1
|
Simonsen S, Søgaard CK, Olsen JG, Otterlei M, Kragelund BB. The bacterial DNA sliding clamp, β-clamp: structure, interactions, dynamics and drug discovery. Cell Mol Life Sci 2024; 81:245. [PMID: 38814467 PMCID: PMC11139829 DOI: 10.1007/s00018-024-05252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, β-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. β -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, β-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of β-clamp. In this review, we scrutinize the β-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting β-clamp. Despite decades of research in β-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.
Collapse
Affiliation(s)
- Signe Simonsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Johan G Olsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Birthe B Kragelund
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
2
|
The Role of Replication Clamp-Loader Protein HolC of Escherichia coli in Overcoming Replication/Transcription Conflicts. mBio 2021; 12:mBio.00184-21. [PMID: 33688004 PMCID: PMC8092217 DOI: 10.1128/mbio.00184-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp, and clamp loader complex. The holC gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability, although mutants show growth impairment, genetic instability, and sensitivity to DNA damaging agents. In this study, we isolate spontaneous suppressor mutants in a ΔholC strain and identify these by whole-genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for holC mutant strains, or alleles of sspA, encoding stringent starvation protein. Using a conditional holC plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on holC mutant phenotypes. Alleles of RpoA (α), RpoB (β), and RpoC (β') RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of holC mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of holC by rpoA, rpoC, and sspA An inversion of the highly expressed rrnA operon exacerbates the growth defects of holC mutants. We propose that transcription complexes block replication in holC mutants and that Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity.IMPORTANCE Transcription elongation complexes present an impediment to DNA replication. We provide evidence that one component of the replication clamp loader complex, HolC, of Escherichia coli is required to overcome these blocks. This genetic study of transcription factor effects on holC growth defects implicates Rho-dependent transcriptional termination and DksA function as critical. It also implicates, for the first time, a role of SspA, stringent starvation protein, in avoidance or tolerance of replication/replication conflicts. We speculate that HolC helps avoid or resolve collisions between replication and transcription complexes, which become toxic in HolC's absence.
Collapse
|
3
|
Sutera VA, Weeks SJ, Dudenhausen EE, Baggett HBR, Shaw MC, Brand KA, Glass DJ, Bloom LB, Lovett ST. Alternative complexes formed by the Escherichia coli clamp loader accessory protein HolC (x) with replication protein HolD (ψ) and repair protein YoaA. DNA Repair (Amst) 2021; 100:103006. [PMID: 33582602 DOI: 10.1016/j.dnarep.2020.103006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 10/22/2022]
Abstract
Efficient and faithful replication of DNA is essential for all organisms. However, the replication fork frequently encounters barriers that need to be overcome to ensure cell survival and genetic stability. Cells must carefully balance and regulate replication vs. repair reactions. In Escherichia coli, the replisome consists of the DNA polymerase III holoenzyme, including DNA polymerase, proofreading exonuclease, processivity clamp and clamp loader, as well as a fork helicase, DnaB and primase, DnaG. We provide evidence here that one component of the clamp loader complex, HolC (or χ) plays a dual role via its ability to form 2 mutually exclusive complexes: one with HolD (or ψ) that recruits the clamp-loader and hence the DNA polymerase holoenzyme and another with helicase-like YoaA protein, a DNA-damage inducible repair protein. By yeast 2 hybrid analysis, we show that two residues of HolC, F64 and W57, at the interface in the structure with HolD, are required for interaction with HolD and for interaction with YoaA. Mutation of these residues does not interfere with HolC's interaction with single-strand DNA binding protein, SSB. In vivo, these mutations fail to complement the poor growth and sensitivity to azidothymidine, a chain-terminating replication inhibitor. In support of the notion that these are exclusive complexes, co-expression of HolC, HolD and YoaA, followed by pulldown of YoaA, yields a complex with HolC but not HolD. YoaA fails to pulldown HolC-F64A. We hypothesize that HolC, by binding with SSB, can recruit the DNA polymerase III holoenzyme through HolD, or an alternative repair complex with YoaA helicase.
Collapse
Affiliation(s)
- Vincent A Sutera
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - Savannah J Weeks
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, United States
| | - Elizabeth E Dudenhausen
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, United States
| | - Helen B Rappe Baggett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - McKay C Shaw
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - Kirsten A Brand
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - David J Glass
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, United States
| | - Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States.
| |
Collapse
|
4
|
Monachino E, Jergic S, Lewis JS, Xu ZQ, Lo ATY, O'Shea VL, Berger JM, Dixon NE, van Oijen AM. A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome. Mol Cell 2020; 79:140-154.e7. [PMID: 32464091 DOI: 10.1016/j.molcel.2020.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.
Collapse
Affiliation(s)
- Enrico Monachino
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747, the Netherlands
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
5
|
Deep Analysis of Residue Constraints (DARC): identifying determinants of protein functional specificity. Sci Rep 2020; 10:1691. [PMID: 32015389 PMCID: PMC6997377 DOI: 10.1038/s41598-019-55118-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/23/2019] [Indexed: 01/03/2023] Open
Abstract
Protein functional constraints are manifest as superfamily and functional-subgroup conserved residues, and as pairwise correlations. Deep Analysis of Residue Constraints (DARC) aids the visualization of these constraints, characterizes how they correlate with each other and with structure, and estimates statistical significance. This can identify determinants of protein functional specificity, as we illustrate for bacterial DNA clamp loader ATPases. These load ring-shaped sliding clamps onto DNA to keep polymerase attached during replication and contain one δ, three γ, and one δ’ AAA+ subunits semi-circularly arranged in the order δ-γ1-γ2-γ3-δ’. Only γ is active, though both γ and δ’ functionally influence an adjacent γ subunit. DARC identifies, as functionally-congruent features linking allosterically the ATP, DNA, and clamp binding sites: residues distinctive of γ and of γ/δ’ that mutually interact in trans, centered on the catalytic base; several γ/δ’-residues and six γ/δ’-covariant residue pairs within the DNA binding N-termini of helices α2 and α3; and γ/δ’-residues associated with the α2 C-terminus and the clamp-binding loop. Most notable is a trans-acting γ/δ’ hydroxyl group that 99% of other AAA+ proteins lack. Mutation of this hydroxyl to a methyl group impedes clamp binding and opening, DNA binding, and ATP hydrolysis—implying a remarkably clamp-loader-specific function.
Collapse
|
6
|
Michel B, Sinha AK. The inactivation of rfaP, rarA or sspA gene improves the viability of the Escherichia coli DNA polymerase III holD mutant. Mol Microbiol 2017; 104:1008-1026. [PMID: 28342235 DOI: 10.1111/mmi.13677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
The Escherichia coli holD mutant is poorly viable because the stability of holoenzyme polymerase III (Pol III HE) on DNA is compromised. Consequently, the SOS response is induced and the SOS polymerases DinB and Pol II further hinder replication. Mutations that restore the holD mutant viability belong to two classes, those that stabilize Pol III on DNA and those that prevent the deleterious effects of DinB over-production. We identified a dnaX mutation and the inactivation of rfaP and sspA genes as belonging to the first class of holD mutant suppressors. dnaX encodes a Pol III clamp loader subunit that interacts with HolD. rfaP encodes a lipopolysaccharide kinase that acts in outer membrane biogenesis. Its inactivation improves the holD mutant growth in part by affecting potassium import, previously proposed to stabilize Pol III HE on DNA by increasing electrostatic interactions. sspA encodes a global transcriptional regulator and growth of the holD mutant in its absence suggests that SspA controls genes that affect protein-DNA interactions. The inactivation of rarA belongs to the second class of suppressor mutations. rarA inactivation has a weak effect but is additive with other suppressor mutations. Our results suggest that RarA facilitates DinB binding to abandoned forks.
Collapse
Affiliation(s)
- Bénédicte Michel
- Genome Biology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Anurag Kumar Sinha
- Genome Biology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
7
|
Durand A, Sinha AK, Dard-Dascot C, Michel B. Mutations Affecting Potassium Import Restore the Viability of the Escherichia coli DNA Polymerase III holD Mutant. PLoS Genet 2016; 12:e1006114. [PMID: 27280472 PMCID: PMC4900610 DOI: 10.1371/journal.pgen.1006114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo.
Collapse
Affiliation(s)
- Adeline Durand
- Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Anurag Kumar Sinha
- Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cloelia Dard-Dascot
- High-throughput Sequencing facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Bénédicte Michel
- Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
8
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Brown LT, Sutera VA, Zhou S, Weitzel CS, Cheng Y, Lovett ST. Connecting Replication and Repair: YoaA, a Helicase-Related Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader Protein. PLoS Genet 2015; 11:e1005651. [PMID: 26544712 PMCID: PMC4636137 DOI: 10.1371/journal.pgen.1005651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Elongating DNA polymerases frequently encounter lesions or structures that impede progress and require repair before DNA replication can be completed. Therefore, directing repair factors to a blocked fork, without interfering with normal replication, is important for proper cell function, and it is a process that is not well understood. To study this process, we have employed the chain-terminating nucleoside analog, 3’ azidothymidine (AZT) and the E. coli genetic system, for which replication and repair factors have been well-defined. By using high-expression suppressor screens, we identified yoaA, encoding a putative helicase, and holC, encoding the Chi component of the replication clamp loader, as genes that promoted tolerance to AZT. YoaA is a putative Fe-S helicase in the XPD/RAD3 family for which orthologs can be found in most bacterial genomes; E. coli has a paralog to YoaA, DinG, which possesses 5’ to 3’ helicase activity and an Fe-S cluster essential to its activity. Mutants in yoaA are sensitive to AZT exposure; dinG mutations cause mild sensitivity to AZT and exacerbate the sensitivity of yoaA mutant strains. Suppression of AZT sensitivity by holC or yoaA was mutually codependent and we provide evidence here that YoaA and Chi physically interact. Interactions of Chi with single-strand DNA binding protein (SSB) and with Psi were required to aid AZT tolerance, as was the proofreading 3’ exonuclease, DnaQ. Our studies suggest that repair is coupled to blocked replication through these interactions. We hypothesize that SSB, through Chi, recruits the YoaA helicase to replication gaps and that unwinding of the nascent strand promotes repair and AZT excision. This recruitment prevents the toxicity of helicase activity and aids the handoff of repair with replication factors, ensuring timely repair and resumption of replication. During the replication of the cell’s genetic material, difficulties are often encountered. These problems require the recruitment of special proteins to repair DNA so that replication can be completed. The failure to do so causes cell death or deleterious changes to the cell’s genetic material. In humans, these genetic changes can promote cancer formation. Our study identifies a repair protein that is recruited to problem sites by interactions with the replication machinery. These interactions provide a means by which the cell can sense, respond to and repair damage that interferes with the completion of DNA replication.
Collapse
Affiliation(s)
- Laura T. Brown
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vincent A. Sutera
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Shen Zhou
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Christopher S. Weitzel
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yisha Cheng
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
This review describes the components of the Escherichia coli replisome and the dynamic process in which they function and interact under normal conditions. It also briefly describes the behavior of the replisome during situations in which normal replication fork movement is disturbed, such as when the replication fork collides with sites of DNA damage. E. coli DNA Pol III was isolated first from a polA mutant E. coli strain that lacked the relatively abundant DNA Pol I activity. Further biochemical studies, and the use of double mutant strains, revealed Pol III to be the replicative DNA polymerase essential to cell viability. In a replisome, DnaG primase must interact with DnaB for activity, and this constraint ensures that new RNA primers localize to the replication fork. The leading strand polymerase continually synthesizes DNA in the direction of the replication fork, whereas the lagging-strand polymerase synthesizes short, discontinuous Okazaki fragments in the opposite direction. Discontinuous lagging-strand synthesis requires that the polymerase rapidly dissociate from each new completed Okazaki fragment in order to begin the extension of a new RNA primer. Lesion bypass can be thought of as a two-step reaction that starts with the incorporation of a nucleotide opposite the lesion, followed by the extension of the resulting distorted primer terminus. A remarkable property of E. coli, and many other eubacterial organisms, is the speed at which it propagates. Rapid cell division requires the presence of an extremely efficient replication machinery for the rapid and faithful duplication of the genome.
Collapse
|
11
|
Tondnevis F, Gillilan RE, Bloom LB, McKenna R. Solution study of the Escherichia coli DNA polymerase III clamp loader reveals the location of the dynamic ψχ heterodimer. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:054701. [PMID: 26798827 PMCID: PMC4711647 DOI: 10.1063/1.4927407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Several X-ray crystal structures of the E. coli core clamp loader containing the five core (δ', δ, and three truncated γ) subunits have been determined, but they lack the ψ and χ subunits. We report the first solution structure of the complete seven-subunit clamp loader complex using small angle X-ray scattering. This structure not only provides information about the location of the χ and ψ subunits but also provides a model of the dynamic nature of the clamp loader complex.
Collapse
Affiliation(s)
- Farzaneh Tondnevis
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University , 161 Synchrotron Drive, Ithaca, New York 14853, USA
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| | - Robert McKenna
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| |
Collapse
|
12
|
ssb gene duplication restores the viability of ΔholC and ΔholD Escherichia coli mutants. PLoS Genet 2014; 10:e1004719. [PMID: 25329071 PMCID: PMC4199511 DOI: 10.1371/journal.pgen.1004719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/29/2014] [Indexed: 11/20/2022] Open
Abstract
The HolC-HolD (χψ) complex is part of the DNA polymerase III holoenzyme (Pol III HE) clamp-loader. Several lines of evidence indicate that both leading- and lagging-strand synthesis are affected in the absence of this complex. The Escherichia coli ΔholD mutant grows poorly and suppressor mutations that restore growth appear spontaneously. Here we show that duplication of the ssb gene, encoding the single-stranded DNA binding protein (SSB), restores ΔholD mutant growth at all temperatures on both minimal and rich medium. RecFOR-dependent SOS induction, previously shown to occur in the ΔholD mutant, is unaffected by ssb gene duplication, suggesting that lagging-strand synthesis remains perturbed. The C-terminal SSB disordered tail, which interacts with several E. coli repair, recombination and replication proteins, must be intact in both copies of the gene in order to restore normal growth. This suggests that SSB-mediated ΔholD suppression involves interaction with one or more partner proteins. ssb gene duplication also suppresses ΔholC single mutant and ΔholC ΔholD double mutant growth defects, indicating that it bypasses the need for the entire χψ complex. We propose that doubling the amount of SSB stabilizes HolCD-less Pol III HE DNA binding through interactions between SSB and a replisome component, possibly DnaE. Given that SSB binds DNA in vitro via different binding modes depending on experimental conditions, including SSB protein concentration and SSB interactions with partner proteins, our results support the idea that controlling the balance between SSB binding modes is critical for DNA Pol III HE stability in vivo, with important implications for DNA replication and genome stability.
Collapse
|
13
|
Hayner JN, Douma LG, Bloom LB. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA. Nucleic Acids Res 2014; 42:10655-67. [PMID: 25159615 PMCID: PMC4176372 DOI: 10.1093/nar/gku774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3′OH (3′DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3′DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5′phosphate (5′P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5′DNA). The 5′P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3′DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5′DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3′DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role.
Collapse
Affiliation(s)
- Jaclyn N Hayner
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren G Douma
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Marzahn MR, Hayner JN, Finkelstein J, O'Donnell M, Bloom LB. The ATP sites of AAA+ clamp loaders work together as a switch to assemble clamps on DNA. J Biol Chem 2014; 289:5537-48. [PMID: 24436332 DOI: 10.1074/jbc.m113.541466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including a conserved Lys located within the Walker A motif (or P-loop). This residue is required for each subunit to bind ATP. The specific function of each ATP molecule bound to the Saccharomyces cerevisiae clamp loader is unknown. A series of point mutants, each lacking a single Walker A Lys residue, was generated to study the effects of abolishing ATP binding in individual clamp loader subunits. A variety of biochemical assays were used to analyze the function of ATP binding during discrete steps of the clamp loading reaction. All mutants reduced clamp binding/opening to different degrees. Decreased clamp binding activity was generally correlated with decreases in the population of open clamps, suggesting that differences in the binding affinities of Walker A mutants stem from differences in stabilization of proliferating cell nuclear antigen in an open conformation. Walker A mutations had a smaller effect on DNA binding than clamp binding/opening. Our data do not support a model in which each ATP site functions independently to regulate a different step in the clamp loading cycle to coordinate these steps. Instead, the ATP sites work in unison to promote conformational changes in the clamp loader that drive clamp loading.
Collapse
Affiliation(s)
- Melissa R Marzahn
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610 and
| | | | | | | | | |
Collapse
|
15
|
Robinson A, Causer RJ, Dixon NE. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 2012; 13:352-72. [PMID: 22206257 PMCID: PMC3290774 DOI: 10.2174/138945012799424598] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 11/22/2022]
Abstract
New antibiotics with novel modes of action are required to combat the growing threat posed by multi-drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad-spectrum antibacterials. DNA replication is a conserved and essential process, and the large number of proteins that interact to replicate DNA in bacteria are distinct from those in eukaryotes and archaea; yet none of the antibiotics in current clinical use acts directly on the replication machinery. Bacterial DNA synthesis thus appears to be an underexploited drug target. However, before this system can be targeted for drug design, it is important to understand which parts are conserved and which are not, as this will have implications for the spectrum of activity of any new inhibitors against bacterial species, as well as the potential for development of drug resistance. In this review we assess similarities and differences in replication components and mechanisms across the bacteria, highlight current progress towards the discovery of novel replication inhibitors, and suggest those aspects of the replication machinery that have the greatest potential as drug targets.
Collapse
Affiliation(s)
- Andrew Robinson
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
16
|
Kelch BA, Makino DL, O'Donnell M, Kuriyan J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 2012; 10:34. [PMID: 22520345 PMCID: PMC3331839 DOI: 10.1186/1741-7007-10-34] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022] Open
Abstract
Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
17
|
Improved solubility of replication factor C (RFC) Walker A mutants. Protein Expr Purif 2012; 83:135-44. [PMID: 22469630 DOI: 10.1016/j.pep.2012.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 11/21/2022]
Abstract
Protein insolubility often poses a significant problem during purification protocols and in enzyme assays, especially for eukaryotic proteins expressed in a recombinant bacterial system. The limited solubility of replication factor C (RFC), the clamp loader complex from Saccharomyces cerevisiae, has been previously documented. We found that mutant forms of RFC harboring a single point mutation in the Walker A motif were even less soluble than the wild-type complex. The addition of maltose at 0.75 M to the storage and assay buffers greatly increases protein solubility and prevents the complex from falling apart. Our analysis of the clamp loading reaction is dependent on fluorescence-based assays, which are environmentally sensitive. Using wt RFC as a control, we show that the addition of maltose to the reaction buffers does not affect fluorophore responses in the assays or the enzyme activity, indicating that maltose can be used as a buffer additive for further downstream analysis of these mutants.
Collapse
|
18
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
19
|
El Houry Mignan S, Witte G, Naue N, Curth U. Characterization of the χψ subcomplex of Pseudomonas aeruginosa DNA polymerase III. BMC Mol Biol 2011; 12:43. [PMID: 21955458 PMCID: PMC3197488 DOI: 10.1186/1471-2199-12-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase III, the main enzyme responsible for bacterial DNA replication, is composed of three sub-assemblies: the polymerase core, the β-sliding clamp, and the clamp loader. During replication, single-stranded DNA-binding protein (SSB) coats and protects single-stranded DNA (ssDNA) and also interacts with the χψ heterodimer, a sub-complex of the clamp loader. Whereas the χ subunits of Escherichia coli and Pseudomonas aeruginosa are about 40% homologous, P. aeruginosa ψ is twice as large as its E. coli counterpart, and contains additional sequences. It was shown that P. aeruginosa χψ together with SSB increases the activity of its cognate clamp loader 25-fold at low salt. The E. coli clamp loader, however, is insensitive to the addition of its cognate χψ under similar conditions. In order to find out distinguishing properties within P. aeruginosa χψ which account for this higher stimulatory effect, we characterized P. aeruginosa χψ by a detailed structural and functional comparison with its E. coli counterpart. RESULTS Using small-angle X-ray scattering, analytical ultracentrifugation, and homology-based modeling, we found the N-terminus of P. aeruginosa ψ to be unstructured. Under high salt conditions, the affinity of the χψ complexes from both organisms to their cognate SSB was similar. Under low salt conditions, P. aeruginosa χψ, contrary to E. coli χψ, binds to ssDNA via the N-terminus of ψ. Whereas it is also able to bind to double-stranded DNA, the affinity is somewhat reduced. CONCLUSIONS The binding to DNA, otherwise never reported for any other ψ protein, enhances the affinity of P. aeruginosa χψ towards the SSB/ssDNA complex and very likely contributes to the higher stimulatory effect of P. aeruginosa χψ on the clamp loader. We also observed DNA-binding activity for P. putida χψ, making this activity most probably a characteristic of the ψ proteins from the Pseudomonadaceae.
Collapse
Affiliation(s)
- Sirine El Houry Mignan
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gregor Witte
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
- Center for Integrated Protein Sciences (CIPSM), Gene Center of the Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
- Munich Center for Advanced Photonics (MAP), Gene Center of the Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Natalie Naue
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
20
|
McHenry CS. Bacterial replicases and related polymerases. Curr Opin Chem Biol 2011; 15:587-94. [PMID: 21855395 DOI: 10.1016/j.cbpa.2011.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/24/2022]
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, Pol III, a β(2) processivity factor and a DnaX complex ATPase that loads β(2) onto DNA and chaperones Pol III onto the newly loaded β(2). Many bacteria encode both a full length τ and a shorter γ form of DnaX by a variety of mechanisms. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to prototypical ɛ Mg(2+)-dependent exonuclease, but also contains a second Zn(2+)-dependent proofreading exonuclease, at least in some bacteria. Replication of the chromosomes of low GC Gram-positive bacteria require two Pol IIIs, one of which, DnaE, appears to extend RNA primers a only short distance before handing the product off to the major replicase, PolC. Other bacteria encode a second Pol III (ImuC) that apparently replaces Pol V, required for induced mutagenesis in E. coli. Approaches that permit simultaneous biochemical screening of all components of complex bacterial replicases promise inhibitors of specific protein targets and reaction stages.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA.
| |
Collapse
|
21
|
Downey CD, Crooke E, McHenry CS. Polymerase chaperoning and multiple ATPase sites enable the E. coli DNA polymerase III holoenzyme to rapidly form initiation complexes. J Mol Biol 2011; 412:340-53. [PMID: 21820444 DOI: 10.1016/j.jmb.2011.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Cellular replicases include three subassemblies: a DNA polymerase, a sliding clamp processivity factor, and a clamp loader complex. The Escherichia coli clamp loader is the DnaX complex (DnaX(3)δδ'χψ), where DnaX occurs either as τ or as the shorter γ that arises by translational frameshifting. Complexes composed of either form of DnaX are fully active clamp loaders, but τ confers important replicase functions including chaperoning the polymerase to the newly loaded clamp to form an initiation complex for processive replication. The kinetics of initiation complex formation were explored for DnaX complexes reconstituted with varying τ and γ stoichiometries, revealing that τ-mediated polymerase chaperoning accelerates initiation complex formation by 100-fold. Analyzing DnaX complexes containing one or more K51E variant DnaX subunits demonstrated that only one active ATP binding site is required to form initiation complexes, but the two additional sites increase the rate by ca 1000-fold. For τ-containing complexes, the ATP analogue ATPγS was found to support initiation complex formation at 1/1000th the rate with ATP. In contrast to previous models that proposed ATPγS drives hydrolysis-independent initiation complex formation by τ-containing complexes, the rate and stoichiometry of ATPγS hydrolysis coincide with those for initiation complex formation. These results show that although one ATPase site is sufficient for initiation complex formation, the combination of polymerase chaperoning and the binding and hydrolysis of three ATPs dramatically accelerates initiation complex formation to a rate constant (25-50 s(-1)) compatible with double-stranded DNA replication.
Collapse
Affiliation(s)
- Christopher D Downey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
22
|
Yano ST, Rothman-Denes LB. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Mol Microbiol 2011; 79:1325-38. [PMID: 21205014 DOI: 10.1111/j.1365-2958.2010.07526.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coliphage N4 infection leads to shut-off of host DNA replication without inhibition of host transcription or translation. We report the identification and characterization of gp8, the N4 gene product responsible for this phenotype. N4 gp8 is an Escherichia coli bacteriostatic inhibitor that colocalizes with the E. coli replisome in a replication-dependent manner. Gp8 was purified and observed to cross-link to complexes containing the replicative DNA polymerase, DNAP III, in vivo. Purified gp8 inhibits DNA polymerization by DNA polymerase III holoenzyme in vitro by interfering with polymerase processivity. Gp8 specifically inhibits the clamp-loading activity of DNAP III by targeting the delta subunit of the DNAP III clamp loader; E. coli mutations conferring gp8 resistance were identified in the holA gene, encoding delta. Delta and gp8 interact in vitro; no interaction was detected between gp8 inactive mutants and wild-type delta or between delta gp8-resistant mutants and wild-type gp8. Therefore, this work identifies the DNAP III clamp loader as a new target for inhibition of bacterial growth. Finally, we show that gp8 is not essential in N4 development under laboratory conditions, but its activity contributes to phage yield.
Collapse
Affiliation(s)
- Sho T Yano
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
23
|
Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Microbiol Mol Biol Rev 2010; 74:273-97. [PMID: 20508250 DOI: 10.1128/mmbr.00048-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the last 15 years, members of the bacterial genus Acinetobacter have risen from relative obscurity to be among the most important sources of hospital-acquired infections. The driving force for this has been the remarkable ability of these organisms to acquire antibiotic resistance determinants, with some strains now showing resistance to every antibiotic in clinical use. There is an urgent need for new antibacterial compounds to combat the threat imposed by Acinetobacter spp. and other intractable bacterial pathogens. The essential processes of chromosomal DNA replication, transcription, and cell division are attractive targets for the rational design of antimicrobial drugs. The goal of this review is to examine the wealth of genome sequence and gene knockout data now available for Acinetobacter spp., highlighting those aspects of essential systems that are most suitable as drug targets. Acinetobacter spp. show several key differences from other pathogenic gammaproteobacteria, particularly in global stress response pathways. The involvement of these pathways in short- and long-term antibiotic survival suggests that Acinetobacter spp. cope with antibiotic-induced stress differently from other microorganisms.
Collapse
|
24
|
Anderson SG, Thompson JA, Paschall CO, O'Donnell M, Bloom LB. Temporal correlation of DNA binding, ATP hydrolysis, and clamp release in the clamp loading reaction catalyzed by the Escherichia coli gamma complex. Biochemistry 2009; 48:8516-27. [PMID: 19663416 DOI: 10.1021/bi900912a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clamp loaders are multisubunit complexes that use the energy derived from ATP binding and hydrolysis to assemble ring-shaped sliding clamps onto DNA. Sliding clamps in turn tether DNA polymerases to the templates being copied to increase the processivity of DNA synthesis. Here, the rate of clamp release during the clamp loading reaction was measured directly for the first time using a FRET-based assay in which the E. coli gamma complex clamp loader (gamma3deltadelta'chipsi) was labeled with a fluorescent donor, and the beta-clamp was labeled with a nonfluorescent quencher. When a beta.gamma complex is added to DNA, there is a significant time lag before the clamp is released onto DNA. To establish what events take place during this time lag, the timing of clamp release was compared to the timing of DNA binding and ATP hydrolysis by measuring these reactions directly side-by-side in assays. DNA binding is relatively rapid and triggers the hydrolysis of ATP. Both events occur prior to clamp release. Interestingly, the temporal correlation data and simple modeling studies indicate that the clamp loader releases DNA prior to the clamp and that DNA release may be coupled to clamp closing. Clamp release is relatively slow and likely to be the rate-limiting step in the overall clamp loading reaction cycle.
Collapse
Affiliation(s)
- Stephen G Anderson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
25
|
Thompson JA, Paschall CO, O'Donnell M, Bloom LB. A slow ATP-induced conformational change limits the rate of DNA binding but not the rate of beta clamp binding by the escherichia coli gamma complex clamp loader. J Biol Chem 2009; 284:32147-57. [PMID: 19759003 DOI: 10.1074/jbc.m109.045997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the gamma complex clamp loader loads the beta-sliding clamp onto DNA. The beta clamp tethers DNA polymerase III to DNA and enhances the efficiency of replication by increasing the processivity of DNA synthesis. In the presence of ATP, gamma complex binds beta and DNA to form a ternary complex. Binding to primed template DNA triggers gamma complex to hydrolyze ATP and release the clamp onto DNA. Here, we investigated the kinetics of forming a ternary complex by measuring rates of gamma complex binding beta and DNA. A fluorescence intensity-based beta binding assay was developed in which the fluorescence of pyrene covalently attached to beta increases when bound by gamma complex. Using this assay, an association rate constant of 2.3 x 10(7) m(-1) s(-1) for gamma complex binding beta was determined. The rate of beta binding was the same in experiments in which gamma complex was preincubated with ATP before adding beta or added directly to beta and ATP. In contrast, when gamma complex is preincubated with ATP, DNA binding is faster than when gamma complex is added to DNA and ATP at the same time. Slow DNA binding in the absence of ATP preincubation is the result of a rate-limiting ATP-induced conformational change. Our results strongly suggest that the ATP-induced conformational changes that promote beta binding and DNA binding differ. The slow ATP-induced conformational change that precedes DNA binding may provide a kinetic preference for gamma complex to bind beta before DNA during the clamp loading reaction cycle.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | |
Collapse
|
26
|
Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci U S A 2009; 106:13236-41. [PMID: 19666586 DOI: 10.1073/pnas.0906157106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule techniques are developed to examine mechanistic features of individual E. coli replisomes during synthesis of long DNA molecules. We find that single replisomes exhibit constant rates of fork movement, but the rates of different replisomes vary over a surprisingly wide range. Interestingly, lagging strand synthesis decreases the rate of the leading strand, suggesting that lagging strand operations exert a drag on replication fork progression. The opposite is true for processivity. The lagging strand significantly increases the processivity of the replisome, possibly reflecting the increased grip to DNA provided by 2 DNA polymerases anchored to sliding clamps on both the leading and lagging strands.
Collapse
|
27
|
Zhuang Z, Ai Y. Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1081-93. [PMID: 19576301 DOI: 10.1016/j.bbapap.2009.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.
Collapse
Affiliation(s)
- Zhihao Zhuang
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE, 19716, USA.
| | | |
Collapse
|
28
|
Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O'Donnell M, Kuriyan J. The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 2009; 137:659-71. [PMID: 19450514 DOI: 10.1016/j.cell.2009.03.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/22/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
Clamp loaders load sliding clamps onto primer-template DNA. The structure of the E. coli clamp loader bound to DNA reveals the formation of an ATP-dependent spiral of ATPase domains that tracks only the template strand, allowing recognition of both RNA and DNA primers. Unlike hexameric helicases, in which DNA translocation requires distinct conformations of the ATPase domains, the clamp loader spiral is symmetric and is set up to trigger release upon DNA recognition. Specificity for primed DNA arises from blockage of the end of the primer and accommodation of the emerging template along a surface groove. A related structure reveals how the psi protein, essential for coupling the clamp loader to single-stranded DNA-binding protein (SSB), binds to the clamp loader. By stabilizing a conformation of the clamp loader that is consistent with the ATPase spiral observed upon DNA binding, psi binding promotes the clamp-loading activity of the complex.
Collapse
Affiliation(s)
- Kyle R Simonetta
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bloom LB. Loading clamps for DNA replication and repair. DNA Repair (Amst) 2009; 8:570-8. [PMID: 19213612 DOI: 10.1016/j.dnarep.2008.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 01/25/2023]
Abstract
Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610-0245, United States.
| |
Collapse
|
30
|
Yao NY, O'Donnell M. Replisome dynamics and use of DNA trombone loops to bypass replication blocks. MOLECULAR BIOSYSTEMS 2008; 4:1075-84. [PMID: 18931783 DOI: 10.1039/b811097b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replisomes are dynamic multiprotein machines capable of simultaneously replicating both strands of the DNA duplex. This review focuses on the structure and function of the E. coli replisome, many features of which generalize to other bacteria and eukaryotic cells. For example, the bacterial replisome utilizes clamps and clamp loaders to coordinate the actions required of the trombone model of lagging strand synthesis made famous by Bruce Alberts. All cells contain clamps and clamp loaders and this review summarizes their structure and function. Clamp loaders are pentameric spirals that bind DNA in a structure specific fashion and thread it through the ring shaped clamp. The recent structure of the E. coli beta clamp in complex with primed DNA has implications for how multiple polymerases function on sliding clamps and how the primed DNA template is exchanged between them. Recent studies reveal a remarkable fluidity in replisome function that enables it to bypass template lesions on either DNA strand. During these processes the polymerases within the replisome functionally uncouple from one another. Mechanistic processes that underlie these actions may involve DNA looping, similar to the trombone loops that mediate the lagging strand Okazaki fragment synthesis cycle.
Collapse
Affiliation(s)
- Nina Y Yao
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065-6399, USA
| | | |
Collapse
|
31
|
Chen S, Coman MM, Sakato M, O'Donnell M, Hingorani MM. Conserved residues in the delta subunit help the E. coli clamp loader, gamma complex, target primer-template DNA for clamp assembly. Nucleic Acids Res 2008; 36:3274-86. [PMID: 18424802 PMCID: PMC2425476 DOI: 10.1093/nar/gkn157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Escherichia coli clamp loader, γ complex (γ3δδ′λψ), catalyzes ATP-driven assembly of β clamps onto primer-template DNA (p/tDNA), enabling processive replication. The mechanism by which γ complex targets p/tDNA for clamp assembly is not resolved. According to previous studies, charged/polar amino acids inside the clamp loader chamber interact with the double-stranded (ds) portion of p/tDNA. We find that dsDNA, not ssDNA, can trigger a burst of ATP hydrolysis by γ complex and clamp assembly, but only at far higher concentrations than p/tDNA. Thus, contact between γ complex and dsDNA is necessary and sufficient, but not optimal, for the reaction, and additional contacts with p/tDNA likely facilitate its selection as the optimal substrate for clamp assembly. We investigated whether a conserved sequence—HRVW279QNRR—in δ subunit contributes to such interactions, since Tryptophan-279 specifically cross-links to the primer-template junction. Mutation of δ-W279 weakens γ complex binding to p/tDNA, hampering its ability to load clamps and promote proccessive DNA replication, and additional mutations in the sequence (δ-R277, δ-R283) worsen the interaction. These data reveal a novel location in the C-terminal domain of the E. coli clamp loader that contributes to DNA binding and helps define p/tDNA as the preferred substrate for the reaction.
Collapse
Affiliation(s)
- Siying Chen
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459 and The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
32
|
Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O'Donnell M. Structure of a sliding clamp on DNA. Cell 2008; 132:43-54. [PMID: 18191219 DOI: 10.1016/j.cell.2007.11.045] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/03/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The structure of the E. coli beta clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the beta ring. The pronounced 22 degrees angle of DNA through beta may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.
Collapse
Affiliation(s)
- Roxana E Georgescu
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, Box 228, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|