1
|
Long-range allostery mediates the regulation of plasminogen activator inhibitor-1 by cell adhesion factor vitronectin. J Biol Chem 2022; 298:102652. [PMID: 36444882 PMCID: PMC9731859 DOI: 10.1016/j.jbc.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Abstract
The serpin plasminogen activator inhibitor 1 (PAI-1) spontaneously undergoes a massive structural change from a metastable and active conformation, with a solvent-accessible reactive center loop (RCL), to a stable, inactive, or latent conformation, with the RCL inserted into the central β-sheet. Physiologically, conversion to the latent state is regulated by the binding of vitronectin, which hinders the latency transition rate approximately twofold. The molecular mechanisms leading to this rate change are unclear. Here, we investigated the effects of vitronectin on the PAI-1 latency transition using all-atom path sampling simulations in explicit solvent. In simulated latency transitions of free PAI-1, the RCL is quite mobile as is the gate, the region that impedes RCL access to the central β-sheet. This mobility allows the formation of a transient salt bridge that facilitates the transition; this finding rationalizes existing mutagenesis results. Vitronectin binding reduces RCL and gate mobility by allosterically rigidifying structural elements over 40 Å away from the binding site, thus blocking transition to the latent conformation. The effects of vitronectin are propagated by a network of dynamically correlated residues including a number of conserved sites that were previously identified as important for PAI-1 stability. Simulations also revealed a transient pocket populated only in the vitronectin-bound state, corresponding to a cryptic drug-binding site identified by crystallography. Overall, these results shed new light on PAI-1 latency transition regulation by vitronectin and illustrate the potential of path sampling simulations for understanding functional protein conformational changes and for facilitating drug discovery.
Collapse
|
2
|
PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int J Mol Sci 2021; 22:ijms22063170. [PMID: 33804680 PMCID: PMC8003717 DOI: 10.3390/ijms22063170] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Hypofibrinolysis is a key abnormality in diabetes and contributes to the adverse vascular outcome in this population. Plasminogen activator inhibitor (PAI)-1 is an important regulator of the fibrinolytic process and levels of this antifibrinolytic protein are elevated in diabetes and insulin resistant states. This review describes both the physiological and pathological role of PAI-1 in health and disease, focusing on the mechanism of action as well as protein abnormalities in vascular disease with special focus on diabetes. Attempts at inhibiting protein function, using different techniques, are also discussed including direct and indirect interference with production as well as inhibition of protein function. Developing PAI-1 inhibitors represents an alternative approach to managing hypofibrinolysis by targeting the pathological abnormality rather than current practice that relies on profound inhibition of the cellular and/or acellular arms of coagulation, and which can be associated with increased bleeding events. The review offers up-to-date knowledge on the mechanisms of action of PAI-1 together with the role of altering protein function to improve hypofirbinolysis. Developing PAI-1 inhibitors may form for the basis of future new class of antithrombotic agents that reduce vascular complications in diabetes.
Collapse
|
3
|
Sillen M, Declerck PJ. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front Cardiovasc Med 2020; 7:622473. [PMID: 33415130 PMCID: PMC7782431 DOI: 10.3389/fcvm.2020.622473] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily with antiprotease activity, is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role in various acute and chronic pathophysiological processes, including cardiovascular disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the broad range of PAI-1-related pathologies, many efforts have been devoted to developing PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules, peptides, antibodies, and antibody fragments, in various animal disease models has provided ample evidence of their beneficial effect in vivo and moved forward some of these inhibitors in clinical trials. However, none of these inhibitors is currently approved for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore, the conformational plasticity of PAI-1, which is unique among serpins, poses a real challenge in the identification and development of PAI-1 inhibitors. This review will provide an overview of the structural insights into PAI-1 functionality and modulation thereof and will highlight diverse approaches to inhibit PAI-1 activity.
Collapse
Affiliation(s)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Tang S, Liu W, Pan X, Liu L, Yang Y, Wang D, Xu P, Huang M, Chen Z. Specific inhibition of plasminogen activator inhibitor 1 reduces blood glucose level by lowering TNF-a. Life Sci 2020; 246:117404. [DOI: 10.1016/j.lfs.2020.117404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022]
|
5
|
Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB. Resolving distinct molecular origins for copper effects on PAI-1. J Biol Inorg Chem 2017; 22:1123-1135. [PMID: 28913669 PMCID: PMC5613068 DOI: 10.1007/s00775-017-1489-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022]
Abstract
Components of the fibrinolytic system are subjected to stringent control to maintain proper hemostasis. Central to this regulation is the serpin plasminogen activator inhibitor-1 (PAI-1), which is responsible for specific and rapid inhibition of fibrinolytic proteases. Active PAI-1 is inherently unstable and readily converts to a latent, inactive form. The binding of vitronectin and other ligands influences stability of active PAI-1. Our laboratory recently observed reciprocal effects on the stability of active PAI-1 in the presence of transition metals, such as copper, depending on the whether vitronectin was also present (Thompson et al. Protein Sci 20:353–365, 2011). To better understand the molecular basis for these copper effects on PAI-1, we have developed a gel-based copper sensitivity assay that can be used to assess the copper concentrations that accelerate the conversion of active PAI-1 to a latent form. The copper sensitivity of wild-type PAI-1 was compared with variants lacking N-terminal histidine residues hypothesized to be involved in copper binding. In these PAI-1 variants, we observed significant differences in copper sensitivity, and these data were corroborated by latency conversion kinetics and thermodynamics of copper binding by isothermal titration calorimetry. These studies identified a copper-binding site involving histidines at positions 2 and 3 that confers a remarkable stabilization of PAI-1 beyond what is observed with vitronectin alone. A second site, independent from the two histidines, binds metal and increases the rate of the latency conversion.
Collapse
Affiliation(s)
- Joel C Bucci
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.,Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Carlee S McClintock
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| | - Yuzhuo Chu
- Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Gregory L Ware
- Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kayla D McConnell
- Department of Chemistry, Mississippi State University, Box 1115, Starkville, MS, 39762, USA
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Box 1115, Starkville, MS, 39762, USA
| | - Cynthia B Peterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA. .,Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Jendroszek A, Sønnichsen MS, Muñoz AC, Leyman K, Christensen A, Petersen SV, Wang T, Bendixen C, Panitz F, Andreasen PA, Jensen JK. Latency transition of plasminogen activator inhibitor type 1 is evolutionarily conserved. Thromb Haemost 2017; 117:1688-1699. [PMID: 28771275 DOI: 10.1160/th17-02-0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 02/04/2023]
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a central regulator of fibrinolysis and tissue remodelling. PAI-1 belongs to the serpin superfamily and unlike other inhibitory serpins undergoes a spontaneous inactivation process under physiological conditions, termed latency transition. During latency transition the solvent exposed reactive centre loop is inserted into the central β-sheet A of the molecule, and is no longer accessible to reaction with the protease. More than three decades of research on mammalian PAI-1 has not been able to clarify the evolutionary advantage and physiological relevance of latency transition. In order to study the origin of PAI-1 latency transition, we produced PAI-1 from Spiny dogfish shark (Squalus acanthias) and African lungfish (Protopterus sp.), which represent central species in the evolution of vertebrates. Although human PAI-1 and the non-mammalian PAI-1 variants share only approximately 50 % sequence identity, our results showed that all tested PAI-1 variants undergo latency transition with a similar rate. Since the functional stability of PAI-1 can be greatly increased by substitution of few amino acid residues, we conclude that the ability to undergo latency transition must have been a specific selection criterion for the evolution of PAI-1. It appears that all PAI-1 molecules must harbour latency transition to fulfil their physiological function, stressing the importance to further pursue a complete understanding of this molecular phenomenon with possible implication to pharmacological intervention. Our results provide the next step in understanding how the complete role of this important protease inhibitor evolved along with the fibrinolytic system.
Collapse
|
7
|
Petersen M, Madsen JB, Jørgensen TJD, Trelle MB. Conformational preludes to the latency transition in PAI-1 as determined by atomistic computer simulations and hydrogen/deuterium-exchange mass spectrometry. Sci Rep 2017; 7:6636. [PMID: 28747729 PMCID: PMC5529462 DOI: 10.1038/s41598-017-06290-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Both function and dysfunction of serine protease inhibitors (serpins) involve massive conformational change in their tertiary structure but the dynamics facilitating these events remain poorly understood. We have studied the dynamic preludes to conformational change in the serpin plasminogen activator inhibitor 1 (PAI-1). We report the first multi-microsecond atomistic molecular dynamics simulations of PAI-1 and compare the data with experimental hydrogen/deuterium-exchange data (HDXMS). The simulations reveal notable conformational flexibility of helices D, E and F and major fluctuations are observed in the W86-loop which occasionally leads to progressive detachment of β-strand 2 A from β-strand 3 A. An interesting correlation between Cα-RMSD values from simulations and experimental HDXMS data is observed. Helices D, E and F are known to be important for the overall stability of active PAI-1 as ligand binding in this region can accelerate or decelerate the conformational inactivation. Plasticity in this region may thus be mechanistically linked to the conformational change, possibly through facilitation of further unfolding of the hydrophobic core, as previously reported. This study provides a promising example of how computer simulations can help tether out mechanisms of serpin function and dysfunction at a spatial and temporal resolution that is far beyond the reach of any experiment.
Collapse
Affiliation(s)
- Michael Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark
| | - Jeppe B Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark
| | - Morten B Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark.
| |
Collapse
|
8
|
Motamedi-Shad N, Jagger AM, Liedtke M, Faull SV, Nanda AS, Salvadori E, Wort JL, Kay CW, Heyer-Chauhan N, Miranda E, Perez J, Ordóñez A, Haq I, Irving JA, Lomas DA. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J 2016; 473:3269-90. [PMID: 27407165 PMCID: PMC5264506 DOI: 10.1042/bcj20160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.
Collapse
Affiliation(s)
- Neda Motamedi-Shad
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Alistair M. Jagger
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Maximilian Liedtke
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
| | - Sarah V. Faull
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Arjun Scott Nanda
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Joshua L. Wort
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Christopher W.M. Kay
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Narinder Heyer-Chauhan
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Rome 00185, Italy
| | - Juan Perez
- Departamento de Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Campus Teatinos, Universidad de Malaga, Malaga 29071, Spain
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Imran Haq
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - James A. Irving
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - David A. Lomas
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| |
Collapse
|
9
|
Bucci JC, Trelle MB, McClintock CS, Qureshi T, Jørgensen TJD, Peterson CB. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability. Biochemistry 2016; 55:4386-98. [DOI: 10.1021/acs.biochem.6b00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel C. Bucci
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
- Department
of Biological Sciences, Louisiana State University, A221 Life
Sciences Annex, Baton Rouge, Louisiana 70803, United States
| | - Morten Beck Trelle
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 55 Campusvej, 5000 Odense M, Denmark
| | - Carlee S. McClintock
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Tihami Qureshi
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 55 Campusvej, 5000 Odense M, Denmark
| | - Cynthia B. Peterson
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
- Department
of Biological Sciences, Louisiana State University, A221 Life
Sciences Annex, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Qureshi T, Peterson CB. Single fluorescence probes along the reactive center loop reveal site-specific changes during the latency transition of PAI-1. Protein Sci 2015; 25:487-98. [PMID: 26540464 DOI: 10.1002/pro.2839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Abstract
The serine protease inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI-1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI-1, in which the solvent-exposed reactive center loop (RCL) inserts into its central β-sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13-P5') to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap-like RCL-insertion that occurs with a half-life of 1-2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half-life of ∼5 and 25 min at the P5' and P8 RCL positions, respectively. We hypothesize that the process detected at P5' represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.
Collapse
Affiliation(s)
- Tihami Qureshi
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia B Peterson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
11
|
An antibody raised against a pathogenic serpin variant induces mutant-like behaviour in the wild-type protein. Biochem J 2015; 468:99-108. [PMID: 25738741 PMCID: PMC4422257 DOI: 10.1042/bj20141569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A monoclonal antibody (mAb) that binds to a transient intermediate may act as a catalyst for the corresponding reaction; here we show this principle can extend on a macro molecular scale to the induction of mutant-like oligomerization in a wild-type protein. Using the common pathogenic E342K (Z) variant of α1-antitrypsin as antigen–whose native state is susceptible to the formation of a proto-oligomeric intermediate–we have produced a mAb (5E3) that increases the rate of oligomerization of the wild-type (M) variant. Employing ELISA, gel shift, thermal stability and FRET time-course experiments, we show that mAb5E3 does not bind to the native state of α1-antitrypsin, but recognizes a cryptic epitope in the vicinity of the post-helix A loop and strand 4C that is revealed upon transition to the polymerization intermediate, and which persists in the ensuing oligomer. This epitope is not shared by loop-inserted monomeric conformations. We show the increased amenity to polymerization by either the pathogenic E342K mutation or the binding of mAb5E3 occurs without affecting the energetic barrier to polymerization. As mAb5E3 also does not alter the relative stability of the monomer to intermediate, it acts in a manner similar to the E342K mutant, by facilitating the conformational interchange between these two states. We show that a monoclonal antibody can act as a ‘molecular template’ in aberrant protein oligomerization, and the transient intermediate of α1-antitrypsin, a key to the molecular mechanism of disease pathogenesis, expresses a cryptic epitope also present in the oligomer.
Collapse
|
12
|
Dupont DM, Larsen N, Jensen JK, Andreasen PA, Kjems J. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools. Nucleic Acids Res 2015; 43:e139. [PMID: 26163061 PMCID: PMC4666376 DOI: 10.1093/nar/gkv700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023] Open
Abstract
Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 1016 different RNA or DNA sequences by 5–10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2′-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers.
Collapse
Affiliation(s)
- Daniel M Dupont
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark Danish-Chinese Centre for Proteases and Cancer, Aarhus University, 8000 Aarhus C, Denmark
| | - Niels Larsen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark Danish-Chinese Centre for Proteases and Cancer, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark Danish-Chinese Centre for Proteases and Cancer, Aarhus University, 8000 Aarhus C, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark iNANO Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Dupont DM, Thuesen CK, Bøtkjær KA, Behrens MA, Dam K, Sørensen HP, Pedersen JS, Ploug M, Jensen JK, Andreasen PA. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites. PLoS One 2015; 10:e0119207. [PMID: 25793507 PMCID: PMC4368798 DOI: 10.1371/journal.pone.0119207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/11/2015] [Indexed: 11/28/2022] Open
Abstract
Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.
Collapse
Affiliation(s)
- Daniel M. Dupont
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Cathrine K. Thuesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Kenneth A. Bøtkjær
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Manja A. Behrens
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
- Department of Chemistry, Lund University, Lund, Sweden
| | - Karen Dam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans P. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Jan S. Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Michael Ploug
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
- Finsen Laboratory, Rigshospitalet and Biotech Research & Innovation Centre, Copenhagen, Denmark
| | - Jan K. Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Peter A. Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Functional stability of plasminogen activator inhibitor-1. ScientificWorldJournal 2014; 2014:858293. [PMID: 25386620 PMCID: PMC4214104 DOI: 10.1155/2014/858293] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease.
Collapse
|
15
|
Abstract
Protease inhibition by serpins requires a large conformational transition from an active, metastable state to an inactive, stable state. Similar reactions can also occur in the absence of proteases, and these latency transitions take hours, making their time scales many orders of magnitude larger than are currently accessible using conventional molecular dynamics simulations. Using a variational path sampling algorithm, we simulated the entire serpin active-to-latent transition in all-atom detail with a physically realistic force field using a standard computing cluster. These simulations provide a unifying picture explaining existing experimental data for the latency transition of the serpin plasminogen activator inhibitor-1 (PAI-1). They predict a long-lived intermediate that resembles a previously proposed, partially loop-inserted, prelatent state; correctly predict the effects of PAI-1 mutations on the kinetics; and provide a potential means to identify ligands able to accelerate the latency transition. Interestingly, although all of the simulated PAI-1 variants readily access the prelatent intermediate, this conformation is not populated in the active-to-latent transition of another serpin, α1-antitrypsin, which does not readily go latent. Thus, these simulations also help elucidate why some inhibitory serpin families are more conformationally labile than others.
Collapse
|
16
|
Trelle MB, Madsen JB, Andreasen PA, Jørgensen TJD. Local Transient Unfolding of Native State PAI-1 Associated with Serpin Metastability. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Trelle MB, Madsen JB, Andreasen PA, Jørgensen TJD. Local Transient Unfolding of Native State PAI-1 Associated with Serpin Metastability. Angew Chem Int Ed Engl 2014; 53:9751-4. [DOI: 10.1002/anie.201402796] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/26/2014] [Indexed: 11/08/2022]
|
18
|
Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Proc Natl Acad Sci U S A 2013; 110:E4941-9. [PMID: 24297881 DOI: 10.1073/pnas.1216499110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is a member of the serine protease inhibitor (serpin) family. Excessive PAI-1 activity is associated with human disease, making it an attractive pharmaceutical target. However, like other serpins, PAI-1 has a labile structure, making it a difficult target for the development of small molecule inhibitors, and to date, there are no US Food and Drug Administration-approved small molecule inactivators of any serpins. Here we describe the mechanistic and structural characterization of a high affinity inactivator of PAI-1. This molecule binds to PAI-1 reversibly and acts through an allosteric mechanism that inhibits PAI-1 binding to proteases and to its cofactor vitronectin. The binding site is identified by X-ray crystallography and mutagenesis as a pocket at the interface of β-sheets B and C and α-helix H. A similar pocket is present on other serpins, suggesting that this site could be a common target in this structurally conserved protein family.
Collapse
|
19
|
Kousted TM, Skjoedt K, Petersen SV, Koch C, Vitved L, Sochalska M, Lacroix C, Andersen LM, Wind T, Andreasen PA, Jensen JK. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation. Thromb Haemost 2013; 111:29-40. [PMID: 24085288 DOI: 10.1160/th13-04-0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/24/2013] [Indexed: 11/05/2022]
Abstract
Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between the loop connecting α-helix F with β-strand 3A and the loop connecting α-helix A with β-strand 1B. We conclude that antibody binding causes a direct blockage of the final critical step of protease translocation, resulting in abortive inhibition and premature release of reactive centre cleaved PN-1. These new antibodies will provide a powerful tool to study the in vivo role of PN-1's protease inhibitory activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jan K Jensen
- Jan K. Jensen, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, E-mail:
| |
Collapse
|
20
|
Fjellström O, Deinum J, Sjögren T, Johansson C, Geschwindner S, Nerme V, Legnehed A, McPheat J, Olsson K, Bodin C, Paunovic A, Gustafsson D. Characterization of a small molecule inhibitor of plasminogen activator inhibitor type 1 that accelerates the transition into the latent conformation. J Biol Chem 2012; 288:873-85. [PMID: 23155046 DOI: 10.1074/jbc.m112.371732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel class of small molecule inhibitors for plasminogen activator inhibitor type 1 (PAI-1), represented by AZ3976, was identified in a high throughput screening campaign. AZ3976 displayed an IC(50) value of 26 μm in an enzymatic chromogenic assay. In a plasma clot lysis assay, the compound was active with an IC(50) of 16 μm. Surprisingly, AZ3976 did not bind to active PAI-1 but bound to latent PAI-1 with a K(D) of 0.29 μm at 35 °C and a binding stoichiometry of 0.94, as measured by isothermal calorimetry. Reversible binding was confirmed by surface plasmon resonance direct binding experiments. The x-ray structure of AZ3976 in complex with latent PAI-1 was determined at 2.4 Å resolution. The inhibitor was bound in the flexible joint region with the entrance to the cavity located between α-helix D and β-strand 2A. A set of surface plasmon resonance experiments revealed that AZ3976 inhibited PAI-1 by enhancing the latency transition of active PAI-1. Because AZ3976 only had measurable affinity for latent PAI-1, we propose that its mechanism of inhibition is based on binding to a small fraction in equilibrium with active PAI-1, a latent-like prelatent form, from which latent PAI-1 is then generated more rapidly. This mode of action, with induced accelerated latency transition of active PAI-1 may, together with supporting x-ray data, provide improved opportunities for small molecule drug design in the hunt for therapeutically useful PAI-1 inhibitors.
Collapse
Affiliation(s)
- Ola Fjellström
- Department of Medicinal Chemistry, AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Van De Craen B, Declerck PJ, Gils A. The Biochemistry, Physiology and Pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thromb Res 2012; 130:576-85. [DOI: 10.1016/j.thromres.2012.06.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 12/16/2022]
|
22
|
A peptide mimicking the C-terminal part of the reactive center loop induces the transition to the latent form of plasminogen activator inhibitor type-1. FEBS Lett 2012; 586:686-92. [DOI: 10.1016/j.febslet.2012.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 11/21/2022]
|
23
|
Maximal PAI-1 inhibition in vivo requires neutralizing antibodies that recognize and inhibit glycosylated PAI-1. Thromb Res 2011; 129:e126-33. [PMID: 22178065 DOI: 10.1016/j.thromres.2011.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) regulates the activity of t-PA and u-PA and is an important inhibitor of the plasminogen activator system. Elevated PAI-1 levels have been implicated in the pathogenesis of several diseases. Prior to the evaluation of PAI-1 inhibitors in humans, there is a strong need to study the effect of PAI-1 inhibition in mouse models. In the current study, four monoclonal antibodies previously reported to inhibit recombinant PAI-1 in vitro, were evaluated in an LPS-induced endotoxemia model in mice. Both MA-33H1F7 and MA-MP2D2 exerted a strong PAI-1 inhibitory effect, whereas for MA-H4B3 and MA-124K1 no reduced PAI-1 activity was observed in vivo. Importantly, the lack of PAI-1 inhibition observed for MA-124K1 and MA-H4B3 in vivo corresponded with the absence of inhibition toward glycosylated mouse PAI-1 in vitro. Three potential N-glycosylation sites were predicted for mouse PAI-1 (i.e. N209, N265 and N329). Electrophoretic mobility analysis of glycosylation knock-out mutants before and after deglycosylation indicates the presence of glycan chains at position N265. These data demonstrate that an inhibitory effect toward glycosylated PAI-1 is a prerequisite for efficient PAI-1 inhibition in mice. Our data also suggest that PAI-1 inhibitors for use in humans must preferably be screened on glycosylated PAI-1 and not on recombinant non-glycosylated PAI-1.
Collapse
|
24
|
Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies. Biochem J 2011; 438:39-51. [PMID: 21635223 DOI: 10.1042/bj20110129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active uPA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems, the antibodies inhibited tumour cell invasion and dissemination, providing evidence for the feasibility of pharmaceutical intervention with serine protease activity by targeting surface loops that undergo conformational changes during zymogen activation.
Collapse
|
25
|
Van De Craen B, Scroyen I, Abdelnabi R, Brouwers E, Lijnen HR, Declerck PJ, Gils A. Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thromb Res 2011; 128:68-76. [DOI: 10.1016/j.thromres.2011.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 11/23/2010] [Accepted: 01/31/2011] [Indexed: 11/27/2022]
|
26
|
Thompson LC, Goswami S, Peterson CB. Metals affect the structure and activity of human plasminogen activator inhibitor-1. II. Binding affinity and conformational changes. Protein Sci 2011; 20:366-78. [PMID: 21280128 DOI: 10.1002/pro.567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ∼40, 30, and 0.09 μM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1.
Collapse
Affiliation(s)
- Lawrence C Thompson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
27
|
Riehl TE, He L, Zheng L, Greco S, Tollefsen DM, Stenson WF. COX-1(+/-)COX-2(-/-) genotype in mice is associated with shortened time to carotid artery occlusion through increased PAI-1. J Thromb Haemost 2011; 9:350-60. [PMID: 21138526 PMCID: PMC3687774 DOI: 10.1111/j.1538-7836.2010.04156.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND We found a high incidence of thrombotic deaths in COX-1(+/-)COX-2(-/-) mice and sought to define the mechanism of these events. The cyclooxygenase products thromboxane A(2) and prostacyclin are important in the regulation of coagulation but their role in fibrinolysis is largely unexplored. PAI-1 blocks fibrinolysis by inhibiting plasminogen activator. AIM Our objective was to explain the mechanism of increased thrombosis associated with the COX-1(+/-)COX-2(-/-) genotype. METHODS Carotid artery occlusion times were measured after photochemical injury. PAI-1 levels were measured in the plasma by ELISA. PAI-1 levels in the aorta were measured by RT-PCR and Western blotting. Urinary metabolites of Thromboxane A(2) and prostacyclin were measured by ELISA. RESULTS The COX-1(+/-)COX-2(-/-) genotype is associated with a decreased time to occlusion in the carotid artery thrombosis model (30 ± 5 minutes vs 60 ± minutes in wild type, p<.001). The COX-1(-/-)COX-2(+/+), COX-1(+/-)COX-2(+/-) and COX-1(+/-)COX-2(+/+) all had occlusion times similar to wild type. COX-1(+/+)COX-2(-/-) had a prolonged occlusion time. COX-1(+/-)COX-2(-/-) had increased PAI-1 levels in the plasma and aorta and with a prolonged euglobulin lysis time (37.4 ± 10.2 hours vs 15.6 ± 9.8 hours in wild type, p<.004). The decreased time to occlusion in the COX-1(+/-)COX2(-/-) mice was normalized by an inhibitory antibody to PAI-1 whereas the antibody had no effect on the time to occlusion in wild type mice. CONCLUSION The COX-1(+/-)COX-2(-/-) genotype is associated with a shortened time to occlusion in the carotid thrombosis model and the shortened time to occlusion is mediated through increased PAI-1 levels resulting in decreased fibrinolysis.
Collapse
Affiliation(s)
- T E Riehl
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dupont DM, Madsen JB, Hartmann RK, Tavitian B, Ducongé F, Kjems J, Andreasen PA. Serum-stable RNA aptamers to urokinase-type plasminogen activator blocking receptor binding. RNA (NEW YORK, N.Y.) 2010; 16:2360-2369. [PMID: 20962041 PMCID: PMC2995398 DOI: 10.1261/rna.2338210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/30/2010] [Indexed: 05/30/2023]
Abstract
The serine proteinase urokinase-type plasminogen activator (uPA) is widely recognized as a potential target for anticancer therapy. Its association with cell surfaces through the uPA receptor (uPAR) is central to its function and plays an important role in cancer invasion and metastasis. In the current study, we used systematic evolution of ligands by exponential enrichment (SELEX) to select serum-stable 2'-fluoro-pyrimidine-modified RNA aptamers specifically targeting human uPA and blocking the interaction to its receptor at low nanomolar concentrations. In agreement with the inhibitory function of the aptamers, binding was found to be dependent on the presence of the growth factor domain of uPA, which mediates uPAR binding. One of the most potent uPA aptamers, upanap-12, was analyzed in more detail and could be reduced significantly in size without severe loss of its inhibitory activity. Finally, we show that the uPA-scavenging effect of the aptamers can reduce uPAR-dependent endocytosis of the uPA-PAI-1 complex and cell-surface associated plasminogen activation in cell culture experiments. uPA-scavenging 2'-fluoro-pyrimidine-modified RNA aptamers represent a novel promising principle for interfering with the pathological functions of the uPA system.
Collapse
Affiliation(s)
- Daniel Miotto Dupont
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bøtkjaer KA, Byszuk AA, Andersen LM, Christensen A, Andreasen PA, Blouse GE. Nonproteolytic induction of catalytic activity into the single-chain form of urokinase-type plasminogen activator by dipeptides. Biochemistry 2009; 48:9606-17. [PMID: 19705874 DOI: 10.1021/bi900510f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine proteases are initially synthesized as single-chain proenzymes with activities that are many orders of magnitude lower than those of the mature enzyme. Proteolytic cleavage of an exposed loop liberates a new amino terminus that inserts into a hydrophobic pocket and forms a stabilizing salt bridge with a ubiquitously conserved aspartate residue, resulting in a conformational change organizing the mature oxyanion hole. In a decisive 1976 work, Huber and Bode [Bode, W., and Huber, R. (1976) FEBS Lett. 68, 231-236] demonstrated that peptides sequentially similar to the new amino terminus in combination with a catalytic site inhibitor could specifically induce a trypsin-like conformation in trypsinogen. We now demonstrate that an Ile-Ile or Ile-Val dipeptide can induce limited enzyme activity in the single-chain zymogen form of urokinase-type plasminogen activator (uPA) or its K158A variant, which cannot be activated proteolytically. Furthermore, the slow formation of a covalent serpin-protease complex between single-chain uPA and PAI-1 is significantly accelerated in the presence of specific dipeptide sequences. The technique of using a dipeptide mimic as a surrogate for the liberated amino terminus further provides a novel means by which to covalently label the immature active site of single-chain uPA with a fluorescent probe, permitting fluorescence approaches for direct observations of conformational changes within the protease domain during zymogen activation. These data demonstrate the structural plasticity of the protease domain, reinforce the notion of "molecular sexuality", and provide a novel way of studying conformational changes of zymogens during proteolytic activation.
Collapse
|
30
|
Mathiasen L, Dupont DM, Christensen A, Blouse GE, Jensen JK, Gils A, Declerck PJ, Wind T, Andreasen PA. A peptide accelerating the conversion of plasminogen activator inhibitor-1 to an inactive latent state. Mol Pharmacol 2008; 74:641-53. [PMID: 18559377 DOI: 10.1124/mol.108.046417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of plasminogen activators and a potential therapeutic target in cancer and cardiovascular diseases. Accordingly, formation of a basis for development of specific PAI-1-inactivating agents is of great interest. One possible inactivation mode for PAI-1 is conversion to the inactive, so-called latent state. We have now screened a phage-displayed peptide library with PAI-1 as bait and isolated a 31-residue cysteine-rich peptide that will be referred to as paionin-4. A recombinant protein consisting of paionin-4 fused to domains 1 and 2 of the phage coat protein g3p caused a 2- to 3-fold increase in the rate of spontaneous inactivation of PAI-1. Paionin-4-D1D2 bound PAI-1 with a K(D) in the high nanomolar range. Using several biochemical and biophysical methods, we demonstrate that paionin-4-D1D2-stimulated inactivation consists of an acceleration of conversion to the latent state. As demonstrated by site-directed mutagenesis and competition with other PAI-1 ligands, the binding site for paionin-4 was localized in the loop between alpha-helix D and beta-strand 2A. We also demonstrate that a latency-inducing monoclonal antibody has an overlapping, but not identical binding site, and accelerates latency transition by another mechanism. Our results show that paionin-4 inactivates PAI-1 by a mechanism clearly different from other peptides, small organochemical compounds, or antibodies, whether they cause inactivation by stimulating latency transition or by other mechanisms, and that the loop between alpha-helix D and beta-strand 2A can be a target for PAI-1 inactivation by different types of compounds.
Collapse
Affiliation(s)
- Lisa Mathiasen
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jensen JK, Gettins PGW. High-resolution structure of the stable plasminogen activator inhibitor type-1 variant 14-1B in its proteinase-cleaved form: a new tool for detailed interaction studies and modeling. Protein Sci 2008; 17:1844-9. [PMID: 18725454 DOI: 10.1110/ps.036707.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wild-type plasminogen activator inhibitor type-1 (PAI-1) rapidly converts to the inactive latent state under conditions of physiological pH and temperature. For in vivo studies of active PAI-1 in cell culture and in vivo model systems, the 14-1B PAI-1 mutant (N150H-K154T-Q319L-M354I), with its stabilized active conformation, has thus become the PAI-1 of choice. As a consequence of the increased stability, the only two forms likely to be encountered are the active or the cleaved form, the latter either free or complexed with target proteinase. We hereby report the first structure of the stable 14-1B PAI-1 variant in its reactive center cleaved form, to a resolution of 2.0 A. The >99% complete structure represents the highest resolved structure of free cleaved PAI-1. This high-resolution structure should be of great use for drug target development and for modeling protein-protein interactions such as those of PAI-1 with vitronectin.
Collapse
Affiliation(s)
- Jan K Jensen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
32
|
Richard B, Swanson R, Schedin-Weiss S, Ramirez B, Izaguirre G, Gettins PGW, Olson ST. Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin. J Biol Chem 2008; 283:14417-29. [PMID: 18375953 PMCID: PMC2386924 DOI: 10.1074/jbc.m710327200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/20/2008] [Indexed: 11/06/2022] Open
Abstract
A conformationally altered prelatent form of antithrombin that possesses both anticoagulant and antiangiogenic activities is produced during the conversion of native to latent antithrombin (Larsson, H., Akerud, P., Nordling, K., Raub-Segall, E., Claesson-Welsh, L., and Björk, I. (2001) J. Biol. Chem. 276, 11996-12002). Here, we show that the previously characterized prelatent antithrombin is a mixture of native antithrombin and a modified, true prelatent antithrombin that are resolvable by heparin-agarose chromatography. Kinetic analyses revealed that prelatent antithrombin is an intermediate in the conversion of native to latent antithrombin whose formation is favored by stabilizing anions of the Hofmeister series. Purified prelatent antithrombin had reduced anticoagulant function compared with native antithrombin, due to a reduced heparin affinity and consequent impaired ability of heparin to either bridge prelatent antithrombin and coagulation proteases in a ternary complex or to induce full conformational activation of the serpin. Significantly, prelatent antithrombin possessed an antiangiogenic activity more potent than that of latent antithrombin, based on the relative abilities of the two forms to inhibit endothelial cell growth. The prelatent form was conformationally altered from native antithrombin as judged from an attenuation of tryptophan fluorescence changes following heparin activation and a reduced thermal stability. The alterations are consistent with the limited structural changes involving strand 1C observed in a prelatent form of plasminogen activator inhibitor-1 (Dupont, D. M., Blouse, G. E., Hansen, M., Mathiasen, L., Kjelgaard, S., Jensen, J. K., Christensen, A., Gils, A., Declerck, P. J., Andreasen, P. A., and Wind, T. (2006) J. Biol. Chem. 281, 36071-36081), since the (1)H NMR spectrum, electrophoretic mobility, and proteolytic susceptibility of prelatent antithrombin most resemble those of native rather than those of latent antithrombin. Together, these results demonstrate that limited conformational alterations of antithrombin that modestly reduce anticoagulant activity are sufficient to generate antiangiogenic activity.
Collapse
Affiliation(s)
- Benjamin Richard
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Li SH, Gorlatova NV, Lawrence DA, Schwartz BS. Structural differences between active forms of plasminogen activator inhibitor type 1 revealed by conformationally sensitive ligands. J Biol Chem 2008; 283:18147-57. [PMID: 18436534 DOI: 10.1074/jbc.m709455200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central beta-sheet, beta-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into beta-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the beta-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to beta-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin.
Collapse
Affiliation(s)
- Shih-Hon Li
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
34
|
Na YR, Im H. Specific interactions of serpins in their native forms attenuate their conformational transitions. Protein Sci 2007; 16:1659-66. [PMID: 17600149 PMCID: PMC2203359 DOI: 10.1110/ps.072838107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein superfamily. Serpins are unique in that their native forms are not the most thermodynamically stable conformation; instead, a more stable, latent conformation exists. During the transition to the latent form, the first strand of beta-sheet C (s1C) in the serpin is peeled away from the beta-sheet, and the reactive center loop (RCL) is inserted into beta-sheet A, rendering the serpin inactive. To elucidate the contribution of specific interactions in the metastable native form to the latency transition, we examined the effect of mutations at the s1C of PAI-1, specifically in positions P4' through P10'. Several mutations strengthened the interactions between these residues and the core protein, and slowed the transition of the protein from the metastable native form to the latent form. In particular, anchoring of the strand to the protein's hydrophobic core at the beginning (P4' site) and center of the strand (P8' site) greatly retarded the latency transition. Mutations that weakened the interactions at the s1C region facilitated the conformational conversion of the protein to the latent form. PAI-1's overall structural stability was largely unchanged by the mutations, as evaluated by urea-induced equilibrium unfolding monitored via fluorescence emission. Therefore, the mutations likely exerted their effects by modulating the height of the energy barrier from the native to the latent form. Our results show that interactions found only in the metastable native form of serpins are important structural features that attenuate folding of the proteins into their latent forms.
Collapse
Affiliation(s)
- Yu-Ran Na
- Department of Molecular Biology, Sejong University, Kwangjin-gu, Seoul 143-747, Korea
| | | |
Collapse
|
35
|
Yi JY, Im H. Structural factors affecting the choice between latency transition and polymerization in inhibitory serpins. Protein Sci 2007; 16:833-41. [PMID: 17400919 PMCID: PMC2206651 DOI: 10.1110/ps.062745807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) protein family, is unique among the serpins in its conformational lability. This lability allows spontaneous conversion of the active form to a more stable, latent conformation under physiological conditions. In other serpins, polymerization, rather than latency transition, is induced under pathological conditions or upon heat treatment. To identify specific factors promoting latency conversion in PAI-1, we mutated PAI-1 at various positions and compared the effects with those of equivalent mutations in alpha(1)-antitrypsin, the archetypal serpin. Mutations that improved interactions with the turn between helix F and the third strand of beta-sheet A (thFs3A) or the fifth strand of beta-sheet A (s5A), which are near the site of latency transition-associated insertion of the reactive center loop, retarded latency conversion but did not greatly increase structural stability. Mutations that decreased interactions with s2C facilitated conformational conversion, possibly by releasing the reactive center loop from beta-sheet C. Mutations of Thr93 that filled a hydrophobic surface pocket on s2A dramatically increased structural stability but had a negligible effect on the conformational transition. Our results suggest that the structural features controlling latency transition in PAI-1 are highly localized, whereas the conformational strain of the native forms of other inhibitory serpins is distributed throughout the molecule and induces polymerization.
Collapse
Affiliation(s)
- Ji-Yeun Yi
- Department of Molecular Biology, Sejong University, Seoul 143-747, Korea
| | | |
Collapse
|