1
|
Kulkarni K, Walton RD, Chaigne S. Unlocking the potential of cardiac TRP channels using knockout mice models. Front Physiol 2025; 16:1585356. [PMID: 40313873 PMCID: PMC12043714 DOI: 10.3389/fphys.2025.1585356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Affiliation(s)
- Kanchan Kulkarni
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
| | - Richard D. Walton
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
| | - Sebastien Chaigne
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
- CHU de Bordeaux, Cardiology, INSERM, U1045, CRCTB, Bordeaux, France
| |
Collapse
|
2
|
Wang J, Zhang S, Boda VK, Chen H, Park H, Parmar K, Ma D, Miller DD, Meibohm B, Du J, Liao FF, Wu Z, Li W. Discovery of a potent and selective TRPC3 antagonist with neuroprotective effects. Bioorg Med Chem 2025; 117:118021. [PMID: 39612770 DOI: 10.1016/j.bmc.2024.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The TRPC3 protein plays a pivotal role in calcium signaling, influencing cell function. Aberrant TRPC3 expression is implicated in various pathologies, including cardiovascular diseases, tumors, and neurodegeneration. Despite its functional similarities with TRPC6 and TRPC7, TRPC3 exhibits distinct roles in disease contexts. Therefore, it is of paramount importance to develop a potent and selective TRPC3 antagonist with favorable drug-like properties. We employed extensive medicinal chemistry synthesis and structure-activity relationships (SARs) study. Thirty-one novel TRPC3 antagonists were designed and synthesized using the lead compound JW-65 as the scaffold. Compound 60a exhibits a 4-fold improvement in potency and displays exceptional selectivity. With favorable drug-like properties, this compound shows a heightened in vitro neuronal protective effect. Molecular modeling suggests possible modes of action between the TRPC3 protein and its antagonists. In summary, 60a holds significant promise for clinical development in conditions associated with TRPC3 dysregulation.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Vijay K Boda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hyunseo Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Keyur Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
3
|
Rubaiy HN. Transient Receptor Potential Canonical Channels in Cardiovascular Pathology and Their Modulators. J Cardiovasc Pharmacol 2025; 85:21-34. [PMID: 39405561 DOI: 10.1097/fjc.0000000000001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/05/2024] [Indexed: 01/18/2025]
Abstract
ABSTRACT Ion channels play a crucial role in various aspects of cardiac function, such as regulating rhythm and contractility. As a result, they serve as key targets for therapeutic interventions in cardiovascular diseases. Cell function is substantially influenced by the concentration of free cytosolic calcium (Ca 2+ ) and the voltage across the plasma membrane. These characteristics are known to be regulated by Ca 2+ -permeable nonselective cationic channels, although our knowledge of these channels is still inadequate. The transient receptor potential (TRP) superfamily comprises of many nonselective cation channels with diverse Ca 2+ permeability. Canonical or classical TRP (TRPC) channels are a subgroup of the TRP superfamily that are expressed ubiquitously in mammalian cells. TRPC channels are multidimensional signaling protein complexes that play essential roles in a variety of physiological and pathological processes in humans, including cancer, neurological disorders, cardiovascular diseases, and others. The objective of this article was to focus on the role that TRPC channels play in the cardiovascular system. The role of TRPC channels will be deeply discussed in cardiovascular pathology. Together, a critical element in developing novel treatments that target TRPC channels is comprehending the molecular mechanisms and regulatory pathways of TRPC channels in related cardiovascular diseases and conditions.
Collapse
Affiliation(s)
- Hussein N Rubaiy
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Qiu X, Yao Y, Chen Y, Li Y, Sun X, Zhu X. TRPC5 Promotes Intermittent Hypoxia-Induced Cardiomyocyte Injury Through Oxidative Stress. Nat Sci Sleep 2024; 16:2125-2141. [PMID: 39720578 PMCID: PMC11668249 DOI: 10.2147/nss.s494748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Purpose Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia. Methods 30 patients with newly diagnosed OSA and 30 patients with primary snoring(PS) were included in this study. Participants were subjected to polysomnography (PSG) for OSA diagnosis. Echocardiography was used to evaluate the structure and function of the heart, while peripheral blood samples were obtained. Additionally, RT-qPCR was utilized to quantify the relative expression level of TRPC5 mRNA in peripheral blood. H9c2 cells experienced IH or normoxia. TRPC5 levels in H9c2 cells were determined via RT-qPCR and Western blotting (WB) methods. H9c2 cells overexpressing TRPC5 were subjected to either normoxic or intermittent hypoxia conditions. Cell viability was determined by CCK8, the apoptosis rate, reactive oxygen species(ROS) levels, and Ca2+ concentration were assessed by flow cytometry, and the protein levels of TRPC5, Bcl-2, Bax, and Caspase-3 were analyzed by WB. Mitochondrial membrane potential(MMP), mitochondrial membrane permeability transition pore(mPTP), and transmission electron microscopy(TEM) were employed to observe mitochondrial function and structure. After inhibiting ROS with N-acetylcysteine (NAC), apoptosis, mitochondrial function and structure, and the concentration of Ca2+ were further detected. Results TRPC5 and left atrial diameter (LAD) were higher in OSA individuals, while the E/A ratio was lower(all P<0.05). IH impaired cell viability, triggered cell apoptosis, and enhanced TRPC5 expression in H9c2 cells(all P<0.05). The effects of IH on apoptosis, cell viability, mitochondrial function and structure damage, and oxidative stress (OxS) in H9c2 cells were accelerated by the overexpression of TRPC5(all P<0.05). Furthermore, cell apoptosis and mitochondrial structural and functional damage caused by overexpression of TRPC5 were attenuated by ROS inhibition. Conclusion TRPC5 is associated with structural and functional cardiac damage in patients with OSA, and TRPC5 promotes IH-induced apoptosis and mitochondrial damage in cardiomyocytes through OxS. TRPC5 may be a novel target for the diagnosis and treatment of OSA-induced myocardial injury.
Collapse
Affiliation(s)
- Xuan Qiu
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yanli Yao
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yulan Chen
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yu Li
- Second Department of Comprehensive Internal Medicine of Healthy Care Center for Cadres, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xiaojing Sun
- Department of Intensive Care Unit, the Seventh Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xiaoli Zhu
- Department of Cardiovasology, the Traditional Chinese Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| |
Collapse
|
5
|
Zhang ZD, Lian T, Cheng QY, Zhu MP, Lv JF. Mast Cells Contribute to Pressure Overload-Induced Myocardial Hypertrophy by Upregulating TRPV4 via Histamine: Role of Ca2+/ CnA/NFATc3 Signaling Pathway. Curr Med Sci 2024; 44:1071-1080. [PMID: 39672998 DOI: 10.1007/s11596-024-2952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/27/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE To investigate whether cardiac mast cells (MCs) participate in pressure overload-induced myocardial hypertrophy through the regulation of transient receptor potential vanilloid 4 (TRPV4). METHODS Pressure overload-induced myocardial hypertrophy was induced via abdominal aortic constriction (AAC). Myocardial hypertrophy was evaluated by measuring the heart weight index (HW/BW), lung weight index (LW/BW), ratio of heart weight to tibia length (HW/TL), ratio of lung weight to tibia length (LW/TL), and cross-sectional area of myocardial cells. qRT-PCR was used to detect the mRNA expression of TRPV4. Western blotting was used to detect the protein expression of TRPV4, mast cell tryptase, myosin heavy chain beta (β-MHC), calcineurin A (CnA), and nuclear factor of activated T-cell c3 (NFATc3). ELISA was used to measure the levels of brain natriuretic peptide (BNP) and histamine. Fluo4 AM was used to detect the calcium signal in H9c2 myocardial cells. RESULTS Compared with those of the sham rats, the myocardial mast cells, tryptase, HW/BW, LW/BW, HW/TL, and LW/TL, the cross-sectional area of the myocardial cells, and the expression of β-MHC, TRPV4, CnA, and NFATc3 in the myocardial tissue and the serum BNP of the AAC-treated rats increased significantly, whereas the MC stabilizer cromolyn sodium (CS) reversed these indicators. In H9c2 cardiomyocytes, treatment with histamine and the TRPV4 agonist GSK1016790A upregulated the expression of TRPV4, β-MHC, BNP, CnA and NFATc3 and increased calcium ion influx, whereas these effects were inhibited by the H2 receptor inhibitor famotidine and the TRPV4 inhibitor HC067047. CONCLUSION Cardiac MCs participate in pressure overload-induced myocardial hypertrophy through the upregulation of TRPV4 via its mediator histamine, and the Ca2+/CnA/NFATc3 signaling pathway is involved in this process.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Cardiovasology, First Affiliated Hospital of Qiqihar Medical College, Qiqihar Medical University, Qiqihar, 161000, China
| | - Ting Lian
- Department of Physiology, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Quan-Yi Cheng
- Department of Physiology, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Mei-Ping Zhu
- Department of Physiology, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jian-Feng Lv
- Department of Cardiovasology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
6
|
Anilkumar S A, Dutta S, Aboo S, Ismail A. Vitamin D as a modulator of molecular pathways involved in CVDs: Evidence from preclinical studies. Life Sci 2024; 357:123062. [PMID: 39288869 DOI: 10.1016/j.lfs.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health. We examined diverse preclinical in vitro (cardiomyocyte cell line) models and in vivo models, including knockout mice, diet-induced deficiency, and disease-specific animal models (hypertension, hypertrophy and myocardial infarction). These studies reveal that vitamin D modulates vascular tone, and prevents fibrosis and hypertrophy through effects on major signal transduction pathways (NF-kB, Nrf2, PI3K/AKT/mTOR, Calcineurin/NFAT, TGF-β/Smad, AMPK) and influences epigenetic mechanisms governing inflammation, oxidative stress, and pathological remodeling. In vitro studies elucidate vitamin D's capacity to promote cardiomyocyte differentiation and inhibit pathological remodeling. In vivo studies further uncovered detrimental cardiac effects of VDD, while supplementation with vitamin D in cardiovascular disease (CVD) models demonstrated its protective effects by decreasing inflammation, attenuating hypertrophy, reduction in plaque formation, and improving cardiac function. Hence, this comprehensive review emphasizes the critical role of vitamin D in cardiovascular health and its potential as a preventive/therapeutic strategy in CVDs. However, further research is needed to translate these findings into clinical applications as there are discrepancies between preclinical and clinical studies.
Collapse
Affiliation(s)
- Athira Anilkumar S
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Soumam Dutta
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Shabna Aboo
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
7
|
Umlauf F, Diebolt CM, Englisch CN, Flockerzi F, Tschernig T. Distribution of TRPC5 in the human lung: A study in body donors. Exp Ther Med 2024; 28:363. [PMID: 39071908 PMCID: PMC11273251 DOI: 10.3892/etm.2024.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Transient receptor potential channel canonical 5 (TRPC5) is a non-selective ion channel; ion influx through TRPC5 causes activation of downstream signaling pathways. In addition, TRPC5 has been identified as having a potential role in pathological processes, particularly in diseases caused by cellular cation homeostasis dysregulation, such as bronchial asthma or pulmonary hypertension. However, the expression and distribution of TRPC5 in the human lung remain unclear. To date, TRPC5 has only been detected in a few cell types in the human lung, such as airway, pulmonary venous and arterial smooth muscle cells. The present study therefore aimed to investigate the protein expression of TRPC5 in the human lung and to evaluate its histological distribution. Human lung samples were obtained from six preserved body donors. After processing, both hematoxylin & eosin staining, as well as immunohistochemistry were performed. Microscopic analysis revealed medium to strong immunostaining signals in all lung structures examined, including the pleura, pulmonary arteries and veins, bronchioles, alveolar septa, type 1 and 2 pneumocytes, as well as alveolar macrophages. Current research suggests that TRPC5 may be involved in various pathological processes in the human lung and some pharmacological compounds have already been identified that affect the function of TRPC5. Therefore, TRPC5 may present a novel drug target for therapeutic intervention in various lung diseases. The results of the present study indicate that the TRPC5 protein is expressed in all examined histological structures of the human lung. These findings suggest that TRPC5 may be more important for physiological cell function and pathophysiological cell dysfunction in the lung than is currently known. Further research is needed to explore the role and therapeutic target potential of TRPC5 in the human lung.
Collapse
Affiliation(s)
- Frederik Umlauf
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Coline M. Diebolt
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Colya N. Englisch
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Fidelis Flockerzi
- Institute of Pathology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| |
Collapse
|
8
|
Wang M, Wen W, Chen Y, Yishajiang S, Li Y, Li Z, Zhang X. TRPC5 channel participates in myocardial injury in chronic intermittent hypoxia. Clinics (Sao Paulo) 2024; 79:100368. [PMID: 38703717 PMCID: PMC11087918 DOI: 10.1016/j.clinsp.2024.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE The purpose of this study is to develop an animal model of Chronic Intermittent Hypoxia (CIH) and investigate the role of the TRPC5 channel in cardiac damage in OSAHS rats. METHODS Twelve male Sprague Dawley rats were randomly divided into the CIH group and the Normoxic Control (NC) group. Changes in structure, function, and pathology of heart tissue were observed through echocardiography, transmission electron microscopy, HE-staining, and TUNEL staining. RESULTS The Interventricular Septum thickness at diastole (IVSd) and End-Diastolic Volume (EDV) of rats in the CIH group significantly increased, whereas the LV ejection fraction and LV fraction shortening significantly decreased. TEM showed that the myofilaments in the CIH group were loosely arranged, the sarcomere length varied, the cell matrix dissolved, the mitochondrial cristae were partly flocculent, the mitochondrial outer membrane dissolved and disappeared, and some mitochondria were swollen and vacuolated. The histopathological examination showed that the cardiomyocytes in the CIH group were swollen with granular degeneration, some of the myocardial fibers were broken and disorganized, and most of the nuclei were vacuolar and hypochromic. CONCLUSION CIH promoted oxidative stress, the influx of Ca2+, and the activation of the CaN/NFATc signaling pathway, which led to pathological changes in the morphology and ultrastructure of cardiomyocytes, the increase of myocardial apoptosis, and the decrease of myocardial contractility. These changes may be associated with the upregulation of TRPC5.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Wen Wen
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Yulan Chen
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China.
| | - Sharezati Yishajiang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Yu Li
- Second Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Zhiqiang Li
- Laboratory Animal Center, Xinjiang Medical University, China
| | - Xiangyang Zhang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| |
Collapse
|
9
|
Thakore P, Clark JE, Aubdool AA, Thapa D, Starr A, Fraser PA, Farrell-Dillon K, Fernandes ES, McFadzean I, Brain SD. Transient Receptor Potential Canonical 5 (TRPC5): Regulation of Heart Rate and Protection against Pathological Cardiac Hypertrophy. Biomolecules 2024; 14:442. [PMID: 38672459 PMCID: PMC11047837 DOI: 10.3390/biom14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
TRPC5 is a non-selective cation channel that is expressed in cardiomyocytes, but there is a lack of knowledge of its (patho)physiological role in vivo. Here, we examine the role of TRPC5 on cardiac function under basal conditions and during cardiac hypertrophy. Cardiovascular parameters were assessed in wild-type (WT) and global TRPC5 knockout (KO) mice. Despite no difference in blood pressure or activity, heart rate was significantly reduced in TRPC5 KO mice. Echocardiography imaging revealed an increase in stroke volume, but cardiac contractility was unaffected. The reduced heart rate persisted in isolated TRPC5 KO hearts, suggesting changes in basal cardiac pacing. Heart rate was further investigated by evaluating the reflex change following drug-induced pressure changes. The reflex bradycardic response following phenylephrine was greater in TRPC5 KO mice but the tachycardic response to SNP was unchanged, indicating an enhancement in the parasympathetic control of the heart rate. Moreover, the reduction in heart rate to carbachol was greater in isolated TRPC5 KO hearts. To evaluate the role of TRPC5 in cardiac pathology, mice were subjected to abdominal aortic banding (AAB). An exaggerated cardiac hypertrophy response to AAB was observed in TRPC5 KO mice, with an increased expression of hypertrophy markers, fibrosis, reactive oxygen species, and angiogenesis. This study provides novel evidence for a direct effect of TRPC5 on cardiac function. We propose that (1) TRPC5 is required for maintaining heart rate by regulating basal cardiac pacing and in response to pressure lowering, and (2) TRPC5 protects against pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Pratish Thakore
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - James E. Clark
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Aisah A. Aubdool
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Dibesh Thapa
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Anna Starr
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Paul A. Fraser
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Keith Farrell-Dillon
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Elizabeth S. Fernandes
- Programa de Pós-Graduação, em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80230-020, PR, Brazil;
| | - Ian McFadzean
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- School of Bioscience Education, Faculty of Life Sciences & Medicine, King’s College London, London SE1 1UL, UK
| | - Susan D. Brain
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| |
Collapse
|
10
|
Yáñez-Bisbe L, Moya M, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J, Tajes M, Batlle M, Guasch E, Mas-Stachurska A, Miró E, Rivas N, Ferreira González I, Garcia-Elias A, Benito B. TRPV4 Channels Promote Pathological, but Not Physiological, Cardiac Remodeling through the Activation of Calcineurin/NFAT and TRPC6. Int J Mol Sci 2024; 25:1541. [PMID: 38338818 PMCID: PMC10855372 DOI: 10.3390/ijms25031541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.
Collapse
Affiliation(s)
- Laia Yáñez-Bisbe
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
| | - Mar Moya
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
| | - Antonio Rodríguez-Sinovas
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Tajes
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Montserrat Batlle
- Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (E.G.); (A.M.-S.)
| | - Eduard Guasch
- Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (E.G.); (A.M.-S.)
- Cardiology Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Aleksandra Mas-Stachurska
- Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (E.G.); (A.M.-S.)
- Cardiology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Elisabet Miró
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
| | - Nuria Rivas
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Ignacio Ferreira González
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Garcia-Elias
- Department of Clinical Research, ASCIRES-CETIR Biomedic Group, 08029 Barcelona, Spain;
| | - Begoña Benito
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Khan SU, Khan SU, Suleman M, Khan MU, Alsuhaibani AM, Refat MS, Hussain T, Ud Din MA, Saeed S. The Multifunctional TRPC6 Protein: Significance in the Field of Cardiovascular Studies. Curr Probl Cardiol 2024; 49:102112. [PMID: 37774899 DOI: 10.1016/j.cpcardiol.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Pakistan.
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Munir Ullah Khan
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, Pakistan
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
12
|
Saad NS, Mashali MA, Repas SJ, Janssen PML. Altering Calcium Sensitivity in Heart Failure: A Crossroads of Disease Etiology and Therapeutic Innovation. Int J Mol Sci 2023; 24:17577. [PMID: 38139404 PMCID: PMC10744146 DOI: 10.3390/ijms242417577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Heart failure (HF) presents a significant clinical challenge, with current treatments mainly easing symptoms without stopping disease progression. The targeting of calcium (Ca2+) regulation is emerging as a key area for innovative HF treatments that could significantly alter disease outcomes and enhance cardiac function. In this review, we aim to explore the implications of altered Ca2+ sensitivity, a key determinant of cardiac muscle force, in HF, including its roles during systole and diastole and its association with different HF types-HF with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). We further highlight the role of the two rate constants kon (Ca2+ binding to Troponin C) and koff (its dissociation) to fully comprehend how changes in Ca2+ sensitivity impact heart function. Additionally, we examine how increased Ca2+ sensitivity, while boosting systolic function, also presents diastolic risks, potentially leading to arrhythmias and sudden cardiac death. This suggests that strategies aimed at moderating myofilament Ca2+ sensitivity could revolutionize anti-arrhythmic approaches, reshaping the HF treatment landscape. In conclusion, we emphasize the need for precision in therapeutic approaches targeting Ca2+ sensitivity and call for comprehensive research into the complex interactions between Ca2+ regulation, myofilament sensitivity, and their clinical manifestations in HF.
Collapse
Affiliation(s)
- Nancy S. Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohammed A. Mashali
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22514, Egypt
| | - Steven J. Repas
- Department of Emergency Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH 45324, USA;
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
14
|
Zhang HN, Zhang M, Tian W, Quan W, Song F, Liu SY, Liu XX, Mo D, Sun Y, Gao YY, Ye W, Feng YD, Xing CY, Ye C, Zhou L, Meng JR, Cao W, Li XQ. Canonical transient receptor potential channel 1 aggravates myocardial ischemia-and-reperfusion injury by upregulating reactive oxygen species. J Pharm Anal 2023; 13:1309-1325. [PMID: 38174113 PMCID: PMC10759261 DOI: 10.1016/j.jpha.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
The canonical transient receptor potential channel (TRPC) proteins form Ca2+-permeable cation channels that are involved in various heart diseases. However, the roles of specific TRPC proteins in myocardial ischemia/reperfusion (I/R) injury remain poorly understood. We observed that TRPC1 and TRPC6 were highly expressed in the area at risk (AAR) in a coronary artery ligation induced I/R model. Trpc1-/- mice exhibited improved cardiac function, lower serum Troponin T and serum creatine kinase level, smaller infarct volume, less fibrotic scars, and fewer apoptotic cells after myocardial-I/R than wild-type or Trpc6-/- mice. Cardiomyocyte-specific knockdown of Trpc1 using adeno-associated virus 9 mitigated myocardial I/R injury. Furthermore, Trpc1 deficiency protected adult mouse ventricular myocytes (AMVMs) and HL-1 cells from death during hypoxia/reoxygenation (H/R) injury. RNA-sequencing-based transcriptome analysis revealed differential expression of genes related to reactive oxygen species (ROS) generation in Trpc1-/- cardiomyocytes. Among these genes, oxoglutarate dehydrogenase-like (Ogdhl) was markedly downregulated. Moreover, Trpc1 deficiency impaired the calcineurin (CaN)/nuclear factor-kappa B (NF-κB) signaling pathway in AMVMs. Suppression of this pathway inhibited Ogdhl upregulation and ROS generation in HL-1 cells under H/R conditions. Chromatin immunoprecipitation assays confirmed NF-κB binding to the Ogdhl promoter. The cardioprotective effect of Trpc1 deficiency was canceled out by overexpression of NF-κB and Ogdhl in cardiomyocytes. In conclusion, our findings reveal that TRPC1 is upregulated in the AAR following myocardial I/R, leading to increased Ca2+ influx into associated cardiomyocytes. Subsequently, this upregulates Ogdhl expression through the CaN/NF-κB signaling pathway, ultimately exacerbating ROS production and aggravating myocardial I/R injury.
Collapse
Affiliation(s)
- Hui-Nan Zhang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Wen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Wei Quan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Fan Song
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shao-Yuan Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Xiao-Xiao Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Mo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Sun
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-Yuan Gao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Ye
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Ying-Da Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Chang-Yang Xing
- Department of Ultrasound Diagnostics, Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chen Ye
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Zhou
- Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| |
Collapse
|
15
|
Masson B, Saint-Martin Willer A, Dutheil M, Penalva L, Le Ribeuz H, El Jekmek K, Ruchon Y, Cohen-Kaminsky S, Sabourin J, Humbert M, Mercier O, Montani D, Capuano V, Antigny F. Contribution of transient receptor potential canonical channels in human and experimental pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L246-L261. [PMID: 37366608 DOI: 10.1152/ajplung.00011.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.
Collapse
Affiliation(s)
- Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Anais Saint-Martin Willer
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Lucille Penalva
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Kristelle El Jekmek
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Yann Ruchon
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Sylvia Cohen-Kaminsky
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- INSERM UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
16
|
Zhou Y, Wang XC, Wei JH, Xue HM, Sun WT, He GW, Yang Q. Soluble epoxide hydrolase and TRPC3 channels jointly contribute to homocysteine-induced cardiac hypertrophy: Interrelation and regulation by C/EBPβ. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166643. [PMID: 36669577 DOI: 10.1016/j.bbadis.2023.166643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Studies in certain cardiac hypertrophy models suggested the individual role of soluble epoxide hydrolase (sEH) and canonical transient receptor potential 3 (TRPC3) channels, however, whether they jointly mediate hypertrophic process remains unexplored. Hyperhomocysteinemia promotes cardiac hypertrophy while the involvement of sEH and TRPC3 channels remains unknown. This study aimed to explore the role of, and interrelation between sEH and TRPC3 channels in homocysteine-induced cardiac hypertrophy. METHODS Rats were fed methionine-enriched diet to induce hyperhomocysteinemia. H9c2 cells and neonatal rat cardiomyocytes were incubated with homocysteine. Cardiac hypertrophy was evaluated by echocardiography, histological examination, immunofluorescence imaging, and expressions of hypertrophic markers. Epoxyeicosatrienoic acids (EETs) were determined by ELISA. TRPC3 current was recorded by patch-clamp. Gene promotor activity was measured using dual-luciferase reporter assay. RESULTS Inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) reduced ventricular mass, lowered the expression of hypertrophic markers, decreased interstitial collagen deposition, and improved cardiac function in hyperhomocysteinemic rats, associated with restoration of EETs levels in myocardium. TPPU or knockdown of sEH suppressed TRPC3 transcription and translation as well as TRPC3 current that were enhanced by homocysteine. Exogenous 11,12-EET inhibited homocysteine-induced TRPC3 expression and cellular hypertrophy. Silencing C/EBPβ attenuated, while overexpressing C/EBPβ promoted homocysteine-induced hypertrophy and expressions of sEH and TRPC3, resulting respectively from inhibition or activation of sEH and TRPC3 gene promoters. CONCLUSIONS sEH and TRPC3 channels jointly contribute to homocysteine-induced cardiac hypertrophy. Homocysteine transcriptionally activates sEH and TRPC3 genes through a common regulatory element C/EBPβ. sEH activation leads to an upregulation of TRPC3 channels via a 11,12-EET-dependent manner.
Collapse
Affiliation(s)
- Yang Zhou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China
| | - Xiang-Chong Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Department of Pharmacology, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jia-Hui Wei
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China
| | - Hong-Mei Xue
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Department of Physiology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Wen-Tao Sun
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Institute of Cardiovascular Diseases, Tianjin University, Tianjin 300457, China; Drug Research and Development Center, Wannan Medical College, Wuhu 241002, Anhui, China; Department of Surgery, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Institute of Cardiovascular Diseases, Tianjin University, Tianjin 300457, China.
| |
Collapse
|
17
|
Yang H, Tenorio Lopes L, Barioni NO, Roeske J, Incognito AV, Baker J, Raj SR, Wilson RJA. The molecular makeup of peripheral and central baroreceptors: stretching a role for Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo channels. Cardiovasc Res 2022; 118:3052-3070. [PMID: 34734981 DOI: 10.1093/cvr/cvab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The autonomic nervous system maintains homeostasis of cardiovascular, respiratory, gastrointestinal, urinary, immune, and thermoregulatory function. Homeostasis involves a variety of feedback mechanisms involving peripheral afferents, many of which contain molecular receptors sensitive to mechanical deformation, termed mechanosensors. Here, we focus on the molecular identity of mechanosensors involved in the baroreflex control of the cardiovascular system. Located within the walls of the aortic arch and carotid sinuses, and/or astrocytes in the brain, these mechanosensors are essential for the rapid moment-to-moment feedback regulation of blood pressure (BP). Growing evidence suggests that these mechanosensors form a co-existing system of peripheral and central baroreflexes. Despite the importance of these molecules in cardiovascular disease and decades of research, their precise molecular identity remains elusive. The uncertainty surrounding the identity of these mechanosensors presents a major challenge in understanding basic baroreceptor function and has hindered the development of novel therapeutic targets for conditions with known arterial baroreflex impairments. Therefore, the purpose of this review is to (i) provide a brief overview of arterial and central baroreflex control of BP, (ii) review classes of ion channels currently proposed as the baroreflex mechanosensor, namely Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo, along with additional molecular candidates that serve mechanotransduction in other organ systems, and (iii) summarize the potential clinical implications of impaired baroreceptor function in the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Hannah Yang
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Jamie Roeske
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Anthony V Incognito
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Jacquie Baker
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Satish R Raj
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| |
Collapse
|
18
|
Sabourin J, Beauvais A, Luo R, Montani D, Benitah JP, Masson B, Antigny F. The SOCE Machinery: An Unbalanced Knowledge between Left and Right Ventricular Pathophysiology. Cells 2022; 11:cells11203282. [PMID: 36291148 PMCID: PMC9600889 DOI: 10.3390/cells11203282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| | - Antoine Beauvais
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Rui Luo
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| |
Collapse
|
19
|
Hutchings DC, Madders GWP, Niort BC, Bode EF, Waddell CA, Woods LS, Dibb KM, Eisner DA, Trafford AW. Interaction of background Ca 2+ influx, sarcoplasmic reticulum threshold and heart failure in determining propensity for Ca 2+ waves in sheep heart. J Physiol 2022; 600:2637-2650. [PMID: 35233776 PMCID: PMC9310721 DOI: 10.1113/jp282168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 11/11/2022] Open
Abstract
Ventricular arrhythmias can cause death in heart failure (HF). A trigger is the occurrence of Ca2+ waves which activate a Na+ -Ca2+ exchange (NCX) current, leading to delayed after-depolarisations and triggered action potentials. Waves arise when sarcoplasmic reticulum (SR) Ca2+ content reaches a threshold and are commonly induced experimentally by raising external Ca2+ , although the mechanism by which this causes waves is unclear and was the focus of this study. Intracellular Ca2+ was measured in voltage-clamped ventricular myocytes from both control sheep and those subjected to rapid pacing to produce HF. Threshold SR Ca2+ content was determined by applying caffeine (10 mM) following a wave and integrating wave and caffeine-induced NCX currents. Raising external Ca2+ induced waves in a greater proportion of HF cells than control. The associated increase of SR Ca2+ content was smaller in HF due to a lower threshold. Raising external Ca2+ had no effect on total influx via the L-type Ca2+ current, ICa-L , and increased efflux on NCX. Analysis of sarcolemmal fluxes revealed substantial background Ca2+ entry which sustains Ca2+ efflux during waves in the steady state. Wave frequency and background Ca2+ entry were decreased by Gd3+ or the TRPC6 inhibitor BI 749327. These agents also blocked Mn2+ entry. Inhibiting connexin hemi-channels, TRPC1/4/5, L-type channels or NCX had no effect on background entry. In conclusion, raising external Ca2+ induces waves via a background Ca2+ influx through TRPC6 channels. The greater propensity to waves in HF results from increased background entry and decreased threshold SR content. KEY POINTS: Heart failure is a pro-arrhythmic state and arrhythmias are a major cause of death. At the cellular level, Ca2+ waves resulting in delayed after-depolarisations are a key trigger of arrhythmias. Ca2+ waves arise when the sarcoplasmic reticulum (SR) becomes overloaded with Ca2+ . We investigate the mechanism by which raising external Ca2+ causes waves, and how this is modified in heart failure. We demonstrate that a novel sarcolemmal background Ca2+ influx via the TRPC6 channel is responsible for SR Ca2+ overload and Ca2+ waves. The increased propensity for Ca2+ waves in heart failure results from an increase of background influx, and a lower threshold SR content. The results of the present study highlight a novel mechanism by which Ca2+ waves may arise in heart failure, providing a basis for future work and novel therapeutic targets.
Collapse
Affiliation(s)
- David C Hutchings
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester University NHS Foundation Trust, Manchester, UK
| | - George W P Madders
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Barbara C Niort
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Elizabeth F Bode
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Caitlin A Waddell
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Lori S Woods
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Ding K, Gui Y, Hou X, Ye L, Wang L. Transient Receptor Potential Channels, Natriuretic Peptides, and Angiotensin Receptor-Neprilysin Inhibitors in Patients With Heart Failure. Front Cardiovasc Med 2022; 9:904881. [PMID: 35722101 PMCID: PMC9204593 DOI: 10.3389/fcvm.2022.904881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains the leading cause of death, morbidity, and medical expenses worldwide. Treatments for HF with reduced ejection fraction have progressed in recent years; however, acute decompensated heart failure remains difficult to treat. The transient receptor potential (TRP) channel family plays roles in various cardiovascular diseases, responding to neurohormonal and mechanical load stimulation. Thus, TRP channels are promising targets for drug discovery, and many studies have evaluated the roles of TRP channels expressed on pain neurons. The natriuretic peptide (NP) family of proteins regulates blood volume, natriuresis, and vasodilation and can antagonize the renin-angiotensin-aldosterone system and participate in the pathogenesis of major cardiovascular diseases, such as HF, coronary atherosclerotic heart disease, and left ventricular hypertrophy. NPs are degraded by neprilysin, and the blood level of NPs has predictive value in the diagnosis and prognostic stratification of HF. In this review, we discuss the relationships between typical TRP family channels (e.g., transient receptor potential cation channel subfamily V member 1 andTRPV1, transient receptor potential cation channel subfamily C member 6) and the NP system (e.g., atrial NP, B-type NP, and C-type NP) and their respective roles in HF. We also discuss novel drugs introduced for the treatment of HF.
Collapse
Affiliation(s)
- Kun Ding
- Bengbu Medical College, Bengbu, China
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Yang Gui
- Bengbu Medical College, Bengbu, China
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xu Hou
- Bengbu Medical College, Bengbu, China
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Lifang Ye
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Lihong Wang
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
21
|
Jacobs T, Abdinghoff J, Tschernig T. Protein detection and localization of the non-selective cation channel TRPC6 in the human heart. Eur J Pharmacol 2022; 924:174972. [PMID: 35483666 DOI: 10.1016/j.ejphar.2022.174972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
Due to longer lifespans in societies in industrialized countries, cardiovascular diseases are becoming increasingly important for medical research. It has already been shown that the cell membrane-bound, non-selective TRPC6 ion channel is important in the pathogenesis of heart diseases. Among other things, it is permeable to calcium ion, which plays a critical role in cardiac contraction and relaxation. The TRPC6 ion channel is a promising therapeutic target in the treatment of cardiovascular diseases. A deeper understanding of the physiological and pathophysiological role as well as the localization of TRPC6 in human cardiac tissue is the basis for new drug development. Although the TRPC6 channel has been detected in animal studies, at the mRNA level in humans, and sparse TRPC6 protein has been detected in humans, there are no systematic studies of TRPC6 protein detection in the human heart. For the first time, TRPC6 ion channel protein was detected histologically in human heart tissue from body donors in different structures, localizations, and histological layers - particularly in cardiomyocytes and intramuscular arterioles - by immunohistochemistry, just as TRPC6 expression has already been shown in animal models of the heart by other research groups. In the sense of the translational concept, this indicates a possible transferability of research results from animal models to humans.
Collapse
Affiliation(s)
- Tobias Jacobs
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Jan Abdinghoff
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany.
| |
Collapse
|
22
|
Fakhar M, Najumuddin, Zahid S, Rashid S. Structural basis of Klotho binding to VEGFR2 and TRPC1 and repurposing calcium channel blockers as TRPC1 antagonists for the treatment of age-related cardiac hypertrophy. Arch Biochem Biophys 2022; 719:109171. [DOI: 10.1016/j.abb.2022.109171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
23
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|
24
|
Bon RS, Wright DJ, Beech DJ, Sukumar P. Pharmacology of TRPC Channels and Its Potential in Cardiovascular and Metabolic Medicine. Annu Rev Pharmacol Toxicol 2022; 62:427-446. [PMID: 34499525 DOI: 10.1146/annurev-pharmtox-030121-122314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - Piruthivi Sukumar
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
25
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
26
|
Bektur Aykanat NE, Şahin E, Kaçar S, Bağcı R, Karakaya Ş, Burukoğlu Dönmez D, Şahintürk V. Cardiac hypertrophy caused by hyperthyroidism in rats: the role of ATF-6 and TRPC1 channels. Can J Physiol Pharmacol 2021; 99:1226-1233. [PMID: 34283935 DOI: 10.1139/cjpp-2021-0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperthyroidism influences the development of cardiac hypertrophy. Transient receptor potential canonical channels (TRPCs) and endoplasmic reticulum (ER) stress are regarded as critical pathways in cardiac hypertrophy. Hence, we aimed to identify the TRPCs associated with ER stress in hyperthyroidism-induced cardiac hypertrophy. Twenty adult Wistar albino male rats were used in the study. The control group was fed with standard food and tap water. The group with hyperthyroidism was also fed with standard rat food, along with tap water that contained 12 mg/L of thyroxine (T4) for 4 weeks. At the end of the fourth week, the serum-free triiodothyronine (T3), T4, and thyroid-stimulating hormone (TSH) levels of the groups were measured. The left ventricle of each rat was used for histochemistry, immunohistochemistry, Western blot, total antioxidant capacity (TAC), and total oxidant status (TOS) analysis. As per our results, activating transcription factor 6 (ATF-6), inositol-requiring kinase 1 (IRE-1), and TRPC1, which play a significant role in cardiac hypertrophy caused by hyperthyroidism, showed increased activation. Moreover, TOS and serum-free T3 levels increased, while TAC and TSH levels decreased. With the help of the literature review in our study, we could, for the first time, indicate that the increased activation of ATF-6, IRE-1, and TRPC1-induced deterioration of the Ca2+ ion balance leads to hypertrophy in hyperthyroidism due to heart failure.
Collapse
Affiliation(s)
| | - Erhan Şahin
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Sedat Kaçar
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Rıdvan Bağcı
- Adana City Training and Research Hospital, Adana, Turkey
| | - Şerife Karakaya
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Varol Şahintürk
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
27
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
28
|
Nan J, Li J, Lin Y, Saif Ur Rahman M, Li Z, Zhu L. The interplay between mitochondria and store-operated Ca 2+ entry: Emerging insights into cardiac diseases. J Cell Mol Med 2021; 25:9496-9512. [PMID: 34564947 PMCID: PMC8505841 DOI: 10.1111/jcmm.16941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Store‐operated Ca2+ entry (SOCE) machinery, including Orai channels, TRPCs, and STIM1, is key to cellular calcium homeostasis. The following characteristics of mitochondria are involved in the physiological and pathological regulation of cells: mitochondria mediate calcium uptake through calcium uniporters; mitochondria are regulated by mitochondrial dynamic related proteins (OPA1, MFN1/2, and DRP1) and form mitochondrial networks through continuous fission and fusion; mitochondria supply NADH to the electron transport chain through the Krebs cycle to produce ATP; under stress, mitochondria will produce excessive reactive oxygen species to regulate mitochondria‐endoplasmic reticulum interactions and the related signalling pathways. Both SOCE and mitochondria play critical roles in mediating cardiac hypertrophy, diabetic cardiomyopathy, and cardiac ischaemia‐reperfusion injury. All the mitochondrial characteristics mentioned above are determinants of SOCE activity, and vice versa. Ca2+ signalling dictates the reciprocal regulation between mitochondria and SOCE under the specific pathological conditions of cardiomyocytes. The coupling of mitochondria and SOCE is essential for various pathophysiological processes in the heart. Herein, we review the research focussing on the reciprocal regulation between mitochondria and SOCE and provide potential interplay patterns in cardiac diseases.
Collapse
Affiliation(s)
- Jinliang Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Jiamin Li
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Muhammad Saif Ur Rahman
- Zhejiang University-University of Edinburgh Biomedical Institute, Haining, Zhejiang, China.,Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengzheng Li
- Department of Neurology, Research Institute of Experimental Neurobiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Lingjun Zhu
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| |
Collapse
|
29
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
30
|
Zhang S, Romero LO, Deng S, Wang J, Li Y, Yang L, Hamilton DJ, Miller DD, Liao FF, Cordero-Morales JF, Wu Z, Li W. Discovery of a Highly Selective and Potent TRPC3 Inhibitor with High Metabolic Stability and Low Toxicity. ACS Med Chem Lett 2021; 12:572-578. [PMID: 33859797 PMCID: PMC8040052 DOI: 10.1021/acsmedchemlett.0c00571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
The overactivation of transient receptor potential canonical 3 (TRPC3) is associated with neurodegenerative diseases and hypertension. Pyrazole 3 (Pyr3) is reported as the most selective TRPC3 inhibitor, but it has two inherent structural limitations: (1) the labile ester moiety leads to its rapid hydrolysis to the inactive Pyr8 in vivo, and (2) the alkylating trichloroacrylic amide moiety is known to be toxic. To circumvent these limitations, we designed a series of conformationally restricted Pyr3 analogues and reported that compound 20 maintains high potency and selectivity for human TRPC3 over its closely related TRP channels. It has significantly improved metabolic stability compared with Pyr3 and has a good safety profile. Preliminary evaluation of 20 demonstrated its ability to rescue Aβ-induced neuron damage with similar potency to that of Pyr3 in vitro. Collectively, these results suggest that 20 represents a promising scaffold to potentially ameliorate the symptoms associated with TRPC3-mediated neurological and cardiovascular disorders.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Luis O. Romero
- Department
of Physiology, the University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
- Integrated
Biomedical Sciences Graduate Program, College
of Graduate Health Sciences, Memphis, Tennessee 38163, United States
| | - Shanshan Deng
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiaxing Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yong Li
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - David J. Hamilton
- Department
of Comparative Medicine, College of Graduate Health Sciences, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D. Miller
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Francesca-Fang Liao
- Department
of Pharmacology, Addiction Science, and Toxicology, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julio F. Cordero-Morales
- Department
of Physiology, the University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhongzhi Wu
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
31
|
Yu ZY, Gong H, Wu J, Dai Y, Kesteven SH, Fatkin D, Martinac B, Graham RM, Feneley MP. Cardiac Gq Receptors and Calcineurin Activation Are Not Required for the Hypertrophic Response to Mechanical Left Ventricular Pressure Overload. Front Cell Dev Biol 2021; 9:639509. [PMID: 33659256 PMCID: PMC7917224 DOI: 10.3389/fcell.2021.639509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 01/19/2023] Open
Abstract
Rationale Gq-coupled receptors are thought to play a critical role in the induction of left ventricular hypertrophy (LVH) secondary to pressure overload, although mechano-sensitive channel activation by a variety of mechanisms has also been proposed, and the relative importance of calcineurin- and calmodulin kinase II (CaMKII)-dependent hypertrophic pathways remains controversial. Objective To determine the mechanisms regulating the induction of LVH in response to mechanical pressure overload. Methods and Results Transgenic mice with cardiac-targeted inhibition of Gq-coupled receptors (GqI mice) and their non-transgenic littermates (NTL) were subjected to neurohumoral stimulation (continuous, subcutaneous angiotensin II (AngII) infusion for 14 days) or mechanical pressure overload (transverse aortic arch constriction (TAC) for 21 days) to induce LVH. Candidate signaling pathway activation was examined. As expected, LVH observed in NTL mice with AngII infusion was attenuated in heterozygous (GqI+/-) mice and absent in homozygous (GqI-/-) mice. In contrast, LVH due to TAC was unaltered by either heterozygous or homozygous Gq inhibition. Gene expression of atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and α-skeletal actin (α-SA) was increased 48 h after AngII infusion or TAC in NTL mice; in GqI mice, the increases in ANP, BNP and α-SA in response to AngII were completely absent, as expected, but all three increased after TAC. Increased nuclear translocation of nuclear factor of activated T-cells c4 (NFATc4), indicating calcineurin pathway activation, occurred in NTL mice with AngII infusion but not TAC, and was prevented in GqI mice infused with AngII. Nuclear and cytoplasmic CaMKIIδ levels increased in both NTL and GqI mice after TAC but not AngII infusion, with increased cytoplasmic phospho- and total histone deacetylase 4 (HDAC4) and increased nuclear myocyte enhancer factor 2 (MEF2) levels. Conclusion Cardiac Gq receptors and calcineurin activation are required for neurohumorally mediated LVH but not for LVH induced by mechanical pressure overload (TAC). Rather, TAC-induced LVH is associated with activation of the CaMKII-HDAC4-MEF2 pathway.
Collapse
Affiliation(s)
- Ze-Yan Yu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hutao Gong
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Yun Dai
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Scott H Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
32
|
Lu M, Fang XX, Shi DD, Liu R, Ding Y, Zhang QF, Wang HQ, Tang JM, He XJ. A Selective TRPC3 Inhibitor Pyr3 Attenuates Myocardial Ischemia/Reperfusion Injury in Mice. Curr Med Sci 2021; 40:1107-1113. [PMID: 33428139 DOI: 10.1007/s11596-020-2293-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
An emerging body of evidence indicates that transient receptor potential TRP channels act as important mediators for a wide variety of physiological functions and are potential targets for drug discovery. Our previous study has identified transient receptor potential channel 3 (TRPC3) and TRPC6 as cation channels through which most of the damaging calcium enters, aggravates pathological changes in vivo and increases ischemia/reperfusion (I/R) injury in mice. This study aimed to verify the effects of TRPC3 inhibitor Pyr3 on myocardial I/R injury in mice. C57BL/6J wild-type male mice (8 to 12 weeks old) were anesthetized with 3.3% chloral hydrate. A murine I (30 min)/R (24 h) injury model was established by temporary occlusion of the left anterior descending (LAD) coronary artery. Pyr3 was administered at concentrations of 0, 2.5, 5, or 10 mg/kg via the right jugular vein 5 min before reperfusion. We observed that the selective TRPC3 inhibitor, 10 mg/kg Pyr3, significantly decreased the infarct size of left ventricle, and reduced the myocardial cell apoptosis rate and inflammatory response in mice. In a conclusion, TRPC3 can function as a candidate target for I/R injury prevention, and Pyr3 may directly bind to TRPC3 channel protein, inhibit TRPC3 channel activity, and improve TRPC3-related myocardial I/R injury. Pyr3 may be used for clarification of TRPC3 functions and for treatments of TRPC3-mediated diseases.
Collapse
Affiliation(s)
- Min Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiao-Xia Fang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Dan-Dan Shi
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Rui Liu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Qiu-Fang Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Han-Qin Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xi-Ju He
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China. .,Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
33
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Left Ventricular Hypertrophy Increases Susceptibility to Bupivacaine-induced Cardiotoxicity through Overexpression of Transient Receptor Potential Canonical Channels in Rats. Anesthesiology 2020; 133:1077-1092. [PMID: 32915958 DOI: 10.1097/aln.0000000000003554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Local anesthetics, particularly potent long acting ones such as bupivacaine, can cause cardiotoxicity by inhibiting sodium ion channels; however, the impact of left ventricular hypertrophy on the cardiotoxicity and the underlying mechanisms remain undetermined. Transient receptor potential canonical (TRPC) channels are upregulated in left ventricular hypertrophy. Some transient receptor potential channel subtypes have been reported to pass relatively large cations, including protonated local anesthetics; this is known as the "pore phenomenon." The authors hypothesized that bupivacaine-induced cardiotoxicity is more severe in left ventricular hypertrophy due to upregulated TRPC channels. METHODS The authors used a modified transverse aortic constriction model as a left ventricular hypertrophy. Cardiotoxicity caused by bupivacaine was compared between sham and aortic constriction male rats, and the underlying mechanisms were investigated by recording sodium ion channel currents and immunocytochemistry of TRPC protein in cardiomyocytes. RESULTS The time to cardiac arrest by bupivacaine was shorter in aortic constriction rats (n =11) than in sham rats (n = 12) (mean ± SD, 1,302 ± 324 s vs. 1,034 ± 211 s; P = 0.030), regardless of its lower plasma concentration. The half-maximal inhibitory concentrations of bupivacaine toward sodium ion currents were 4.5 and 4.3 μM, which decreased to 3.9 and 2.6 μM in sham and aortic constriction rats, respectively, upon coapplication of 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3 channel activator. In both groups, sodium ion currents were unaffected by QX-314, a positively charged lidocaine derivative, that hardly permeates the cell membrane, but was significantly decreased with QX-314 and 1-oleoyl-2-acetyl-sn-glycerol coapplication (sham: 79 ± 10% of control; P = 0.004; aortic constriction: 47± 27% of control; P = 0.020; n = 5 cells per group). Effects of 1-oleoyl-2-acetyl-sn-glycerol were antagonized by a specific TRPC3 channel inhibitor. CONCLUSIONS Left ventricular hypertrophy exacerbated bupivacaine-induced cardiotoxicity, which could be a consequence of the "pore phenomenon" of TRPC3 channels upregulated in left ventricular hypertrophy. EDITOR’S PERSPECTIVE
Collapse
|
35
|
Hedon C, Lambert K, Chakouri N, Thireau J, Aimond F, Cassan C, Bideaux P, Richard S, Faucherre A, Le Guennec JY, Demion M. New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:105-117. [PMID: 33031824 DOI: 10.1016/j.pbiomolbio.2020.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes. However, the link between TRPM4 channel expression in ventricular cardiomyocytes, the hypertrophic response to stress and/or cellular arrhythmias has yet to be elucidated. In this present study, we induced pathological hypertrophy in response to myocardial infarction using a mouse model of Trpm4 gene invalidation, and demonstrate that TRPM4 is essential for survival. We also demonstrate that the TRPM4 is required to activate both the Akt and Calcineurin pathways. Finally, using two hypertrophy models, either a physiological response to endurance training or a pathological response to myocardial infarction, we show that TRPM4 plays a role in regulating transient calcium amplitudes and leads to the development of cellular arrhythmias potentially in cooperation with the Sodium-calcium exchange (NCX). Here, we report two functions of the TRPM4 channel: first its role in adaptive hypertrophy, and second its association with NCX could mediate transient calcium amplitudes which trigger cellular arrhythmias.
Collapse
Affiliation(s)
- Christophe Hedon
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Karen Lambert
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Nourdine Chakouri
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Jérôme Thireau
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Franck Aimond
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Cécile Cassan
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Patrice Bideaux
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Sylvain Richard
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Adèle Faucherre
- IGF, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France.
| |
Collapse
|
36
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
The calcium pump PMCA4 prevents epithelial-mesenchymal transition by inhibiting NFATc1-ZEB1 pathway in gastric cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118833. [PMID: 32860837 DOI: 10.1016/j.bbamcr.2020.118833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is considered as the key mechanism involved in cancer metastasis. Several studies showed that various cell membrane calcium channels play different roles in cancer metastasis. In the present study, the potential role of ATPase plasma membrane Ca2+ transporting 4 (PMCA4) in regulating EMT in gastric cancer (GC) was investigated. GC patients who underwent radical surgery were enrolled in this study. In vitro human GC cell lines MKN45 and NCI-N87 were used, and MKN45 cells were injected in nude mice to evaluate tumor development. Our results showed that low PMCA4 expression was associated with advanced TNM stage and poor prognosis in GC patients. Knockdown of PMCA4 suppressed E-cadherin, grainyhead like 2 (GRHL2) and ovo-like 1 (OVOL1) expression, up-regulated vimentin expression, increased migration and invasion ability, and promoted the resistance to cytotoxic drug. Furthermore, GC cells displayed an elongated fibroblastoid morphology when PMCA4 was knockdown. PMCA4 overexpression resulted in an up-regulated E-cadherin expression and decreased migration and invasion ability. In vivo metastasis assay showed that PMCA4 overexpression resulted in a decreased incidence of lung metastasis. PMCA4 inhibition increased ZEB1 expression and nuclear accumulation of nuclear factor of activated T-cell isoform c1 (NFATc1). EMT induced by PMCA4 inhibition could be prevented by the knockdown of NFATc1 or ZEB1. In addition, cyclosporine A prevented EMT induced by PMCA4 inhibition by suppressing the NFATc1-ZEB1 pathway. Our data identified a novel mechanism in the regulation of EMT in GC, and provided a novel target in the treatment of EMT subtype in GC.
Collapse
|
38
|
Camacho Londoño JE, Kuryshev V, Zorn M, Saar K, Tian Q, Hübner N, Nawroth P, Dietrich A, Birnbaumer L, Lipp P, Dieterich C, Freichel M. Transcriptional signatures regulated by TRPC1/C4-mediated Background Ca 2+ entry after pressure-overload induced cardiac remodelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:86-104. [PMID: 32738354 DOI: 10.1016/j.pbiomolbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
AIMS After summarizing current concepts for the role of TRPC cation channels in cardiac cells and in processes triggered by mechanical stimuli arising e.g. during pressure overload, we analysed the role of TRPC1 and TRPC4 for background Ca2+ entry (BGCE) and for cardiac pressure overload induced transcriptional remodelling. METHODS AND RESULTS Mn2+-quench analysis in cardiomyocytes from several Trpc-deficient mice revealed that both TRPC1 and TRPC4 are required for BGCE. Electrically-evoked cell shortening of cardiomyocytes from TRPC1/C4-DKO mice was reduced, whereas parameters of cardiac contractility and relaxation assessed in vivo were unaltered. As pathological cardiac remodelling in mice depends on their genetic background, and the development of cardiac remodelling was found to be reduced in TRPC1/C4-DKO mice on a mixed genetic background, we studied TRPC1/C4-DKO mice on a C57BL6/N genetic background. Cardiac hypertrophy was reduced in those mice after chronic isoproterenol infusion (-51.4%) or after one week of transverse aortic constriction (TAC; -73.0%). This last manoeuvre was preceded by changes in the pressure overload induced transcriptional program as analysed by RNA sequencing. Genes encoding specific collagens, the Mef2 target myomaxin and the gene encoding the mechanosensitive channel Piezo2 were up-regulated after TAC in wild type but not in TRPC1/C4-DKO hearts. CONCLUSIONS Deletion of the TRPC1 and TRPC4 channel proteins protects against development of pathological cardiac hypertrophy independently of the genetic background. To determine if the TRPC1/C4-dependent changes in the pressure overload induced alterations in the transcriptional program causally contribute to cardio-protection needs to be elaborated in future studies.
Collapse
Affiliation(s)
- Juan E Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| | - Vladimir Kuryshev
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Markus Zorn
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kathrin Saar
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Qinghai Tian
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Norbert Hübner
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany; Charité -Universitätsmedizin, 10117, Berlin, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Dept. of Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität, 80336, München, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, North Carolina, USA and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Peter Lipp
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| |
Collapse
|
39
|
Wen H, Gwathmey JK, Xie LH. Role of Transient Receptor Potential Canonical Channels in Heart Physiology and Pathophysiology. Front Cardiovasc Med 2020; 7:24. [PMID: 32158769 PMCID: PMC7052113 DOI: 10.3389/fcvm.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are involved in the regulation of cardiac function under (patho)physiological conditions and are closely associated with the pathogenesis of cardiac hypertrophy, arrhythmias, and myocardial infarction. Understanding the molecular mechanisms and the regulatory pathway/locus of TRPC channels in related heart diseases will provide potential new concepts for designing novel drugs targeting TRPC channels. We will present the properties and regulation of TRPC channels and their roles in the development of various forms of heart disease. This article provides a brief review on the role of TRPC channels in the regulation of myocardial function as well as how TRPC channels may serve as a therapeutic target in heart failure and cardiac arrhythmias including atrial fibrillation.
Collapse
Affiliation(s)
- Hairuo Wen
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China.,Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
40
|
TRPC Channels in Cardiac Plasticity. Cells 2020; 9:cells9020454. [PMID: 32079284 PMCID: PMC7072762 DOI: 10.3390/cells9020454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023] Open
Abstract
The heart flexibly changes its structure in response to changing environments and oxygen/nutrition demands of the body. Increased and decreased mechanical loading induces hypertrophy and atrophy of cardiomyocytes, respectively. In physiological conditions, these structural changes of the heart are reversible. However, chronic stresses such as hypertension or cancer cachexia cause irreversible remodeling of the heart, leading to heart failure. Accumulating evidence indicates that calcium dyshomeostasis and aberrant reactive oxygen species production cause pathological heart remodeling. Canonical transient receptor potential (TRPC) is a nonselective cation channel subfamily whose multimodal activation or modulation of channel activity play important roles in a plethora of cellular physiology. Roles of TRPC channels in cardiac physiology have been reported in pathological cardiac remodeling. In this review, we summarize recent findings regarding the importance of TRPC channels in flexible cardiac remodeling (i.e., cardiac plasticity) in response to environmental stresses and discuss questions that should be addressed in the near future.
Collapse
|
41
|
Hof T, Chaigne S, Récalde A, Sallé L, Brette F, Guinamard R. Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 2020; 16:344-360. [PMID: 30664669 DOI: 10.1038/s41569-018-0145-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.
Collapse
Affiliation(s)
- Thomas Hof
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Sébastien Chaigne
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Alice Récalde
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Laurent Sallé
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France
| | - Fabien Brette
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Romain Guinamard
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France.
| |
Collapse
|
42
|
TRPC Channels: Dysregulation and Ca 2+ Mishandling in Ischemic Heart Disease. Cells 2020; 9:cells9010173. [PMID: 31936700 PMCID: PMC7017417 DOI: 10.3390/cells9010173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis. In this review, we highlight the current knowledge regarding TRPC implication in different cellular processes related to ischemia and reperfusion and to heart infarction.
Collapse
|
43
|
Avila-Medina J, Mayoral-González I, Galeano-Otero I, Redondo PC, Rosado JA, Smani T. Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:489-504. [PMID: 31646522 DOI: 10.1007/978-3-030-12457-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Isabel Mayoral-González
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Surgery, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
44
|
Hall G, Wang L, Spurney RF. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019; 9:cells9010044. [PMID: 31877991 PMCID: PMC7016871 DOI: 10.3390/cells9010044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.
Collapse
|
45
|
Specific Upregulation of TRPC1 and TRPC5 Channels by Mineralocorticoid Pathway in Adult Rat Ventricular Cardiomyocytes. Cells 2019; 9:cells9010047. [PMID: 31878108 PMCID: PMC7017140 DOI: 10.3390/cells9010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
Whereas cardiac TRPC (transient receptor potential canonical) channels and the associated store-operated Ca2+ entry (SOCE) are abnormally elevated during cardiac hypertrophy and heart failure, the mechanism of this upregulation is not fully elucidated but might be related to the activation of the mineralocorticoid pathway. Using a combination of biochemical, Ca2+ imaging, and electrophysiological techniques, we determined the effect of 24-h aldosterone treatment on the TRPCs/Orai-dependent SOCE in adult rat ventricular cardiomyocytes (ARVMs). The 24-h aldosterone treatment (from 100 nM to 1 µM) enhanced depletion-induced Ca2+ entry in ARVMs, as assessed by a faster reduction of Fura-2 fluorescence decay upon the addition of Mn2+ and increased Fluo-4/AM fluorescence following Ca2+ store depletion. These effects were prevented by co-treatment with a specific mineralocorticoid receptor (MR) antagonist, RU-28318, and they are associated with the enhanced depletion-induced N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2)-sensitive macroscopic current recorded by patch-clamp experiments. Molecular screening by qRT-PCR and Western blot showed a specific upregulation of TRPC1, TRPC5, and STIM1 expression at the messenger RNA (mRNA) and protein levels upon 24-h aldosterone treatment of ARVMs, corroborated by immunostaining. Our study provides evidence that the mineralocorticoid pathway specifically promotes TRPC1/TRPC5-mediated SOCE in adult rat cardiomyocytes.
Collapse
|
46
|
Suassuna PGDA, Cherem PM, de Castro BB, Maquigussa E, Cenedeze MA, Lovisi JCM, Custódio MR, Sanders-Pinheiro H, de Paula RB. αKlotho attenuates cardiac hypertrophy and increases myocardial fibroblast growth factor 21 expression in uremic rats. Exp Biol Med (Maywood) 2019; 245:66-78. [PMID: 31847589 DOI: 10.1177/1535370219894302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In chronic kidney disease (CKD), evidence suggests that soluble αKlotho (sKlotho) has cardioprotective effects. Contrariwise, high circulating levels of fibroblast growth factor 23 (FGF23) are related to uremic cardiomyopathy development. Recently, it has been demonstrated that sKlotho can act as a soluble FGF23 co-receptor, allowing sKlotho to modulate FGF23 actions in the myocardium, leading to the activation of cardioprotective pathways. Fibroblast growth factor 21 (FGF21) is a cardiomyokine with sKlotho-like protective actions and has never been evaluated in uremic cardiomyopathy. Here, we aimed to evaluate whether recombinant αKlotho (rKlotho) replacement can attenuate cardiac remodeling in an established uremic cardiomyopathy, and to explore its impact on myocardial FGF21 expression. Forty-six male Wistar rats were divided into three groups: control, CKD-untreated, and CKD treated with rKlotho (CKD + KL). CKD was induced by 5/6 nephrectomy. From weeks 4–8, the control and CKD-untreated groups received vehicle, whereas the CKD + KL group received subcutaneous rKlotho replacement (0.01 mg/kg) every 48 h. Myocardial remodeling was evaluated by heart weight/tibia length (HW/TL) ratio, echocardiographic parameters, myocardial histomorphometry, and myocardial expression of β-myosin heavy chain (MHCβ), alpha smooth muscle actin (αSMA), transient receptor potential cation channel 6 (TRPC6), and FGF21. As expected, CKD animals had reduced levels of sKlotho and increased serum FGF23 levels. Compared to the control group, manifest myocardial remodeling was present in the CKD-untreated group, while it was attenuated in the CKD + KL group. Furthermore, cardiomyocyte diameter and interstitial fibrotic area were reduced in the CKD + KL group compared to the CKD-untreated group. Similarly, rKlotho replacement was associated with reduced myocardial expression of TRPC6, MHCβ, and αSMA and a higher expression of FGF21. rKlotho showed cardioprotective effects by attenuating myocardial remodeling and reducing TRPC6 expression. Interestingly, rKlotho replacement was also associated with increased myocardial FGF21 expression, suggesting that an interaction between the two cardioprotective pathways needs to be further explored. Impact statement This study aimed to evaluate whether rKlotho replacement can attenuate cardiac remodeling in a post-disease onset therapeutic reasoning and explore the impact on myocardial FGF21 expression. This study contributes significantly to the literature, as the therapeutic effects of rKlotho replacement and FGF21 myocardial expression have not been widely evaluated in a setting of uremic cardiomyopathy. For the first time, it has been demonstrated that subcutaneous rKlotho replacement may attenuate cardiac remodeling in established uremic cardiomyopathy and increase myocardial expression of FGF21, suggesting a correlation between αKlotho and myocardial FGF21 expression. The possibility of interaction between the αKlotho and FGF21 cardioprotective pathways needs to be further explored, but, if confirmed, would point to a therapeutic potential of FGF21 in uremic cardiomyopathy.
Collapse
Affiliation(s)
- Paulo Giovani de Albuquerque Suassuna
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Paula Marocolo Cherem
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Bárbara Bruna de Castro
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Edgar Maquigussa
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Marco Antonio Cenedeze
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Júlio Cesar Moraes Lovisi
- Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Melani Ribeiro Custódio
- Nephrology Division, Department of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Helady Sanders-Pinheiro
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Rogério Baumgratz de Paula
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
47
|
Ma T, Lin S, Wang B, Wang Q, Xia W, Zhang H, Cui Y, He C, Wu H, Sun F, Zhao Z, Gao P, Zhu Z, Liu D. TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochem Biophys Res Commun 2019; 519:674-681. [PMID: 31543348 DOI: 10.1016/j.bbrc.2019.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
Abstract
Long-term high salt intake leads to cardiac hypertrophy, but the mechanism remains elusive. Transient receptor potential channel, canonical 3(TRPC3), located in mitochondria, regulates mitochondrial calcium and reactive oxygen species(ROS) production. Herein, we investigated whether TRPC3 participates in high salt-induced cardiac hypertrophy by impairing cardiac mitochondrial function. High salt treatment increased the expression of mitochondrial TRPC3 in cardiomyocytes, accompanied by enhanced mitochondrial calcium uptake and elevated ROS production. Inhibition of TRPC3 significantly reduced high salt-induced ROS generation, promoted ATP production by stimulating oxidative phosphorylation, and increased enzyme activity in mitochondria in cardiomyocytes. Additionally, TRPC3 deficiency inhibited high salt-induced cardiac hypertrophy in vivo. A long-term high salt diet increased cardiac mitochondrial TRPC3 expression, elevated expression of cardiac hypertrophic markers atrial natriuretic peptide (ANP),brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) and decreased ATP production and mitochondrial complex I and II enzyme activity in a TRPC3-dependent manner. TRPC3 deficiency antagonises high salt diet-mediated cardiac hypertrophy by ameliorating TRPC3-mediated cardiac mitochondrial dysfunction. TRPC3 may therefore represent a novel target for preventing high salt-induced cardiac damage.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Bin Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Weijie Xia
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hexuan Zhang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hao Wu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhigang Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China.
| |
Collapse
|
48
|
Glucocorticoid stimulation increases cardiac contractility by SGK1-dependent SOCE-activation in rat cardiac myocytes. PLoS One 2019; 14:e0222341. [PMID: 31498847 PMCID: PMC6733454 DOI: 10.1371/journal.pone.0222341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/27/2019] [Indexed: 01/28/2023] Open
Abstract
Aims Glucocorticoid (GC) stimulation has been shown to increase cardiac contractility by elevated intracellular [Ca] but the sources for Ca entry are unclear. This study aims to determine the role of store-operated Ca entry (SOCE) for GC-mediated inotropy. Methods and results Dexamethasone (Dex) pretreatment significantly increased cardiac contractile force ex vivo in Langendorff-perfused Sprague-Dawley rat hearts (2 mg/kg BW i.p. Dex 24 h prior to experiment). Moreover, Ca transient amplitude as well as fractional shortening were significantly enhanced in Fura-2-loaded isolated rat ventricular myocytes exposed to Dex (1 mg/mL Dex, 24 h). Interestingly, these Dex-dependent effects could be abolished in the presence of SOCE-inhibitors SKF-96356 (SKF, 2 μM) and BTP2 (5 μM). Ca transient kinetics (time to peak, decay time) were not affected by SOCE stimulation. Direct SOCE measurements revealed a negligible magnitude in untreated myocytes but a dramatic increase in SOCE upon Dex-pretreatment. Importantly, the Dex-dependent stimulation of SOCE could be blocked by inhibition of serum and glucocorticoid-regulated kinase 1 (SGK1) using EMD638683 (EMD, 50 μM). Dex preincubation also resulted in increased mRNA expression of proteins involved in SOCE (stromal interaction molecule 2, STIM2, and transient receptor potential cation channels 3/6, TRPC 3/6), which were also prevented in the presence of EMD. Conclusion Short-term GC-stimulation with Dex improves cardiac contractility by a SOCE-dependent mechanism, which appears to involve increased SGK1-dependent expression of the SOCE-related proteins. Since Ca transient kinetics were unaffected, SOCE appears to influence Ca cycling more by an integrated response across multiple cardiac cycles but not on a beat-to-beat basis.
Collapse
|
49
|
Qiao N, Pan J, Kang Z, Liu G, Tang Z, Li Y. Effect of a background Ca 2+ entry pathway mediated by TRPC1 on myocardial damage of broilers with induced ascites syndrome. Avian Pathol 2019; 48:429-436. [PMID: 31084377 DOI: 10.1080/03079457.2019.1617834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ascites syndrome (AS) in chickens is associated with profound vascular remodelling and increased pulmonary artery pressure as well as right ventricular hypertrophy. Classical transient receptor potential cation channels (TRPCs) are key regulators of cardiac hypertrophy that act via regulation of calcium influx in mammals. We investigated whether classical transient receptor potential channels in chickens with right ventricular hypertrophy still possess this mechanism for regulating Ca2+ flux. Intravenous injection of cellulose particles was successfully used to induce AS in chickens, and tissues were examined 22 days after treatment. The chickens in the test group showed cardiac hypertrophy with oedema of the cardiac muscle and disruption of myofilaments. The right-to-total ventricle weight ratio (RV/TV), the levels of serum aspartate aminotransferase (AST) and creatine kinase (CK) of the test group were significantly higher than in the control group. Intracellular calcium levels were significantly increased in cardiomyocytes from chickens in the test group. Gene expression of TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 in heart tissues from the test group showed no significant differences compared with controls. However, TRPC1 protein levels, as well as mRNA levels, were down-regulated in the heart muscle of AS chickens (P < 0.05). Although we observed an increase in calcium concentration, the expression of TRPC1 decreased in cardiac cells. We hypothesized that an increase in intracellular free calcium concentration could inversely regulate calcium channel expression. RESEARCH HIGHLIGHTS Intracellular Ca2+ levels were increased in the myocardium of AS broilers. Expression of TRPC1, which mediates calcium influx, was decreased in the myocardium of AS broilers. The relationship between intracellular Ca2+ levels and expression of TRPC1 requires further study.
Collapse
Affiliation(s)
- Na Qiao
- College of Veterinary Medicine, South China Agricultural University , Guangzhou , P. R. People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University , Guangzhou , P. R. People's Republic of China
| | - Zhenlong Kang
- College of Veterinary Medicine, South China Agricultural University , Guangzhou , P. R. People's Republic of China
| | - Gaoyang Liu
- College of Veterinary Medicine, South China Agricultural University , Guangzhou , P. R. People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University , Guangzhou , P. R. People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University , Guangzhou , P. R. People's Republic of China
| |
Collapse
|
50
|
TRP Channels Expression Profile in Human End-Stage Heart Failure. ACTA ACUST UNITED AC 2019; 55:medicina55070380. [PMID: 31315301 PMCID: PMC6681334 DOI: 10.3390/medicina55070380] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Objectives: Many studies indicate the involvement of transient receptor potential (TRP) channels in the development of heart hypertrophy. However, the data is often conflicted and has originated in animal models. Here, we provide systematic analysis of TRP channels expression in human failing myocardium. Methods and results: Left-ventricular tissue samples were isolated from explanted hearts of NYHA III-IV patients undergoing heart transplants (n = 43). Quantitative real-time PCR was performed to assess the mRNA levels of TRPC, TRPM and TRPV channels. Analysis of functional, clinical and biochemical data was used to confirm an end-stage heart failure diagnosis. Compared to myocardium samples from healthy donor hearts (n = 5), we detected a distinct increase in the expression of TRPC1, TRPC5, TRPM4 and TRPM7, and decreased expression of TRPC4 and TRPV2. These changes were not dependent on gender, clinical or biochemical parameters, nor functional parameters of the heart. We detected, however, a significant correlation of TRPC1 and MEF2c expression. Conclusions: The end-stage heart failure displays distinct expressional changes of TRP channels. Our findings provide a systematic description of TRP channel expression in human heart failure. The results highlight the complex interplay between TRP channels and the need for deeper analysis of early stages of hypertrophy and heart failure development.
Collapse
|