1
|
Li J, Zhang Y, Gan X, Li J, Xia G, He L, Xia C, Zhang W, Akhtar Ali K, Zhu M, Huang H. Blocking the LRH-1/LCN2 axis by ML-180, an LRH-1 inverse agonist, ameliorates osteoarthritis via inhibiting the MAPK pathway. Biochem Pharmacol 2025; 237:116922. [PMID: 40194607 DOI: 10.1016/j.bcp.2025.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Osteoarthritis (OA) is a chronic and degenerative disease marked by inflammation and extracellular matrix (ECM) degeneration, contributing to synovial inflammation and cartilage destruction. Accumulating evidence has demonstrated that Liver receptor homolog-1 (LRH-1), an orphan nuclear receptor, mediates inflammatory response. However, there is a lack of evidence regarding the regulatory role of LRH-1 in OA pathogenesis. In this study, we confirmed that chondrocytes expressed LRH-1, and observed its upregulation in both IL-1β-treated chondrocytes and cartilage of destabilization of the medial meniscus (DMM)-operated mice. Overexpression of LRH-1 promoted inflammation and dysregulation of ECM metabolism in IL-1β-induced chondrocytes, reversed by inhibition of LRH-1 with ML-180 or gene silencing to protect chondrocytes. Moreover, ML-180 treatment in vivo improved the deteriorated OA phenotypes in mouse models, alleviating OA development. Mechanistically, RNA sequencing revealed that Lipocalin-2 (LCN2), a member of the lipocalin family associated with inflammation, is located downstream of LRH-1 and is positively regulated by it. Furthermore, the LRH-1/LCN2 axis mainly relied on activating the mitogen-activated protein kinase (MAPK) signaling pathway to promote inflammation and dysregulation of ECM metabolism, ultimately damaging chondrocytes. Our findings demonstrate that LRH-1 positively modulates LCN2,activating the MAPK pathway, indicating that targeting the LRH-1/LCN2/MAPK axis may represent a potential therapeutic strategy for OA.
Collapse
Affiliation(s)
- Jianwen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yayun Zhang
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ganqing Xia
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Lingxiao He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengyan Xia
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weikai Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Khan Akhtar Ali
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meipeng Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Ghosh S, Devereaux MW, Liu C, Sokol RJ. LRH-1 agonist DLPC through STAT6 promotes macrophage polarization and prevents parenteral nutrition-associated cholestasis in mice. Hepatology 2024; 79:986-1004. [PMID: 37976384 PMCID: PMC11023811 DOI: 10.1097/hep.0000000000000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Parenteral nutrition-associated cholestasis (PNAC) is an important complication in patients with intestinal failure with reduced LRH-1 expression. Here, we hypothesized that LRH-1 activation by its agonist, dilauroylphosphatidylcholine (DLPC), would trigger signal transducer and activator of transcription 6 (STAT6) signaling and hepatic macrophage polarization that would mediate hepatic protection in PNAC. APPROACH AND RESULTS PNAC mouse model (oral DSSx4d followed by PNx14d; DSS-PN) was treated with LRH-1 agonist DLPC (30 mg/kg/day) intravenously. DLPC treatment prevented liver injury and cholestasis while inducing hepatic mRNA expression of Nr5a2 (nuclear receptor subfamily 5 group A member 2), Abcb11 (ATP binding cassette subfamily B member 11), Abcg5 (ATP-binding cassette [ABC] transporters subfamily G member 5), Abcg8 (ATP-binding cassette [ABC] transporters subfamily G member 8), nuclear receptor subfamily 0, and ATP-binding cassette subfamily C member 2 ( Abcc2) mRNA, all of which were reduced in PNAC mice. To determine the mechanism of the DLPC effect, we performed RNA-sequencing analysis of the liver from Chow, DSS-PN, and DSS-PN/DLPC mice, which revealed DLPC upregulation of the anti-inflammatory STAT6 pathway. In intrahepatic mononuclear cells or bone-marrow derived macrophages (BMDM) from PNAC mice, DLPC treatment prevented upregulation of pro-inflammatory (M1) genes, suppressed activation of NFκB and induced phosphorylation of STAT6 and its target genes, indicating M2 macrophage polarization. In vitro, incubation of DLPC with cultured macrophages showed that the increased Il-1b and Tnf induced by exposure to lipopolysaccharides or phytosterols was reduced significantly, which was associated with increased STAT6 binding to promoters of its target genes. Suppression of STAT6 expression by siRNA in THP-1 cells exposed to lipopolysaccharides, phytosterols, or both resulted in enhanced elevation of IL-1B mRNA expression. Furthermore, the protective effect of DLPC in THP-1 cells was abrogated by STAT6 siRNA. CONCLUSIONS These results indicate that activation of LRH-1 by DLPC may protect from PNAC liver injury through STAT6-mediated macrophage polarization.
Collapse
Affiliation(s)
- Swati Ghosh
- Department of Pediatrics, University of Colorado School of Medicine, Section of Gastroenterology, Hepatology and Nutrition
| | - Michael W. Devereaux
- Department of Pediatrics, University of Colorado School of Medicine, Section of Gastroenterology, Hepatology and Nutrition
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado‐Denver Anschutz Medical Campus, Aurora, 80045, Colorado, USA
| | - Ronald J. Sokol
- Department of Pediatrics, University of Colorado School of Medicine, Section of Gastroenterology, Hepatology and Nutrition
- Digestive Health Institute, Children’s Hospital Colorado
| |
Collapse
|
3
|
Cato ML, Cornelison JL, Spurlin RM, Courouble VV, Patel AB, Flynn AR, Johnson AM, Okafor CD, Frank F, D’Agostino EH, Griffin PR, Jui NT, Ortlund EA. Differential Modulation of Nuclear Receptor LRH-1 through Targeting Buried and Surface Regions of the Binding Pocket. J Med Chem 2022; 65:6888-6902. [PMID: 35503419 PMCID: PMC10026694 DOI: 10.1021/acs.jmedchem.2c00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver receptor homologue-1 (LRH-1) is a phospholipid-sensing nuclear receptor that has shown promise as a target for alleviating intestinal inflammation and metabolic dysregulation in the liver. LRH-1 contains a large ligand-binding pocket, but generating synthetic modulators has been challenging. We have had recent success generating potent and efficacious agonists through two distinct strategies. We targeted residues deep within the pocket to enhance compound binding and residues at the mouth of the pocket to mimic interactions made by phospholipids. Here, we unite these two designs into one molecule to synthesize the most potent LRH-1 agonist to date. Through a combination of global transcriptomic, biochemical, and structural studies, we show that selective modulation can be driven through contacting deep versus surface polar regions in the pocket. While deep pocket contacts convey high affinity, contacts with the pocket mouth dominate allostery and provide a phospholipid-like transcriptional response in cultured cells.
Collapse
Affiliation(s)
- Michael L. Cato
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | | - Anamika B. Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Autumn R. Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | | | - C. Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Emma H. D’Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | - Nathan T. Jui
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
- Corresponding Author:
| |
Collapse
|
4
|
Lang A, Isigkeit L, Schubert-Zsilavecz M, Merk D. The Medicinal Chemistry and Therapeutic Potential of LRH-1 Modulators. J Med Chem 2021; 64:16956-16973. [PMID: 34839661 DOI: 10.1021/acs.jmedchem.1c01663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-activated transcription factor liver receptor homologue 1 (LRH-1, NR5A2) is involved in the regulation of metabolic homeostasis, including cholesterol and glucose balance. Preliminary evidence points to therapeutic potential of LRH-1 modulation in diabetes, hepatic diseases, inflammatory bowel diseases, atherosclerosis, and certain cancers, but because of a lack of suitable ligands, pharmacological control of LRH-1 has been insufficiently studied. Despite the availability of considerable structural knowledge on LRH-1, only a few ligand chemotypes have been developed, and potent, selective, and bioavailable tools to explore LRH-1 modulation in vivo are lacking. In view of the therapeutic potential of LRH-1 in prevalent diseases, improved chemical tools are needed to probe the beneficial and adverse effects of pharmacological LRH-1 modulation in sophisticated preclinical models and to further elucidate the receptor's molecular function.
Collapse
Affiliation(s)
- Alisa Lang
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
5
|
Sun Y, Demagny H, Schoonjans K. Emerging functions of the nuclear receptor LRH-1 in liver physiology and pathology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166145. [PMID: 33862147 DOI: 10.1016/j.bbadis.2021.166145] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Nuclear receptors play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. The nuclear receptor, liver receptor homolog-1 (LRH-1, NR5A2), originally identified in the liver as a regulator of bile acid and cholesterol homeostasis, was recently recognized to coordinate a multitude of other hepatic metabolic processes, including glucose and lipid processing, methyl group sensing, and cellular stress responses. In this review, we summarize the physiological and pathophysiological functions of LRH-1 in the liver, as well as the molecular mechanisms underlying these processes. This review also focuses on the recent advances highlighting LRH-1 as an attractive target for liver-associated diseases, such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Yu Sun
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Cobo-Vuilleumier N, Gauthier BR. Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration. Metabolism 2020; 104:154137. [PMID: 31904355 DOI: 10.1016/j.metabol.2020.154137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that targets the destruction of islet beta-cells resulting in insulin deficiency, hyperglycemia and death if untreated. Despite advances in medical devices and longer-acting insulin, there is still no robust therapy to substitute and protect beta-cells that are lost in T1DM. Attempts to refrain from the autoimmune attack have failed to achieve glycemic control in patients highlighting the necessity for a paradigm shift in T1DM treatment. Paradoxically, beta-cells are present in T1DM patients indicating a disturbed equilibrium between the immune attack and beta-cell regeneration reminiscent of unresolved wound healing that under normal circumstances progression towards an anti-inflammatory milieu promotes regeneration. Thus, the ultimate T1DM therapy should concomitantly restore immune self-tolerance and replenish the beta-cell mass similar to wound healing. Recently the agonistic activation of the nuclear receptor LRH-1/NR5A2 was shown to induce immune self-tolerance, increase beta-cell survival and promote regeneration through a mechanism of alpha-to-beta cell phenotypic switch. This trans-regeneration process appears to be facilitated by a pancreatic anti-inflammatory environment induced by LRH-1/NR5A2 activation. Herein, we review the literature on the role of LRH1/NR5A2 in immunity and islet physiology and propose that a cross-talk between these cellular compartments is mandatory to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029 Spain.
| |
Collapse
|
7
|
Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, Jimenez V, Bosch F, Lüscher TF, Oosterveer MH, Schoonjans K. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest 2017; 127:583-592. [PMID: 28094767 DOI: 10.1172/jci85499] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatic steatosis is caused by metabolic imbalances that could be explained in part by an increase in de novo lipogenesis that results from increased sterol element binding protein 1 (SREBP-1) activity. The nuclear receptor liver receptor homolog 1 (LRH-1) is an important regulator of intermediary metabolism in the liver, but its role in regulating lipogenesis is not well understood. Here, we have assessed the contribution of LRH-1 SUMOylation to the development of nonalcoholic fatty liver disease (NAFLD). Mice expressing a SUMOylation-defective mutant of LRH-1 (LRH-1 K289R mice) developed NAFLD and early signs of nonalcoholic steatohepatitis (NASH) when challenged with a lipogenic, high-fat, high-sucrose diet. Moreover, we observed that the LRH-1 K289R mutation induced the expression of oxysterol binding protein-like 3 (OSBPL3), enhanced SREBP-1 processing, and promoted de novo lipogenesis. Mechanistically, we demonstrated that ectopic expression of OSBPL3 facilitates SREBP-1 processing in WT mice, while silencing hepatic Osbpl3 reverses the lipogenic phenotype of LRH-1 K289R mice. These findings suggest that compromised SUMOylation of LRH-1 promotes the development of NAFLD under lipogenic conditions through regulation of OSBPL3.
Collapse
|
8
|
Lefèvre L, Authier H, Stein S, Majorel C, Couderc B, Dardenne C, Eddine MA, Meunier E, Bernad J, Valentin A, Pipy B, Schoonjans K, Coste A. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis. Nat Commun 2015; 6:6801. [PMID: 25873311 PMCID: PMC4410638 DOI: 10.1038/ncomms7801] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis.
Collapse
Affiliation(s)
- Lise Lefèvre
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Hélène Authier
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Sokrates Stein
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | - Bettina Couderc
- EA4553 Individualisation des traitements des cancers ovariens et ORL, UPS, Toulouse 31400, France
| | - Christophe Dardenne
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | | | - Etienne Meunier
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - José Bernad
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Alexis Valentin
- Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Bernard Pipy
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Agnès Coste
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| |
Collapse
|
9
|
Stein S, Schoonjans K. Molecular basis for the regulation of the nuclear receptor LRH-1. Curr Opin Cell Biol 2015; 33:26-34. [DOI: 10.1016/j.ceb.2014.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
10
|
Jennings P, Schwarz M, Landesmann B, Maggioni S, Goumenou M, Bower D, Leonard MO, Wiseman JS. SEURAT-1 liver gold reference compounds: a mechanism-based review. Arch Toxicol 2014; 88:2099-133. [DOI: 10.1007/s00204-014-1410-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
|
11
|
Flandez M, Cendrowski J, Cañamero M, Salas A, del Pozo N, Schoonjans K, Real FX. Nr5a2 heterozygosity sensitises to, and cooperates with, inflammation in KRas(G12V)-driven pancreatic tumourigenesis. Gut 2014; 63:647-55. [PMID: 23598351 DOI: 10.1136/gutjnl-2012-304381] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Nr5a2 participates in biliary acid metabolism and is a major regulator of the pancreatic exocrine programme. Single nucleotide polymorphisms in the vicinity of NR5A2 are associated with the risk of pancreatic ductal adenocarcinoma (PDAC). AIMS To determine the role of Nr5a2 in pancreatic homeostasis, damage-induced regeneration and mutant KRas-driven pancreatic tumourigenesis. DESIGN Nr5a2+/- and KRas(G12V);Ptf1a-Cre;Nr5a2+/- mice were used to investigate whether a full dose of Nr5a2 is required for normal pancreas development, recovery from caerulein-induced pancreatitis, and protection from tumour development. RESULTS Adult Nr5a2+/- mice did not display histological abnormalities in the pancreas but showed a more severe acute pancreatitis, increased acino-ductal metaplasia and impaired recovery from damage. This was accompanied by increased myeloid cell infiltration and proinflammatory cytokine gene expression, and hyperactivation of nuclear factor κb and signal transducer and activator of transcription 3 signalling pathways. Induction of multiple episodes of acute pancreatitis was associated with more severe damage and delayed regeneration. Inactivation of one Nr5a2 allele selectively in pancreatic epithelial cells was sufficient to cause impaired recovery from pancreatitis. In comparison with Nr5a2+/+ mice, KRas(G12V);Ptf1a(Cre/+);Nr5a2+/- mice showed a non-statistically significant increase in the area affected by preneoplastic lesions. However, a single episode of acute pancreatitis cooperated with loss of one Nr5a2 allele to accelerate KRas(G12V)-driven development of preneoplastic lesions. CONCLUSIONS A full Nr5a2 dose is required to restore pancreatic homeostasis upon damage and to suppress the KRas(G12V)-driven mouse pancreatic intraepithelial neoplasia progression, indicating that Nr5a2 is a novel pancreatic tumour suppressor. Nr5a2 could contribute to PDAC through a role in the recovery from pancreatitis-induced damage.
Collapse
Affiliation(s)
- Marta Flandez
- Epithelial Carcinogenesis Group, Molecular Pathology Programme, CNIO-Spanish National Cancer Research Center, , Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Almansa R, Bermejo-Martín JF, de Lejarazu Leonardo RO. Immunopathogenesis of 2009 pandemic influenza. Enferm Infecc Microbiol Clin 2013; 30 Suppl 4:18-24. [PMID: 23116788 PMCID: PMC7130369 DOI: 10.1016/s0213-005x(12)70100-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Three years after the pandemic, major advances have been made in our understanding of the innate and adaptive immune responses to the influenza A(H1N1)pdm09 virus and those responses' contribution to the immunopathology associated with this infection. Severe disease is characterized by early secretion of proinflammatory and immunomodulatory cytokines. This cytokine secretion persisted in patients with severe viral pneumonia and was directly associated with the degree of viral replication in the respiratory tract. Cytokines play important roles in the antiviral defense, but persistent hypercytokinemia may cause inflammatory tissue damage and participate in the genesis of the respiratory failure observed in these patients. An absence of pre-existing protective antibodies was the rule for both mild and severe cases. A role for pathogenic immunocomplexes has been proposed for this disease. Defective T cell responses characterize severe cases of infection caused by the influenza A(H1N1)pdm09 virus. Immune alterations associated with accompanying conditions such as obesity, pregnancy or chronic obstructive pulmonary disease may interfere with the normal development of the specific response to the virus. The role of host immunogenetic factors associated with disease severity is also discussed in this review. In conclusion, currently available information suggests a complex immunological dysfunction/alteration that characterizes the severe cases of 2009 pandemic influenza. The potential benefits of prophylactic/therapeutic interventions aimed at preventing/correcting such dysfunction warrant investigation.
Collapse
Affiliation(s)
- Raquel Almansa
- Unidad de Investigación Médica en Infección e Inmunidad (IMI), Investigación Biomédica del Clínico (ibC), Hospital Clínico Universitario, Valladolid, Spain
| | | | | |
Collapse
|
13
|
Jiang ZK, Johnson M, Moughon DL, Kuo J, Sato M, Wu L. Rapamycin enhances adenovirus-mediated cancer imaging and therapy in pre-immunized murine hosts. PLoS One 2013; 8:e73650. [PMID: 24023896 PMCID: PMC3759448 DOI: 10.1371/journal.pone.0073650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/19/2013] [Indexed: 12/24/2022] Open
Abstract
Tumor-specific adenoviral vectors comprise a fruitful gene-based diagnostic imaging and therapy research area for advanced stage of cancer, including metastatic disease. However, clinical translation of viral vectors has encountered considerable obstacles, largely due to host immune responses against the virus. Here, we explored the utilization of an immunosuppressant, rapamycin, to circumvent the anti-adenovirus immunity in immunocompetent murine prostate cancer models. Rapamycin diminished adenoviral-induced acute immune response by inhibiting NF-κB activation; it also reduced the scale and delayed the onset of inflammatory cytokine secretion. Further, we found that rapamycin abrogated anti-adenovirus antibody production and retarded the function of myeloid cells and lymphocytes that were activated upon viral administration in pre-immunized hosts. Thus, the co-administration of rapamycin prolonged and enhanced adenovirus-delivered transgene expression in vivo, and thereby augmented the imaging capability of adenoviral vectors in both bioluminescent and positron emission tomography modalities. Furthermore, we showed that despite an excellent response of cancer cells to a cytotoxic gene therapeutic vector in vitro, only minimal therapeutic effects were observed in vivo in pre-immunized mice. However, when we combined gene therapy with transient immunosuppression, complete tumor growth arrest was achieved. Overall, transient immunosuppression by rapamycin was able to boost the diagnostic utility and therapeutic potentials of adenoviral vectors.
Collapse
Affiliation(s)
- Ziyue Karen Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Mai Johnson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Diana L. Moughon
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jennifer Kuo
- Department of Molecular, Cellular and Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Makoto Sato
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ousema PH, Moutos FT, Estes BT, Caplan AI, Lennon DP, Guilak F, Weinberg JB. The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds. Biomaterials 2012; 33:8967-74. [PMID: 22999467 PMCID: PMC3466362 DOI: 10.1016/j.biomaterials.2012.08.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 12/26/2022]
Abstract
Tissue-engineered constructs designed to treat large cartilage defects or osteoarthritic lesions may be exposed to significant mechanical loading as well as an inflammatory environment upon implantation in an injured or diseased joint. We hypothesized that a three-dimensionally (3D) woven poly(ε-caprolactone) (PCL) scaffold seeded with bone marrow-derived mesenchymal stem cells (MSCs) would provide biomimetic mechanical properties in early stages of in vitro culture as the MSCs assembled a functional, cartilaginous extracellular matrix (ECM). We also hypothesized that these properties would be maintained even in the presence of the pro-inflammatory cytokine interleukin-1 (IL-1), which is found at high levels in injured or diseased joints. MSC-seeded 3D woven scaffolds cultured in chondrogenic conditions synthesized a functional ECM rich in collagen and proteoglycan content, reaching an aggregate modulus of ~0.75 MPa within 14 days of culture. However, the presence of pathophysiologically relevant levels of IL-1 limited matrix accumulation and inhibited any increase in mechanical properties over baseline values. On the other hand, the mechanical properties of constructs cultured in chondrogenic conditions for 4 weeks prior to IL-1 exposure were protected from deleterious effects of the cytokine. These findings demonstrate that IL-1 significantly inhibits the chondrogenic development and maturation of MSC-seeded constructs; however, the overall mechanical functionality of the engineered tissue can be preserved through the use of a 3D woven scaffold designed to recreate the mechanical properties of native articular cartilage.
Collapse
Affiliation(s)
- Paul H Ousema
- Departments of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Oosterveer MH, Mataki C, Yamamoto H, Harach T, Moullan N, van Dijk TH, Ayuso E, Bosch F, Postic C, Groen AK, Auwerx J, Schoonjans K. LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J Clin Invest 2012; 122:2817-26. [PMID: 22772466 DOI: 10.1172/jci62368] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/30/2012] [Indexed: 12/19/2022] Open
Abstract
Liver receptor homolog 1 (LRH-1), an established regulator of cholesterol and bile acid homeostasis, has recently emerged as a potential drug target for liver disease. Although LRH-1 activation may protect the liver against diet-induced steatosis and insulin resistance, little is known about how LRH-1 controls hepatic glucose and fatty acid metabolism under physiological conditions. We therefore assessed the role of LRH-1 in hepatic intermediary metabolism. In mice with conditional deletion of Lrh1 in liver, analysis of hepatic glucose fluxes revealed reduced glucokinase (GCK) and glycogen synthase fluxes as compared with those of wild-type littermates. These changes were attributed to direct transcriptional regulation of Gck by LRH-1. Impaired glucokinase-mediated glucose phosphorylation in LRH-1-deficient livers was also associated with reduced glycogen synthesis, glycolysis, and de novo lipogenesis in response to acute and prolonged glucose exposure. Accordingly, hepatic carbohydrate response element-binding protein activity was reduced in these animals. Cumulatively, these data identify LRH-1 as a key regulatory component of the hepatic glucose-sensing system required for proper integration of postprandial glucose and lipid metabolism.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation. Proc Natl Acad Sci U S A 2011; 108:16927-31. [PMID: 21949357 DOI: 10.1073/pnas.1112047108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An essential regulator of gene transcription, nuclear receptor liver receptor homologue 1 (LRH-1) controls cell differentiation in the developing pancreas and maintains cholesterol homeostasis in adults. Recent genome-wide association studies linked mutations in the LRH-1 gene and its up-stream regulatory regions to development of pancreatic cancer. In this work, we show that LRH-1 transcription is activated up to 30-fold in human pancreatic cancer cells compared to normal pancreatic ductal epithelium. This activation correlates with markedly increased LRH-1 protein expression in human pancreatic ductal adenocarcinomas in vivo. Selective blocking of LRH-1 by receptor specific siRNA significantly inhibits pancreatic cancer cell proliferation in vitro. The inhibition is tracked in part to the attenuation of the receptor's transcriptional targets controlling cell growth, proliferation, and differentiation. Previously, LRH-1 was shown to contribute to formation of intestinal tumors. This study demonstrates the critical involvement of LRH-1 in development and progression of pancreatic cancer, suggesting the LRH-1 receptor as a plausible therapeutic target for treatment of pancreatic ductal adenocarcinomas.
Collapse
|
17
|
Almansa R, Anton A, Ramirez P, Martin-Loeches I, Banner D, Pumarola T, Xu L, Blanco J, Ran L, Lopez-Campos G, Martin-Sanchez F, Socias L, Loza A, Andaluz D, Maravi E, Gordón M, Gallegos MC, Fernandez V, León C, Merino P, Marcos MA, Gandía F, Bobillo F, Resino S, Eiros JM, Castro C, Mateo P, Gonzalez-Rivera M, Rello J, de Lejarazu RO, Kelvin DJ, Bermejo-Martin JF. Direct association between pharyngeal viral secretion and host cytokine response in severe pandemic influenza. BMC Infect Dis 2011; 11:232. [PMID: 21880131 PMCID: PMC3175217 DOI: 10.1186/1471-2334-11-232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/31/2011] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Severe disease caused by 2009 pandemic influenza A/H1N1virus is characterized by the presence of hypercytokinemia. The origin of the exacerbated cytokine response is unclear. As observed previously, uncontrolled influenza virus replication could strongly influence cytokine production. The objective of the present study was to evaluate the relationship between host cytokine responses and viral levels in pandemic influenza critically ill patients. METHODS Twenty three patients admitted to the ICU with primary viral pneumonia were included in this study. A quantitative PCR based method targeting the M1 influenza gene was developed to quantify pharyngeal viral load. In addition, by using a multiplex based assay, we systematically evaluated host cytokine responses to the viral infection at admission to the ICU. Correlation studies between cytokine levels and viral load were done by calculating the Spearman correlation coefficient. RESULTS Fifteen patients needed of intubation and ventilation, while eight did not need of mechanical ventilation during ICU hospitalization. Viral load in pharyngeal swabs was 300 fold higher in the group of patients with the worst respiratory condition at admission to the ICU. Pharyngeal viral load directly correlated with plasma levels of the pro-inflammatory cytokines IL-6, IL-12p70, IFN-γ, the chemotactic factors MIP-1β, GM-CSF, the angiogenic mediator VEGF and also of the immuno-modulatory cytokine IL-1ra (p < 0.05). Correlation studies demonstrated also the existence of a significant positive association between the levels of these mediators, evidencing that they are simultaneously regulated in response to the virus. CONCLUSIONS Severe respiratory disease caused by the 2009 pandemic influenza virus is characterized by the existence of a direct association between viral replication and host cytokine response, revealing a potential pathogenic link with the severe disease caused by other influenza subtypes such as H5N1.
Collapse
Affiliation(s)
- Raquel Almansa
- Infection & Immunity Medical Investigation Unit (IMI), Hospital Clínico Universitario-IECSCYL, Avda Ramón, y Cajal 3, 47005 Valladolid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fernandez-Marcos PJ, Auwerx J, Schoonjans K. Emerging actions of the nuclear receptor LRH-1 in the gut. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:947-55. [PMID: 21194563 PMCID: PMC3617401 DOI: 10.1016/j.bbadis.2010.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
Liver receptor homolog-1 (NR5A2) is a nuclear receptor originally identified in the liver and mostly known for its regulatory role in cholesterol and bile acid homeostasis. More recently, liver receptor homolog-1 has emerged as a key regulator of intestinal function, coordinating unanticipated actions, such as cell renewal and local immune function with important implications to common intestinal diseases, including colorectal cancer and inflammatory bowel disease. Unlike most of the other nuclear receptors, liver receptor homolog-1 acts as a constitutively active transcription factor to drive the transcription of its target genes. Liver receptor homolog-1 activity however is to a major extent regulated by different corepressors and posttranslational modifications, which may account for its tissue-specific functions. This review will provide an update on the molecular aspects of liver receptor homolog-1 action and focus on some emerging aspects of its function in normal and diseased gut. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Pablo J Fernandez-Marcos
- Laboratory of Integrative and Systems Physiology, EPFL SV IBI1 NCEM1, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
Venteclef N, Jakobsson T, Steffensen KR, Treuter E. Metabolic nuclear receptor signaling and the inflammatory acute phase response. Trends Endocrinol Metab 2011; 22:333-43. [PMID: 21646028 DOI: 10.1016/j.tem.2011.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/28/2011] [Accepted: 04/11/2011] [Indexed: 11/29/2022]
Abstract
The acute phase response (APR) classically refers to the rapid reprogramming of gene expression and metabolism in response to inflammatory cytokine signaling. As components of the innate immune system, hepatocyte-derived acute phase proteins (APPs) play a central role in restoring tissue homeostasis. Recently, an intriguing 'metaflammatory' facet of the APR became evident with chronically elevated APP levels being connected to metabolic syndrome disorders. The causality of these connections is unclear but could relate to adverse metabolic and inflammatory disturbances, particularly those affecting lipoprotein properties, cholesterol metabolism and atherogenesis. Here we review these aspects with an emphasis on the emerging importance of lipid-sensing nuclear receptors (LXRs, LRH-1, PPARs), in conjunction with anti-inflammatory transrepression pathways, as physiological and pharmacological relevant modulators of the APR.
Collapse
Affiliation(s)
- Nicolas Venteclef
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14183 Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Out C, Hageman J, Bloks VW, Gerrits H, Sollewijn Gelpke MD, Bos T, Havinga R, Smit MJ, Kuipers F, Groen AK. Liver receptor homolog-1 is critical for adequate up-regulation of Cyp7a1 gene transcription and bile salt synthesis during bile salt sequestration. Hepatology 2011; 53:2075-85. [PMID: 21391220 DOI: 10.1002/hep.24286] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion in mice. The reason for this apparent paradox has remained elusive. We describe a novel conditional whole-body Lrh-1 knockdown (LRH-1-KD) mouse model to evaluate the dependency of bile salt synthesis and composition on LRH-1. Surprisingly, Cyp7a1 expression was increased rather than decreased under chow-fed conditions in LRH-1-KD mice. This coincided with a significant reduction in expression of intestinal Fgf15, a suppressor of Cyp7a1 expression, and a 58% increase in bile salt synthesis. However, when fecal bile salt loss was stimulated by feeding the bile salt sequestrant colesevelam, Cyp7a1 expression was up-regulated in wildtype mice but not in LRH-1-KD mice (+593% in wildtype versus +9% in LRH-1-KD). This translated into an increase in bile salt synthesis of +272% in wildtype versus +21% in LRH-1-KD mice. CONCLUSION Our data provide mechanistic insight into a missing link in the maintenance of bile salt homeostasis during enhanced fecal loss and support the view that LRH-1 controls Cyp7a1 expression from two distinct sites, i.e., liver and ileum, in the enterohepatic circulation.
Collapse
Affiliation(s)
- Carolien Out
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Baquié M, St-Onge L, Kerr-Conte J, Cobo-Vuilleumier N, Lorenzo PI, Jimenez Moreno CM, Cederroth CR, Nef S, Borot S, Bosco D, Wang H, Marchetti P, Pattou F, Wollheim CB, Gauthier BR. The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects {beta}-cells against stress-induced apoptosis. Hum Mol Genet 2011; 20:2823-33. [PMID: 21536586 DOI: 10.1093/hmg/ddr193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Liver receptor homolog (LRH-1) is an orphan nuclear receptor (NR5A2) that regulates cholesterol homeostasis and cell plasticity in endodermal-derived tissues. Estrogen increases LRH-1 expression conveying cell protection and proliferation. Independently, estrogen also protects isolated human islets against cytokine-induced apoptosis. Herein, we demonstrate that LRH-1 is expressed in islets, including β-cells, and that transcript levels are modulated by 17β-estradiol through the estrogen receptor (ER)α but not ERβ signaling pathway. Repression of LRH-1 by siRNA abrogated the protective effect conveyed by estrogen on rat islets against cytokines. Adenoviral-mediated overexpression of LRH-1 in human islets did not alter proliferation but conferred protection against cytokines and streptozotocin-induced apoptosis. Expression levels of the cell cycle genes cyclin D1 and cyclin E1 as well as the antiapoptotic gene bcl-xl were unaltered in LRH-1 expressing islets. In contrast, the steroidogenic enzymes CYP11A1 and CYP11B1 involved in glucocorticoid biosynthesis were both stimulated in transduced islets. In parallel, graded overexpression of LRH-1 dose-dependently impaired glucose-induced insulin secretion. Our results demonstrate the crucial role of the estrogen target gene nr5a2 in protecting human islets against-stressed-induced apoptosis. We postulate that this effect is mediated through increased glucocorticoid production that blunts the pro-inflammatory response of islets.
Collapse
Affiliation(s)
- Mathurin Baquié
- Department of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bermejo-Martin JF, Martin-Loeches I, Rello J, Antón A, Almansa R, Xu L, Lopez-Campos G, Pumarola T, Ran L, Ramirez P, Banner D, Ng DC, Socias L, Loza A, Andaluz D, Maravi E, Gómez-Sánchez MJ, Gordón M, Gallegos MC, Fernandez V, Aldunate S, León C, Merino P, Blanco J, Martin-Sanchez F, Rico L, Varillas D, Iglesias V, Marcos MÁ, Gandía F, Bobillo F, Nogueira B, Rojo S, Resino S, Castro C, Ortiz de Lejarazu R, Kelvin D. Host adaptive immunity deficiency in severe pandemic influenza. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R167. [PMID: 20840779 PMCID: PMC3219262 DOI: 10.1186/cc9259] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/12/2010] [Accepted: 09/14/2010] [Indexed: 12/13/2022]
Abstract
Introduction Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. Methods We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analysis 8.5 (IPA) (Ingenuity Systems, Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups. Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using BRB-Array Tools v.3.8.1. Results The majority of patients were characterized by the presence of comorbidities and the absence of immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease onset and defined an early period of innate immune response and a late period of adaptive immune response to the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe patients died. During the late phase, the most severe patient group had impaired expression of a number of genes participating in adaptive immune responses when compared to less severe patients. These genes were involved in antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in serum. Conclusions Our findings suggest an impaired development of adaptive immunity in the most severe cases of pandemic influenza, leading to an unremitting cycle of viral replication and innate cytokine-chemokine release. Interruption of this deleterious cycle may improve disease outcome.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Infection & Immunity Unit, Hospital Clínico Universitario-IECSCYL, Avda, Ramón y Cajal 3, 47005 Valladolid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Venteclef N, Jakobsson T, Ehrlund A, Damdimopoulos A, Mikkonen L, Ellis E, Nilsson LM, Parini P, Jänne OA, Gustafsson JA, Steffensen KR, Treuter E. GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes Dev 2010; 24:381-95. [PMID: 20159957 DOI: 10.1101/gad.545110] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The orphan receptor LRH-1 and the oxysterol receptors LXRalpha and LXRbeta are established transcriptional regulators of lipid metabolism that appear to control inflammatory processes. Here, we investigate the anti-inflammatory actions of these nuclear receptors in the hepatic acute phase response (APR). We report that selective synthetic agonists induce SUMOylation-dependent recruitment of either LRH-1 or LXR to hepatic APR promoters and prevent the clearance of the N-CoR corepressor complex upon cytokine stimulation. Investigations of the APR in vivo, using LXR knockout mice, indicate that the anti-inflammatory actions of LXR agonists are triggered selectively by the LXRbeta subtype. We further find that hepatic APR responses in small ubiquitin-like modifier-1 (SUMO-1) knockout mice are increased, which is due in part to diminished LRH-1 action at APR promoters. Finally, we provide evidence that the metabolically important coregulator GPS2 functions as a hitherto unrecognized transrepression mediator of interactions between SUMOylated nuclear receptors and the N-CoR corepressor complex. Our study extends the knowledge of anti-inflammatory mechanisms and pathways directed by metabolic nuclear receptor-corepressor networks to the control of the hepatic APR, and implies alternative pharmacological strategies for the treatment of human metabolic diseases associated with inflammation.
Collapse
Affiliation(s)
- Nicolas Venteclef
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14157 Huddinge/Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mancone C, Conti B, Amicone L, Bordoni V, Cicchini C, Calvo L, Perdomo AB, Fimia GM, Tripodi M, Alonzi T. Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes. J Hepatol 2010; 52:234-43. [PMID: 20031246 DOI: 10.1016/j.jhep.2009.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/15/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Hepatocytes are considered an exception of the paradigmatic inverse correlation between cell proliferation and terminal differentiation. In fact, hepatic vital functions are guaranteed by proliferating parenchymal cells during liver regeneration. However, a fine molecular characterization of the relationship between proliferation and differentiation in hepatocytes has been hampered by the lack of reliable in vivo or in vitro models. METHODS The hepatocyte terminal differentiation program was characterized in the immortalized, untransformed and differentiated hepatocytic cell line MMH, using several techniques. Particularly, two-dimensional difference gel electrophoresis combined to tandem mass spectrometry proteomic approach was used. Cell cycle and cell adhesion properties of MMH have been altered using either myc-overexpression and MEK1/2 inhibition or a constitutive active beta-catenin mutant, respectively. RESULTS The hepatocyte terminal differentiation program is stimulated by the exit from the cell cycle induced by cell-cell contact. Comparative proteomic analysis of proliferating versus quiescent hepatocytes validated the importance of contact inhibition, identifying 68 differently expressed gene products, representing 49 unique proteins. Notably, enzymes involved in important liver functions such as detoxification processes, lipid metabolism, iron and vitamin A storage and secretion, anti-inflammatory response and exocytosis were found significantly up-regulated in quiescent hepatocytes. Finally, we found that: (i) cell cycle arrest induced by MEK1/2 inhibition is not sufficient to induce hepatic product expression; (ii) constitutive activation of beta-catenin counteracts the contact inhibition-induced terminal differentiation. CONCLUSION The hepatocyte terminal differentiation program requires a quiescent state maintained by cell-cell contact through the E-cadherin/beta-catenin pathway, rather than the inhibition of proliferation.
Collapse
Affiliation(s)
- Carmine Mancone
- Laboratory of Gene Expression, National Institute for Infectious Diseases L. Spallanzani IRCCS, Via Portuense 292, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mulder J, Karpen SJ, Tietge UJF, Kuipers F. Nuclear receptors: mediators and modifiers of inflammation-induced cholestasis. FRONT BIOSCI-LANDMRK 2009; 14:2599-630. [PMID: 19273222 PMCID: PMC4085779 DOI: 10.2741/3400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive responses to inflammation and possess anti-inflammatory characteristics. The latter two functions may be exploited in the search for new treatments for IIC as well as for cholestasis in general. Current knowledge of the pathogenesis of IIC and the dual role NRs in this process are reviewed. Special interest is given to the use of NRs as potential targets for intervention.
Collapse
Affiliation(s)
- Jaap Mulder
- Department of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
26
|
Venteclef N, Haroniti A, Tousaint JJ, Talianidis I, Delerive P. Regulation of anti-atherogenic apolipoprotein M gene expression by the orphan nuclear receptor LRH-1. J Biol Chem 2007; 283:3694-701. [PMID: 17977826 DOI: 10.1074/jbc.m706382200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The orphan nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) has been reported to play a crucial role in early development, in the control of the hepatic inflammatory response, in intestinal cell crypt renewal as well as in bile acid biosynthesis and reverse cholesterol transport (RCT). Here, we report the identification of apolipoprotein M (APOM) as a novel target gene for LRH-1. Using gene-silencing experiments, adenovirus-mediated overexpression, transient transfection, and chromatin immunoprecipitation (ChIP) assays, it is shown that LRH-1 directly regulates human and mouse APOM transcription by binding to an LRH-1 response element located in the proximal APOM promoter region. In addition, we demonstrate that bile acids suppress APOM expression in a SHP-dependent manner in vitro and in vivo by inhibiting LRH-1 transcriptional activity on the APOM promoter as demonstrated by in vivo ChIP assay. Taken together, our results demonstrate that LRH-1 is a novel regulator of APOM transcription and further extend the role of this orphan nuclear receptor in lipoprotein metabolism and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nicolas Venteclef
- Cardiovascular and Urogenital Center of Excellence for Drug Discovery, GlaxoSmithKline, 25 Avenue du Quebec, 91951 Les Ulis, France
| | | | | | | | | |
Collapse
|
27
|
Coste A, Dubuquoy L, Barnouin R, Annicotte JS, Magnier B, Notti M, Corazza N, Antal MC, Metzger D, Desreumaux P, Brunner T, Auwerx J, Schoonjans K. LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci U S A 2007; 104:13098-103. [PMID: 17670946 PMCID: PMC1941823 DOI: 10.1073/pnas.0702440104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in intestinal lipid homeostasis and cell proliferation. Here we show that haploinsufficiency of LRH-1 predisposes mice to the development of intestinal inflammation. Besides the increased inflammatory response, LRH-1 heterozygous mice exposed to 2,4,6-trinitrobenzene sulfonic acid show lower local corticosterone production as a result of an impaired intestinal expression of the enzymes CYP11A1 and CYP11B1, which control the local synthesis of corticosterone in the intestine. Local glucocorticoid production is strictly enterocyte-dependent because it is robustly reduced in epithelium-specific LRH-1-deficient mice. Consistent with these findings, colon biopsies of patients with Crohn's disease and ulcerative colitis show reduced expression of LRH-1 and genes involved in the production of glucocorticoids. Hence, LRH-1 regulates intestinal immunity in response to immunological stress by triggering local glucocorticoid production. These findings underscore the importance of LRH-1 in the control of intestinal inflammation and the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Agnes Coste
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
| | - Laurent Dubuquoy
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
- INSERM U795 Université de Lille 2 et Service des Maladies de l'Appareil Digestif et de la Nutrition, Hôpital Huriez, Centre Hospitalier Régional Universitaire Lille, 59037 Lille, France
| | - Romain Barnouin
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
| | - Jean-Sebastien Annicotte
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
| | - Benjamin Magnier
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
| | - Mario Notti
- Division of Immunopathology, Institute of Pathology, University of Bern, 3010 Bern, Switzerland; and
| | - Nadia Corazza
- Division of Immunopathology, Institute of Pathology, University of Bern, 3010 Bern, Switzerland; and
| | | | - Daniel Metzger
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
| | - Pierre Desreumaux
- INSERM U795 Université de Lille 2 et Service des Maladies de l'Appareil Digestif et de la Nutrition, Hôpital Huriez, Centre Hospitalier Régional Universitaire Lille, 59037 Lille, France
| | - Thomas Brunner
- Division of Immunopathology, Institute of Pathology, University of Bern, 3010 Bern, Switzerland; and
| | - Johan Auwerx
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
- Institut Clinique de la Souris, Génopole de Strasbourg, 67404 Illkirch, France
| | - Kristina Schoonjans
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Louis Pasteur, 67404 Illkirch, France
- To whom correspondence should be addressed at:
Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, Parc d'Innovation, 67404 Illkirch, France. E-mail:
| |
Collapse
|
28
|
Affiliation(s)
- Fiona J Warner
- Centenary Institute, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|