1
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Liu CH, Stevens SR, Teliska LH, Stankewich M, Mohler PJ, Hund TJ, Rasband MN. Nodal β spectrins are required to maintain Na + channel clustering and axon integrity. eLife 2020; 9:52378. [PMID: 32052742 PMCID: PMC7018506 DOI: 10.7554/elife.52378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Clustered ion channels at nodes of Ranvier are critical for fast action potential propagation in myelinated axons. Axon-glia interactions converge on ankyrin and spectrin cytoskeletal proteins to cluster nodal Na+ channels during development. However, how nodal ion channel clusters are maintained is poorly understood. Here, we generated mice lacking nodal spectrins in peripheral sensory neurons to uncouple their nodal functions from their axon initial segment functions. We demonstrate a hierarchy of nodal spectrins, where β4 spectrin is the primary spectrin and β1 spectrin can substitute; each is sufficient for proper node organization. Remarkably, mice lacking nodal β spectrins have normal nodal Na+ channel clustering during development, but progressively lose Na+ channels with increasing age. Loss of nodal spectrins is accompanied by an axon injury response and axon deformation. Thus, nodal spectrins are required to maintain nodal Na+ channel clusters and the structural integrity of axons.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
| | - Thomas J Hund
- Biomedical Engineering, The Ohio State University, Columbus, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
3
|
Goodman SR, Johnson D, Youngentob SL, Kakhniashvili D. The Spectrinome: The Interactome of a Scaffold Protein Creating Nuclear and Cytoplasmic Connectivity and Function. Exp Biol Med (Maywood) 2019; 244:1273-1302. [PMID: 31483159 DOI: 10.1177/1535370219867269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We provide a review of Spectrin isoform function in the cytoplasm, the nucleus, the cell surface, and in intracellular signaling. We then discuss the importance of Spectrin’s E2/E3 chimeric ubiquitin conjugating and ligating activity in maintaining cellular homeostasis. Finally we present spectrin isoform subunit specific human diseases. We have created the Spectrinome, from the Human Proteome, Human Reactome and Human Atlas data and demonstrated how it can be a useful tool in visualizing and understanding spectrins myriad of cellular functions.Impact statementSpectrin was for the first 12 years after its discovery thought to be found only in erythrocytes. In 1981, Goodman and colleagues1found that spectrin-like molecules were ubiquitously found in non-erythroid cells leading to a great multitude of publications over the next thirty eight years. The discovery of multiple spectrin isoforms found associated with every cellular compartment, and representing 2-3% of cellular protein, has brought us to today’s understanding that spectrin is a scaffolding protein, with its own E2/E3 chimeric ubiquitin conjugating ligating activity that is involved in virtually every cellular function. We cover the history, localized functions of spectrin isoforms, human diseases caused by mutations, and provide the spectrinome: a useful tool for understanding the myriad of functions for one of the most important proteins in all eukaryotic cells.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Daniel Johnson
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Steven L Youngentob
- Department of Anatomy and Neurobiology, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - David Kakhniashvili
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
4
|
Neurodevelopmental mutation of giant ankyrin-G disrupts a core mechanism for axon initial segment assembly. Proc Natl Acad Sci U S A 2019; 116:19717-19726. [PMID: 31451636 PMCID: PMC6765234 DOI: 10.1073/pnas.1909989116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Axon initial segments of vertebrate neurons integrate thousands of dendritic inputs and generate a single outgoing action potential. Giant ankyrin-G associates with most of the molecular components of axon initial segments and is required for their assembly. This study identified 3 human mutations of giant ankyrin-G resulting in impaired neurodevelopment in compound heterozygotes. These mutations prevent transition of giant ankyrin-G from a closed to an open conformation, which normally is regulated by phosphorylation of giant ankyrin-G during maturation of axon initial segments. Giant ankyrin-G thus functions in a signaling pathway that may contribute to activity-dependent plasticity of the axon initial segment as well as provide a therapeutic target for treatment of patients bearing giant ankyrin-G mutations. Giant ankyrin-G (gAnkG) coordinates assembly of axon initial segments (AISs), which are sites of action potential generation located in proximal axons of most vertebrate neurons. Here, we identify a mechanism required for normal neural development in humans that ensures ordered recruitment of gAnkG and β4-spectrin to the AIS. We identified 3 human neurodevelopmental missense mutations located in the neurospecific domain of gAnkG that prevent recruitment of β4-spectrin, resulting in a lower density and more elongated pattern for gAnkG and its partners than in the mature AIS. We found that these mutations inhibit transition of gAnkG from a closed configuration with close apposition of N- and C-terminal domains to an extended state that is required for binding and recruitment of β4-spectrin, and normally occurs early in development of the AIS. We further found that the neurospecific domain is highly phosphorylated in mouse brain, and that phosphorylation at 2 sites (S1982 and S2619) is required for the conformational change and for recruitment of β4-spectrin. Together, these findings resolve a discrete intermediate stage in formation of the AIS that is regulated through phosphorylation of the neurospecific domain of gAnkG.
Collapse
|
5
|
Lorenzo DN, Badea A, Zhou R, Mohler PJ, Zhuang X, Bennett V. βII-spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport. Proc Natl Acad Sci U S A 2019; 116:15686-15695. [PMID: 31209033 PMCID: PMC6681763 DOI: 10.1073/pnas.1820649116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
βII-spectrin is the generally expressed member of the β-spectrin family of elongated polypeptides that form micrometer-scale networks associated with plasma membranes. We addressed in vivo functions of βII-spectrin in neurons by knockout of βII-spectrin in mouse neural progenitors. βII-spectrin deficiency caused severe defects in long-range axonal connectivity and axonal degeneration. βII-spectrin-null neurons exhibited reduced axon growth, loss of actin-spectrin-based periodic membrane skeleton, and impaired bidirectional axonal transport of synaptic cargo. We found that βII-spectrin associates with KIF3A, KIF5B, KIF1A, and dynactin, implicating spectrin in the coupling of motors and synaptic cargo. βII-spectrin required phosphoinositide lipid binding to promote axonal transport and restore axon growth. Knockout of ankyrin-B (AnkB), a βII-spectrin partner, primarily impaired retrograde organelle transport, while double knockout of βII-spectrin and AnkB nearly eliminated transport. Thus, βII-spectrin promotes both axon growth and axon stability through establishing the actin-spectrin-based membrane-associated periodic skeleton as well as enabling axonal transport of synaptic cargo.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| | | | - Ruobo Zhou
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Vann Bennett
- Department of Biochemistry, Duke University, Durham, NC 27710
| |
Collapse
|
6
|
Lubbers ER, Murphy NP, Musa H, Huang CYM, Gupta R, Price MV, Han M, Daoud G, Gratz D, El Refaey M, Xu X, Hoeflinger NK, Friel EL, Lancione P, Wallace MJ, Cavus O, Simmons SL, Williams JL, Skaf M, Koenig SN, Janssen PML, Rasband MN, Hund TJ, Mohler PJ. Defining new mechanistic roles for αII spectrin in cardiac function. J Biol Chem 2019; 294:9576-9591. [PMID: 31064843 PMCID: PMC6579463 DOI: 10.1074/jbc.ra119.007714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Indexed: 01/04/2023] Open
Abstract
Spectrins are cytoskeletal proteins essential for membrane biogenesis and regulation and serve critical roles in protein targeting and cellular signaling. αII spectrin (SPTAN1) is one of two α spectrin genes and αII spectrin dysfunction is linked to alterations in axon initial segment formation, cortical lamination, and neuronal excitability. Furthermore, human αII spectrin loss-of-function variants cause neurological disease. As global αII spectrin knockout mice are embryonic lethal, the in vivo roles of αII spectrin in adult heart are unknown and untested. Here, based on pronounced alterations in αII spectrin regulation in human heart failure we tested the in vivo roles of αII spectrin in the vertebrate heart. We created a mouse model of cardiomyocyte-selective αII spectrin-deficiency (cKO) and used this model to define the roles of αII spectrin in cardiac function. αII spectrin cKO mice displayed significant structural, cellular, and electrical phenotypes that resulted in accelerated structural remodeling, fibrosis, arrhythmia, and mortality in response to stress. At the molecular level, we demonstrate that αII spectrin plays a nodal role for global cardiac spectrin regulation, as αII spectrin cKO hearts exhibited remodeling of αI spectrin and altered β-spectrin expression and localization. At the cellular level, αII spectrin deficiency resulted in altered expression, targeting, and regulation of cardiac ion channels NaV1.5 and KV4.3. In summary, our findings define critical and unexpected roles for the multifunctional αII spectrin protein in the heart. Furthermore, our work provides a new in vivo animal model to study the roles of αII spectrin in the cardiomyocyte.
Collapse
Affiliation(s)
- Ellen R Lubbers
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- Medical Scientist Training Program
- the Departments of Physiology and Cell Biology and
| | - Nathaniel P Murphy
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- Medical Scientist Training Program
- the Departments of Physiology and Cell Biology and
| | - Hassan Musa
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Claire Yu-Mei Huang
- the Department of Neuroscience and Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030, and
| | - Rohan Gupta
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Morgan V Price
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Mei Han
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Georges Daoud
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Daniel Gratz
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- the Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 432310
| | - Mona El Refaey
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Xianyao Xu
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Nicole K Hoeflinger
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Emma L Friel
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Peter Lancione
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Michael J Wallace
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Omer Cavus
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Samantha L Simmons
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Jordan L Williams
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Michel Skaf
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Sara N Koenig
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Paul M L Janssen
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- the Departments of Physiology and Cell Biology and
- Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio 432310
| | - Matthew N Rasband
- the Department of Neuroscience and Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030, and
| | - Thomas J Hund
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- the Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 432310
- Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio 432310
| | - Peter J Mohler
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia,
- the Departments of Physiology and Cell Biology and
- Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio 432310
| |
Collapse
|
7
|
Liu CH, Rasband MN. Axonal Spectrins: Nanoscale Organization, Functional Domains and Spectrinopathies. Front Cell Neurosci 2019; 13:234. [PMID: 31191255 PMCID: PMC6546920 DOI: 10.3389/fncel.2019.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Spectrin cytoskeletons are found in all metazoan cells, and their physical interactions between actin and ankyrins establish a meshwork that provides cellular structural integrity. With advanced super-resolution microscopy, the intricate spatial organization and associated functional properties of these cytoskeletons can now be analyzed with unprecedented clarity. Long neuronal processes like peripheral sensory and motor axons may be subject to intense mechanical forces including bending, stretching, and torsion. The spectrin-based cytoskeleton is essential to protect axons against these mechanical stresses. Additionally, spectrins are critical for the assembly and maintenance of axonal excitable domains including the axon initial segment and the nodes of Ranvier (NoR). These sites facilitate rapid and efficient action potential initiation and propagation in the nervous system. Recent studies revealed that pathogenic spectrin variants and diseases that protealyze and breakdown spectrins are associated with congenital neurological disorders and nervous system injury. Here, we review recent studies of spectrins in the nervous system and focus on their functions in axonal health and disease.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew Neil Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Lazarov E, Dannemeyer M, Feulner B, Enderlein J, Gutnick MJ, Wolf F, Neef A. An axon initial segment is required for temporal precision in action potential encoding by neuronal populations. SCIENCE ADVANCES 2018; 4:eaau8621. [PMID: 30498783 PMCID: PMC6261658 DOI: 10.1126/sciadv.aau8621] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Central neurons initiate action potentials (APs) in the axon initial segment (AIS), a compartment characterized by a high concentration of voltage-dependent ion channels and specialized cytoskeletal anchoring proteins arranged in a regular nanoscale pattern. Although the AIS was a key evolutionary innovation in neurons, the functional benefits it confers are not clear. Using a mutation of the AIS cytoskeletal protein βIV-spectrin, we here establish an in vitro model of neurons with a perturbed AIS architecture that retains nanoscale order but loses the ability to maintain a high NaV density. Combining experiments and simulations, we show that a high NaV density in the AIS is not required for axonal AP initiation; it is, however, crucial for a high bandwidth of information encoding and AP timing precision. Our results provide the first experimental demonstration of axonal AP initiation without high axonal channel density and suggest that increasing the bandwidth of the neuronal code and, hence, the computational efficiency of network function, was a major benefit of the evolution of the AIS.
Collapse
Affiliation(s)
- Elinor Lazarov
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- University Medical Center Göttingen, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Melanie Dannemeyer
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- III. Institute of Physics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Barbara Feulner
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Hermann Rein St. 3, 37075 Göttingen, Germany
| | - Jörg Enderlein
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- III. Institute of Physics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Michael J. Gutnick
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Hermann Rein St. 3, 37075 Göttingen, Germany
- Institute for Nonlinear Dynamics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A, 37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Hermann Rein St. 3, 37075 Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Hermann Rein St. 3, 37075 Göttingen, Germany
- Institute for Nonlinear Dynamics, Georg-August-University Göttingen, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A, 37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Hermann Rein St. 3, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Huang CYM, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 2018; 1420:46-61. [PMID: 29749636 DOI: 10.1111/nyas.13718] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is located at the proximal axon and is the site of action potential initiation. This reflects the high density of ion channels found at the AIS. Adaptive changes to the location and length of the AIS can fine-tune the excitability of neurons and modulate plasticity in response to activity. The AIS plays an important role in maintaining neuronal polarity by regulating the trafficking and distribution of proteins that function in somatodendritic or axonal compartments of the neuron. In this review, we provide an overview of the AIS cytoarchitecture, mechanism of assembly, and recent studies revealing mechanisms of differential transport at the AIS that maintain axon and dendrite identities. We further discuss how genetic mutations in AIS components (i.e., ankyrins, ion channels, and spectrins) and injuries may cause neurological disorders.
Collapse
Affiliation(s)
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Jacko M, Weyn-Vanhentenryck SM, Smerdon JW, Yan R, Feng H, Williams DJ, Pai J, Xu K, Wichterle H, Zhang C. Rbfox Splicing Factors Promote Neuronal Maturation and Axon Initial Segment Assembly. Neuron 2018; 97:853-868.e6. [PMID: 29398366 PMCID: PMC5823762 DOI: 10.1016/j.neuron.2018.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Neuronal maturation requires dramatic morphological and functional changes, but the molecular mechanisms governing this process are not well understood. Here, we studied the role of Rbfox1, Rbfox2, and Rbfox3 proteins, a family of tissue-specific splicing regulators mutated in multiple neurodevelopmental disorders. We generated Rbfox triple knockout (tKO) ventral spinal neurons to define a comprehensive network of alternative exons under Rbfox regulation and to investigate their functional importance in the developing neurons. Rbfox tKO neurons exhibit defects in alternative splicing of many cytoskeletal, membrane, and synaptic proteins, and display immature electrophysiological activity. The axon initial segment (AIS), a subcellular structure important for action potential initiation, is diminished upon Rbfox depletion. We identified an Rbfox-regulated splicing switch in ankyrin G, the AIS "interaction hub" protein, that regulates ankyrin G-beta spectrin affinity and AIS assembly. Our data show that the Rbfox-regulated splicing program plays a crucial role in structural and functional maturation of postmitotic neurons.
Collapse
Affiliation(s)
- Martin Jacko
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Sebastien M Weyn-Vanhentenryck
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - John W Smerdon
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Huijuan Feng
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Damian J Williams
- Columbia University Stem Cell Core Facility, Department of Rehabilitation and Regenerative Medicine, New York, NY 10032, USA
| | - Joy Pai
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA.
| | - Chaolin Zhang
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Hund TJ, Unudurthi SD, Greer-Short A, Patel N, Nassal D. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease. Expert Rev Cardiovasc Ther 2018; 16:59-65. [PMID: 29257730 PMCID: PMC6064643 DOI: 10.1080/14779072.2018.1418664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.
Collapse
Affiliation(s)
- Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
| | - Sathya D. Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| |
Collapse
|
12
|
αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function. J Neurosci 2017; 37:11311-11322. [PMID: 29038240 DOI: 10.1523/jneurosci.2112-17.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 10/04/2017] [Indexed: 01/02/2023] Open
Abstract
Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system.SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology.
Collapse
|
13
|
Nelson AD, Jenkins PM. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier. Front Cell Neurosci 2017; 11:136. [PMID: 28536506 PMCID: PMC5422562 DOI: 10.3389/fncel.2017.00136] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS) and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of Ranvier, and how abnormalities in these processes may contribute to disease.
Collapse
Affiliation(s)
- Andrew D Nelson
- Department of Pharmacology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical SchoolAnn Arbor, MI, USA.,Department of Psychiatry, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
14
|
Yoshimura T, Stevens SR, Leterrier C, Stankewich MC, Rasband MN. Developmental Changes in Expression of βIV Spectrin Splice Variants at Axon Initial Segments and Nodes of Ranvier. Front Cell Neurosci 2017; 10:304. [PMID: 28123356 PMCID: PMC5226651 DOI: 10.3389/fncel.2016.00304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
Axon initial segments (AIS) and nodes of Ranvier are highly specialized axonal
membrane domains enriched in Na+ channels. These Na+ channel
clusters play essential roles in action potential initiation and propagation. AIS and
nodal Na+ channel complexes are linked to the actin cytoskeleton through
βIV spectrin. However, neuronal βIV spectrin exists as two main
splice variants: a longer βIVΣ1 variant with canonical N-terminal
actin and αII spectrin-binding domains, and a shorter βIVΣ6
variant lacking these domains. Here, we show that the predominant neuronal
βIV spectrin splice variant detected in the developing brain switches from
βIVΣ1 to βIVΣ6, and that this switch is correlated
with expression changes in ankyrinG (ankG) splice variants. We show that
βIVΣ1 is the predominant splice variant at nascent and developing AIS
and nodes of Ranvier, but with increasing age and in adults βIVΣ6
becomes the main splice variant. Remarkably, super-resolution microscopy revealed
that the spacing of spectrin tetramers between actin rings remains unchanged, but
that shorter spectrin tetramers may also be present. Thus, during development
βIV spectrin may undergo a switch in the splice variants found at AIS and
nodes of Ranvier.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Department of Neuroscience, Baylor College of MedicineHouston, TX, USA; Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan
| | - Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Cristophe Leterrier
- CNRS, Center for Research in Neurobiology and Neurophysiology of Marseille (CRN2M) UMR 7286, Aix Marseille Université Marseille, France
| | | | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
15
|
Martin PM, Cifuentes-Diaz C, Devaux J, Garcia M, Bureau J, Thomasseau S, Klingler E, Girault JA, Goutebroze L. Schwannomin-interacting Protein 1 Isoform IQCJ-SCHIP1 Is a Multipartner Ankyrin- and Spectrin-binding Protein Involved in the Organization of Nodes of Ranvier. J Biol Chem 2016; 292:2441-2456. [PMID: 27979964 DOI: 10.1074/jbc.m116.758029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
The nodes of Ranvier are essential regions for action potential conduction in myelinated fibers. They are enriched in multimolecular complexes composed of voltage-gated Nav and Kv7 channels associated with cell adhesion molecules. Cytoskeletal proteins ankyrin-G (AnkG) and βIV-spectrin control the organization of these complexes and provide mechanical support to the plasma membrane. IQCJ-SCHIP1 is a cytoplasmic protein present in axon initial segments and nodes of Ranvier. It interacts with AnkG and is absent from nodes and axon initial segments of βIV-spectrin and AnkG mutant mice. Here, we show that IQCJ-SCHIP1 also interacts with βIV-spectrin and Kv7.2/3 channels and self-associates, suggesting a scaffolding role in organizing nodal proteins. IQCJ-SCHIP1 binding requires a βIV-spectrin-specific domain and Kv7 channel 1-5-10 calmodulin-binding motifs. We then investigate the role of IQCJ-SCHIP1 in vivo by studying peripheral myelinated fibers in Schip1 knock-out mutant mice. The major nodal proteins are normally enriched at nodes in these mice, indicating that IQCJ-SCHIP1 is not required for their nodal accumulation. However, morphometric and ultrastructural analyses show an altered shape of nodes similar to that observed in βIV-spectrin mutant mice, revealing that IQCJ-SCHIP1 contributes to nodal membrane-associated cytoskeleton organization, likely through its interactions with the AnkG/βIV-spectrin network. Our work reveals that IQCJ-SCHIP1 interacts with several major nodal proteins, and we suggest that it contributes to a higher organizational level of the AnkG/βIV-spectrin network critical for node integrity.
Collapse
Affiliation(s)
- Pierre-Marie Martin
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Carmen Cifuentes-Diaz
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jérôme Devaux
- the Aix Marseille University, CNRS, CRN2M, 13344 Marseille, France
| | - Marta Garcia
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jocelyne Bureau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Sylvie Thomasseau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Esther Klingler
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jean-Antoine Girault
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Laurence Goutebroze
- the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris, .,the Institut du Fer à Moulin, 75005 Paris, and
| |
Collapse
|
16
|
Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity. Neural Plast 2016; 2016:6808293. [PMID: 27493806 PMCID: PMC4967436 DOI: 10.1155/2016/6808293] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/22/2016] [Indexed: 12/28/2022] Open
Abstract
The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability.
Collapse
|
17
|
|
18
|
Leterrier C, Potier J, Caillol G, Debarnot C, Rueda Boroni F, Dargent B. Nanoscale Architecture of the Axon Initial Segment Reveals an Organized and Robust Scaffold. Cell Rep 2015; 13:2781-93. [DOI: 10.1016/j.celrep.2015.11.051] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
|
19
|
An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues. CURRENT TOPICS IN MEMBRANES 2015; 77:143-84. [PMID: 26781832 DOI: 10.1016/bs.ctm.2015.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that early axon initial segments and epithelial lateral membranes initially were based on spectrin-ankyrin-cell adhesion molecule assemblies and subsequently served as "incubators," where ion transporters independently acquired ankyrin-binding activity through positive selection.
Collapse
|
20
|
Decreased temporal precision of neuronal signaling as a candidate mechanism of auditory processing disorder. Hear Res 2015; 330:213-20. [PMID: 26119177 DOI: 10.1016/j.heares.2015.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/09/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022]
Abstract
The sense of hearing is the fastest of our senses and provides the first all-or-none action potential in the auditory nerve in less than four milliseconds. Short stimulus evoked latencies and their minimal variability are hallmarks of auditory processing from spiral ganglia to cortex. Here, we review how even small changes in first spike latencies (FSL) and their variability (jitter) impact auditory temporal processing. We discuss a number of mouse models with degraded FSL/jitter whose mutations occur exclusively in the central auditory system and therefore might serve as candidates to investigate the cellular mechanisms underlying auditory processing disorders (APD).
Collapse
|
21
|
No Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity. Semin Cell Dev Biol 2014; 27:44-51. [DOI: 10.1016/j.semcdb.2013.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
|
22
|
Hund TJ, Snyder JS, Wu X, Glynn P, Koval OM, Onal B, Leymaster ND, Unudurthi SD, Curran J, Camardo C, Wright PJ, Binkley PF, Anderson ME, Mohler PJ. β(IV)-Spectrin regulates TREK-1 membrane targeting in the heart. Cardiovasc Res 2014; 102:166-75. [PMID: 24445605 DOI: 10.1093/cvr/cvu008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Cardiac function depends on the highly regulated and co-ordinate activity of a large ensemble of potassium channels that control myocyte repolarization. While voltage-gated K(+) channels have been well characterized in the heart, much less is known about regulation and/or targeting of two-pore K(+) channel (K(2P)) family members, despite their potential importance in modulation of heart function. METHODS AND RESULTS Here, we report a novel molecular pathway for membrane targeting of TREK-1, a mechano-sensitive K(2P) channel regulated by environmental and physical factors including membrane stretch, pH, and polyunsaturated fatty acids (e.g. arachidonic acid). We demonstrate that β(IV)-spectrin, an actin-associated protein, is co-localized with TREK-1 at the myocyte intercalated disc, associates with TREK-1 in the heart, and is required for TREK-1 membrane targeting. Mice expressing β(IV)-spectrin lacking TREK-1 binding (qv(4J)) display aberrant TREK-1 membrane localization, decreased TREK-1 activity, delayed action potential repolarization, and arrhythmia without apparent defects in localization/function of other cardiac potassium channel subunits. Finally, we report abnormal β(IV)-spectrin levels in human heart failure. CONCLUSIONS These data provide new insight into membrane targeting of TREK-1 in the heart and establish a broader role for β(IV)-spectrin in organizing functional membrane domains critical for normal heart function.
Collapse
Affiliation(s)
- Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Avenue, 43210 Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sanchez-Mut JV, Aso E, Panayotis N, Lott I, Dierssen M, Rabano A, Urdinguio RG, Fernandez AF, Astudillo A, Martin-Subero JI, Balint B, Fraga MF, Gomez A, Gurnot C, Roux JC, Avila J, Hensch TK, Ferrer I, Esteller M. DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:3018-27. [PMID: 24030951 PMCID: PMC3784285 DOI: 10.1093/brain/awt237] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.
Collapse
Affiliation(s)
- Jose V Sanchez-Mut
- 1 Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
In vivo assembly of the axon initial segment in motor neurons. Brain Struct Funct 2013; 219:1433-50. [PMID: 23728480 PMCID: PMC4072062 DOI: 10.1007/s00429-013-0578-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/10/2013] [Indexed: 11/17/2022]
Abstract
The axon initial segment (AIS) is responsible for both the modulation of action potentials and the maintenance of neuronal polarity. Yet, the molecular mechanisms controlling its assembly are incompletely understood. Our study in single electroporated motor neurons in mouse embryos revealed that AnkyrinG (AnkG), the AIS master organizer, is undetectable in bipolar migrating motor neurons, but is already expressed at the beginning of axonogenesis at E9.5 and initially distributed homogeneously along the entire growing axon. Then, from E11.5, a stage when AnkG is already apposed to the membrane, as observed by electron microscopy, the protein progressively becomes restricted to the proximal axon. Analysis on the global motor neurons population indicated that Neurofascin follows an identical spatio-temporal distribution, whereas sodium channels and β4-spectrin only appear along AnkG+ segments at E11.5. Early patch-clamp recordings of individual motor neurons indicated that at E12.5 these nascent AISs are already able to generate spikes. Using knock-out mice, we demonstrated that neither β4-spectrin nor Neurofascin control the distal-to-proximal restriction of AnkG.
Collapse
|
25
|
Bennett V, Lorenzo DN. Spectrin- and Ankyrin-Based Membrane Domains and the Evolution of Vertebrates. CURRENT TOPICS IN MEMBRANES 2013; 72:1-37. [DOI: 10.1016/b978-0-12-417027-8.00001-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Chang KJ, Rasband MN. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. CURRENT TOPICS IN MEMBRANES 2013; 72:159-92. [PMID: 24210430 DOI: 10.1016/b978-0-12-417027-8.00005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells. They can be subdivided into at least two structurally and functionally distinct domains: somatodendritic and axonal domains. The somatodendritic domain receives and integrates upstream input signals, and the axonal domain generates and relays outputs in the form of action potentials to the downstream target. Demand for quick response to the harsh surroundings prompted evolution to equip vertebrates' neurons with a remarkable glia-derived structure called myelin. Not only Insulating the axon, myelinating glia also rearrange the axonal components and elaborate functional subdomains along the axon. Proper functioning of all theses domains and subdomains is vital for a normal, efficient nervous system.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
27
|
Nans A, Einheber S, Salzer JL, Stokes DL. Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system. J Neurosci Res 2010; 89:310-9. [PMID: 21259318 DOI: 10.1002/jnr.22561] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/08/2010] [Accepted: 10/19/2010] [Indexed: 12/13/2022]
Abstract
The polarized domains of myelinated axons are specifically organized to maximize the efficiency of saltatory conduction. The paranodal region is directly adjacent to the node of Ranvier and contains specialized septate-like junctions that provide adhesion between axons and glial cells and that constitute a lateral diffusion barrier for nodal components. To complement and extend earlier studies on the peripheral nervous system, electron tomography was used to image paranodal regions from the central nervous system (CNS). Our three-dimensional reconstructions revealed short filamentous linkers running directly from the septate-like junctions to neurofilaments, microfilaments, and organelles within the axon. The intercellular spacing between axons and glia was measured to be 7.4 ± 0.6 nm, over twice the value previously reported in the literature (2.5-3.0 nm). Averaging of individual junctions revealed a bifurcated structure in the intercellular space that is consistent with a dimeric complex of cell adhesion molecules composing the septate-like junction. Taken together, these findings provide new insight into the structural organization of CNS paranodes and suggest that, in addition to providing axo-glial adhesion, cytoskeletal linkage to the septate-like junctions may be required to maintain axonal domains and to regulate organelle transport in myelinated axons.
Collapse
Affiliation(s)
- Andrea Nans
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
28
|
Hund TJ, Koval OM, Li J, Wright PJ, Qian L, Snyder JS, Gudmundsson H, Kline CF, Davidson NP, Cardona N, Rasband MN, Anderson ME, Mohler PJ. A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest 2010; 120:3508-19. [PMID: 20877009 DOI: 10.1172/jci43621] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/28/2010] [Indexed: 02/04/2023] Open
Abstract
Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na(+) channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na(+) channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified β(IV)-spectrin as a multifunctional regulatory platform for Na(+) channels in mice. We found that β(IV)-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant β(IV)-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na(+) channels, via direct phosphorylation by β(IV)-spectrin-targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain.
Collapse
Affiliation(s)
- Thomas J Hund
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
30
|
Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 2009; 29:13242-54. [PMID: 19846712 DOI: 10.1523/jneurosci.3376-09.2009] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many factors contribute to nervous system dysfunction and failure to regenerate after injury or disease. Here, we describe a previously unrecognized mechanism for nervous system injury. We show that neuronal injury causes rapid, irreversible, and preferential proteolysis of the axon initial segment (AIS) cytoskeleton independently of cell death or axon degeneration, leading to loss of both ion channel clusters and neuronal polarity. Furthermore, we show this is caused by proteolysis of the AIS cytoskeletal proteins ankyrinG and betaIV spectrin by the calcium-dependent cysteine protease calpain. Importantly, calpain inhibition is sufficient to preserve the molecular organization of the AIS both in vitro and in vivo. We conclude that loss of AIS ion channel clusters and neuronal polarity are important contributors to neuronal dysfunction after injury, and that strategies to facilitate recovery must preserve or repair the AIS cytoskeleton.
Collapse
|
31
|
Winkels R, Jedlicka P, Weise FK, Schultz C, Deller T, Schwarzacher SW. Reduced excitability in the dentate gyrus network of betaIV-spectrin mutant mice in vivo. Hippocampus 2009; 19:677-86. [PMID: 19156852 DOI: 10.1002/hipo.20549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The submembrane cytoskeletal meshwork of the axon contains the scaffolding protein betaIV-spectrin. It provides mechanical support for the axon and anchors membrane proteins. Quivering (qv(3j)) mice lack functional betaIV-spectrin and have reduced voltage-gated sodium channel (VGSC) immunoreactivity at the axon initial segment and nodes of Ranvier. Because VGSCs are critically involved in action potential generation and conduction, we hypothesized that qv(3j) mice should also show functional deficits at the network level. To test this hypothesis, we investigated granule cell function in the dentate gyrus of anesthetized qv(3j) mice after electrical stimulation of the perforant path in vivo. This revealed an impaired input-output relationship between stimulus intensity and granule cell population spikes and an enhanced paired-pulse inhibition of population spikes, indicating a reduced ability of granule cells to generate action potentials and decreased network excitability. In contrast, the input-output curve for evoked field excitatory postsynaptic potentials (fEPSPs) and paired-pulse facilitation of fEPSPs were unchanged, suggesting normal excitatory synaptic transmission at perforant path-granule cell synapses in qv(3j) mutants. To corroborate our findings, we analyzed the influence of VGSC density reduction on dentate network activity using an established computational model of the dentate gyrus network. This in silico approach confirmed that the loss of VGSCs is sufficient to explain the electrophysiological changes observed in qv(3j) mice. Taken together, our findings demonstrate that betaIV-spectrin is required for normal granule cell firing and for physiological levels of network excitability in the mouse dentate gyrus in vivo.
Collapse
Affiliation(s)
- Raphael Winkels
- Institute of Clinical Neuroanatomy, Goethe-University, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Sodium channel cluster, betaIV-spectrin and ankyrinG positive "hot spots" on dendritic segments of parvalbumin-containing neurons and some other neurons in the mouse and rat main olfactory bulbs. Neurosci Res 2008; 62:176-86. [PMID: 18786578 DOI: 10.1016/j.neures.2008.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/31/2008] [Accepted: 08/06/2008] [Indexed: 12/31/2022]
Abstract
Axon initial segments (AISs) and nodes of Ranvier are considered as the sites for spike generation, which are highly enriched in sodium channels and some cytoskeletal molecules such as ankyrinG, betaIV-spectrin. Previously, we showed that most parvalbumin positive cells in the external plexiform layer (EPL) of the mouse main olfactory bulb (MOB) were anaxonic but displayed some patch-like betaIV-spectrin and sodium channel cluster positive segments on their dendrites. In this study we further characterized those particular dendritic segments. AnkyrinG was also located there, whereas phospho-IkappaBalpha was not. Electron-microscopically those dendritic segments displayed the membrane undercoating characteristic to the AISs and nodes of Ranvier, further confirming their resemblance to the spike generation sites, "hot spots". Three-dimensional analysis revealed that each parvalbumin positive EPL neuron had 2-7 hot spots, 3-28 microm in length and located 7-50 microm from the somata. Similar "hot spots" were also encountered on a few calretinin positive granule cells and nitric oxide synthase positive periglomerular cells in the mouse MOB. In addition parvalbumin positive EPL cells in the rat MOB displayed similar multiple dendritic "hot spots". Our study suggested that these morphologically identified dendritic "hot spots" might correspond to dendritic spike generation sites of those neurons.
Collapse
|
33
|
Susuki K, Rasband MN. Spectrin and ankyrin-based cytoskeletons at polarized domains in myelinated axons. Exp Biol Med (Maywood) 2008; 233:394-400. [PMID: 18367627 DOI: 10.3181/0709-mr-243] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In myelinated nerve fibers, action potential initiation and propagation requires that voltage-gated ion channels be clustered at high density in the axon initial segments and nodes of Ranvier. The molecular organization of these subdomains depends on specialized cytoskeletal and scaffolding proteins such as spectrins, ankyrins, and 4.1 proteins. These cytoskeletal proteins are considered to be important for 1) formation, localization, and maintenance of specific integral membrane protein complexes, 2) a barrier restricting the diffusion of both cytoplasmic and membrane proteins to distinct regions or compartments of the cell, and 3) stabilization of axonal membrane integrity. Increased insights into the role of the cytoskeleton could provide important clues about the pathophysiology of various neurological disorders.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|