1
|
Ellison AJ, Dempwolff F, Kearns DB, Raines RT. Role for Cell-Surface Collagen of Streptococcus pyogenes in Infections. ACS Infect Dis 2020; 6:1836-1843. [PMID: 32413256 DOI: 10.1021/acsinfecdis.0c00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Group A Streptococcus (GAS) displays cell-surface proteins that resemble human collagen. We find that a fluorophore-labeled collagen mimetic peptide (CMP) labels GAS cells but not Escherichia coli or Bacillus subtilis cells, which lack such proteins. The CMP likely engages in a heterotrimeric helix with endogenous collagen, as the nonnatural d enantiomer of the CMP does not label GAS cells. To identify a molecular target, we used reverse genetics to "knock-in" the GAS genes that encode two proteins with collagen-like domains, Scl1 and Scl2, into B. subtilis. The fluorescent CMP labels the cells of these B. subtilis strains. Moreover, these strains bind tightly to a surface of mammalian collagen. These data are consistent with streptococcal collagen forming triple helices with damaged collagen in a wound bed and thus have implications for microbial virulence.
Collapse
Affiliation(s)
| | - Felix Dempwolff
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Abstract
Prokaryotic proteins with extended collagen domain are found in many bacterial species that are pathogenic to humans and animals. The collagen domain is often fused to additional ligand-binding domains and plays both structural and functional roles in modular "bacterial collagens." Here, we describe the step-by-step expression and purification of the recombinant streptococcal collagen-like proteins, rScl, using the Strep-tag II system. The integrity and structural characterization of recombinant collagen-like proteins is very important for defining their function.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
McNitt DH, Van De Water L, Marasco D, Berisio R, Lukomski S. Streptococcal Collagen-like Protein 1 Binds Wound Fibronectin: Implications in Pathogen Targeting. Curr Med Chem 2019; 26:1933-1945. [PMID: 30182848 DOI: 10.2174/0929867325666180831165704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Group A Streptococcus (GAS) infections are responsible for significant morbidity and mortality worldwide. The outlook for an effective global vaccine is reduced because of significant antigenic variation among GAS strains worldwide. Other challenges in GAS therapy include the lack of common access to antibiotics in developing countries, as well as allergy to and treatment failures with penicillin and increasing erythromycin resistance in the industrialized world. At the portal of entry, GAS binds to newly deposited extracellular matrix, which is rich in cellular fibronectin isoforms with extra domain A (EDA, also termed EIIIA) via the surface adhesin, the streptococcal collagen-like protein 1 (Scl1). Recombinant Scl1 constructs, derived from diverse GAS strains, bind the EDA loop segment situated between the C and C' β-strands. Despite the sequence diversity in Scl1 proteins, multiple sequence alignments and secondary structure predictions of Scl1 variants, as well as crystallography and homology modeling studies, point to a conserved mechanism of Scl1-EDA binding. We propose that targeting this interaction may prevent the progression of infection. A synthetic cyclic peptide, derived from the EDA C-C' loop, binds to recombinant Scl1 with a micromolar dissociation constant. This review highlights the current concept of EDA binding to Scl1 and provides incentives to exploit this binding to treat GAS infections and wound colonization.
Collapse
Affiliation(s)
- Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| | - Livingston Van De Water
- Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, via Mezzocannone, 16, 80134, Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| |
Collapse
|
4
|
McNitt DH, Choi SJ, Keene DR, Van De Water L, Squeglia F, Berisio R, Lukomski S. Surface-exposed loops and an acidic patch in the Scl1 protein of group A Streptococcus enable Scl1 binding to wound-associated fibronectin. J Biol Chem 2018; 293:7796-7810. [PMID: 29615492 PMCID: PMC5961034 DOI: 10.1074/jbc.ra118.002250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Keratinized epidermis constitutes a powerful barrier of the mucosa and skin, effectively preventing bacterial invasion, unless it is wounded and no longer protective. Wound healing involves deposition of distinct extracellular matrix (ECM) proteins enriched in cellular fibronectin (cFn) isoforms containing extra domain A (EDA). The streptococcal collagen-like protein 1 (Scl1) is a surface adhesin of group A Streptococcus (GAS), which contains an N-terminal variable (V) domain and a C-terminally located collagen-like domain. During wound infection, Scl1 selectively binds EDA/cFn isoforms and laminin, as well as low-density lipoprotein (LDL), through its V domain. The trimeric V domain has a six-helical bundle fold composed of three pairs of anti-parallel α-helices interconnected by hypervariable loops, but the roles of these structures in EDA/cFn binding are unclear. Here, using recombinant Scl (rScl) constructs to investigate structure-function determinants of the Scl1-EDA/cFn interaction, we found that full-length rScl1, containing both the globular V and the collagen domains, is necessary for EDA/cFn binding. We established that the surface-exposed loops, interconnecting conserved α-helices, guide recognition and binding of Scl1-V to EDA and binding to laminin and LDL. Moreover, electrostatic surface potential models of the Scl1-V domains pointed to a conserved, negatively charged pocket, surrounded by positively charged and neutral regions, as a determining factor for the binding. In light of these findings, we propose an updated model of EDA/cFn recognition by the Scl1 adhesin from GAS, representing a significant step in understanding the Scl1-ECM interactions within the wound microenvironment that underlie GAS pathogenesis.
Collapse
Affiliation(s)
- Dudley H McNitt
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Soo Jeon Choi
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Douglas R Keene
- the Micro-imaging Center, Shriners Hospital for Children, Portland, Oregon 97239
| | - Livingston Van De Water
- the Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York 12208, and
| | - Flavia Squeglia
- the Institute of Biostructures and Bioimaging, Italian National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Rita Berisio
- the Institute of Biostructures and Bioimaging, Italian National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Slawomir Lukomski
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506,
| |
Collapse
|
5
|
Serón M, Plug T, Arnoud Marquart J, Marx P, Herwald H, de Groot P, Meijers J. Binding characteristics of thrombin-activatable fibrinolysis inhibitor to streptococcal surface collagen-like proteins A and B. Thromb Haemost 2017; 106:609-16. [DOI: 10.1160/th11-03-0204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/22/2011] [Indexed: 11/05/2022]
Abstract
SummaryStreptococcus pyogenes is the causative agent in a wide range of diseases in humans. Thrombin-activatable fibrinolysis inhibitor (TAFI) binds to collagen-like proteins SclA and SclB at the surface of S. pyogenes. Activation of TAFI at this surface redirects inflammation from a transient to chronic state by modulation of the kallikrein/kinin system. We investigated TAFI binding characteristics to SclA/SclB. Thirty-four overlapping TAFI peptides of ∼20 amino acids were generated. Two of these peptides (P18: residues G205-S221, and P19: R214-D232) specifically bound to SclA/SclB with high affinity, and competed in a dose-dependent manner with TAFI binding to SclA/SclB. In another series of experiments, the binding properties of activated TAFI (TAFIa) to SclA/SclB were studied with a quadruple TAFI mutant (TAFI-IIYQ) that after activation is a 70-fold more stable enzyme than wild-type TAFIa. TAFI and TAFI-IIYQ bound to the bacterial proteins with similar affinities. The rate of dissociation was different between the proenzyme (both TAFI and TAFI-IIYQ) and the stable enzyme TAFIa-IIYQ. TAFIa-IIYQ bound to SclA/ SclB, but dissociated faster than TAFI-IIYQ. In conclusion, the bacterial proteins SclA and SclB bind to a TAFI fragment encompassing residues G205-D232. Binding of TAFI to the bacteria may allow activation of TAFI, whereafter the enzyme easily dissociates.
Collapse
|
6
|
Lukomski S, Bachert BA, Squeglia F, Berisio R. Collagen-like proteins of pathogenic streptococci. Mol Microbiol 2017; 103:919-930. [PMID: 27997716 DOI: 10.1111/mmi.13604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen-like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall-anchored. These proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as a variety of outermost non-collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well-characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation-fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| |
Collapse
|
7
|
Kilsgård O, Karlsson C, Malmström E, Malmström J. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation. Int J Med Microbiol 2016; 306:504-516. [DOI: 10.1016/j.ijmm.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022] Open
|
8
|
Bachert BA, Choi SJ, LaSala PR, Harper TI, McNitt DH, Boehm DT, Caswell CC, Ciborowski P, Keene DR, Flores AR, Musser JM, Squeglia F, Marasco D, Berisio R, Lukomski S. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus. Front Cell Infect Microbiol 2016; 6:90. [PMID: 27630827 PMCID: PMC5005324 DOI: 10.3389/fcimb.2016.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.
Collapse
Affiliation(s)
- Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Soo J Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Paul R LaSala
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Tiffany I Harper
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | | - Anthony R Flores
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Texas Children's HospitalHouston, TX, USA; Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital SystemHouston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital System Houston, TX, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
9
|
Plug T, Meijers JCM. Structure-function relationships in thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2016; 14:633-44. [PMID: 26786060 DOI: 10.1111/jth.13261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/30/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance of coagulation and fibrinolysis. TAFI is a metallocarboxypeptidase that circulates in plasma as zymogen. Activated TAFI (TAFIa) cleaves C-terminal lysine or arginine residues from peptide substrates. The removal of C-terminal lysine residues from partially degraded fibrin leads to reduced plasmin formation and thus attenuation of fibrinolysis. TAFI also plays a role in inflammatory processes via the removal of C-terminal arginine or lysine residues from bradykinin, thrombin-cleaved osteopontin, C3a, C5a and chemerin. TAFI has been studied extensively over the past three decades and recent publications provide a wealth of information, including crystal structures, mutants and structural data obtained with antibodies and peptides. In this review, we combined and compared available data on structure/function relationships of TAFI.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Steward KF, Robinson C, Waller AS. Transcriptional changes are involved in phenotype switching in Streptococcus equi subspecies equi. MOLECULAR BIOSYSTEMS 2016; 12:1194-200. [PMID: 26854112 DOI: 10.1039/c5mb00780a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phenotypic heterogeneity within a population of bacteria, through genetic or transcriptional variation, enables survival and persistence in challenging and changing environments. We report here that a recent clinical isolate of S. equi, strain 1691 (Se1691), yielded a mixture of reduced capsule and mucoid colonies on primary isolation when grown on colistin-oxolinic acid blood agar (COBA) streptococcal selective plates. Passaging colonies of Se1691, with a reduced capsule phenotype maintained this mixed phenotype. In contrast, passaging mucoid colonies fixed the mucoid phenotype, suggesting adaptive genetic or transcriptional changes in response to growth on artificial media. However, despite obvious phenotypic and transcriptional differences, there were no apparent differences in the genome sequences of Se1691 recovered from colonies with a mucoid or reduced capsule phenotype. We identified 105 differentially transcribed genes in the transcriptomes of reduced capsule and mucoid colonies. The reduced capsule phenotype was associated with a significant reduction in transcription of the has locus (SEQ_0269 Q = 0.0015, SEQ_0270 Q = 0.0015, SEQ_0271 Q = 0.0285) and the amount of hyaluronic acid on the surface of S. equi recovered from non-mucoid colonies (P = 0.017). Significant differences in the transcription of 21 surface and secreted proteins were also observed. Our data show that changes in the bacterial transcriptome are linked to the mixed colony phenotype of Se1691.
Collapse
Affiliation(s)
- Karen F Steward
- Animal Health Trust, Kentford, NewmarketSuffolk, CB8 7UU, UK.
| | | | | |
Collapse
|
11
|
Plug T, Marquart JA, Marx PF, Meijers JCM. Selective modulation of thrombin-activatable fibrinolysis inhibitor (TAFI) activation by thrombin or the thrombin-thrombomodulin complex using TAFI-derived peptides. J Thromb Haemost 2015; 13:2093-101. [PMID: 26341360 DOI: 10.1111/jth.13133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) is a risk factor for coronary heart disease. TAFI is proteolytically activated by thrombin, the thrombin-thrombomodulin complex and plasmin. Once active, it dampens fibrinolysis and inflammation. The aim of this study was to generate TAFI-derived peptides that specifically modulate TAFI activation and activity. METHODS Thirty-four overlapping TAFI peptides, and modifications thereof, were synthesized. The effects of these peptides on TAFI activation and TAFIa activity were determined. In addition, the binding of the peptides to thrombin were determined. RESULTS Four peptides (peptides 2, 18, 19 and 34) inhibited TAFI activation and two peptides (peptides 14 and 24) inhibited TAFIa activity directly. Peptide 2 (Arg12-Glu28) and peptide 34 (Cys383-Val401) inhibited TAFI activation by the thrombin-thrombomodulin complex with IC50 values of 7.3 ± 1.8 and 6.1 ± 0.9 μm, respectively. However, no inhibition was observed in the absence of thrombomodulin. This suggests that the regions Arg12-Glu28 and Cys383-Val401 in TAFI are involved in thrombomodulin-mediated TAFI activation. Peptide 18 (Gly205-Ser221) and peptide 19 (Arg214-Asp232) inhibited TAFI activation by thrombin and the thrombin-thrombomodulin complex. Furthermore, these peptides bound to thrombin (KD : 1.5 ± 0.4 and 0.52 ± 0.07 μm for peptides 18 and 19, respectively), suggesting that Gly205-Asp232 of TAFI is involved in binding to thrombin. Peptide 14 (His159-His175) inhibited TAFIa activity. The inhibition was TAFIa specific, because no effect on the homologous enzyme carboxypeptidase B was observed. CONCLUSIONS Thrombin-activatable fibrinolysis inhibitor-derived peptides show promise as new tools to modulate TAFI activation and TAFIa activity. Furthermore, these peptides revealed potential binding sites on TAFI for thrombin and the thrombin-thrombomodulin complex.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J A Marquart
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| | - P F Marx
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
12
|
A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection. PLoS One 2015; 10:e0137578. [PMID: 26356298 PMCID: PMC4565658 DOI: 10.1371/journal.pone.0137578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.
Collapse
|
13
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Role for streptococcal collagen-like protein 1 in M1T1 group A Streptococcus resistance to neutrophil extracellular traps. Infect Immun 2014; 82:4011-20. [PMID: 25024366 DOI: 10.1128/iai.01921-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcal collagen-like protein 1 (Scl-1) is one of the most highly expressed proteins in the invasive M1T1 serotype group A Streptococcus (GAS), a globally disseminated clone associated with higher risk of severe invasive infections. Previous studies using recombinant Scl-1 protein suggested a role in cell attachment and binding and inhibition of serum proteins. Here, we studied the contribution of Scl-1 to the virulence of the M1T1 clone in the physiological context of the live bacterium by generating an isogenic strain lacking the scl-1 gene. Upon subcutaneous infection in mice, wild-type bacteria induced larger lesions than the Δscl mutant. However, loss of Scl-1 did not alter bacterial adherence to or invasion of skin keratinocytes. We found instead that Scl-1 plays a critical role in GAS resistance to human and murine phagocytic cells, allowing the bacteria to persist at the site of infection. Phenotypic analyses demonstrated that Scl-1 mediates bacterial survival in neutrophil extracellular traps (NETs) and protects GAS from antimicrobial peptides found within the NETs. Additionally, Scl-1 interferes with myeloperoxidase (MPO) release, a prerequisite for NET production, thereby suppressing NET formation. We conclude that Scl-1 is a virulence determinant in the M1T1 GAS clone, allowing GAS to subvert innate immune functions that are critical in clearing bacterial infections.
Collapse
|
15
|
Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 2014; 186:451-61. [DOI: 10.1016/j.jsb.2014.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
16
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
17
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
18
|
Squeglia F, Bachert B, De Simone A, Lukomski S, Berisio R. The crystal structure of the streptococcal collagen-like protein 2 globular domain from invasive M3-type group A Streptococcus shows significant similarity to immunomodulatory HIV protein gp41. J Biol Chem 2013; 289:5122-33. [PMID: 24356966 DOI: 10.1074/jbc.m113.523597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The arsenal of virulence factors deployed by streptococci includes streptococcal collagen-like (Scl) proteins. These proteins, which are characterized by a globular domain and a collagen-like domain, play key roles in host adhesion, host immune defense evasion, and biofilm formation. In this work, we demonstrate that the Scl2.3 protein is expressed on the surface of invasive M3-type strain MGAS315 of Streptococcus pyogenes. We report the crystal structure of Scl2.3 globular domain, the first of any Scl. This structure shows a novel fold among collagen trimerization domains of either bacterial or human origin. Despite there being low sequence identity, we observed that Scl2.3 globular domain structurally resembles the gp41 subunit of the envelope glycoprotein from human immunodeficiency virus type 1, an essential subunit for viral fusion to human T cells. We combined crystallographic data with modeling and molecular dynamics techniques to gather information on the entire lollipop-like Scl2.3 structure. Molecular dynamics data evidence a high flexibility of Scl2.3 with remarkable interdomain motions that are likely instrumental to the protein biological function in mediating adhesive or immune-modulatory functions in host-pathogen interactions. Altogether, our results provide molecular tools for the understanding of Scl-mediated streptococcal pathogenesis and important structural insights for the future design of small molecular inhibitors of streptococcal invasion.
Collapse
Affiliation(s)
- Flavia Squeglia
- From the Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
19
|
Squeglia F, Bachert B, Romano M, Lukomski S, Berisio R. Crystallization and preliminary X-ray crystallographic analysis of the variable domain of Scl2.3, a streptococcal collagen-like protein from invasive M3-type Streptococcus pyogenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1023-5. [PMID: 23989154 PMCID: PMC3758154 DOI: 10.1107/s174430911302068x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/25/2013] [Indexed: 11/11/2022]
Abstract
Streptococcal collagen-like proteins (Scls) are widely expressed by the well recognized human pathogen Streptococcus pyogenes. These surface proteins contain a signature central collagen-like region and an amino-terminal globular domain, termed the variable domain, which is protruded away from the cell surface by the collagen-like domain. Despite their recognized importance in bacterial pathogenicity, no structural information is presently available on proteins of the Scl class. The variable domain of Scl2 from invasive M3-type S. pyogenes has successfully been crystallized using vapour-diffusion methods. The crystals diffracted to 1.5 Å resolution and belonged to space group H32, with unit-cell parameters a = 44.23, b = 44.23, c = 227.83 Å. The crystal structure was solved by single-wavelength anomalous dispersion using anomalous signal from a europium chloride derivative.|
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Beth Bachert
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, USA
| | - Maria Romano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, USA
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
20
|
Tsatsaronis JA, Hollands A, Cole JN, Maamary PG, Gillen CM, Ben Zakour NL, Kotb M, Nizet V, Beatson SA, Walker MJ, Sanderson-Smith ML. Streptococcal collagen-like protein A and general stress protein 24 are immunomodulating virulence factors of group A Streptococcus. FASEB J 2013; 27:2633-43. [PMID: 23531597 DOI: 10.1096/fj.12-226662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Western countries, invasive infections caused by M1T1 serotype group A Streptococcus (GAS) are epidemiologically linked to mutations in the control of virulence regulatory 2-component operon (covRS). In indigenous communities and developing countries, severe GAS disease is associated with genetically diverse non-M1T1 GAS serotypes. Hypervirulent M1T1 covRS mutant strains arise through selection by human polymorphonuclear cells for increased expression of GAS virulence factors such as the DNase Sda1, which promotes neutrophil resistance. The GAS bacteremia isolate NS88.2 (emm 98.1) is a covS mutant that exhibits a hypervirulent phenotype and neutrophil resistance yet lacks the phage-encoded Sda1. Here, we have employed a comprehensive systems biology (genomic, transcriptomic, and proteomic) approach to identify NS88.2 virulence determinants that enhance neutrophil resistance in the non-M1T1 GAS genetic background. Using this approach, we have identified streptococcal collagen-like protein A and general stress protein 24 proteins as NS88.2 determinants that contribute to survival in whole blood and neutrophil resistance in non-M1T1 GAS. This study has revealed new factors that contribute to GAS pathogenicity that may play important roles in resisting innate immune defenses and the development of human invasive infections.
Collapse
Affiliation(s)
- James A Tsatsaronis
- Illawarra Health and Medical Research Institute, and School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oliver-Kozup H, Martin KH, Schwegler-Berry D, Green BJ, Betts C, Shinde AV, Van De Water L, Lukomski S. The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue. Mol Microbiol 2012; 87:672-89. [PMID: 23217101 DOI: 10.1111/mmi.12125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C' loop region recognized by the α(9)β(1) integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization.
Collapse
Affiliation(s)
- Heaven Oliver-Kozup
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Regulation of the mouse gene encoding TAFI by TNFα: Role of NFκB binding site. Cytokine 2012; 57:389-97. [DOI: 10.1016/j.cyto.2011.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022]
|
23
|
Oliver-Kozup HA, Elliott M, Bachert BA, Martin KH, Reid SD, Schwegler-Berry DE, Green BJ, Lukomski S. The streptococcal collagen-like protein-1 (Scl1) is a significant determinant for biofilm formation by group A Streptococcus. BMC Microbiol 2011; 11:262. [PMID: 22168784 PMCID: PMC3268755 DOI: 10.1186/1471-2180-11-262] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/14/2011] [Indexed: 01/06/2023] Open
Abstract
Background Group A Streptococcus (GAS) is a human-specific pathogen responsible for a number of diseases characterized by a wide range of clinical manifestations. During host colonization GAS-cell aggregates or microcolonies are observed in tissues. GAS biofilm, which is an in vitro equivalent of tissue microcolony, has only recently been studied and little is known about the specific surface determinants that aid biofilm formation. In this study, we demonstrate that surface-associated streptococcal collagen-like protein-1 (Scl1) plays an important role in GAS biofilm formation. Results Biofilm formation by M1-, M3-, M28-, and M41-type GAS strains, representing an intraspecies breadth, were analyzed spectrophotometrically following crystal violet staining, and characterized using confocal and field emission scanning electron microscopy. The M41-type strain formed the most robust biofilm under static conditions, followed by M28- and M1-type strains, while the M3-type strains analyzed here did not form biofilm under the same experimental conditions. Differences in architecture and cell-surface morphology were observed in biofilms formed by the M1- and M41-wild-type strains, accompanied by varying amounts of deposited extracellular matrix and differences in cell-to-cell junctions within each biofilm. Importantly, all Scl1-negative mutants examined showed significantly decreased ability to form biofilm in vitro. Furthermore, the Scl1 protein expressed on the surface of a heterologous host, Lactococcus lactis, was sufficient to induce biofilm formation by this organism. Conclusions Overall, this work (i) identifies variations in biofilm formation capacity among pathogenically different GAS strains, (ii) identifies GAS surface properties that may aid in biofilm stability and, (iii) establishes that the Scl1 surface protein is an important determinant of GAS biofilm, which is sufficient to enable biofilm formation in the heterologous host Lactococcus. In summary, the GAS surface adhesin Scl1 may have an important role in biofilm-associated pathogenicity.
Collapse
Affiliation(s)
- Heaven A Oliver-Kozup
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
van Os GMA, Meijers JCM, Agar Ç, Seron MV, Marquart JA, Åkesson P, Urbanus RT, Derksen RHWM, Herwald H, Mörgelin M, D E Groot PG. Induction of anti-β2 -glycoprotein I autoantibodies in mice by protein H of Streptococcus pyogenes. J Thromb Haemost 2011; 9:2447-56. [PMID: 21985124 DOI: 10.1111/j.1538-7836.2011.04532.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The antiphospholipid syndrome (APS) is characterized by the persistent presence of anti-β(2) -glycoprotein I (β(2) -GPI) autoantibodies. β(2) -GPI can exist in two conformations. In plasma it is a circular protein, whereas it adopts a fish-hook conformation after binding to phospholipids. Only the latter conformation is recognized by patient antibodies. β(2) -GPI has been shown to interact with Streptococcus pyogenes. OBJECTIVE To evaluate the potential of S. pyogenes-derived proteins to induce anti-β(2) -GPI autoantibodies. METHODS AND RESULTS Four S. pyogenes surface proteins (M1 protein, protein H, streptococcal collagen-like protein A [SclA], and streptococcal collagen-like protein B [SclB]) were found to interact with β(2) -GPI. Only binding to protein H induces a conformational change in β(2) -GPI, thereby exposing a cryptic epitope for APS-related autoantibodies. Mice were injected with the four proteins. Only mice injected with protein H developed antibodies against the patient antibody-related epitope in domain I of β(2) -GPI. Patients with pharyngotonsillitis caused by S. pyogenes who developed anti-protein H antibodies also generated anti-β(2) -GPI antibodies. CONCLUSIONS Our study has demonstrated that a bacterial protein can induce a conformational change in β(2) -GPI, resulting in the formation of antiβ(2) -GPI autoantibodies. This constitutes a novel mechanism for the formation of anti-β(2) -GPI autoantibodies.
Collapse
Affiliation(s)
- G M A van Os
- Department of Clinical Chemistry and Hematology, University Medical Center, CX, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen SM, Tsai YS, Wu CM, Liao SK, Wu LC, Chang CS, Liu YH, Tsai PJ. Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell. BMC Microbiol 2010; 10:320. [PMID: 21159159 PMCID: PMC3022705 DOI: 10.1186/1471-2180-10-320] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 12/15/2010] [Indexed: 12/03/2022] Open
Abstract
Background Collagen-like surface proteins Scl1 and Scl2 on Streptococcus pyogenes contain contiguous Gly-X-X triplet amino acid motifs, the characteristic structure of human collagen. Although the potential role of Scl1 in adhesion has been studied, the conclusions may be affected by the use of different S. pyogenes strains and their carriages of various adhesins. To explore the bona fide nature of Scl1 in adherence to human epithelial cells without the potential interference of other streptococcal surface factors, we constructed a scl1 isogenic mutant from the Scl2-defective S. pyogenes strain and a Scl1-expressed Escherichia coli. Results Loss of Scl1 in a Scl2-defective S. pyogenes strain dramatically decreased the adhesion of bacteria to HEp-2 human epithelial cells. Expression of Scl1 on the surface of the heterologous bacteria E. coli significantly increased adhesion to HEp-2. The increase in adhesion was nullified when Scl1-expressed E. coli was pre-incubated with proteases or antibodies against recombinant Scl1 (rScl1) protein. Treatment of HEp-2 cells with rScl protein or pronase drastically reduced the binding capability of Scl1-expressed E. coli. These findings suggest that the adhesion is mediated through Scl1 on bacterial surface and protein receptor(s) on epithelial cells. Further blocking of potential integrins revealed significant contributions of α2 and β1 integrins in Scl1-mediated binding to epithelial cells. Conclusions Together, these results underscore the importance of Scl1 in the virulence of S. pyogenes and implicate Scl1 as an adhesin during pathogenesis of streptococcal infection.
Collapse
Affiliation(s)
- Shih-Ming Chen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Valls Serón M, Haiko J, DE Groot PG, Korhonen TK, Meijers JCM. Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis. J Thromb Haemost 2010; 8:2232-40. [PMID: 20704647 DOI: 10.1111/j.1538-7836.2010.04014.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pathogenic bacteria modulate the host coagulation system to evade immune responses or to facilitate dissemination through extravascular tissues. In particular, the important bacterial pathogens Salmonella enterica and Yersinia pestis intervene with the plasminogen/fibrinolytic system. Thrombin-activatable fibrinolysis inhibitor (TAFI) has anti-fibrinolytic properties as the active enzyme (TAFIa) removes C-terminal lysine residues from fibrin, thereby attenuating accelerated plasmin formation. RESULTS Here, we demonstrate inactivation and cleavage of TAFI by homologous surface proteases, the omptins Pla of Y. pestis and PgtE of S. enterica. We show that omptin-expressing bacteria decrease TAFI activatability by thrombin-thrombomodulin and that the anti-fibrinolytic potential of TAFIa was reduced by recombinant Escherichia coli expressing Pla or PgtE. The functional impairment resulted from C-terminal cleavage of TAFI by the omptins. CONCLUSIONS Our results indicate that TAFI is degraded directly by the omptins PgtE of S. enterica and Pla of Y. pestis. This may contribute to the ability of PgtE and Pla to damage tissue barriers, such as fibrin, and thereby to enhance spread of S. enterica and Y. pestis during infection.
Collapse
Affiliation(s)
- M Valls Serón
- Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Reuter M, Caswell CC, Lukomski S, Zipfel PF. Binding of the human complement regulators CFHR1 and factor H by streptococcal collagen-like protein 1 (Scl1) via their conserved C termini allows control of the complement cascade at multiple levels. J Biol Chem 2010; 285:38473-85. [PMID: 20855886 DOI: 10.1074/jbc.m110.143727] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Group A streptococci (GAS) utilize soluble human complement regulators to evade host complement attack. Here, we characterized the binding of the terminal complement complex inhibitor complement Factor H-related protein 1 (CFHR1) and of the C3 convertase regulator Factor H to the streptococcal collagen-like proteins (Scl). CFHR1 and Factor H, but no other member of the Factor H protein family (CFHR2, CFHR3, or CFHR4A), bound to the two streptococcal proteins Scl1.6 and Scl1.55, which are expressed by GAS serotypes M6 and M55. The two human regulators bound to the Scl1 proteins via their conserved C-terminal attachment region, i.e. CFHR1 short consensus repeats 3-5 (SCR3-5) and Factor H SCR18-20. Binding was affected by ionic strength and by heparin. CFHR1 and the C-terminal attachment region of Factor H did not bind to Scl1.1 and Scl2.28 proteins but did bind to intact M1-type and M28-type GAS, which express Scl1.1 and Scl2.28, respectively, thus arguing for the presence of an additional binding mechanism to CFHR1 and Factor H. Furthermore mutations within the C-terminal heparin-binding region and Factor H mutations that are associated with the acute renal disease atypical hemolytic uremic syndrome blocked the interaction with the two streptococcal proteins. Binding of CFHR1 affected the complement regulatory functions of Factor H on the level of the C3 convertase. Apparently, streptococci utilize two types of complement regulator-acquiring surface proteins; type A proteins, as represented by Scl1.6 and Scl1.55, bind to CFHR1 and Factor H via their conserved C-terminal region and do not bind the Factor H-like protein 1 (FHL-1). On the contrary, type B proteins, represented by M-, M-like, and the fibronectin-binding protein Fba proteins, bind Factor H and FHL-1 via domain SCR7 and do not bind CFHR1. In conclusion, binding of CFHR1 is at the expense of Factor H-mediated regulatory function at the level of C3 convertase and at the gain of a regulator that controls complement at the level of the C5 convertase and formation of the terminal complement complex.
Collapse
Affiliation(s)
- Michael Reuter
- Department of Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | | | | | | |
Collapse
|
28
|
Yu Z, Mirochnitchenko O, Xu C, Yoshizumi A, Brodsky B, Inouye M. Noncollagenous region of the streptococcal collagen-like protein is a trimerization domain that supports refolding of adjacent homologous and heterologous collagenous domains. Protein Sci 2010; 19:775-85. [PMID: 20162611 DOI: 10.1002/pro.356] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proper folding of the (Gly-Xaa-Yaa)(n) sequence of animal collagens requires adjacent N- or C-terminal noncollagenous trimerization domains which often contain coiled-coil or beta sheet structure. Collagen-like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen-like protein from Streptococcus pyogenes has an N-terminal globular domain, designated V(sp), adjacent to its triple-helix domain. The V(sp) domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant V(sp) domain alone is shown to form trimers with a significant alpha-helix content and to have a thermal stability of T(m) = 45 degrees C. Examination of a new construct shows that the V(sp) domain facilitates efficient in vitro refolding only when it is located N-terminal to the triple-helix domain but not when C-terminal to the triple-helix domain. Fusion of the V(sp) domain N-terminal to a heterologous (Gly-Xaa-Yaa)(n) sequence from Clostridium perfringens led to correct folding and refolding of this triple-helix, which was unable to fold into a triple-helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly-Xaa-Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple-helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.
Collapse
Affiliation(s)
- Zhuoxin Yu
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
29
|
Axillary abscess complicated by venous thrombosis: identification of Streptococcus pyogenes by 16S PCR. J Clin Microbiol 2010; 48:3435-7. [PMID: 20592151 DOI: 10.1128/jcm.00373-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a case of an axillary abscess with Streptococcus pyogenes complicated by venous thrombosis. Bacterial etiology and typing were obtained by PCR and sequencing of the 16S rRNA and M-protein genes from abscess material. The bacterium was of serotype M41, and serology indicated that it had expressed procoagulant factors.
Collapse
|
30
|
Leigh JA, Egan SA, Ward PN, Field TR, Coffey TJ. Sortase anchored proteins of Streptococcus uberis play major roles in the pathogenesis of bovine mastitis in dairy cattle. Vet Res 2010; 41:63. [PMID: 20519112 PMCID: PMC2898060 DOI: 10.1051/vetres/2010036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/02/2010] [Indexed: 12/22/2022] Open
Abstract
Streptococcus uberis, strain 0140J, contains a single copy sortase A (srtA), encoding a transamidase capable of covalently anchoring specific proteins to peptidoglycan. Unlike the wild-type, an isogenic mutant carrying an inactivating ISS1 insertion within srtA was only able to infect the bovine mammary gland in a transient fashion. For the first 24 h post challenge, the srtA mutant colonised at a similar rate and number to the wild type strain, but unlike the wild type did not subsequently colonise in higher numbers. Similar levels of host cell infiltration were detected in response to infection with both strains, but only in those mammary quarters infected with the wild type strain were clinical signs of disease evident. Mutants that failed to express individual sortase substrate proteins (sub0135, sub0145, sub0207, sub0241, sub0826, sub0888, sub1095, sub1154, sub1370, and sub1730) were isolated and their virulence determined in the same challenge model. This revealed that mutants lacking sub0145, sub1095 and sub1154 were attenuated in cattle. These data demonstrate that a number of sortase anchored proteins each play a distinct, non-redundant and important role in pathogenesis of S. uberis infection within the lactating bovine mammary gland.
Collapse
Affiliation(s)
- James A Leigh
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, United Kindgom.
| | | | | | | | | |
Collapse
|
31
|
Gao Y, Liang C, Zhao R, Lukomski S, Han R. The Scl1 of M41-type group A Streptococcus binds the high-density lipoprotein. FEMS Microbiol Lett 2010; 309:55-61. [PMID: 20528941 DOI: 10.1111/j.1574-6968.2010.02013.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Streptococcal collagen-like protein 1 (Scl1) is a virulence factor on the surface of group A Streptococcus (GAS). We have reported previously that several Scl1 proteins derived from various M-type GAS strains, including M41, can bind to low-density lipoprotein, but the Scl1 protein derived from the M6-type GAS strain cannot. Here, we demonstrated that recombinant protein, designated C176, derived from Scl1.41 of the GAS M41-type strain also binds both plasma and purified high-density lipoprotein (HDL). Next, we determined that the intact noncollagenous region of C176 was necessary and sufficient for HDL binding. C176-HDL interaction could be eliminated by the presence of low concentrations of the nonionic detergent, Tween 20, indicating the hydrophobic nature of this interaction. We finally showed that whole GAS cells expressing native Scl1.41 protein absorbed HDL from human plasma in the absence of Tween 20, but M6-type GAS cells did not. Altogether, our results add further evidence to the importance of GAS-lipoprotein binding.
Collapse
Affiliation(s)
- Yumin Gao
- Research Center of Plasma Lipoprotein Immunology, College of Animal Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | | | | | | | | |
Collapse
|
32
|
Marx PF, Plug T, Havik SR, Mörgelin M, Meijers JCM. The activation peptide of thrombin-activatable fibrinolysis inhibitor: a role in activity and stability of the enzyme? J Thromb Haemost 2009; 7:445-52. [PMID: 19054324 DOI: 10.1111/j.1538-7836.2008.03249.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) is a 56-kDa procarboxypeptidase. Proteolytic enzymes activate TAFI into TAFIa, an inhibitor of fibrinolysis, by cleaving off the N-terminal activation peptide (amino acids 1-92), from the enzyme moiety. Activated TAFI is unstable, with a half-life of approximately 10 min at 37 degrees C. So far, it is unknown whether the activation peptide is released or remains attached to the catalytic domain, and whether it influences TAFIa's properties. The current study was performed to clarify these issues. METHODS TAFI was activated, and the activity and half-life of the enzyme were determined in the presence and absence of the activation peptide. RESULTS TAFIa was active both before and after removal of the activation peptide, and the half-life of TAFIa was identical in the two preparations. Furthermore, we observed that intrinsically inactivated TAFIa (TAFIai) aggregated into large, insoluble complexes that could be removed by centrifugation. CONCLUSIONS The data presented in this article show that the activation peptide of TAFI is not required for TAFIa activity and that the activation peptide has no effect on the stability of the enzyme. These results are in favour of a model in which the activation peptide solely stabilizes the structure of the proenzyme. After activation of TAFI and subsequent breakage of interactions between the activation peptide and the catalytic domain, the activation peptide is no longer capable of performing this stabilizing task, and the integrity of the catalytic domain is lost rapidly. The resulting TAFIai is more prone to proteolysis and aggregation.
Collapse
Affiliation(s)
- P F Marx
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Bengtson SH, Sandén C, Mörgelin M, Marx PF, Olin AI, Leeb-Lundberg LMF, Meijers JCM, Herwald H. Activation of TAFI on the surface of Streptococcus pyogenes evokes inflammatory reactions by modulating the kallikrein/kinin system. J Innate Immun 2008; 1:18-28. [PMID: 20375563 DOI: 10.1159/000145543] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/06/2008] [Indexed: 01/22/2023] Open
Abstract
Bacteria-controlled regulation of host responses to infection is an important virulence mechanism that has been demonstrated to contribute to disease progression. Here we report that the human pathogen Streptococcus pyogenes employs the procarboxypeptidase TAFI (thrombin-activatable fibrinolysis inhibitor) to modulate the kallikrein/kinin system. To this end, bacteria initiate a chain of events starting with the recruitment and activation of TAFI. This is followed by the assembly and induction of the contact system at the streptococcal surface, eventually triggering the release of bradykinin (BK). BK is then carboxyterminally truncated by activated TAFI, which converts the peptide from a kinin B(2) receptor ligand to a kinin B(1) receptor (B1R) agonist. Finally, we show that streptococcal supernatants indirectly amplify the B1R response as they act on peripheral blood mononuclear cells to secrete inflammatory cytokines that in turn stimulate upregulation of the B1R on human fibroblasts. Taken together our findings implicate a critical and novel role for streptococci-bound TAFI, as it processes BK to a B1R agonist at the bacterial surface and thereby may redirect inflammation from a transient to a chronic state.
Collapse
Affiliation(s)
- Sara H Bengtson
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Caswell CC, Han R, Hovis KM, Ciborowski P, Keene DR, Marconi RT, Lukomski S. The Scl1 protein of M6-type group AStreptococcusbinds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement. Mol Microbiol 2008; 67:584-96. [DOI: 10.1111/j.1365-2958.2007.06067.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|