1 mediates expression of the myo-inositol 3-phosphate synthase gene INO1 for lipid synthesis in yeast. J Biol Chem 2022; 298:102148. [PMID: 35716778 PMCID: PMC9283935 DOI: 10.1016/j.jbc.2022.102148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Depletion of exogenous inositol in yeast results in rising levels of phosphatidic acid (PA) and is correlated with increased expression of genes containing the inositol-dependent upstream activating sequence promoter element (UASINO). INO1, encoding myo-inositol 3-phosphate synthase, is the most highly regulated of the inositol-dependent upstream activating sequence-containing genes, but its mechanism of regulation is not clear. In the current study, we determined the relative timing and kinetics of appearance of individual molecular species of PA following removal of exogenous inositol in actively growing wild type, pah1Δ, and ole1ts strains. We report that the pah1Δ strain, lacking the PA phosphatase, exhibits a delay of about 60 min in comparison to wildtype before initiating derepression of INO1 expression. The ole1ts mutant on the other hand, defective in fatty acid desaturation, when grown at a semirestrictive temperature, exhibited reduced synthesis of PA species 34:1 and elevated synthesis of PA species 32:1. Importantly, we found these changes in the fatty acid composition in the PA pool of the ole1ts strain were associated with reduced expression of INO1, indicating that synthesis of PA 34:1 is involved in optimal expression of INO1 in the absence of inositol. Using deuterium-labeled glycerol in short-duration labeling assays, we found that changes associated with PA species 34:1 were uniquely correlated with increased expression of INO1 in all three strains. These data indicate that the signal for activation of INO1 transcription is not necessarily the overall level of PA but rather levels of a specific species of newly synthesized PA 34:1.
Collapse
Affiliation(s)
- Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | - Manuel A Aregullin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Yu-Fang Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Suliman M, Case KC, Schmidtke MW, Lazcano P, Onu CJ, Greenberg ML. Inositol depletion regulates phospholipid metabolism and activates stress signaling in HEK293T cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159137. [PMID: 35247568 DOI: 10.1016/j.bbalip.2022.159137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Inositol plays a significant role in cellular function and signaling. Studies in yeast have demonstrated an "inositol-less death" phenotype, suggesting that inositol is an essential metabolite. In yeast, inositol synthesis is highly regulated, and inositol levels have been shown to be a major metabolic regulator, with its abundance affecting the expression of hundreds of genes. Abnormalities in inositol metabolism have been associated with several human disorders. Despite its importance, very little is known about the regulation of inositol synthesis and the pathways regulated by inositol in human cells. The current study aimed to address this knowledge gap. Knockout of ISYNA1 (encoding myo-inositol-3-P synthase 1) in HEK293T cells generated a human cell line that is deficient in de novo inositol synthesis. ISYNA1-KO cells exhibited inositol-less death when deprived of inositol. Lipidomic analysis identified inositol depletion as a global regulator of phospholipid levels in human cells, including downregulation of phosphatidylinositol (PI) and upregulation of the phosphatidylglycerol (PG)/cardiolipin (CL) branch of phospholipid metabolism. RNA-Seq analysis revealed that inositol depletion induced substantial changes in the expression of genes involved in cell signaling, including extracellular signal-regulated kinase (ERK), and genes controlling amino acid transport and protein processing in the endoplasmic reticulum (ER). This study provides the first in-depth characterization of the effects of inositol depletion on phospholipid metabolism and gene expression in human cells, establishing an essential role for inositol in maintaining cell viability and regulating cell signaling and metabolism.
Collapse
Affiliation(s)
- Mahmoud Suliman
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Chisom J Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
11
|
Laquel P, Testet E, Tuphile K, Cullin C, Fouillen L, Bessoule JJ, Doignon F. Phosphoinositides containing stearic acid are required for interaction between Rho GTPases and the exocyst to control the late steps of polarised exocytosis. Traffic 2021; 23:120-136. [PMID: 34908215 DOI: 10.1111/tra.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Cell polarity is achieved by regulators such as small G proteins, exocyst members and phosphoinositides, with the latter playing a key role when bound to the exocyst proteins Sec3p and Exo70p, and Rho GTPases. This ensures asymmetric growth via the routing of proteins and lipids to the cell surface using actin cables. Previously, using a yeast mutant for a lysophosphatidylinositol acyl transferase encoded by the PSI1 gene, we demonstrated the role of stearic acid in the acyl chain of phosphoinositides in cytoskeletal organisation and secretion. Here, we use a genetic approach to characterise the effect on late steps of the secretory pathway. The constitutive overexpression of PSI1 in mutants affecting kinases involved in the phosphoinositide pathway demonstrated the role of molecular species containing stearic acid in bypassing a lack of phosphatidylinositol-4-phosphate PI(4)P at the plasma membrane, which is essential for the function of the Cdc42p module. Decreasing the levels of stearic acid-containing phosphoinositides modifies the environment of the actors involved in the control of late steps in the secretory pathway. This leads to decreased interactions between Exo70p and Sec3p, with Cdc42p, Rho1p and Rho3p, due to disruption of the GTP/GDP ratio of at least Rho1p and Rho3p GTPases, thereby preventing activation of the exocyst.
Collapse
Affiliation(s)
- P Laquel
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - E Testet
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - K Tuphile
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - C Cullin
- Univ. Bordeaux, CNRS, Laboratoire de Chimie Biologie des Membranes & des Nano-objets, UMR 5248, Pessac, France
| | - L Fouillen
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France.,Metabolome Facility of Bordeaux, Functional Genomics Centre, F-33883 Villenave d'Ornon, France
| | - J J Bessoule
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - F Doignon
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
12
|
Regulating the growth and chemical compositions of a freshwater microalga Chlorella sorokiniana by adding myo-inositol to culture media. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Yap WS, Shyu P, Gaspar ML, Jesch SA, Marvalim C, Prinz WA, Henry SA, Thibault G. The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis. J Cell Sci 2020; 133:jcs248526. [PMID: 33033181 PMCID: PMC7657468 DOI: 10.1242/jcs.248526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wei Sheng Yap
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Peter Shyu
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Charlie Marvalim
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Guillaume Thibault
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673
| |
Collapse
|
14
|
Chorlay A, Monticelli L, Veríssimo Ferreira J, Ben M'barek K, Ajjaji D, Wang S, Johnson E, Beck R, Omrane M, Beller M, Carvalho P, Rachid Thiam A. Membrane Asymmetry Imposes Directionality on Lipid Droplet Emergence from the ER. Dev Cell 2019; 50:25-42.e7. [PMID: 31155466 DOI: 10.1016/j.devcel.2019.05.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/11/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023]
Abstract
During energy bursts, neutral lipids fabricated within the ER bilayer demix to form lipid droplets (LDs). LDs bud off mainly in the cytosol where they regulate metabolism and multiple biological processes. They indeed become accessible to most enzymes and can interact with other organelles. How such directional emergence is achieved remains elusive. Here, we found that this directionality is controlled by an asymmetry in monolayer surface coverage. Model LDs emerge on the membrane leaflet of higher coverage, which is improved by the insertion of proteins and phospholipids. In cells, continuous LD emergence on the cytosol would require a constant refill of phospholipids to the ER cytosolic leaflet. Consistent with this model, cells deficient in phospholipids present an increased number of LDs exposed to the ER lumen and compensate by remodeling ER shape. Our results reveal an active cooperation between phospholipids and proteins to extract LDs from ER.
Collapse
Affiliation(s)
- Aymeric Chorlay
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRSSorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Luca Monticelli
- Laboratory of Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS and University of Lyon, Lyon 69367, France
| | | | - Kalthoum Ben M'barek
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRSSorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Dalila Ajjaji
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRSSorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Sihui Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rainer Beck
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRSSorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University, Düsseldorf, Germany
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRSSorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
15
|
Ravi C, Gowsalya R, Nachiappan V. Impaired GCR1 transcription resulted in defective inositol levels, vacuolar structure and autophagy in Saccharomyces cerevisiae. Curr Genet 2019; 65:995-1014. [PMID: 30879088 DOI: 10.1007/s00294-019-00954-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 01/15/2023]
Abstract
In yeast, the GCR1 transcription factor is involved in the regulation of glycolysis and its deletion exhibited growth defect, reduced inositol and phosphatidylinositol (PI) levels compared to WT cells. We observed a down regulation of the INO1 and PIS1 expression in gcr1∆ cells under both I- and I+ conditions and the over expression of GCR1 in gcr1∆ cells restored the growth, retrieved the expression of INO1, and PIS1 comparable to WT cells. In the gel shift assay, the Gcr1p binds to its consensus sequence CTTCC in PIS1 promoter and regulates its expression but not in INO1 transcription. The WT cells, under I- significantly reduced the expression of GCR1 and PIS1, but increased the expression of KCS1 and de-repressed INO1. The Kcs1p expression was reduced in gcr1∆ cells; this reduced INO1 expression resulting in abnormal vacuolar structure and reduced autophagy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Chidambaram Ravi
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
16
|
Anaokar S, Kodali R, Jonik B, Renne MF, Brouwers JFHM, Lager I, de Kroon AIPM, Patton-Vogt J. The glycerophosphocholine acyltransferase Gpc1 is part of a phosphatidylcholine (PC)-remodeling pathway that alters PC species in yeast. J Biol Chem 2018; 294:1189-1201. [PMID: 30514764 DOI: 10.1074/jbc.ra118.005232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Phospholipase B-mediated hydrolysis of phosphatidylcholine (PC) results in the formation of free fatty acids and glycerophosphocholine (GPC) in the yeast Saccharomyces cerevisiae GPC can be reacylated by the glycerophosphocholine acyltransferase Gpc1, which produces lysophosphatidylcholine (LPC), and LPC can be converted to PC by the lysophospholipid acyltransferase Ale1. Here, we further characterized the regulation and function of this distinct PC deacylation/reacylation pathway in yeast. Through in vitro and in vivo experiments, we show that Gpc1 and Ale1 are the major cellular GPC and LPC acyltransferases, respectively. Importantly, we report that Gpc1 activity affects the PC species profile. Loss of Gpc1 decreased the levels of monounsaturated PC species and increased those of diunsaturated PC species, whereas Gpc1 overexpression had the opposite effects. Of note, Gpc1 loss did not significantly affect phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine profiles. Our results indicate that Gpc1 is involved in postsynthetic PC remodeling that produces more saturated PC species. qRT-PCR analyses revealed that GPC1 mRNA abundance is regulated coordinately with PC biosynthetic pathways. Inositol availability, which regulates several phospholipid biosynthetic genes, down-regulated GPC1 expression at the mRNA and protein levels and, as expected, decreased levels of monounsaturated PC species. Finally, loss of GPC1 decreased stationary phase viability in inositol-free medium. These results indicate that Gpc1 is part of a postsynthetic PC deacylation/reacylation remodeling pathway (PC-DRP) that alters the PC species profile, is regulated in coordination with other major lipid biosynthetic pathways, and affects yeast growth.
Collapse
Affiliation(s)
- Sanket Anaokar
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Ravindra Kodali
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Benjamin Jonik
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Mike F Renne
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jos F H M Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Anton I P M de Kroon
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jana Patton-Vogt
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
17
|
Regulation of the inositol transporter Itr1p by hydrogen peroxide in Saccharomyces cerevisiae. Arch Microbiol 2018; 201:123-134. [PMID: 30283989 DOI: 10.1007/s00203-018-1584-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Myo-inositol is a precursor of several membrane phospholipids and sphingolipids and plays a key role in gene regulation in Saccharomyces cerevisiae (S. cerevisiae). Here, we tested whether H2O2 was affecting the levels of the inositol transporters and thus inositol uptake. In S. cerevisiae cells adapted to H2O2 Itr1-GFPp accumulated in the plasma membrane until 20 min, concomitantly with an inhibition of its internalization. Exposure to H2O2 did not alter Itr2-GFPp cellular levels and induced only an 8% decrease at 10 min in the plasma membrane. Therefore, decreased inositol intracellular levels are not caused by decreased levels of inositol transporters in the plasma membrane. However, results show that H2O2 adaptation affects Itr1p turnover and, consequently, H2O2-adapted yeast cells display an inositol transporter phenotype comparable to cells grown in the absence of inositol in growth medium, i.e. accumulation in the plasma membrane and decreased degradation.
Collapse
|
18
|
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Yang J, Tang X, Shi HQ, Zhou XQ. Dietary myo-inositol deficiency decreased intestinal immune function related to NF-κB and TOR signaling in the intestine of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 76:333-346. [PMID: 29544771 DOI: 10.1016/j.fsi.2018.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/26/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the effects of dietary myo-inositol on the intestinal immune barrier function and related signaling pathway in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.33 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila. The results indicated that compared with the optimal dietary myo-inositol level, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased lysozyme (LZ) and acid phosphatase (ACP) activities, as well as complement 3 (C3), C4 and immunoglobulin M (IgM) contents in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (P < 0.05). (2) down-regulated the mRNA levels of anti-microbial substance: liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin-1 and mucin2 in the PI, MI and DI of young grass carp (P < 0.05). (3) up-regulated pro-inflammatory cytokines [IL-1β (not in DI), TNF-α and IL-8], nuclear factor kappa B P65 (not NF-κB P52), c-Rel, IκB kinaseα (IKKα), IKKβ and IKKγ mRNA levels in the PI, MI and DI of young grass carp (P < 0.05); and down-regulated pro-inflammatory cytokines IL-15 (not in DI) and inhibitor of κBα (IκBα) mRNA levels (P < 0.05). (4) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-10 (not in DI), IL-11, IL-4/13B (not IL-4/13A), TGF-β1 and TGF-β2], target of rapamycin (TOR), eIF4E-binding proteins 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6k1) in the PI, MI and DI of young grass carp (P < 0.05). All data indicated that myo-inositol deficiency could decrease fish intestine immunity and cause inflammation under infection of A. hydrophila. Finally, the optimal dietary myo-inositol levels for the ACP and LZ activities in the DI were estimated to be 415.1 and 296.9 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shuang-An Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Juan Yang
- Enterprise Technology Center, Tongwei Co., Ltd, Chengdu 610041, China
| | - Xu Tang
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou 510663, Guangdong, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Visram M, Radulovic M, Steiner S, Malanovic N, Eichmann TO, Wolinski H, Rechberger GN, Tehlivets O. Homocysteine regulates fatty acid and lipid metabolism in yeast. J Biol Chem 2018; 293:5544-5555. [PMID: 29414770 PMCID: PMC5900771 DOI: 10.1074/jbc.m117.809236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/05/2018] [Indexed: 01/03/2023] Open
Abstract
S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition.
Collapse
Affiliation(s)
- Myriam Visram
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Maja Radulovic
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Sabine Steiner
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Nermina Malanovic
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Thomas O. Eichmann
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Gerald N. Rechberger
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and ,the Omics Center Graz, BioTechMed-Graz, 8010 Graz, Austria
| | - Oksana Tehlivets
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| |
Collapse
|
20
|
Renne MF, de Kroon AIPM. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett 2017; 592:1330-1345. [PMID: 29265372 PMCID: PMC5947837 DOI: 10.1002/1873-3468.12944] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, including Saccharomyces cerevisiae, glycerophospholipids are the main membrane lipid constituents. Besides serving as general membrane ‘building blocks’, glycerophospholipids play an important role in determining the physical properties of the membrane, which are crucial for proper membrane function. To ensure optimal physical properties, membrane glycerophospholipid composition and synthesis are tightly regulated. This review will summarize our current knowledge of factors and processes determining the membrane glycerophospholipid composition of the reference eukaryote S. cerevisiae at the level of molecular species. Extrapolating from relevant model membrane data, we also discuss how modulation of the molecular species composition can regulate membrane physical properties.
Collapse
Affiliation(s)
- Mike F. Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryBijvoet Center for Biomolecular Research & Institute of BiomembranesUtrecht Universitythe Netherlands
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryBijvoet Center for Biomolecular Research & Institute of BiomembranesUtrecht Universitythe Netherlands
| |
Collapse
|
21
|
Diminished Ost3-dependent N-glycosylation of the BiP nucleotide exchange factor Sil1 is an adaptive response to reductive ER stress. Proc Natl Acad Sci U S A 2017; 114:12489-12494. [PMID: 29109265 DOI: 10.1073/pnas.1705641114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BiP (Kar2 in yeast) is an essential Hsp70 chaperone and master regulator of endoplasmic reticulum (ER) function. BiP's activity is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, Sil1 and Lhs1. Both Sil1 and Lhs1 are glycoproteins, but how N-glycosylation regulates their function is not known. Here, we show that N-glycosylation of Sil1, but not of Lhs1, is diminished upon reductive stress. N-glycosylation of Sil1 is predominantly Ost3-dependent and requires a functional Ost3 CxxC thioredoxin motif. N-glycosylation of Lhs1 is largely Ost3-independent and independent of the CxxC motif. Unglycosylated Sil1 is not only functional but is more effective at rescuing loss of Lhs1 activity than N-glycosylated Sil1. Furthermore, substitution of the redox active cysteine pair C52 and C57 in the N terminus of Sil1 results in the Doa10-dependent ERAD of this mutant protein. We propose that reductive stress in the ER inhibits the Ost3-dependent N-glycosylation of Sil1, which regulates specific BiP functions appropriate to the needs of the ER under reductive stress.
Collapse
|
22
|
Gaspar ML, Chang YF, Jesch SA, Aregullin M, Henry SA. Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline. J Biol Chem 2017; 292:18713-18728. [PMID: 28924045 DOI: 10.1074/jbc.m117.809970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p (scs2Δ) and a mutant, OPI1FFAT, lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis.
Collapse
Affiliation(s)
- Maria L Gaspar
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yu-Fang Chang
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Stephen A Jesch
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Manuel Aregullin
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan A Henry
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
23
|
Camelo C, Vilas-Boas F, Cepeda AP, Real C, Barros-Martins J, Pinto F, Soares H, Marinho HS, Cyrne L. Opi1p translocation to the nucleus is regulated by hydrogen peroxide in Saccharomyces cerevisiae. Yeast 2017; 34:383-395. [PMID: 28581036 DOI: 10.1002/yea.3240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
During exposure of yeast cells to low levels of hydrogen peroxide (H2 O2 ), the expression of several genes is regulated for cells to adapt to the surrounding oxidative environment. Such adaptation involves modification of plasma membrane lipid composition, reorganization of ergosterol-rich microdomains and altered gene expression of proteins involved in lipid and vesicle traffic, to decrease permeability to exogenous H2 O2 . Opi1p is a transcriptional repressor that is inactive when present at the nuclear membrane/endoplasmic reticulum, but represseses transcription of inositol upstream activating sequence (UASINO )-containing genes, many of which are involved in the synthesis of phospholipids and fatty acids, when it is translocated to the nucleus. We investigated whether H2 O2 in concentrations inducing adaptation regulates Opi1p function. We found that, in the presence of H2 O2 , GFP-Opi1p fusion protein translocates to the nucleus and, concomitantly, the expression of UASINO -containing genes is affected. We also investigated whether cysteine residues of Opi1p were implicated in the H2 O2 -mediated translocation of this protein to the nucleus and identified cysteine residue 159 as essential for this process. Our work shows that Opi1p is redox-regulated and establishes a new mechanism of gene regulation involving Opi1p, which is important for adaptation to H2 O2 in yeast cells. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carolina Camelo
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Andreia Pereira Cepeda
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Joana Barros-Martins
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Francisco Pinto
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,BioISI - Biosystems and Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Helena Soares
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096, Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Luisa Cyrne
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
24
|
Adelantado N, Tarazona P, Grillitsch K, García-Ortega X, Monforte S, Valero F, Feussner I, Daum G, Ferrer P. The effect of hypoxia on the lipidome of recombinant Pichia pastoris. Microb Cell Fact 2017; 16:86. [PMID: 28526017 PMCID: PMC5437588 DOI: 10.1186/s12934-017-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 01/17/2023] Open
Abstract
Background Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. Results To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. Conclusions Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Adelantado
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain.,Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Pablo Tarazona
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Xavier García-Ortega
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Sergi Monforte
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria. .,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
25
|
Lipidomics in research on yeast membrane lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:797-799. [PMID: 28219720 DOI: 10.1016/j.bbalip.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/21/2022]
Abstract
Mass spectrometry is increasingly used in research on membrane lipid homeostasis, both in analyses of the steady state lipidome at the level of molecular lipid species, and in pulse-chase approaches employing stable isotope-labeled lipid precursors addressing the dynamics of lipid metabolism. Here my experience with, and view on mass spectrometry-based lipid analysis is presented, with emphasis on aspects of quantification of membrane lipid composition of the yeast Saccharomyces cerevisiae. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
|
26
|
Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria. Proc Natl Acad Sci U S A 2016; 113:15102-15107. [PMID: 27956601 PMCID: PMC5206550 DOI: 10.1073/pnas.1615148113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent accumulation of newly discovered fungal-bacterial mutualisms challenges the paradigm that fungi and bacteria are natural antagonists. To understand the mechanisms that govern the establishment and maintenance over evolutionary time of mutualisms between fungi and bacteria, we studied a symbiosis of the fungus Rhizopus microsporus (Mucoromycotina) and its Burkholderia endobacteria. We found that nonhost R. microsporus, as well as other mucoralean fungi, interact antagonistically with endobacteria derived from the host and are not invaded by them. Comparison of gene expression profiles of host and nonhost fungi during interaction with endobacteria revealed dramatic changes in expression of lipid metabolic genes in the host. Analysis of the host lipidome confirmed that symbiosis establishment was accompanied by specific changes in the fungal lipid profile. Diacylglycerol kinase (DGK) activity was important for these lipid metabolic changes, as its inhibition altered the fungal lipid profile and caused a shift in the host-bacterial interaction into an antagonism. We conclude that adjustments in host lipid metabolism during symbiosis establishment, mediated by DGKs, are required for the mutualistic outcome of the Rhizopus-Burkholderia symbiosis. In addition, the neutral and phospholipid profiles of R. microsporus provide important insights into lipid metabolism in an understudied group of oleaginous Mucoromycotina. Lastly, our study revealed that the DGKs involved in the symbiosis form a previously uncharacterized clade of DGK domain proteins.
Collapse
|
27
|
Jadhav S, Russo S, Cottier S, Schneiter R, Cowart A, Greenberg ML. Valproate Induces the Unfolded Protein Response by Increasing Ceramide Levels. J Biol Chem 2016; 291:22253-22261. [PMID: 27590340 DOI: 10.1074/jbc.m116.752634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
Bipolar disorder (BD), which is characterized by depression and mania, affects 1-2% of the world population. Current treatments are effective in only 40-60% of cases and cause severe side effects. Valproate (VPA) is one of the most widely used drugs for the treatment of BD, but the therapeutic mechanism of action of this drug is not understood. This knowledge gap has hampered the development of effective treatments. To identify candidate pathways affected by VPA, we performed a genome-wide expression analysis in yeast cells grown in the presence or absence of the drug. VPA caused up-regulation of FEN1 and SUR4, encoding fatty acid elongases that catalyze the synthesis of very long chain fatty acids (C24 to C26) required for ceramide synthesis. Interestingly, fen1Δ and sur4Δ mutants exhibited VPA sensitivity. In agreement with increased fatty acid elongase gene expression, VPA increased levels of phytoceramide, especially those containing C24-C26 fatty acids. Consistent with an increase in ceramide, VPA decreased the expression of amino acid transporters, increased the expression of ER chaperones, and activated the unfolded protein response element (UPRE), suggesting that VPA induces the UPR pathway. These effects were rescued by supplementation of inositol and similarly observed in inositol-starved ino1Δ cells. Starvation of ino1Δ cells increased expression of FEN1 and SUR4, increased ceramide levels, decreased expression of nutrient transporters, and induced the UPR. These findings suggest that VPA-mediated inositol depletion induces the UPR by increasing the de novo synthesis of ceramide.
Collapse
Affiliation(s)
- Shyamalagauri Jadhav
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Sarah Russo
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Stéphanie Cottier
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Roger Schneiter
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Ashley Cowart
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202,
| |
Collapse
|
28
|
Kalujnaia S, Hazon N, Cramb G. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R287-98. [PMID: 27252471 PMCID: PMC5008666 DOI: 10.1152/ajpregu.00056.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells.
Collapse
Affiliation(s)
- Svetlana Kalujnaia
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| | - Neil Hazon
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Gordon Cramb
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| |
Collapse
|
29
|
Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity. Mol Cell Biol 2015; 36:765-80. [PMID: 26711260 DOI: 10.1128/mcb.00843-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype.
Collapse
|
30
|
Barneda D, Planas-Iglesias J, Gaspar ML, Mohammadyani D, Prasannan S, Dormann D, Han GS, Jesch SA, Carman GM, Kagan V, Parker MG, Ktistakis NT, Klein-Seetharaman J, Dixon AM, Henry SA, Christian M. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. eLife 2015; 4:e07485. [PMID: 26609809 PMCID: PMC4755750 DOI: 10.7554/elife.07485] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat. DOI:http://dx.doi.org/10.7554/eLife.07485.001 If other energy sources become unavailable, cells fall back on stores of fatty molecules called lipids. These are held in membrane-enclosed compartments in the cell called lipid droplets, which in mammals are particularly abundant in fat cells called adipocytes. There are two main types of adipocytes: white adipocytes have a single giant lipid droplet, whereas brown adipocytes contain many smaller droplets. Proteins embedded in the membrane that surrounds a lipid droplet help to control the droplet’s growth and when it releases lipids. For example, a protein called CIDEA, which is only found in brown adipocytes, helps lipid droplets to grow by enabling one droplet to transfer its contents to another droplet. However, little is known about how this occurs. By combining cell biology, biophysical and computer modelling approaches, Barneda et al. investigated how normal and mutant forms of CIDEA affect the growth of lipid droplets. These experiments identified a helix in the structure of CIDEA that embeds it in the membrane, from where it can then interact with CIDEA proteins on other lipid droplets to hold the droplets together. In addition, the helix interacts with a molecule in the lipid droplet membrane called phosphatidic acid. Barneda et al. suggest that this interaction helps to transfer the contents of one droplet to another by making it easier for lipids to move through the droplets’ membranes. The next challenge is to characterize the mechanisms that control CIDEA activity to influence the formation of the multiple lipid droplets that distinguish brown and BRITE (brown-in-white) adipocytes from white adipocytes. The lipid droplets in brown adipocytes are an important target for research to combat obesity, due to the 'burning' rather than storing of lipids that occurs in these cells. DOI:http://dx.doi.org/10.7554/eLife.07485.002
Collapse
Affiliation(s)
- David Barneda
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | | | - Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Dariush Mohammadyani
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Sunil Prasannan
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Dirk Dormann
- Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Gil-Soo Han
- Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - George M Carman
- Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| | - Valerian Kagan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Malcolm G Parker
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | | | - Judith Klein-Seetharaman
- Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
31
|
Grippa A, Buxó L, Mora G, Funaya C, Idrissi FZ, Mancuso F, Gomez R, Muntanyà J, Sabidó E, Carvalho P. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol 2015; 211:829-44. [PMID: 26572621 PMCID: PMC4657162 DOI: 10.1083/jcb.201502070] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Mutations in the seipin complex components Fld1 and Ldb16 result in the loss of lipid droplet identity and phospholipid packing defects, revealing a role of this complex in the stabilization of ER–lipid droplet contact sites. Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites.
Collapse
Affiliation(s)
- Alexandra Grippa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Laura Buxó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriel Mora
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Charlotta Funaya
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Fatima-Zahra Idrissi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Francesco Mancuso
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Raul Gomez
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Júlia Muntanyà
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pedro Carvalho
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
32
|
Deranieh RM, Shi Y, Tarsio M, Chen Y, McCaffery JM, Kane PM, Greenberg ML. Perturbation of the Vacuolar ATPase: A NOVEL CONSEQUENCE OF INOSITOL DEPLETION. J Biol Chem 2015; 290:27460-72. [PMID: 26324718 DOI: 10.1074/jbc.m115.683706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
Depletion of inositol has profound effects on cell function and has been implicated in the therapeutic effects of drugs used to treat epilepsy and bipolar disorder. We have previously shown that the anticonvulsant drug valproate (VPA) depletes inositol by inhibiting myo-inositol-3-phosphate synthase, the enzyme that catalyzes the first and rate-limiting step of inositol biosynthesis. To elucidate the cellular consequences of inositol depletion, we screened the yeast deletion collection for VPA-sensitive mutants and identified mutants in vacuolar sorting and the vacuolar ATPase (V-ATPase). Inositol depletion caused by starvation of ino1Δ cells perturbed the vacuolar structure and decreased V-ATPase activity and proton pumping in isolated vacuolar vesicles. VPA compromised the dynamics of phosphatidylinositol 3,5-bisphosphate (PI3,5P2) and greatly reduced V-ATPase proton transport in inositol-deprived wild-type cells. Osmotic stress, known to increase PI3,5P2 levels, did not restore PI3,5P2 homeostasis nor did it induce vacuolar fragmentation in VPA-treated cells, suggesting that perturbation of the V-ATPase is a consequence of altered PI3,5P2 homeostasis under inositol-limiting conditions. This study is the first to demonstrate that inositol depletion caused by starvation of an inositol synthesis mutant or by the inositol-depleting drug VPA leads to perturbation of the V-ATPase.
Collapse
Affiliation(s)
- Rania M Deranieh
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Yihui Shi
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Maureen Tarsio
- the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Yan Chen
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - J Michael McCaffery
- the Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Patricia M Kane
- the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202,
| |
Collapse
|
33
|
Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production. BIOMED RESEARCH INTERNATIONAL 2015; 2015:597198. [PMID: 26146623 PMCID: PMC4469783 DOI: 10.1155/2015/597198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.
Collapse
|
34
|
Yamagami K, Yamamoto T, Sakai S, Mioka T, Sano T, Igarashi Y, Tanaka K. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants. PLoS One 2015; 10:e0120108. [PMID: 25781026 PMCID: PMC4363822 DOI: 10.1371/journal.pone.0120108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.
Collapse
Affiliation(s)
- Kanako Yamagami
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takaharu Yamamoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Shota Sakai
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takamitsu Sano
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
- * E-mail:
| |
Collapse
|
35
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 866:1-9. [PMID: 25130199 DOI: 10.1007/978-1-61779-770-5_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
36
|
Preliminary Evidence of Inositol Supplementation Effect on Cell Growth, Viability and Plasma Membrane Fluidity of the Yeast Saccharomyces Cerevisiae. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.12.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
da Silveira Dos Santos AX, Riezman I, Aguilera-Romero MA, David F, Piccolis M, Loewith R, Schaad O, Riezman H. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol Biol Cell 2014; 25:3234-46. [PMID: 25143408 PMCID: PMC4196872 DOI: 10.1091/mbc.e14-03-0851] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry-based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae. Our approach successfully identified known kinases involved in lipid homeostasis and uncovered new ones. By clustering analysis, we found connections between nutrient-sensing pathways and regulation of glycerophospholipids. Deletion of members of glucose- and nitrogen-sensing pathways showed reciprocal changes in glycerophospholipid acyl chain lengths. We also found several new candidates for the regulation of sphingolipid homeostasis, including a connection between inositol pyrophosphate metabolism and complex sphingolipid homeostasis through transcriptional regulation of AUR1 and SUR1. This robust, systematic lipidomic approach constitutes a rich, new source of biological information and can be used to identify novel gene associations and function.
Collapse
Affiliation(s)
- Aline Xavier da Silveira Dos Santos
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Maria-Auxiliadora Aguilera-Romero
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Fabrice David
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Manuele Piccolis
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Robbie Loewith
- National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
38
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
39
|
The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids 2014; 180:23-43. [PMID: 24418527 DOI: 10.1016/j.chemphyslip.2013.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022]
Abstract
This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.
Collapse
|
40
|
Ye C, Bandara WMMS, Greenberg ML. Regulation of inositol metabolism is fine-tuned by inositol pyrophosphates in Saccharomyces cerevisiae. J Biol Chem 2013; 288:24898-908. [PMID: 23824185 PMCID: PMC3750184 DOI: 10.1074/jbc.m113.493353] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/01/2013] [Indexed: 01/10/2023] Open
Abstract
Although inositol pyrophosphates have diverse roles in phosphate signaling and other important cellular processes, little is known about their functions in the biosynthesis of inositol and phospholipids. Here, we show that KCS1, which encodes an inositol pyrophosphate kinase, is a regulator of inositol metabolism. Deletion of KCS1, which blocks synthesis of inositol pyrophosphates on the 5-hydroxyl of the inositol ring, causes inositol auxotrophy and decreased intracellular inositol and phosphatidylinositol. These defects are caused by a profound decrease in transcription of INO1, which encodes myo-inositol-3-phosphate synthase. Expression of genes that function in glycolysis, transcription, and protein processing is not affected in kcs1Δ. Deletion of OPI1, the INO1 transcription repressor, does not fully rescue INO1 expression in kcs1Δ. Both the inositol pyrophosphate kinase and the basic leucine zipper domains of KCS1 are required for INO1 expression. Kcs1 is regulated in response to inositol, as Kcs1 protein levels are increased in response to inositol depletion. The Kcs1-catalyzed production of inositol pyrophosphates from inositol pentakisphosphate but not inositol hexakisphosphate is indispensable for optimal INO1 transcription. We conclude that INO1 transcription is fine-tuned by the synthesis of inositol pyrophosphates, and we propose a model in which modulation of Kcs1 controls INO1 transcription by regulating synthesis of inositol pyrophosphates.
Collapse
Affiliation(s)
- Cunqi Ye
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - W. M. M. S. Bandara
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Miriam L. Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
41
|
Lee S, Gaspar ML, Aregullin MA, Jesch SA, Henry SA. Activation of protein kinase C-mitogen-activated protein kinase signaling in response to inositol starvation triggers Sir2p-dependent telomeric silencing in yeast. J Biol Chem 2013; 288:27861-71. [PMID: 23943620 DOI: 10.1074/jbc.m113.493072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Depriving wild type yeast of inositol, a soluble precursor for phospholipid, phosphoinositide, and complex sphingolipid synthesis, activates the protein kinase C (PKC)-MAPK signaling pathway, which plays a key role in the activation of NAD(+)-dependent telomeric silencing. We now report that triggering PKC-MAPK signaling by inositol deprivation or by blocking inositol-containing sphingolipid synthesis with aureobasidin A results in increased telomeric silencing regulated by the MAPK, Slt2p, and the NAD(+)-dependent deacetylase, Sir2p. Consistent with the dependence on NAD(+) in Sir2p-regulated silencing, we found that inositol depletion induces the expression of BNA2, which is required for the de novo synthesis of NAD(+). Moreover, telomeric silencing is greatly reduced in bna2Δ and npt1Δ mutants, which are defective in de novo and salvage pathways for NAD(+) synthesis, respectively. Surprisingly, however, omitting nicotinic acid from the growth medium, which reduces cellular NAD(+) levels, leads to increased telomeric silencing in the absence of inositol and/or at high temperature. This increase in telomeric silencing in response to inositol starvation is correlated to chronological life span extension but is Sir2p-independent. We conclude that activation of the PKC-MAPK signaling by interruption of inositol sphingolipid synthesis leads to increased Sir2p-dependent silencing and is dependent upon the de novo and salvage pathways for NAD(+) synthesis but is not correlated with cellular NAD(+) levels.
Collapse
Affiliation(s)
- Sojin Lee
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | | | | | | | | |
Collapse
|
42
|
Deranieh RM, He Q, Caruso JA, Greenberg ML. Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis. J Biol Chem 2013; 288:26822-33. [PMID: 23902760 DOI: 10.1074/jbc.m113.479121] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using (32)Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS.
Collapse
|
43
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
44
|
Schuldiner M, Weissman JS. The contribution of systematic approaches to characterizing the proteins and functions of the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:a013284. [PMID: 23359093 DOI: 10.1101/cshperspect.a013284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is a complex organelle responsible for a range of functions including protein folding and secretion, lipid biosynthesis, and ion homeostasis. Despite its central and essential roles in eukaryotic cells during development, growth, and disease, many ER proteins are poorly characterized. Moreover, the range of biochemical reactions that occur within the ER membranes, let alone how these different activities are coordinated, is not yet defined. In recent years, focused studies on specific ER functions have been complemented by systematic approaches and innovative technologies for high-throughput analysis of the location, levels, and biological impact of given components. This article focuses on the recent progress of these efforts, largely pioneered in the budding yeast Saccharomyces cerevisiae, and also addresses how future systematic studies can be geared to uncover the "dark matter" of uncharted ER functions.
Collapse
Affiliation(s)
- Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 76100.
| | | |
Collapse
|
45
|
Mora G, Scharnewski M, Fulda M. Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLoS One 2012; 7:e49269. [PMID: 23139841 PMCID: PMC3489728 DOI: 10.1371/journal.pone.0049269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of equilibrium in the fatty acid (FA) composition of phospholipids (PL) requires both regulation of the substrate available for PL synthesis (the acyl-CoA pool) and extensive PL turnover and acyl editing. In the present study, we utilize acyl-CoA synthetase (ACS) deficient cells, unable to recycle FA derived from lipid deacylation, to evaluate the role of several enzymatic activities in FA trafficking and PL homeostasis in Saccharomyces cerevisiae. The data presented show that phospholipases B are not contributing to constitutive PL deacylation and are therefore unlikely to be involved in PL remodeling. In contrast, the enzymes of neutral lipid (NL) synthesis and mobilization are central mediators of FA trafficking. The phospholipid:DAG acyltransferase (PDAT) Lro1p has a substantial effect on FA release and on PL equilibrium, emerging as an important mediator in PL remodeling. The acyl-CoA dependent biosynthetic activities of NL metabolism are also involved in PL homeostasis through active modulation of the substrate available for PL synthesis. In addition TAG mobilization makes an important contribution, especially in cells from stationary phase, to FA availability. Beyond its well-established role in the formation of a storage pool, NL metabolism could play a crucial role as a mechanism to uncouple the pools of PL and acyl-CoAs from each other and thereby to allow independent regulation of each one.
Collapse
Affiliation(s)
- Gabriel Mora
- Department of Plant Biochemistry, Albrecht-von-Haller Institute, Georg-August University Goettingen, Goettingen, Germany
| | | | | |
Collapse
|
46
|
Abstract
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
Collapse
|
47
|
Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol–choline and Snf1 in controlling lipid biosynthesis in yeast. Mol Genet Genomics 2012; 287:541-54. [DOI: 10.1007/s00438-012-0697-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/08/2012] [Indexed: 01/31/2023]
|
48
|
Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K. Flexibility of a eukaryotic lipidome--insights from yeast lipidomics. PLoS One 2012; 7:e35063. [PMID: 22529973 PMCID: PMC3329542 DOI: 10.1371/journal.pone.0035063] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022] Open
Abstract
Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of a variety of commonly used growth conditions on the yeast lipidome, including glycerophospholipids, triglycerides, ergosterol as well as complex sphingolipids. This extensive dataset allowed for a quantitative description of the intrinsic flexibility of a eukaryotic lipidome, thereby providing new insights into the adjustments of lipid biosynthetic pathways. In addition, we established a baseline for future lipidomic experiments in yeast. Finally, flexibility of lipidomic features is proposed as a new parameter for the description of the physiological state of an organism.
Collapse
Affiliation(s)
- Christian Klose
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michal A. Surma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mathias J. Gerl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Felix Meyenhofer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
49
|
Ayciriex S, Le Guédard M, Camougrand N, Velours G, Schoene M, Leone S, Wattelet-Boyer V, Dupuy JW, Shevchenko A, Schmitter JM, Lessire R, Bessoule JJ, Testet E. YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Mol Biol Cell 2011; 23:233-46. [PMID: 22090344 PMCID: PMC3258169 DOI: 10.1091/mbc.e11-07-0650] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
LOA1, a yeast member of the glycerolipid acyltransferase family, encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets (LDs) and involved in triacylglycerol (TAG) accumulation. Loa1p, recruited during LD formation, preferentially directs oleic acid–containing phosphatidic acid species into the TAG biosynthetic pathway. For many years, lipid droplets (LDs) were considered to be an inert store of lipids. However, recent data showed that LDs are dynamic organelles playing an important role in storage and mobilization of neutral lipids. In this paper, we report the characterization of LOA1 (alias VPS66, alias YPR139c), a yeast member of the glycerolipid acyltransferase family. LOA1 mutants show abnormalities in LD morphology. As previously reported, cells lacking LOA1 contain more LDs. Conversely, we showed that overexpression results in fewer LDs. We then compared the lipidome of loa1Δ mutant and wild-type strains. Steady-state metabolic labeling of loa1Δ revealed a significant reduction in triacylglycerol content, while phospholipid (PL) composition remained unchanged. Interestingly, lipidomic analysis indicates that both PLs and glycerolipids are qualitatively affected by the mutation, suggesting that Loa1p is a lysophosphatidic acid acyltransferase (LPA AT) with a preference for oleoyl-CoA. This hypothesis was tested by in vitro assays using both membranes of Escherichia coli cells expressing LOA1 and purified proteins as enzyme sources. Our results from purification of subcellular compartments and proteomic studies show that Loa1p is associated with LD and active in this compartment. Loa1p is therefore a novel LPA AT and plays a role in LD formation.
Collapse
Affiliation(s)
- Sophie Ayciriex
- Laboratoire de Biogenèse Membranaire, Université Bordeaux, UMR 5200, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|