1
|
Pathak T, Benson JC, Tang PW, Trebak M, Hempel N. Crosstalk between calcium and reactive oxygen species signaling in cancer revisited. Cell Calcium 2025; 127:103014. [PMID: 40139005 DOI: 10.1016/j.ceca.2025.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The homeostasis of cellular reactive oxygen species (ROS) and calcium (Ca2+) are intricately linked. ROS signaling and Ca2+ signaling are reciprocally regulated within cellular microdomains and are crucial for transcription, metabolism and cell function. Tumor cells often highjack ROS and Ca2+ signaling mechanisms to ensure optimal cell survival and tumor progression. Expression and regulation of Ca2+ channels and transporters at the plasma membrane, endoplasmic reticulum, mitochondria and other endomembranes are often altered in tumor cells, and this includes their regulation by ROS and reactive nitrogen species (RNS). Likewise, alterations in cellular Ca2+ levels influence the generation and scavenging of oxidants and thus can alter the redox homeostasis of the cell. This interplay can be either beneficial or detrimental to the cell depending on the localization, duration and levels of ROS and Ca2+ signals. At one end of the spectrum, Ca2+ and ROS/RNS can function as signaling modules while at the other end, lethal surges in these species are associated with cell death. Here, we highlight the interplay between Ca2+ and ROS in cancer progression, emphasize the impact of redox regulation on Ca2+ transport mechanisms, and describe how Ca2+ signaling pathways, in turn, can regulate the cellular redox environment.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Priscilla W Tang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Malignant Hematology & Medical Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Nadine Hempel
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Malignant Hematology & Medical Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Montazeri-Khosh Z, Ebrahimpour A, Keshavarz M, Sheybani-Arani M, Samiei A. Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury. Immunopharmacol Immunotoxicol 2025; 47:159-175. [PMID: 39762721 DOI: 10.1080/08923973.2024.2444956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI. METHODS A comprehensive analysis of literature detailing NLRP3 inflammasome activation pathways and therapeutic interventions was conducted. Empirical evidence supporting the concurrent administration of MCC950 and Rapamycin was reviewed to assess the efficacy of dual-action strategies compared to single-agent treatments. RESULTS Findings highlight potassium efflux and calcium signaling as novel targets for intervention, with cathepsin B inhibitors showing promise in mitigating neuroinflammation. Dual therapies, particularly MCC950 and Rapamycin, demonstrate enhanced efficacy in reducing neuroinflammation. Autophagy promotion, alongside NLRP3 inhibition, emerges as a complementary therapeutic avenue to reverse neuroinflammatory damage. CONCLUSION Combination therapies targeting the NLRP3 inflammasome and related pathways offer significant potential to enhance recovery in TBI patients. This review presents compelling evidence for the development of such strategies, marking a new frontier in neuroinflammatory research and therapeutic innovation.
Collapse
Affiliation(s)
- Zana Montazeri-Khosh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Ebrahimpour
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mina Keshavarz
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Afshin Samiei
- Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
3
|
Gomaa AAE, Zeid AMA, Nagy IM, Zahran AM. The effect of genetic polymorphisms in STIM1 and ORAI1 on erythropoietin resistance in Egyptian patients with end-stage renal disease. Clin Chim Acta 2025; 564:119948. [PMID: 39214396 DOI: 10.1016/j.cca.2024.119948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic renal failure (CRF) is an incurable disease with unique challenges. Anemia is a frequent complication affecting dialysis patients. Erythropoietin (EPO) is used to treat anemia, but a poor response may result. We investigated genetic polymorphisms of store-operated calcium channel (SOC) signaling, an important erythropoietin-activated pathway that may induce EPO resistance in patients with renal failure. A total of 108 end stage renal disease (ESRD) patients were selected for this study. Patients were divided into two groups according to their erythropoietin resistance index (ERI): 39 patients with an ERI>10 and 69 patients with an ERI<10. We selected four tagging single nucleotide polymorphisms (tSNPs) in STIM1 and five in ORAI1 in our study. A polymerase chain reaction was performed, and genotyping against EPO resistance was correlated. Patients with the AG genotype of rs1561876 in STIM1, the TC genotype of rs6486795 in ORAI1, and the TG or GG genotypes of rs12320939 in ORAI1 were associated with an increased risk of erythropoietin resistance. Overall, we reported a moderately significant relationship between genetic polymorphisms of STIM1 and EPO resistance. We also reported a highly significant relationship between genetic polymorphisms of ORAI1 and EPO resistance. The (A-A-G) haplotype of STIM1 and the (G-T-G-T-A, G-C-G-C-G, or G-T-T-C-G) haplotypes of ORAI1 were significantly associated with EPO resistance.
Collapse
Affiliation(s)
- Azza A E Gomaa
- Internal Medicine Department, Menofia University, Menofia, Egypt.
| | - Amany M A Zeid
- Clinical Pathology Department, Menofia University, Menofia, Egypt
| | - Ibrahim M Nagy
- Medicinal Chemistry Department, Menofia University, Menofia, Egypt.
| | - Ahmed M Zahran
- Internal Medicine Department, Menofia University, Menofia, Egypt
| |
Collapse
|
4
|
Babicheva A, Elmadbouh I, Song S, Thompson M, Powers R, Jain PP, Izadi A, Chen J, Yung L, Parmisano S, Paquin C, Wang WT, Chen Y, Wang T, Alotaibi M, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Prakash YS, Pabelick CM, Yuan JXJ. Store-operated Ca 2+ entry is involved in endothelium-to-mesenchymal transition in lung vascular endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627034. [PMID: 39677696 PMCID: PMC11643270 DOI: 10.1101/2024.12.06.627034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β 1 (TGF-β 1 ), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC). An increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] cyt ) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca 2+ signaling is involved in EndMT. In this study we tested the hypothesis that TGF-β 1 -induced EndMT in human LVEC is Ca 2+ -dependent. Treatment of LVEC with TGF-β 1 for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1 and enhancement of store-operated Ca 2+ entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca 2+ with EGTA or BAPTA-AM respectively abolished EndMT in response to TGF-β 1 . Moreover, EGTA diminished TGF-β 1 -induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT, but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca 2+ signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca 2+ signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of pre-capillary pulmonary hypertension. New & Noteworthy EndMT has been reported to contribute to the pathogenesis of PH. In this study we aimed to determine the role of Ca 2+ signaling in the development of EndMT in human lung vascular endothelial cells. Our data suggest that TGF-β 1 requires store-operated Ca 2+ entry through STIM1/Orai channels to induce SNAI-mediated EndMT. For the first time we demonstrated that TGF-β 1 -induced EndMT is Ca 2+ -dependent event while inhibition of STIM1/Orai interaction attenuated EndMT in response to TGF-β 1 .
Collapse
|
5
|
Goriounova AS, Flori Sassano M, Wrennall JA, Tarran R. ELD607 specifically traffics Orai1 to the lysosome leading to inhibition of store operated calcium entry. Cell Calcium 2024; 123:102945. [PMID: 39191091 DOI: 10.1016/j.ceca.2024.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Orai1 is a plasma membrane Ca2+ channel involved in store operated calcium entry (SOCE). SOCE can regulate cell growth, exocytosis, gene expression and inflammation. We previously found that short palate lung and nasal epithelial clone 1's (SPLUNC1) sixth α-helix (α6) bound Orai1 to inhibit SOCE. SPLUNC1 was not proteolytically stable, so we developed ELD607, an 11 amino acid peptide based on SPLUNC1's α6 region which was more stable and more potent than SPLUNC1/α6. Here, we studied ELD607's mechanism of action. We overexpressed either Orai1-HA or Orai1-YFP in HEK293T cells to probe ELD607-Orai1 interactions by confocal microscopy. We also measured changes in Fluo-4 fluorescence in a multiplate reader as a marker of cytoplasmic Ca2+ levels. ELD607 internalized Orai1 independently of STIM1. Both 15 min and 3 h exposure to ELD607 similarly depleted Orai1 in the plasma membrane. However, 3 h exposure to ELD607 yielded greater inhibition of SOCE. ELD607 continued to colocalize with Orai1 after internalization and this process was dependent on the presence of the ubiquitin ligase NEDD4.2. Similarly, ELD607 increased the colocalization between Orai1 and ubiquitin. ELD607 also increased the colocalization between Orai1 and Rab5 and 7, but not Rab11, suggesting that Orai1 trafficked through early and late but not recycling endosomes. Finally, ELD607 caused Orai1, but not Orai2, Orai3, or STIM1 to traffic to lysosomes. We conclude that ELD607 rapidly binds to Orai1 and works in an identical fashion as full length SPLUNC1 by internalizing Orai1 and sending it to lysosomes, leading to a decrease in SOCE.
Collapse
Affiliation(s)
- Alexandra S Goriounova
- Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - M Flori Sassano
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Joe A Wrennall
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| |
Collapse
|
6
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
7
|
Ptakova A, Vlachova V. Thermosensing ability of TRPC5: current knowledge and unsettled questions. J Physiol Sci 2024; 74:50. [PMID: 39363236 PMCID: PMC11447943 DOI: 10.1186/s12576-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Our understanding of how the mammalian somatosensory system detects noxious cold is still limited. While the role of TRPM8 in signaling mild non-noxious coolness is reasonably understood, the molecular identity of channels transducing painful cold stimuli remains unresolved. TRPC5 was originally described to contribute to moderate cold responses of dorsal root ganglia neurons in vitro, but mice lacking TRPC5 exhibited no change in behavioral responses to cold temperature. The question of why a channel endowed with the ability to be activated by cooling contributes to the cold response only under certain conditions is currently being intensively studied. It seems increasingly likely that the physiological detection of cold temperatures involves multiple different channels and mechanisms that modulate the threshold and intensity of perception. In this review, we aim to outline how TRPC5 may contribute to these mechanisms and what molecular features are important for its role as a cold sensor.
Collapse
Affiliation(s)
- Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
8
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
9
|
Redondo PC, Lopez JJ, Alvarado S, Jardin I, Nieto-Felipe J, Macias-Diaz A, Jimenez-Velarde V, Salido GM, Rosado JA. Extended Synaptotagmins 1 and 2 Are Required for Store-Operated Calcium Entry, Cell Migration and Viability in Breast Cancer Cells. Cancers (Basel) 2024; 16:2518. [PMID: 39061158 PMCID: PMC11274662 DOI: 10.3390/cancers16142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Extended synaptotagmins (E-Syts) are endoplasmic reticulum (ER)-associated proteins that facilitate the tethering of the ER to the plasma membrane (PM), participating in lipid transfer between the membranes and supporting the Orai1-STIM1 interaction at ER-PM junctions. Orai1 and STIM1 are the core proteins of store-operated Ca2+ entry (SOCE), a major mechanism for Ca2+ influx that regulates a variety of cellular functions. Aberrant modulation of SOCE in cells from different types of cancer has been reported to underlie the development of several tumoral features. Here we show that estrogen receptor-positive (ER+) breast cancer MCF7 and T47D cells and triple-negative breast cancer (TNBC) MDA-MB-231 cells overexpress E-Syt1 and E-Syt2 at the protein level; the latter is also overexpressed in the TNBC BT20 cell line. E-Syt1 and E-Syt2 knockdown was without effect on SOCE in non-tumoral MCF10A breast epithelial cells and ER+ T47D breast cancer cells; however, SOCE was significantly attenuated in ER+ MCF7 cells and TNBC MDA-MB-231 and BT20 cells upon transfection with siRNA E-Syt1 or E-Syt2. Consistent with this, E-Syt1 and E-Syt2 knockdown significantly reduced cell migration and viability in ER+ MCF7 cells and the TNBC cells investigated. To summarize, E-Syt1 and E-Syt2 play a relevant functional role in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (J.J.L.); (S.A.); (I.J.); (J.N.-F.); (A.M.-D.); (V.J.-V.); (G.M.S.)
| |
Collapse
|
10
|
Saint-Martin Willer A, Montani D, Capuano V, Antigny F. Orai1/STIMs modulators in pulmonary vascular diseases. Cell Calcium 2024; 121:102892. [PMID: 38735127 DOI: 10.1016/j.ceca.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Calcium (Ca2+) is a secondary messenger that regulates various cellular processes. However, Ca2+ mishandling could lead to pathological conditions. Orai1 is a Ca2+channel contributing to the store-operated calcium entry (SOCE) and plays a critical role in Ca2+ homeostasis in several cell types. Dysregulation of Orai1 contributed to severe combined immune deficiency syndrome, some cancers, pulmonary arterial hypertension (PAH), and other cardiorespiratory diseases. During its activation process, Orai1 is mainly regulated by stromal interacting molecule (STIM) proteins, especially STIM1; however, many other regulatory partners have also been recently described. Increasing knowledge about these regulatory partners provides a better view of the downstream signalling pathways of SOCE and offers an excellent opportunity to decipher Orai1 dysregulation in these diseases. These proteins participate in other cellular functions, making them attractive therapeutic targets. This review mainly focuses on Orai1 regulatory partners in the physiological and pathological conditions of the pulmonary circulation and inflammation.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis-Robinson, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
11
|
Macias‐Diaz A, Lopez JJ, Bravo M, Jardín I, Garcia‐Jimenez WL, Blanco‐Blanco FJ, Cerrato R, Rosado JA. Postbiotics of Lacticaseibacillus paracasei CECT 9610 and Lactiplantibacillus plantarum CECT 9608 attenuates store-operated calcium entry and FAK phosphorylation in colorectal cancer cells. Mol Oncol 2024; 18:1123-1142. [PMID: 38514909 PMCID: PMC11076996 DOI: 10.1002/1878-0261.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a major mechanism for Ca2+ influx in colorectal cancer (CRC) cells. This mechanism, regulated by the filling state of the intracellular Ca2+ stores, is mediated by the endoplasmic reticulum Ca2+ sensors of the stromal interaction molecules (STIM) family [stromal interaction molecule 1 (STIM1) and STIM2] and the Ca2+-release-activated Ca2+ channels constituted by Orai family members, with predominance of calcium release-activated calcium channel protein 1 (Orai1). CRC cells exhibit enhanced SOCE due to remodeling of the expression of the key SOCE molecular components. The enhanced SOCE supports a variety of cancer hallmarks. Here, we show that treatment of the colorectal adenocarcinoma cell lines HT-29 and Caco-2 with inanimate Lacticaseibacillus paracasei (CECT9610) and Lactiplantibacillus plantarum (CECT9608) attenuates SOCE, although no detectable effect is seen on SOCE in normal colon mucosa cells. The effect of Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics was mediated by downregulation of Orai1 and STIM1, while the expression levels of Orai3 and STIM2 remained unaltered. Treatment of HT-29 and Caco-2 cells with inanimate Lacticaseibacillus paracasei and Lactiplantibacillus plantarum impairs in vitro migration by a mechanism likely involving attenuation of focal adhesion kinase (FAK) tyrosine phosphorylation. Cell treatment with the Orai1 inhibitor synta-66 attenuates SOCE and prevents any further effect of Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics. Together, our results indicate for the first time that Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics selectively exert negative effects on Ca2+ influx through SOCE in colorectal adenocarcinoma cell lines, providing evidence for an attractive strategy against CRC.
Collapse
Affiliation(s)
- Alvaro Macias‐Diaz
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| | - Jose J. Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| | - Maria Bravo
- Innovación en Gestión y Conservación de Ungulados S.LCáceresSpain
| | - Isaac Jardín
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| | | | | | - Rosario Cerrato
- Innovación en Gestión y Conservación de Ungulados S.LCáceresSpain
| | - Juan A. Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| |
Collapse
|
12
|
Lee L, Yoast R, Emrich S, Trebak M, Kirk V, Sneyd J. Emergence of broad cytosolic Ca 2+ oscillations in the absence of CRAC channels: A model for CRAC-mediated negative feedback on PLC and Ca 2+ oscillations through PKC. J Theor Biol 2024; 581:111740. [PMID: 38253220 DOI: 10.1016/j.jtbi.2024.111740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The role of Ca2+ release-activated Ca2+ (CRAC) channels mediated by ORAI isoforms in calcium signalling has been extensively investigated. It has been shown that the presence or absence of different isoforms has a significant effect on store-operated calcium entry (SOCE). Yoast et al. (2020) showed that, in addition to the reported narrow-spike oscillations (whereby cytosolic calcium decreases quickly after a sharp increase), ORAI1 knockout HEK293 cells were able to oscillate with broad-spike oscillations (whereby cytosolic calcium decreases in a prolonged manner after a sharp increase) when stimulated with a muscarinic agonist. This suggests that Ca2+ influx through ORAI-mediated CRAC channels negatively regulates the duration of Ca2+ oscillations. We hypothesise that, through the activation of protein kinase C (PKC), ORAI1 negatively regulates phospholipase C (PLC) activity to decrease inositol 1,4,5-trisphosphate (IP3) production and limit the duration of agonist-evoked Ca2+ oscillations. Based on this hypothesis, we construct a new mathematical model, which shows that the formation of broad-spike oscillations is highly dependent on the absence of ORAI1. Predictions of this model are consistent with the experimental results.
Collapse
Affiliation(s)
- Lloyd Lee
- Department of Mathematics, University of Auckland, 1142 Auckland, New Zealand.
| | - Ryan Yoast
- Graduate Program in Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Scott Emrich
- Graduate Program in Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA
| | - Vivien Kirk
- Department of Mathematics, University of Auckland, 1142 Auckland, New Zealand
| | - James Sneyd
- Department of Mathematics, University of Auckland, 1142 Auckland, New Zealand
| |
Collapse
|
13
|
Ahmad S, Wrennall JA, Goriounova AS, Sekhri M, Iskarpatyoti JA, Ghosh A, Abdelwahab SH, Voeller A, Rai M, Mahida RY, Krajewski K, Ignar DM, Greenbaum A, Moran TP, Tilley SL, Thickett DR, Sassano MF, Tarran R. Specific Inhibition of Orai1-mediated Calcium Signalling Resolves Inflammation and Clears Bacteria in an Acute Respiratory Distress Syndrome Model. Am J Respir Crit Care Med 2024; 209:703-715. [PMID: 37972349 PMCID: PMC10945054 DOI: 10.1164/rccm.202308-1393oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Saira Ahmad
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | - Mani Rai
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Rahul Y. Mahida
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Timothy P. Moran
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen L. Tilley
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David R. Thickett
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
| | - M. Flori Sassano
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| | - Robert Tarran
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Kothalawala SD, Günther S, Schuppe H, Pilatz A, Wagenlehner F, Kliesch S, O'Donnell L, Fietz D. Identification of differentially expressed genes in human testis biopsies with defective spermatogenesis. Reprod Med Biol 2024; 23:e12616. [PMID: 39677330 PMCID: PMC11646353 DOI: 10.1002/rmb2.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Sperm morphology and motility are major contributors to male-factor infertility, with many genes predicted to be involved. This study aimed to elucidate differentially expressed transcripts in human testis tissues of normal and abnormal spermatogenesis that could reveal new genes that may regulate sperm morphology and function. Methods Human testis biopsies were collected from men with well-characterized phenotypes of normal spermatogenesis, spermatid arrest, and Sertoli cell-only phenotype, and transcriptional differences were quantified by RNA-sequencing (RNA-Seq). Differentially expressed genes (DEGs) were filtered based on predominant expression in spermatids and gene functional annotations relevant to sperm morphology and motility. Selected 10 DEGs were validated by qRT-PCR and the localization of two proteins was determined in testis biopsies. Results The analysis revealed 6 genes (SPATA31E1, TEKT3, SLC9C1, PDE4A, CFAP47, and TNC) that are excellent candidates for novel genes enriched in developing human sperm. The immunohistochemical localization of two proteins, ORAI1 and SPATA31E1, in testis biopsies, verified that both are expressed in developing human germ cells, with SPATA31E1 enriched in late spermatocytes and spermatids. Conclusion This study identified human germ cell-enriched genes that could play functional roles in spermiogenesis and could thus be important in the development of morphologically normal, motile sperm.
Collapse
Affiliation(s)
- Shashika D. Kothalawala
- Institute for Veterinary Anatomy, Histology and EmbryologyJustus‐Liebig University of GiessenGiessenGermany
- Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Stefan Günther
- Max‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Hans‐Christian Schuppe
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and AndrologyUniversity of MuensterMuensterGermany
| | - Liza O'Donnell
- Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and EmbryologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| |
Collapse
|
15
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. Front Physiol 2023; 14:1330259. [PMID: 38169682 PMCID: PMC10758431 DOI: 10.3389/fphys.2023.1330259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
16
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. ARXIV 2023:arXiv:2309.06907v3. [PMID: 37744466 PMCID: PMC10516112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium-release activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, Texas, USA, 77030
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| |
Collapse
|
17
|
Aydın MŞ, Bay S, Yiğit EN, Özgül C, Oğuz EK, Konuk EY, Ayşit N, Cengiz N, Erdoğan E, Him A, Koçak M, Eroglu E, Öztürk G. Active shrinkage protects neurons following axonal transection. iScience 2023; 26:107715. [PMID: 37701578 PMCID: PMC10493506 DOI: 10.1016/j.isci.2023.107715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Trauma, vascular events, or neurodegenerative processes can lead to axonal injury and eventual transection (axotomy). Neurons can survive axotomy, yet the underlying mechanisms are not fully understood. Excessive water entry into injured neurons poses a particular risk due to swelling and subsequent death. Using in vitro and in vivo neurotrauma model systems based on laser transection and surgical nerve cut, we demonstrated that axotomy triggers actomyosin contraction coupled with calpain activity. As a consequence, neurons shrink acutely to force water out through aquaporin channels preventing swelling and bursting. Inhibiting shrinkage increased the probability of neuronal cell death by about 3-fold. These studies reveal a previously unrecognized cytoprotective response mechanism to neurotrauma and offer a fresh perspective on pathophysiological processes in the nervous system.
Collapse
Affiliation(s)
- Mehmet Şerif Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Cemil Özgül
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Elif Kaval Oğuz
- Department of Science Education, Faculty of Education, Yüzüncü Yıl University, Van 65080, Türkiye
| | - Elçin Yenidünya Konuk
- Department of Medical Biology, School of Medicine, Bakırçay University, İzmir 35665, Türkiye
| | - Neşe Ayşit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Medical Biology and Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Nureddin Cengiz
- Department of Histology and Embryology, School of Medicine, Bandırma Onyedi Eylül University, Bandırma, Balıkesir 10200, Türkiye
| | - Ender Erdoğan
- Department of Histology and Embryology, School of Medicine, Selçuk University, Konya 42130, Türkiye
| | - Aydın Him
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Mehmet Koçak
- Biostatistics and Bioinformatics Analysis Unit, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| |
Collapse
|
18
|
The store-operated Ca 2+ channel Orai1α is required for agonist-evoked NF-κB activation by a mechanism dependent on PKCβ2. J Biol Chem 2023; 299:102882. [PMID: 36623731 PMCID: PMC9922819 DOI: 10.1016/j.jbc.2023.102882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1β, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1β lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1β, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1β is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCβ activation. Our results indicate that Orai1α interacts with PKCβ2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.
Collapse
|
19
|
Sanchez-Collado J, Nieto-Felipe J, Jardin I, Bhardwaj R, Berna-Erro A, Salido GM, Smani T, Hediger MA, Lopez JJ, Rosado JA. Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation. Cancers (Basel) 2022; 15:cancers15010203. [PMID: 36612199 PMCID: PMC9818078 DOI: 10.3390/cancers15010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca2+ entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca2+ imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance.
Collapse
Affiliation(s)
- Jose Sanchez-Collado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Gines M. Salido
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, 41013 Sevilla, Spain
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| |
Collapse
|
20
|
Romito O, Guéguinou M, Raoul W, Champion O, Robert A, Trebak M, Goupille C, Potier-Cartereau M. Calcium signaling: A therapeutic target to overcome resistance to therapies in cancer. Cell Calcium 2022; 108:102673. [PMID: 36410063 DOI: 10.1016/j.ceca.2022.102673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Innate and acquired resistances to therapeutic agents are responsible for the failure of cancer treatments. Due to the multifactorial nature of resistance, the identification of new therapeutic targets is required to improve cancer treatment. Calcium is a universal second messenger that regulates many cellular functions such as proliferation, migration, and survival. Calcium channels, pumps and exchangers tightly regulate the duration, location and magnitude of calcium signals. Many studies have implicated dysregulation of calcium signaling in several pathologies, including cancer. Abnormal calcium fluxes due to altered channel expression or activation contribute to carcinogenesis and promote tumor development. However, there is limited information on the role of calcium signaling in cancer resistance to therapeutic drugs. This review discusses the role of calcium signaling as a mediator of cancer resistance, and assesses the potential value of combining anticancer therapy with calcium signaling modulators to improve the effectiveness of current treatments.
Collapse
Affiliation(s)
- Olivier Romito
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Maxime Guéguinou
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Ophélie Champion
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Alison Robert
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Mohamed Trebak
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Caroline Goupille
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France; CHRU de Tours, hôpital Bretonneau, Tours, France.
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| |
Collapse
|
21
|
Jardin I, Berna-Erro A, Nieto-Felipe J, Macias A, Sanchez-Collado J, Lopez JJ, Salido GM, Rosado JA. Similarities and Differences between the Orai1 Variants: Orai1α and Orai1β. Int J Mol Sci 2022; 23:ijms232314568. [PMID: 36498894 PMCID: PMC9735889 DOI: 10.3390/ijms232314568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Orai1, the first identified member of the Orai protein family, is ubiquitously expressed in the animal kingdom. Orai1 was initially characterized as the channel responsible for the store-operated calcium entry (SOCE), a major mechanism that allows cytosolic calcium concentration increments upon receptor-mediated IP3 generation, which results in intracellular Ca2+ store depletion. Furthermore, current evidence supports that abnormal Orai1 expression or function underlies several disorders. Orai1 is, together with STIM1, the key element of SOCE, conducting the Ca2+ release-activated Ca2+ (CRAC) current and, in association with TRPC1, the store-operated Ca2+ (SOC) current. Additionally, Orai1 is involved in non-capacitative pathways, as the arachidonate-regulated or LTC4-regulated Ca2+ channel (ARC/LRC), store-independent Ca2+ influx activated by the secretory pathway Ca2+-ATPase (SPCA2) and the small conductance Ca2+-activated K+ channel 3 (SK3). Furthermore, Orai1 possesses two variants, Orai1α and Orai1β, the latter lacking 63 amino acids in the N-terminus as compared to the full-length Orai1α form, which confers distinct features to each variant. Here, we review the current knowledge about the differences between Orai1α and Orai1β, the implications of the Ca2+ signals triggered by each variant, and their downstream modulatory effect within the cell.
Collapse
|
22
|
Pan Y, Huang J, Liu K, Xie C, Chen H, Guo Z, Guo S, Chen Y. Orai1-mediated store-operated Ca2+ entry promotes cervical cancer progression through IL-6 signaling. Front Mol Biosci 2022; 9:1041674. [PMID: 36310590 PMCID: PMC9597359 DOI: 10.3389/fmolb.2022.1041674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer is a major cause of cancer-associated mortality among women in developing countries. Orai1-mediated store-operated Ca2+ entry (SOCE) is the primary mechanism underlying most of the non-excitable calcium influx into cells. There is at present limited evidence showing that Orai1 can function as an oncogene or a tumor suppressor depending on the cancer type. Furthermore, the exact biological functions of Orai1 in cervical cancer and the underlying mechanisms are still poorly understood. In this study, we found that Orai1 was upregulated in cervical cancer tissues, and promoted the growth of human cervical cancer cells both in vitro and in vivo. Gene silencing of Orai1 in cervical cancer cells significantly decreased interleukin (IL)-6 secretion. Interestingly, exogenous IL-6 abrogated the effects of Orai1 silencing and restored the clonogenicity of cervical cancer cells. Furthermore, we also observed a positive correlation between Orai1 and IL-6 expression in human cervical cancer samples. Taken together, our findings indicate that Orai1 functions as an oncogene in cervical cancer and is a promising therapeutic target.
Collapse
Affiliation(s)
- Yiyun Pan
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Jing Huang
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Kang Liu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chuanhua Xie
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Hailong Chen
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Zhong Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shoujun Guo
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
- *Correspondence: Yijian Chen, ; Shoujun Guo,
| | - Yijian Chen
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Yijian Chen, ; Shoujun Guo,
| |
Collapse
|
23
|
Augustynek B, Gyimesi G, Dernič J, Sallinger M, Albano G, Klesse GJ, Kandasamy P, Grabmayr H, Frischauf I, Fuster DG, Peinelt C, Hediger MA, Bhardwaj R. Discovery of novel gating checkpoints in the Orai1 calcium channel by systematic analysis of constitutively active mutants of its paralogs and orthologs. Cell Calcium 2022; 105:102616. [PMID: 35792401 DOI: 10.1016/j.ceca.2022.102616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
In humans, there are three paralogs of the Orai Ca2+ channel that form the core of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still under active investigation, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating checkpoints among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the "ANSGA" nexus mutations in TM4 of human Orai1, which is reported to mimic the STIM1-activated state of the channel. In investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, that are not conserved among paralogs and that seem to be crucial for the channel activation triggered by the "ANSGA" mutations in Orai1. However, mutations of the same residues still allow gating of Orai1 by STIM1, suggesting that the ANSGA mutant of Orai1 may not be a surrogate for the STIM1-activated state of the Orai1 channel. Our results shed new light on these important gating checkpoints and show that the gating mechanism of Orai channels is affected by multiple factors that are not necessarily conserved among orai homologs, such as the TM4-TM3 coupling.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Jan Dernič
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Giuseppe Albano
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gabriel J Klesse
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Daniel G Fuster
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland.
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland; Current address: Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Drive, NC 27709, USA.
| |
Collapse
|
24
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
25
|
Krishnan V, Ali S, Gonzales AL, Thakore P, Griffin CS, Yamasaki E, Alvarado MG, Johnson MT, Trebak M, Earley S. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. eLife 2022; 11:70278. [PMID: 35147077 PMCID: PMC8947769 DOI: 10.7554/elife.70278] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral coupling between the sarcoplasmic reticulum (SR) and plasma membrane (PM) forms signaling complexes that regulate the membrane potential and contractility of vascular smooth muscle cells (VSMCs). The mechanisms responsible for these membrane interactions are poorly understood. In many cells, STIM1 (stromal interaction molecule 1), a single-transmembrane-domain protein that resides in the endoplasmic reticulum (ER), transiently moves to ER-PM junctions in response to depletion of ER Ca2+ stores and initiates store-operated Ca2+ entry (SOCE). Fully differentiated VSMCs express STIM1 but exhibit only marginal SOCE activity. We hypothesized that STIM1 is constitutively active in contractile VSMCs and maintains peripheral coupling. In support of this concept, we found that the number and size of SR-PM interacting sites were decreased, and SR-dependent Ca2+-signaling processes were disrupted in freshly isolated cerebral artery SMCs from tamoxifen-inducible, SMC-specific STIM1-knockout (Stim1-smKO) mice. VSMCs from Stim1-smKO mice also exhibited a reduction in nanoscale colocalization between Ca2+-release sites on the SR and Ca2+-activated ion channels on the PM, accompanied by diminished channel activity. Stim1-smKO mice were hypotensive, and resistance arteries isolated from them displayed blunted contractility. These data suggest that STIM1 – independent of SR Ca2+ store depletion – is critically important for stable peripheral coupling in contractile VSMCs.
Collapse
Affiliation(s)
- Vivek Krishnan
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Sher Ali
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Pratish Thakore
- Department of Pharmacology, University of Nevada, Reno, Reno, United States
| | - Caoimhin S Griffin
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Michael G Alvarado
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Penn State University, Hershey, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Scott Earley
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| |
Collapse
|
26
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Wang WA, Demaurex N. The mammalian trafficking chaperone protein UNC93B1 maintains the ER calcium sensor STIM1 in a dimeric state primed for translocation to the ER cortex. J Biol Chem 2022; 298:101607. [PMID: 35065962 PMCID: PMC8857484 DOI: 10.1016/j.jbc.2022.101607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/28/2023] Open
Abstract
The stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER) Ca2+ sensor that regulates the activity of Orai plasma membrane Ca2+ channels to mediate the store-operated Ca2+ entry pathway essential for immunity. Uncoordinated 93 homolog B1 (UNC93B1) is a multiple membrane-spanning ER protein that acts as a trafficking chaperone by guiding nucleic-acid sensing toll-like receptors to their respective endosomal signaling compartments. We previously showed that UNC93B1 interacts with STIM1 to promote antigen cross-presentation in dendritic cells, but the STIM1 binding site(s) and activation step(s) impacted by this interaction remained unknown. In this study, we show that UNC93B1 interacts with STIM1 in the ER lumen by binding to residues in close proximity to the transmembrane domain. Cysteine crosslinking in vivo showed that UNC93B1 binding promotes the zipping of transmembrane and proximal cytosolic helices within resting STIM1 dimers, priming STIM1 for translocation. In addition, we show that UNC93B1 deficiency reduces store-operated Ca2+ entry and STIM1-Orai1 interactions and targets STIM1 to lighter ER domains, whereas UNC93B1 expression accelerates the recruitment of STIM1 to cortical ER domains. We conclude that UNC93B1 therefore acts as a trafficking chaperone by maintaining the pool of resting STIM1 proteins in a state primed for activation, enabling their rapid translocation in an extended conformation to cortical ER signaling compartments.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Sanchez-Collado J, Lopez JJ, Jardin I, Berna-Erro A, Camello PJ, Cantonero C, Smani T, Salido GM, Rosado JA. Orai1α, but not Orai1β, co-localizes with TRPC1 and is required for its plasma membrane location and activation in HeLa cells. Cell Mol Life Sci 2022; 79:33. [PMID: 34988680 PMCID: PMC8732813 DOI: 10.1007/s00018-021-04098-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
The identification of two variants of the canonical pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel Orai1, Orai1α and Orai1β, in mammalian cells arises the question whether they exhibit different functional characteristics. Orai1α and Orai1β differ in the N-terminal 63 amino acids, exclusive of Orai1α, and show different sensitivities to Ca2+-dependent inactivation, as well as distinct ability to form arachidonate-regulated channels. We have evaluated the role of both Orai1 variants in the activation of TRPC1 in HeLa cells. We found that Orai1α and Orai1β are required for the maintenance of regenerative Ca2+ oscillations, while TRPC1 plays a role in agonist-induced Ca2+ influx but is not essential for Ca2+ oscillations. Using APEX2 proximity labeling, co-immunoprecipitation and the fluorescence of G-GECO1.2 fused to Orai1α our results indicate that agonist stimulation and Ca2+ store depletion enhance Orai1α–TRPC1 interaction. Orai1α is essential for TRPC1 plasma membrane location and activation. Thus, TRPC1 function in HeLa cells depends on Ca2+ influx through Orai1α exclusively.
Collapse
Affiliation(s)
- Jose Sanchez-Collado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain.
| | - Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Pedro J Camello
- Department of Physiology, (Smooth Muscle Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003, Caceres, Spain
| | - Carlos Cantonero
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, Seville, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain.
| |
Collapse
|
29
|
Hunanyan L, Ghamaryan V, Makichyan A, Popugaeva E. Computer-Based Drug Design of Positive Modulators of Store-Operated Calcium Channels to Prevent Synaptic Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222413618. [PMID: 34948414 PMCID: PMC8707499 DOI: 10.3390/ijms222413618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Store-operated calcium entry (SOCE) constitutes a fine-tuning mechanism responsible for the replenishment of intracellular stores. Hippocampal SOCE is regulated by store-operated channels (SOC) organized in tripartite complex TRPC6/ORAI2/STIM2. It is suggested that in neurons, SOCE maintains intracellular homeostatic Ca2+ concentration at resting conditions and is needed to support the structure of dendritic spines. Recent evidence suggests that positive modulators of SOC are prospective drug candidates to treat Alzheimer’s disease (AD) at early stages. Although STIM2 and ORAI2 are definitely involved in the regulation of nSOC amplitude and a play major role in AD pathogenesis, growing evidence suggest that it is not easy to target these proteins pharmacologically. Existing positive modulators of TRPC6 are unsuitable for drug development due to either bad pharmacokinetics or side effects. Thus, we concentrate the review on perspectives to develop specific nSOC modulators based on available 3D structures of TRPC6, ORAI2, and STIM2. We shortly describe the structural features of existing models and the methods used to prepare them. We provide commonly used steps applied for drug design based on 3D structures of target proteins that might be used to develop novel AD preventing therapy.
Collapse
Affiliation(s)
- Lernik Hunanyan
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Viktor Ghamaryan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Ani Makichyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
30
|
Downregulation of TRPC4 and TRPC5 Inhibits Smooth Muscle Cell Proliferation without Affecting Endothelial Cell Proliferation. Genet Res (Camb) 2021; 2021:2949986. [PMID: 34899056 PMCID: PMC8643255 DOI: 10.1155/2021/2949986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
Aims The main treatment for coronary heart disease is percutaneous coronary intervention (PCI), and drug-eluting stents are designed to inhibit vascular smooth muscle cell (VSMCs) proliferation and migration causing restenosis by releasing pharmacological agents into the vessel wall. Once drug-eluting stents are deployed, these pharmacological agents exert many biological effects in the coronary circulation, not only inhibition of VSMCs but also extension to vascular endothelial cells (VECs). The purpose of this study was to explore target molecules that inhibit VSMCs proliferation without affecting VECs. Methods mRNA and protein expressions of transient receptor potential channels (TRPCs) in cultured VSMCs and VECs were determined by western blotting and RT-qPCR. VSMCs and VECs proliferation was evaluated using CCK-8 assays and western blotting of proliferating cell nuclear antigen (PCNA). Calcium backfilling assays were performed to detect intracellular calcium ion concentration in cultured VSMCs and VECs. Results The TRPC6 expression was more abundant in VECs than VSMCs, while TRPC4 and TRPC5 expressions were more abundant in VSMCs than VECs. Knockdown of TRPC4 or TRPC5 alone had no remarkable inhibitory effect on VSMC proliferation. Synergistic knockdown of TRPC4 and TRPC5 inhibited the proliferation of VSMCs, declined the expression of the PCNA, and reduced the intracellular calcium ion concentration but not VECs. Conclusion These data suggest that concurrent inhibition of TRPC4 and TRPC5 inhibits VSMCs proliferation without affecting VECs, thus providing novel targets for developing pharmacological agents for drug-eluting stents.
Collapse
|
31
|
Conformational surveillance of Orai1 by a rhomboid intramembrane protease prevents inappropriate CRAC channel activation. Mol Cell 2021; 81:4784-4798.e7. [PMID: 34800360 PMCID: PMC8657799 DOI: 10.1016/j.molcel.2021.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Calcium influx through plasma membrane calcium release-activated calcium (CRAC) channels, which are formed of hexamers of Orai1, is a potent trigger for many important biological processes, most notably in T cell-mediated immunity. Through a bioinformatics-led cell biological screen, we have identified Orai1 as a substrate for the rhomboid intramembrane protease RHBDL2. We show that RHBDL2 prevents stochastic calcium signaling in unstimulated cells through conformational surveillance and cleavage of inappropriately activated Orai1. A conserved disease-linked proline residue is responsible for RHBDL2’s recognizing the active conformation of Orai1, which is required to sharpen switch-like signaling triggered by store-operated calcium entry. Loss of RHBDL2 control of CRAC channel activity causes severe dysregulation of downstream CRAC channel effectors, including transcription factor activation, inflammatory cytokine expression, and T cell activation. We propose that this surveillance function may represent an ancient activity of rhomboid proteases in degrading unwanted signaling proteins. A screen for transmembrane substrates of the rhomboid intramembrane protease RHBDL2 RHBDL2 cleaves the CRAC channel protein Orai1 when it is inappropriately activated Conformational change in these calcium channels is recognized by RHBDL2 An Orai1 mutant that cannot be cleaved by RHBDL2 causes a human disease syndrome
Collapse
|
32
|
Kim MS, Kim SH, Yang SH, Kim MS. Afatinib mediates autophagic degradation of ORAI1, STIM1, and SERCA2, which inhibits proliferation of non-small cell lung cancer cells. Tuberc Respir Dis (Seoul) 2021; 85:147-154. [PMID: 34847639 PMCID: PMC8987670 DOI: 10.4046/trd.2021.0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022] Open
Abstract
Background The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug-resistant cells (bearing a T790M mutation in epidermal growth factor receptor [EGFR]) remain unclear. Methods Afatinib-mediated changes in the level of store-operated Ca2+ entry (SOCE)-related proteins and intracellular Ca2+ level in non–small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring the cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation. Results The levels of SOCE-mediating proteins (ORAI calcium release-activated calcium modulator 1 [ORAI1], stromal interaction molecule 1 [STIM1], and sarco/endoplasmic reticulum Ca2+ ATPase [SERCA2]) decreased after afatinib treatment in non–small cell lung cancer cells, whereas the levels of SOCE-related proteins did not change in gefitinibresistant non–small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced also responding to afatinib in the absence of extracellular Ca2+. Moreover, extracellular Ca2+ influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca2+. Conclusion Extracellular Ca2+ plays important role in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790M mutation in the EGFR gene and extracellular Ca2+ is essential for determining anti-cancer drug efficacy.
Collapse
Affiliation(s)
- Mi Seong Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea.,Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - So Hui Kim
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
33
|
Masson B, Montani D, Humbert M, Capuano V, Antigny F. Role of Store-Operated Ca 2+ Entry in the Pulmonary Vascular Remodeling Occurring in Pulmonary Arterial Hypertension. Biomolecules 2021; 11:1781. [PMID: 34944425 PMCID: PMC8698435 DOI: 10.3390/biom11121781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and multifactorial disease. PAH pathogenesis mostly involves pulmonary arterial endothelial and pulmonary arterial smooth muscle cell (PASMC) dysfunction, leading to alterations in pulmonary arterial tone and distal pulmonary vessel obstruction and remodeling. Unfortunately, current PAH therapies are not curative, and therapeutic approaches mostly target endothelial dysfunction, while PASMC dysfunction is under investigation. In PAH, modifications in intracellular Ca2+ homoeostasis could partly explain PASMC dysfunction. One of the most crucial actors regulating Ca2+ homeostasis is store-operated Ca2+ channels, which mediate store-operated Ca2+ entry (SOCE). This review focuses on the main actors of SOCE in human and experimental PASMC, their contribution to PAH pathogenesis, and their therapeutic potential in PAH.
Collapse
Affiliation(s)
- Bastien Masson
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - David Montani
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Research and Innovation Unit, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Fabrice Antigny
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| |
Collapse
|
34
|
Bokhobza A, Ziental-Gelus N, Allart L, Iamshanova O, Vanden Abeele F. Impact of SOCE Abolition by ORAI1 Knockout on the Proliferation, Adhesion, and Migration of HEK-293 Cells. Cells 2021; 10:3016. [PMID: 34831241 PMCID: PMC8616168 DOI: 10.3390/cells10113016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Store-operated calcium entry (SOCE) provided through channels formed by ORAI proteins is a major regulator of several cellular processes. In immune cells, it controls fundamental processes such as proliferation, cell adhesion, and migration, while in cancer, SOCE and ORAI1 gene expression are dysregulated and lead to abnormal migration and/or cell proliferation. In the present study, we used the CRISPR/Cas9 technique to delete the ORAI1 gene and to identify its role in proliferative and migrative properties of the model cell line HEK-293. We showed that ORAI1 deletion greatly reduced SOCE. Thereby, we found that this decrease and the absence of ORAI1 protein did not affect HEK-293 proliferation. In addition, we determined that ORAI1 suppression did not affect adhesive properties but had a limited impact on HEK-293 migration. Overall, we showed that ORAI1 and SOCE are largely dispensable for cellular proliferation, migration, and cellular adhesion of HEK-293 cells. Thus, despite its importance in providing Ca2+ entry in non-excitable cells, our results indicate that the lack of SOCE does not deeply impact HEK-293 cells. This finding suggests the existence of compensatory mechanism enabling the maintenance of their physiological function.
Collapse
Affiliation(s)
- Alexandre Bokhobza
- Inserm U1003, Laboratory of Cell Physiology, Université de Lille, 59650 Villeneuve d’Ascq, France; (N.Z.-G.); (L.A.); (O.I.)
| | | | | | | | - Fabien Vanden Abeele
- Inserm U1003, Laboratory of Cell Physiology, Université de Lille, 59650 Villeneuve d’Ascq, France; (N.Z.-G.); (L.A.); (O.I.)
| |
Collapse
|
35
|
Shipman JG, Onyenwoke RU, Sivaraman V. Calcium-Dependent Pulmonary Inflammation and Pharmacological Interventions and Mediators. BIOLOGY 2021; 10:1053. [PMID: 34681152 PMCID: PMC8533358 DOI: 10.3390/biology10101053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary diseases present a significant burden worldwide and lead to severe morbidity and mortality. Lung inflammation caused by interactions with either viruses, bacteria or fungi is a prominent characteristic of many pulmonary diseases. Tobacco smoke and E-cig use ("vaping") are considered major risk factors in the development of pulmonary disease as well as worsening disease prognosis. However, at present, relatively little is known about the mechanistic actions by which smoking and vaping may worsen the disease. One theory suggests that long-term vaping leads to Ca2+ signaling dysregulation. Ca2+ is an important secondary messenger in signal transduction. Cellular Ca2+ concentrations are mediated by a complex series of pumps, channels, transporters and exchangers that are responsible for triggering various intracellular processes such as cell death, proliferation and secretion. In this review, we provide a detailed understating of the complex series of components that mediate Ca2+ signaling and how their dysfunction may result in pulmonary disease. Furthermore, we summarize the recent literature investigating the negative effects of smoking and vaping on pulmonary disease, cell toxicity and Ca2+ signaling. Finally, we summarize Ca2+-mediated pharmacological interventions that could potentially lead to novel treatments for pulmonary diseases.
Collapse
Affiliation(s)
- Jeffrey G. Shipman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Rob U. Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| |
Collapse
|
36
|
Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and Neurodegenerative Diseases. Cells 2021; 10:cells10102518. [PMID: 34685498 PMCID: PMC8533710 DOI: 10.3390/cells10102518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Located at the level of the endoplasmic reticulum (ER) membrane, stromal interacting molecule 1 (STIM1) undergoes a complex conformational rearrangement after depletion of ER luminal Ca2+. Then, STIM1 translocates into discrete ER-plasma membrane (PM) junctions where it directly interacts with and activates plasma membrane Orai1 channels to refill ER with Ca2+. Furthermore, Ca2+ entry due to Orai1/STIM1 interaction may induce canonical transient receptor potential channel 1 (TRPC1) translocation to the plasma membrane, where it is activated by STIM1. All these events give rise to store-operated calcium entry (SOCE). Besides the main pathway underlying SOCE, which mainly involves Orai1 and TRPC1 activation, STIM1 modulates many other plasma membrane proteins in order to potentiate the influxof Ca2+. Furthermore, it is now clear that STIM1 may inhibit Ca2+ currents mediated by L-type Ca2+ channels. Interestingly, STIM1 also interacts with some intracellular channels and transporters, including nuclear and lysosomal ionic proteins, thus orchestrating organellar Ca2+ homeostasis. STIM1 and its partners/effectors are significantly modulated in diverse acute and chronic neurodegenerative conditions. This highlights the importance of further disclosing their cellular functions as they might represent promising molecular targets for neuroprotection.
Collapse
|
37
|
Yeh YC, Lin YP, Kramer H, Parekh AB. Single-nucleotide polymorphisms in Orai1 associated with atopic dermatitis inhibit protein turnover, decrease calcium entry and disrupt calcium-dependent gene expression. Hum Mol Genet 2021; 29:1808-1823. [PMID: 31600783 PMCID: PMC7372555 DOI: 10.1093/hmg/ddz223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Loss-of function mutations in Orai1 Ca2+ channels lead to a form of severe combined immunodeficiency, auto-immunity, muscle hypotonia and defects in dental enamel production and sweat gland function. Two single-nucleotide polymorphisms (SNPs) in Orai1 have been found and localize to the second extracellular loop. These polymorphisms associate with atopic dermatitis but how they affect Ca2+ signalling and cell function is unknown. Here, we find that Orai1–SNPs turnover considerably more slowly than wild type Orai1 and are more abundantly expressed in the plasma membrane. We show a central role for flotillin in the endocytotic recycling of Orai1 channels and that endocytosed wild type Orai1 is trafficked to Rab 7-positive late endosomes for lysosomal degradation. Orai1–SNPs escape the degradation pathway and instead enter Rab 11-positive recycling endosomes, where they are returned to the surface membrane through Arf6-dependent exocytosis. We find that Orai1–SNPs escape late endosomes through endosomal pH regulation of interaction between the channel and flotillin. We identify a pH-sensitive electrostatic interaction between positively charged arginine in extracellular loop 2 (K210) and a negatively charged aspartate (D112) in extracellular loop 1 that helps determine Orai1 turnover. The increase in membrane Orai1–SNP leads to a mis-match in Orai1–STIM stoichiometry, resulting in inhibition of Ca2+ entry and Ca2+-dependent gene expression. Our results identify new strategies for targeting atopic dermatitis.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| | - Yu-Ping Lin
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| |
Collapse
|
38
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
39
|
Liang X, Zhang N, Pan H, Xie J, Han W. Development of Store-Operated Calcium Entry-Targeted Compounds in Cancer. Front Pharmacol 2021; 12:688244. [PMID: 34122115 PMCID: PMC8194303 DOI: 10.3389/fphar.2021.688244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the major pathway of Ca2+ entry in mammalian cells, and regulates a variety of cellular functions including proliferation, motility, apoptosis, and death. Accumulating evidence has indicated that augmented SOCE is related to the generation and development of cancer, including tumor formation, proliferation, angiogenesis, metastasis, and antitumor immunity. Therefore, the development of compounds targeting SOCE has been proposed as a potential and effective strategy for use in cancer therapy. In this review, we summarize the current research on SOCE inhibitors and blockers, discuss their effects and possible mechanisms of action in cancer therapy, and induce a new perspective on the treatment of cancer.
Collapse
Affiliation(s)
- Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ningxia Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Chang Y, Roy S, Pan Z. Store-Operated Calcium Channels as Drug Target in Gastroesophageal Cancers. Front Pharmacol 2021; 12:668730. [PMID: 34012400 PMCID: PMC8126661 DOI: 10.3389/fphar.2021.668730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gastroesophageal cancers, including tumors occurring in esophagus and stomach, usually have poor prognosis and lack effective chemotherapeutic drugs for treatment. The association between dysregulated store-operated calcium entry (SOCE), a key intracellular Ca2+ signaling pathway and gastroesophageal cancers are emerging. This review summarizes the recent advances in understanding the contribution of SOCE-mediated intracellular Ca2+ signaling to gastroesophageal cancers. It assesses the pathophysiological role of each component in SOCE machinery, such as Orais and STIMs in the cancer cell proliferation, migration, and invasion as well as stemness maintenance. Lastly, it discusses efforts towards development of more specific and potent SOCE inhibitors, which may be a new set of chemotherapeutic drugs appearing at the horizon, to provide either targeted therapy or adjuvant treatment to overcome drug resistance for gastroesophageal cancers.
Collapse
Affiliation(s)
- Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Souvik Roy
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
41
|
Crul T, Maléth J. Endoplasmic Reticulum-Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. Int J Mol Sci 2021; 22:4703. [PMID: 33946838 PMCID: PMC8124356 DOI: 10.3390/ijms22094703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, ultimate specificity in activation and action-for example, by means of second messengers-of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple-sometimes opposite-cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER-PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.
Collapse
Affiliation(s)
- Tim Crul
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| |
Collapse
|
42
|
Shapovalov G, Gordienko D, Prevarskaya N. Store operated calcium channels in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:123-168. [PMID: 34392928 DOI: 10.1016/bs.ircmb.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France.
| | - Dmitri Gordienko
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| |
Collapse
|
43
|
Tiffner A, Maltan L, Fahrner M, Sallinger M, Weiß S, Grabmayr H, Höglinger C, Derler I. Transmembrane Domain 3 (TM3) Governs Orai1 and Orai3 Pore Opening in an Isoform-Specific Manner. Front Cell Dev Biol 2021; 9:635705. [PMID: 33644073 PMCID: PMC7905104 DOI: 10.3389/fcell.2021.635705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
STIM1-mediated activation of calcium selective Orai channels is fundamental for life. The three Orai channel isoforms, Orai1-3, together with their multiple ways of interplay, ensure their highly versatile role in a variety of cellular functions and tissues in both, health and disease. While all three isoforms are activated in a store-operated manner by STIM1, they differ in diverse biophysical and structural properties. In the present study, we provide profound evidence that non-conserved residues in TM3 control together with the cytosolic loop2 region the maintenance of the closed state and the configuration of an opening-permissive channel conformation of Orai1 and Orai3 in an isoform-specific manner. Indeed, analogous amino acid substitutions of these non-conserved residues led to distinct extents of gain- (GoF) or loss-of-function (LoF). Moreover, we showed that enhanced overall hydrophobicity along TM3 correlates with an increase in GoF mutant currents. Conclusively, while the overall activation mechanisms of Orai channels appear comparable, there are considerable variations in gating checkpoints crucial for pore opening. The elucidation of regions responsible for isoform-specific functional differences provides valuable targets for drug development selective for one of the three Orai homologs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabella Derler
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
44
|
Huo J, Dong H. Gating and regulation of the calcium release-activated calcium channel: Recent progress from experiments and molecular modeling. Biopolymers 2021; 111:e23392. [PMID: 33460071 DOI: 10.1002/bip.23392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are highly calcium ion (Ca2+)-selective channels in the plasma membrane. The transient drop of endoplasmic reticulum Ca2+ level activates its calcium sensor stromal interaction molecule (STIM) and then triggers the gating of the CRAC channel pore unit Orai. This process involves a variety of activities of the immune system. Therefore, understanding how the activation and regulation of the CRAC channel can be accomplished is essential. Here we briefly summarize the recent progress on Orai gating and its regulation by 2-aminoethoxydiphenylborate (2-APB) obtained from structural biology studies, biochemical and electrophysiological measurements, as well as molecular modeling. Indeed, integration between experiments and computations has further deepened our understanding of the channel gating and regulation.
Collapse
Affiliation(s)
- Jun Huo
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Supra-Molecular Assemblies of ORAI1 at Rest Precede Local Accumulation into Puncta after Activation. Int J Mol Sci 2021; 22:ijms22020799. [PMID: 33466866 PMCID: PMC7831003 DOI: 10.3390/ijms22020799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The Ca2+ selective channel ORAI1 and endoplasmic reticulum (ER)-resident STIM proteins form the core of the channel complex mediating store operated Ca2+ entry (SOCE). Using liquid phase electron microscopy (LPEM), the distribution of ORAI1 proteins was examined at rest and after SOCE-activation at nanoscale resolution. The analysis of over seven hundred thousand ORAI1 positions revealed a number of ORAI1 channels had formed STIM-independent distinct supra-molecular clusters. Upon SOCE activation and in the presence of STIM proteins, a fraction of ORAI1 assembled in micron-sized two-dimensional structures, such as the known puncta at the ER plasma membrane contact zones, but also in divergent structures such as strands, and ring-like shapes. Our results thus question the hypothesis that stochastically migrating single ORAI1 channels are trapped at regions containing activated STIM, and we propose instead that supra-molecular ORAI1 clusters fulfill an amplifying function for creating dense ORAI1 accumulations upon SOCE-activation.
Collapse
|
46
|
Wang WA, Demaurex N. Proteins Interacting with STIM1 and Store-Operated Ca 2+ Entry. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:51-97. [PMID: 34050862 DOI: 10.1007/978-3-030-67696-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca2+ channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca2+ entry (SOCE).
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
47
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Tiffner A, Schober R, Höglinger C, Bonhenry D, Pandey S, Lunz V, Sallinger M, Frischauf I, Fahrner M, Lindinger S, Maltan L, Berlansky S, Stadlbauer M, Schindl R, Ettrich R, Romanin C, Derler I. CRAC channel opening is determined by a series of Orai1 gating checkpoints in the transmembrane and cytosolic regions. J Biol Chem 2021; 296:100224. [PMID: 33361160 PMCID: PMC7948504 DOI: 10.1074/jbc.ra120.015548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Carmen Höglinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Nove Hrady, Czechia
| | - Saurabh Pandey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Nove Hrady, Czechia
| | - Victoria Lunz
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Sonja Lindinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Lena Maltan
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Sascha Berlansky
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Michael Stadlbauer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Rudiger Ettrich
- College of Biomedical Sciences, Larkin University, Miami, Florida, USA; Faculty of Mathematics and Physics, Charles University, Prague, Czechia; Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
49
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
50
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|