1
|
Seipp RP, Hoeffel G, Moise AR, Lok S, Ripoche AC, Marañón C, Hosmalin A, Jefferies WA. A secreted Tapasin isoform impairs cytotoxic T lymphocyte recognition by disrupting exogenous MHC class I antigen presentation. Front Immunol 2025; 15:1525136. [PMID: 40171019 PMCID: PMC11959276 DOI: 10.3389/fimmu.2024.1525136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025] Open
Abstract
Endogenous and exogenous antigen processing and presentation through the MHC class I peptide-loading complex (PLC) are essential for initiating cytotoxic T lymphocyte responses against pathogens and tumors. Tapasin, a key component of the PLC, is produced in multiple isoforms through alternative splicing, each isoform influencing the assembly and stability of MHC class I molecules differently. While the canonical Tapasin isoform plays a critical role in stabilizing MHC class I by facilitating optimal peptide loading in the endoplasmic reticulum (ER), the other isoforms function in distinct ways that impact immune regulation. This study aimed to investigate the role of Tapasin isoforms, particularly soluble isoform 3, in modulating antigen presentation and immune responses, focusing on their effects on MHC class I peptide loading and surface expression. Our findings show that isoforms 1 and 2 stabilize TAP and facilitate efficient peptide loading onto MHC class I in the ER, promoting optimal antigen presentation. In contrast, isoform 3, which lacks both the ER retention signal and the transmembrane domain, is secreted and acts as a negative regulator. Isoform 3 inhibits the loading of exogenous peptides onto MHC class I molecules at the cell surface, thereby playing a critical role in the spatial and temporal regulation of MHC class I antigen presentation. The secreted Tapasin isoform 3 likely regulates immune responses by preventing inappropriate T cell activation and cytotoxicity, which could otherwise lead to immune-mediated tissue damage and contribute to autoimmune disorders. Understanding the distinct functions of Tapasin isoforms provides insights into immune regulation and highlights the importance of fine-tuning peptide-loading processes to ensure proper immune responses and prevent immune-related pathologies.
Collapse
Affiliation(s)
- Robyn P. Seipp
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Alexander R. Moise
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Siri Lok
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Anne Hosmalin
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Wilfred A. Jefferies
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Urological Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
3
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
4
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
5
|
Tang Y, Wang J, Zhang Y, Zhuo M, Song L, Tang Z, Zang G, Chen X, Yu Y. Correlation between low tapasin expression and impaired CD8+ T‑cell function in patients with chronic hepatitis B. Mol Med Rep 2016; 14:3315-22. [PMID: 27510296 DOI: 10.3892/mmr.2016.5610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/27/2016] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that chronic hepatitis B virus (HBV) infection is associated with reduced antigen‑presenting capacity and insufficient cytotoxic T lymphocyte (CTL) production. The molecular chaperone tapasin mediates binding of the transporter associated with antigen processing (TAP), and has an important role in endogenous antigen processing and presentation, and the induction of specific CTL responses. The present study aimed to determine whether tapasin is associated with chronic HBV (CHB) infection. The mRNA expression levels of tapasin were detected in peripheral blood mononuclear cells from 27 patients with CHB, 20 patients with acute HBV (AHB) and 26 healthy controls by reverse transcription‑quantitative polymerase chain reaction. In addition, CD8+ T immune responses were evaluated in all groups, and the correlation between tapasin expression and CD8+ responses was analyzed. The results demonstrated that the mRNA expression levels of tapasin were significantly downregulated in patients with CHB compared with in healthy controls and patients with AHB. Furthermore, the apoptotic rate of CD8+ T cells was increased in patients with CHB compared with in the other two groups. The percentage of interferon (IFN)‑γ+CD8+ T cells was reduced in patients with CHB compared with in patients with AHB and healthy controls, and serum cytokine levels (IFN‑γ, interleukin‑2 and tumor necrosis factor‑α) were generally low in patients with CHB. Furthermore, the mRNA expression levels of tapasin were positively correlated with IFN‑γ production by CD8+ T cells, and were inversely correlated with the apoptotic ratio of CD8+ T cells. These results indicate that decreased expression of tapasin may be closely associated with CHB, and suggest an important role for tapasin in the pathogenesis of CHB.
Collapse
Affiliation(s)
- Yuyan Tang
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jieling Wang
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yi Zhang
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Linlin Song
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
6
|
Blees A, Reichel K, Trowitzsch S, Fisette O, Bock C, Abele R, Hummer G, Schäfer LV, Tampé R. Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch. Sci Rep 2015; 5:17341. [PMID: 26611325 PMCID: PMC4661472 DOI: 10.1038/srep17341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity.
Collapse
Affiliation(s)
- Andreas Blees
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Katrin Reichel
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
- Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Olivier Fisette
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christoph Bock
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Lars V. Schäfer
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Cluster of Excellence–Macromolecular Complexes, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
8
|
Jennelle L, Hunegnaw R, Dubrovsky L, Pushkarsky T, Fitzgerald ML, Sviridov D, Popratiloff A, Brichacek B, Bukrinsky M. HIV-1 protein Nef inhibits activity of ATP-binding cassette transporter A1 by targeting endoplasmic reticulum chaperone calnexin. J Biol Chem 2014; 289:28870-84. [PMID: 25170080 DOI: 10.1074/jbc.m114.583591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Lucas Jennelle
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Ruth Hunegnaw
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Larisa Dubrovsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Tatiana Pushkarsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Michael L Fitzgerald
- the Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Dmitri Sviridov
- the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia, and
| | - Anastas Popratiloff
- the George Washington Center for Microscopy and Image Analysis, Office of VP for Research, Washington, D. C. 20037
| | - Beda Brichacek
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Michael Bukrinsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037,
| |
Collapse
|
9
|
ABC transporters in adaptive immunity. Biochim Biophys Acta Gen Subj 2014; 1850:449-60. [PMID: 24923865 DOI: 10.1016/j.bbagen.2014.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. SCOPE OF REVIEW The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. MAJOR CONCLUSIONS Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. GENERAL SIGNIFICANCE Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
10
|
Chen X, Tang Y, Zhang Y, Zhuo M, Tang Z, Yu Y, Zang G. Tapasin modification on the intracellular epitope HBcAg18-27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo. J Transl Med 2014; 94:478-90. [PMID: 24614195 DOI: 10.1038/labinvest.2014.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/23/2013] [Accepted: 12/23/2013] [Indexed: 01/16/2023] Open
Abstract
HBV-specific cytotoxic T-lymphocyte (CTL) activity has a very important role in hepatitis B virus clearance. Present studies suggest that Tapasin, a endoplasmic reticulum (ER) chaperone, stabilizes the peptide-receptive MHC I conformation, allowing peptide exchange and increasing more peptides to be translocated into the ER. We have previously testified that cytoplasmic transduction peptide (CTP)-HBcAg(18-27)-Tapasin fusion protein could enter cytoplasm of dendritic cells, and enhance T cells' response to generate specific CTLs efficiently in vitro. In the present study, we evaluated specific immune responses of CTP-HBcAg(18-27)-Tapasin fusion protein in HLA-A2 transgenic mice (H-2K(b)) and anti-viral ability in HBV transgenic mice, and explored the mechanisms probably involved in. The studies showed that CTP-HBcAg(18-27)-Tapasin not only increased production of cytokine IFN-γ and interleukin-2 (IL-2), compared with CTP-HBcAg(18-27), HBcAg(18-27)-Tapasin, and PBS, but also significantly induced the higher percentages of IFN-γ+CD8(+) T cells and specific CTL responses in HLA-A2 transgenic mice. Moreover, enhancement of specific CTL activity induced by the fusion protein reduced HBV DNA and hepatitis B surface antigen (HBsAg) levels and decreased the expression of HBsAg and hepatitis B core antigen (HBcAg) in liver tissue of HBV transgenic mice. In addition, CTP-HBcAg(18-27)-Tapasin could upregulate the expression of JAK2, Tyk2, STAT1, and STAT4 in T lymphocytes in HLA-A2 transgenic mice splenocytes. However, there was no significant difference on the expressions of JAK1, JAK3, and STAT6 between each group. In conclusion, CTP-HBcAg(18-27)-Tapasin fusion protein could enhance not only the percentages of CTLs but also induce robust specific CTL activity and inhibits hepatitis B virus replication in vivo, which was associated with activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuyan Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
11
|
Leonhardt RM, Abrahimi P, Mitchell SM, Cresswell P. Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization. THE JOURNAL OF IMMUNOLOGY 2014; 192:2480-94. [PMID: 24501197 DOI: 10.4049/jimmunol.1302637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.
Collapse
|
12
|
Association analysis of tapasin polymorphisms with aspirin-exacerbated respiratory disease in asthmatics. Pharmacogenet Genomics 2014; 23:341-8. [PMID: 23736108 DOI: 10.1097/fpc.0b013e328361d4bb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is characterized by the development of airway obstruction in asthmatic individuals following the ingestion of aspirin or other nonsteroidal anti-inflammatory drugs. TAPBP (TAP-binding protein, tapasin) is upregulated by eicosanoids, which act as potent inflammatory molecules in aspirin-related reactions. Thus, functional alterations in the TAPBP gene may contribute toward AERD. OBJECTIVES We examined the relationship between the single nucleotide polymorphisms on the TAPBP gene and AERD. MATERIALS AND METHODS A group of asthmatic patients (n=1252) underwent the oral aspirin challenge. Oral aspirin challenge reactions were categorized into two groups as follows: 15% or greater decreases in forced expiratory volume in 1 s or naso-ocular and skin reactions (AERD), or 15% or less decreases in forced expiratory volume in 1 s without naso-ocular and skin reactions (aspirin-tolerant asthma). Five single nucleotide polymorphisms of the TAPBP gene were genotyped. RESULTS Logistic regression analysis showed that the minor allele frequencies of TAPBP rs2071888 C>G (Thr260Arg) on exon 4 (P>0.05), which was in absolute linkage disequilibrium with rs1059288 T>C on 3'UTR, were significantly higher in the AERD group than in the aspirin-tolerant asthma group, and the P values remained significant after multiple comparisons (Pcorr=0.006, odds ratio: 1.37, 95% confidence interval: 1.11-1.69, additive model; Pcorr=0.009, odds ratio: 1.52, 95% confidence interval: 1.14-2.03, dominant model). Alpha-helical wheel plotting showed that 260Arg had greater hydrophilic helical property than 260Thr. CONCLUSION TAPBP polymorphisms may play a role in the development of AERD.
Collapse
|
13
|
The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci 2013; 38:412-20. [PMID: 23849087 DOI: 10.1016/j.tibs.2013.06.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
Abstract
Recognition and elimination of virally or malignantly transformed cells are pivotal tasks of the adaptive immune system. For efficient immune detection, snapshots of the cellular proteome are presented as epitopes on major histocompatibility complex class I (MHC I) molecules for recognition by cytotoxic T cells. Knowledge about the track from the equivocal protein to the presentation of antigenic peptides has greatly expanded, leading to an astonishingly elaborate understanding of the MHC I peptide loading pathway. Here, we summarize the current view on this complex process, which involves ABC transporters, proteases, chaperones, and endoplasmic reticulum (ER) quality control. The contribution of individual proteins and subcomplexes is discussed, with a focus on the architecture and dynamics of the key player in the pathway, the peptide-loading complex (PLC).
Collapse
|
14
|
Beutler N, Hauka S, Niepel A, Kowalewski DJ, Uhlmann J, Ghanem E, Erkelenz S, Wiek C, Hanenberg H, Schaal H, Stevanović S, Springer S, Momburg F, Hengel H, Halenius A. A natural tapasin isoform lacking exon 3 modifies peptide loading complex function. Eur J Immunol 2013; 43:1459-69. [DOI: 10.1002/eji.201242725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 02/01/2013] [Accepted: 03/15/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Nele Beutler
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Sebastian Hauka
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Alexandra Niepel
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | | | - Julia Uhlmann
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Esther Ghanem
- Department of Biochemistry and Cell Biology; Jacobs University Bremen; Bremen; Germany
| | - Steffen Erkelenz
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | | | - Heiner Schaal
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Stefan Stevanović
- Department of Immunology; Institute for Cell Biology; University of Tübingen; Tübingen; Germany
| | - Sebastian Springer
- Department of Biochemistry and Cell Biology; Jacobs University Bremen; Bremen; Germany
| | - Frank Momburg
- Division of Translational Immunology (D015); German Cancer Research Center (DKFZ); Heidelberg; Germany
| | | | | |
Collapse
|
15
|
Hulpke S, Baldauf C, Tampé R. Molecular architecture of the MHC I peptide-loading complex: one tapasin molecule is essential and sufficient for antigen processing. FASEB J 2012; 26:5071-80. [PMID: 22923333 DOI: 10.1096/fj.12-217489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The loading of antigen-derived peptides onto MHC class I molecules for presentation to cytotoxic T cells is a key process in adaptive immune defense. Loading of MHC I is achieved by a sophisticated machinery, the peptide-loading complex (PLC), which is organized around the transporter associated with antigen processing (TAP) with the help of several auxiliary proteins. As an essential adapter protein recruiting MHC I molecules to TAP, tapasin catalyzes peptide loading of MHC I. However, the exact stoichiometry and basic molecular architecture of TAP and tapasin within the PLC remains elusive. Here, we demonstrate that two tapasin molecules are assembled in the PLC, with one tapasin bound to each TAP subunit. However, one tapasin molecule bound either to TAP1 or TAP2 is sufficient for efficient MHC I antigen presentation. By specifically blocking the interaction between tapasin-MHC I complexes and the translocation complex TAP, the MHC I surface expression is impaired to the same extent as with soluble tapasin. Thus, the proximity of the peptide supplier TAP to the acceptor MHC I is crucial for antigen processing. In summary, the human PLC consists maximally of 2× tapasin-ERp57/MHC I per TAP complex, but one tapasin-ERp57/MHC I in the PLC is essential and sufficient for antigen processing.
Collapse
Affiliation(s)
- Sabine Hulpke
- Institute of Biochemistry, Biocenter and Cluster of Excellence Frankfurt (CEF)-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | | | | |
Collapse
|
16
|
Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Cell Mol Life Sci 2012; 69:3317-27. [PMID: 22638925 PMCID: PMC3437018 DOI: 10.1007/s00018-012-1005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD0, which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD0 recruits tapasin in a 1:1 stoichiometry. Although the TMD0s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD0s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.
Collapse
|
17
|
Geironson L, Røder G, Paulsson K. Stability of peptide-HLA-I complexes and tapasin folding facilitation - tools to define immunogenic peptides. FEBS Lett 2012; 586:1336-43. [DOI: 10.1016/j.febslet.2012.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 01/04/2023]
|
18
|
Herr RA, Wang X, Loh J, Virgin HW, Hansen TH. Newly discovered viral E3 ligase pK3 induces endoplasmic reticulum-associated degradation of class I major histocompatibility proteins and their membrane-bound chaperones. J Biol Chem 2012; 287:14467-79. [PMID: 22403403 DOI: 10.1074/jbc.m111.325340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral immune invasion proteins are highly effective probes for studying physiological pathways. We report here the characterization of a new viral ubiquitin ligase pK3 expressed by rodent herpesvirus Peru (RHVP) that establishes acute and latent infection in laboratory mice. Our findings show that pK3 binds directly and specifically to class I major histocompatibility proteins (MHCI) in a transmembrane-dependent manner. This binding results in the rapid degradation of the pK3/MHCI complex by a mechanism dependent upon catalytically active pK3. Subsequently, the rapid degradation of pK3/MHCI secondarily causes the slow degradation of membrane bound components of the MHCI peptide loading complex, tapasin, and transporter associated with antigen processing (TAP). Interestingly, this secondary event occurs by cellular endoplasmic reticulum-associated degradation. Cumulatively, our findings show pK3 uses a unique mechanism of substrate detection and degradation compared with other viral or cellular E3 ligases. More importantly, our findings reveal that in the absence of nascent MHCI proteins in the endoplasmic reticulum, the transmembrane proteins TAP and tapasin that facilitate peptide binding to MHCI proteins are degraded by cellular quality control mechanisms.
Collapse
Affiliation(s)
- Roger A Herr
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
19
|
The TAP translocation machinery in adaptive immunity and viral escape mechanisms. Essays Biochem 2012; 50:249-64. [PMID: 21967061 DOI: 10.1042/bse0500249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adaptive immune system plays an essential role in protecting vertebrates against a broad range of pathogens and cancer. The MHC class I-dependent pathway of antigen presentation represents a sophisticated cellular machinery to recognize and eliminate infected or malignantly transformed cells, taking advantage of the proteasomal turnover of the cell's proteome. TAP (transporter associated with antigen processing) 1/2 (ABCB2/3, where ABC is ATP-binding cassette) is the principal component in the recognition, translocation, chaperoning, editing and final loading of antigenic peptides on to MHC I complexes in the ER (endoplasmic reticulum) lumen. These different tasks are co-ordinated within a dynamic macromolecular peptide-loading complex consisting of TAP1/2 and various auxiliary factors, such as the adapter protein tapasin, the oxidoreductase ERp57, the lectin chaperone calreticulin, and the final peptide acceptor the MHC I heavy chain associated with β2-microglobulin. In this chapter, we summarize the structural organization and molecular mechanism of the antigen-translocation machinery as well as various modes of regulation by viral factors and in genetic diseases and tumour development.
Collapse
|
20
|
Pinto RD, da Silva DV, Pereira PJB, dos Santos NMS. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) Tapasin. FISH & SHELLFISH IMMUNOLOGY 2012; 32:110-120. [PMID: 22119577 DOI: 10.1016/j.fsi.2011.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Mammalian tapasin (TPN) is a key member of the major histocompatibility complex (MHC) class I antigen presentation pathway, being part of the multi-protein complex called the peptide loading complex (PLC). Several studies describe its important roles in stabilizing empty MHC class I complexes, facilitating peptide loading and editing the repertoire of bound peptides, with impact on CD8(+) T cell immune responses. In this work, the gene and cDNA of the sea bass (Dicentrarchus labrax) glycoprotein TPN have been isolated and characterized. The coding sequence has a 1329 bp ORF encoding a 442-residue precursor protein with a predicted 24-amino acid leader peptide, generating a 418-amino acid mature form that retains a conserved N-glycosylation site, three conserved mammalian tapasin motifs, two Ig superfamily domains, a transmembrane domain and an ER-retention di-lysine motif at the C-terminus, suggestive of a function similar to mammalian tapasins. Similar to the human counterpart, the sea bass TPN gene comprises 8 exons, some of which correspond to separate functional domains of the protein. A three-dimensional homology model of sea bass tapasin was calculated and is consistent with the structural features described for the human molecule. Together, these results support the concept that the basic structure of TPN has been maintained through evolution. Moreover, the present data provides information that will allow further studies on cell-mediated immunity and class I antigen presentation pathway in particular, in this important fish species.
Collapse
Affiliation(s)
- Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | | | |
Collapse
|
21
|
Roder G, Geironson L, Rasmussen M, Harndahl M, Buus S, Paulsson K. Tapasin discriminates peptide-human leukocyte antigen-A*02:01 complexes formed with natural ligands. J Biol Chem 2011; 286:20547-57. [PMID: 21518758 PMCID: PMC3121515 DOI: 10.1074/jbc.m111.230151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/12/2011] [Indexed: 11/06/2022] Open
Abstract
A plethora of peptides are generated intracellularly, and most peptide-human leukocyte antigen (HLA)-I interactions are of a transient, unproductive nature. Without a quality control mechanism, the HLA-I system would be stressed by futile attempts to present peptides not sufficient for the stable peptide-HLA-I complex formation required for long term presentation. Tapasin is thought to be central to this essential quality control, but the underlying mechanisms remain unknown. Here, we report that the N-terminal region of tapasin, Tpn(1-87), assisted folding of peptide-HLA-A*02:01 complexes according to the identity of the peptide. The facilitation was also specific for the identity of the HLA-I heavy chain, where it correlated to established tapasin dependence hierarchies. Two large sets of HLA-A*02:01 binding peptides, one extracted from natural HLA-I ligands from the SYFPEITHI database and one consisting of medium to high affinity non-SYFPEITHI ligands, were studied in the context of HLA-A*02:01 binding and stability. We show that the SYFPEITHI peptides induced more stable HLA-A*02:01 molecules than the other ligands, although affinities were similar. Remarkably, Tpn(1-87) could functionally discriminate the selected SYFPEITHI peptides from the other peptide binders with high sensitivity and specificity. We suggest that this HLA-I- and peptide-specific function, together with the functions exerted by the more C-terminal parts of tapasin, are major features of tapasin-mediated HLA-I quality control. These findings are important for understanding the biogenesis of HLA-I molecules, the selection of presented T-cell epitopes, and the identification of immunogenic targets in both basic research and vaccine design.
Collapse
Affiliation(s)
- Gustav Roder
- From the Laboratory of Experimental Immunology, Institute of International Health, Immunology and Microbiology, University of Copenhagen, Panum DK-2200 Copenhagen, Denmark and
| | - Linda Geironson
- the Immunology Section, Department of Experimental Medical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Michael Rasmussen
- From the Laboratory of Experimental Immunology, Institute of International Health, Immunology and Microbiology, University of Copenhagen, Panum DK-2200 Copenhagen, Denmark and
| | - Mikkel Harndahl
- From the Laboratory of Experimental Immunology, Institute of International Health, Immunology and Microbiology, University of Copenhagen, Panum DK-2200 Copenhagen, Denmark and
| | - Søren Buus
- From the Laboratory of Experimental Immunology, Institute of International Health, Immunology and Microbiology, University of Copenhagen, Panum DK-2200 Copenhagen, Denmark and
| | - Kajsa Paulsson
- From the Laboratory of Experimental Immunology, Institute of International Health, Immunology and Microbiology, University of Copenhagen, Panum DK-2200 Copenhagen, Denmark and
- the Immunology Section, Department of Experimental Medical Sciences, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
22
|
Van Hateren A, James E, Bailey A, Phillips A, Dalchau N, Elliott T. The cell biology of major histocompatibility complex class I assembly: towards a molecular understanding. ACTA ACUST UNITED AC 2011; 76:259-75. [PMID: 21050182 DOI: 10.1111/j.1399-0039.2010.01550.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex class I (MHC I) proteins protect the host from intracellular pathogens and cellular abnormalities through the binding of peptide fragments derived primarily from intracellular proteins. These peptide-MHC complexes are displayed at the cell surface for inspection by cytotoxic T lymphocytes. Here we reveal how MHC I molecules achieve this feat in the face of numerous levels of quality control. Among these is the chaperone tapasin, which governs peptide selection in the endoplasmic reticulum as part of the peptide-loading complex, and we propose key amino acid interactions central to the peptide selection mechanism. We discuss how the aminopeptidase ERAAP fine-tunes the peptide repertoire available to assembling MHC I molecules, before focusing on the journey of MHC I molecules through the secretory pathway, where calreticulin provides additional regulation of MHC I expression. Lastly we discuss how these processes culminate to influence immune responses.
Collapse
Affiliation(s)
- A Van Hateren
- Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | | | | | | | | | | |
Collapse
|
23
|
Schölz C, Tampé R. The peptide-loading complex--antigen translocation and MHC class I loading. Biol Chem 2009; 390:783-94. [PMID: 19426129 DOI: 10.1515/bc.2009.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A large and dynamic membrane-associated machinery orchestrates the translocation of antigenic peptides into the endoplasmic reticulum (ER) lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. The peptide-loading complex ensures that only high-affinity peptides, which guarantee long-term stability of MHC I complexes, are presented to T-lymphocytes. Adaptive immunity is dependent on surface display of the cellular proteome in the form of protein fragments, thus allowing efficient recognition of infected or malignant transformed cells. In this review, we summarize recent findings of antigen translocation by the transporter associated with antigen processing and loading of MHC class I molecules in the ER, focusing on the mechanisms involved in this process.
Collapse
Affiliation(s)
- Christian Schölz
- Institute of Biochemistry, Biocenter, Center for Membrane Proteomics (CMP) and Cluster of Excellence (CEF)-Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
24
|
Roder G, Geironson L, Darabi A, Harndahl M, Schafer-Nielsen C, Skjødt K, Buus S, Paulsson K. The outermost N-terminal region of tapasin facilitates folding of major histocompatibility complex class I. Eur J Immunol 2009; 39:2682-94. [DOI: 10.1002/eji.200939364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503-13. [PMID: 19498380 DOI: 10.1038/nri2575] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
Collapse
|
26
|
Simone LC, Wang X, Solheim JC. A transmembrane tail: interaction of tapasin with TAP and the MHC class I molecule. Mol Immunol 2009; 46:2147-50. [PMID: 19361863 PMCID: PMC2699900 DOI: 10.1016/j.molimm.2009.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022]
Abstract
The transmembrane protein tapasin has an essential role in the assembly of stable major histocompatibility (MHC) class I/peptide complexes. Within the endoplasmic reticulum, tapasin associates with both the transporter associated with antigen processing (TAP) and the MHC class I molecule. The tapasin/TAP association has been clearly shown to involve the transmembrane domains (TMDs) of both molecules and to result in the stable expression of TAP. Although the influence of tapasin on MHC class I molecule folding and surface expression has been extensively studied, relatively little is known at the structural level regarding the interaction between tapasin and the MHC class I molecule. Here we summarize our current understanding of functions involving the tapasin TMD and propose that, beyond stabilizing TAP, the tapasin TMD may also interact with the MHC class I heavy chain.
Collapse
Affiliation(s)
- Laura C. Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, NE, USA
| | - Xiaojian Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, NE, USA
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-6805, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198-6805, NE, USA
| |
Collapse
|
27
|
Corcoran K, Wang X, Lybarger L. Adapter-mediated substrate selection for endoplasmic reticulum-associated degradation. J Biol Chem 2009; 284:17475-87. [PMID: 19366690 DOI: 10.1074/jbc.m808258200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During endoplasmic reticulum (ER)-associated degradation (ERAD), a relatively small number of ubiquitin ligases (E3) must be capable of ubiquitinating an assortment of substrates diverse in both structure and location (ER lumen, membrane, and/or cytosol). Therefore, mechanisms that operate independently of primary sequence determinants must exist to ensure specificity during this process. Here we provide direct evidence for adapter-mediated substrate recruitment for a virus-encoded ERAD E3 ligase, mK3. Members of an ER membrane protein complex that normally functions during major histocompatibility complex class I biogenesis in the immune system are required for mK3 substrate selection. We demonstrate that heterologous substrates could be ubiquitinated by mK3 if they were recruited by these ER accessory molecules to the proper position relative to the ligase domain of mK3. This mechanism of substrate recruitment by adapter proteins may explain the ability of some E3 ligases, including cellular ERAD E3 ligases, to specifically target the ubiquitination of multiple substrates that are unrelated in sequence.
Collapse
Affiliation(s)
- Kathleen Corcoran
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
28
|
Simone LC, Wang X, Tuli A, McIlhaney MM, Solheim JC. Influence of the tapasin C terminus on the assembly of MHC class I allotypes. Immunogenetics 2009; 61:43-54. [PMID: 18958466 PMCID: PMC2706579 DOI: 10.1007/s00251-008-0335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 09/29/2008] [Indexed: 11/30/2022]
Abstract
Several endoplasmic reticulum proteins, including tapasin, play an important role in major histocompatibility complex (MHC) class I assembly. In this study, we assessed the influence of the tapasin cytoplasmic tail on three mouse MHC class I allotypes (H2-K(b), -K(d), and -L(d)) and demonstrated that the expression of truncated mouse tapasin in mouse cells resulted in very low K(b), K(d), and L(d) surface expression. The surface expression of K(d) also could not be rescued by human soluble tapasin, suggesting that the surface expression phenotype of the mouse MHC class I molecules in the presence of soluble tapasin was not due to mouse/human differences in tapasin. Notably, soluble mouse tapasin was able to partially rescue HLA-B8 surface expression on human 721.220 cells. Thus, the cytoplasmic tail of tapasin (either mouse or human) has a stronger impact on the surface expression of murine MHC class I molecules on mouse cells than on the expression of HLA-B8 on human cells. A K408W mutation in the mouse tapasin transmembrane/cytoplasmic domain disrupted K(d) folding and release from tapasin, but not interaction with transporter associated with antigen processing (TAP), indicating that the mechanism whereby the tapasin transmembrane/cytoplasmic domain facilitates MHC class I assembly is not limited to TAP stabilization. Our findings indicate that the C terminus of mouse tapasin plays a vital role in enabling murine MHC class I molecules to be expressed at the surface of mouse cells.
Collapse
Affiliation(s)
- Laura C. Simone
- Eppley Institute for Research in Cancer and Allied Diseases, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, USA 68198-6805, Telephone: (402) 559-4539, Fax: (402) 559-4651 e-mail:
| | - Xiaojian Wang
- Eppley Institute for Research in Cancer and Allied Diseases, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, USA 68198-6805, Telephone: (402) 559-4539, Fax: (402) 559-4651 e-mail:
| | - Amit Tuli
- Eppley Institute for Research in Cancer and Allied Diseases, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, USA 68198-6805, Telephone: (402) 559-4539, Fax: (402) 559-4651 e-mail:
| | - Mary M. McIlhaney
- Eppley Institute for Research in Cancer and Allied Diseases, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, USA 68198-6805, Telephone: (402) 559-4539, Fax: (402) 559-4651 e-mail:
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, USA 68198-6805, Telephone: (402) 559-4539, Fax: (402) 559-4651 e-mail:
| |
Collapse
|
29
|
Verweij MC, Koppers-Lalic D, Loch S, Klauschies F, de la Salle H, Quinten E, Lehner PJ, Mulder A, Knittler MR, Tampé R, Koch J, Ressing ME, Wiertz EJHJ. The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4894-907. [PMID: 18802093 DOI: 10.4049/jimmunol.181.7.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82:8246-52. [PMID: 18448533 DOI: 10.1128/jvi.00207-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
31
|
Nikles D, Tampé R. Targeted degradation of ABC transporters in health and disease. J Bioenerg Biomembr 2008; 39:489-97. [PMID: 17972020 DOI: 10.1007/s10863-007-9120-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or 'dead-end' state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.
Collapse
Affiliation(s)
- Daphne Nikles
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60348 Frankfurt am Main, Germany
| | | |
Collapse
|
32
|
Rufer E, Leonhardt RM, Knittler MR. Molecular Architecture of the TAP-Associated MHC Class I Peptide-Loading Complex. THE JOURNAL OF IMMUNOLOGY 2007; 179:5717-27. [DOI: 10.4049/jimmunol.179.9.5717] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|