1
|
Sun Y, Chen T, Ge X, Ni T, Dykes GF, Zhang P, Huang F, Liu LN. Engineering CO 2-fixing modules in Escherichia coli via efficient assembly of cyanobacterial Rubisco and carboxysomes. PLANT COMMUNICATIONS 2025; 6:101217. [PMID: 39645581 PMCID: PMC11956089 DOI: 10.1016/j.xplc.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for conversion of atmospheric CO2 into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, together with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments known as carboxysomes. The polyhedral carboxysome shell ensures the dense packaging of Rubisco and creates a high-CO2 internal environment to facilitate CO2 fixation. Rubisco and carboxysomes have been popular targets for bioengineering, with the intent of enhancing plant photosynthesis, crop yields, and biofuel production. However, efficient generation of Form 1B Rubisco and cyanobacterial β-carboxysomes in heterologous systems remains a challenge. Here, we developed genetic systems to efficiently engineer functional cyanobacterial Form 1B Rubisco in Escherichia coli by incorporating Rubisco assembly factor Raf1 and modulating the RbcL/S stoichiometry. We then reconstituted catalytically active β-carboxysomes in E. coli with cognate Form 1B Rubisco by fine-tuning the expression levels of individual β-carboxysome components. In addition, we investigated the mechanism of Rubisco encapsulation into carboxysomes by constructing hybrid carboxysomes; this was achieved by creating a chimeric encapsulation peptide incorporating small sub-unit-like domains, which enabled the encapsulation of Form 1B Rubisco into α-carboxysome shells. Our study provides insights into the assembly mechanisms of plant-like Form 1B Rubisco and the principles of its encapsulation in both β-carboxysomes and hybrid carboxysomes, highlighting the inherent modularity of carboxysome structures. These findings lay the framework for rational design and repurposing of CO2-fixing modules in bioengineering applications, e.g., crop engineering, biocatalyst production, and molecule delivery.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Taiyu Chen
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Xingwu Ge
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Fang Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Zhou Y, Gunn LH, Birch R, Andersson I, Whitney SM. Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth. NATURE PLANTS 2023; 9:978-986. [PMID: 37291398 DOI: 10.1038/s41477-023-01436-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Improving the carboxylation properties of Rubisco has primarily arisen from unforeseen amino acid substitutions remote from the catalytic site. The unpredictability has frustrated rational design efforts to enhance plant Rubisco towards the prized growth-enhancing carboxylation properties of red algae Griffithsia monilis GmRubisco. To address this, we determined the crystal structure of GmRubisco to 1.7 Å. Three structurally divergent domains were identified relative to the red-type bacterial Rhodobacter sphaeroides RsRubisco that, unlike GmRubisco, are expressed in Escherichia coli and plants. Kinetic comparison of 11 RsRubisco chimaeras revealed that incorporating C329A and A332V substitutions from GmRubisco Loop 6 (corresponding to plant residues 328 and 331) into RsRubisco increased the carboxylation rate (kcatc) by 60%, the carboxylation efficiency in air by 22% and the CO2/O2 specificity (Sc/o) by 7%. Plastome transformation of this RsRubisco Loop 6 mutant into tobacco enhanced photosynthesis and growth up to twofold over tobacco producing wild-type RsRubisco. Our findings demonstrate the utility of RsRubisco for the identification and in planta testing of amino acid grafts from algal Rubisco that can enhance the enzyme's carboxylase potential.
Collapse
Affiliation(s)
- Yu Zhou
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Laura H Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Rosemary Birch
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Norwegian College of Fisheries Sciences, UiT Arctic University of Norway, Tromsø, Norway
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Biocev, Vestec, Czech Republic
| | - Spencer M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
3
|
Nguyen ND, Pulsford SB, Hee WY, Rae BD, Rourke LM, Price GD, Long BM. Towards engineering a hybrid carboxysome. PHOTOSYNTHESIS RESEARCH 2023; 156:265-277. [PMID: 36892800 PMCID: PMC10154267 DOI: 10.1007/s11120-023-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
Carboxysomes are bacterial microcompartments, whose structural features enable the encapsulated Rubisco holoenzyme to operate in a high-CO2 environment. Consequently, Rubiscos housed within these compartments possess higher catalytic turnover rates relative to their plant counterparts. This particular enzymatic property has made the carboxysome, along with associated transporters, an attractive prospect to incorporate into plant chloroplasts to increase future crop yields. To date, two carboxysome types have been characterized, the α-type that has fewer shell components and the β-type that houses a faster Rubisco. While research is underway to construct a native carboxysome in planta, work investigating the internal arrangement of carboxysomes has identified conserved Rubisco amino acid residues between the two carboxysome types which could be engineered to produce a new, hybrid carboxysome. In theory, this hybrid carboxysome would benefit from the simpler α-carboxysome shell architecture while simultaneously exploiting the higher Rubisco turnover rates in β-carboxysomes. Here, we demonstrate in an Escherichia coli expression system, that the Thermosynechococcus elongatus Form IB Rubisco can be imperfectly incorporated into simplified Cyanobium α-carboxysome-like structures. While encapsulation of non-native cargo can be achieved, T. elongatus Form IB Rubisco does not interact with the Cyanobium carbonic anhydrase, a core requirement for proper carboxysome functionality. Together, these results suggest a way forward to hybrid carboxysome formation.
Collapse
Affiliation(s)
- Nghiem Dinh Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - Sacha B Pulsford
- Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, The Australian National University, Building 46, Sullivan's Creek Road, Acton, ACT, 2601, Australia
| | - Wei Yi Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - Loraine M Rourke
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia.
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT, 2601, Australia.
| | - Benedict M Long
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
4
|
Buck S, Rhodes T, Gionfriddo M, Skinner T, Yuan D, Birch R, Kapralov MV, Whitney SM. Escherichia coli expressing chloroplast chaperones as a proxy to test heterologous Rubisco production in leaves. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:664-676. [PMID: 36322613 DOI: 10.1093/jxb/erac435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Rubisco is a fundamental enzyme in photosynthesis and therefore for life. Efforts to improve plant Rubisco performance have been hindered by the enzymes' complex chloroplast biogenesis requirements. New Synbio approaches, however, now allow the production of some plant Rubisco isoforms in Escherichia coli. While this enhances opportunities for catalytic improvement, there remain limitations in the utility of the expression system. Here we generate, optimize, and test a robust Golden Gate cloning E. coli expression system incorporating the protein folding machinery of tobacco chloroplasts. By comparing the expression of different plant Rubiscos in both E. coli and plastome-transformed tobacco, we show that the E. coli expression system can accurately predict high level Rubisco production in chloroplasts but poorly forecasts the biogenesis potential of isoforms with impaired production in planta. We reveal that heterologous Rubisco production in E. coli and tobacco plastids poorly correlates with Rubisco large subunit phylogeny. Our findings highlight the need to fully understand the factors governing Rubisco biogenesis if we are to deliver an efficient, low-cost screening tool that can accurately emulate chloroplast expression.
Collapse
Affiliation(s)
- Sally Buck
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tim Rhodes
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Matteo Gionfriddo
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tanya Skinner
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Ding Yuan
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Rosemary Birch
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Spencer M Whitney
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| |
Collapse
|
5
|
Understanding and Engineering Glycine Cleavage System and Related Metabolic Pathways for C1-Based Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:273-298. [DOI: 10.1007/10_2021_186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
In vitro activity of reconstituted rubisco enzyme from Gloeobacter violaceus. J Biosci 2021. [DOI: 10.1007/s12038-021-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Zhou Y, Whitney S. Directed Evolution of an Improved Rubisco; In Vitro Analyses to Decipher Fact from Fiction. Int J Mol Sci 2019; 20:ijms20205019. [PMID: 31658746 PMCID: PMC6834295 DOI: 10.3390/ijms20205019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
Inaccuracies in biochemically characterizing the amount and CO2-fixing properties of the photosynthetic enzyme Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase continue to hamper an accurate evaluation of Rubisco mutants selected by directed evolution. Here, we outline an analytical pipeline for accurately quantifying Rubisco content and kinetics that averts the misinterpretation of directed evolution outcomes. Our study utilizes a new T7-promoter regulated Rubisco Dependent Escherichia coli (RDE3) screen to successfully select for the first Rhodobacter sphaeroides Rubisco (RsRubisco) mutant with improved CO2-fixing properties. The RsRubisco contains four amino acid substitutions in the large subunit (RbcL) and an improved carboxylation rate (kcatC, up 27%), carboxylation efficiency (kcatC/Km for CO2, increased 17%), unchanged CO2/O2 specificity and a 40% lower holoenzyme biogenesis capacity. Biochemical analysis of RsRubisco chimers coding one to three of the altered amino acids showed Lys-83-Gln and Arg-252-Leu substitutions (plant RbcL numbering) together, but not independently, impaired holoenzyme (L8S8) assembly. An N-terminal Val-11-Ile substitution did not affect RsRubisco catalysis or assembly, while a Tyr-345-Phe mutation alone conferred the improved kinetics without an effect on RsRubisco production. This study confirms the feasibility of improving Rubisco by directed evolution using an analytical pipeline that can identify false positives and reliably discriminate carboxylation enhancing amino acids changes from those influencing Rubisco biogenesis (solubility).
Collapse
Affiliation(s)
- Yu Zhou
- Australian Research Council Center of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia.
| | - Spencer Whitney
- Australian Research Council Center of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia.
| |
Collapse
|
8
|
Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM. BSD2 is a Rubisco-specific assembly chaperone, forms intermediary hetero-oligomeric complexes, and is nonlimiting to growth in tobacco. PLANT, CELL & ENVIRONMENT 2019; 42:1287-1301. [PMID: 30375663 DOI: 10.1111/pce.13473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 05/28/2023]
Abstract
The folding and assembly of Rubisco large and small subunits into L8 S8 holoenzyme in chloroplasts involves many auxiliary factors, including the chaperone BSD2. Here we identify apparent intermediary Rubisco-BSD2 assembly complexes in the model C3 plant tobacco. We show BSD2 and Rubisco content decrease in tandem with leaf age with approximately half of the BSD2 in young leaves (~70 nmol BSD2 protomer.m2 ) stably integrated in putative intermediary Rubisco complexes that account for <0.2% of the L8 S8 pool. RNAi-silencing BSD2 production in transplastomic tobacco producing bacterial L2 Rubisco had no effect on leaf photosynthesis, cell ultrastructure, or plant growth. Genetic crossing the same RNAi-bsd2 alleles into wild-type tobacco however impaired L8 S8 Rubisco production and plant growth, indicating the only critical function of BSD2 is in Rubisco biogenesis. Agrobacterium mediated transient expression of tobacco, Arabidopsis, or maize BSD2 reinstated Rubisco biogenesis in BSD2-silenced tobacco. Overexpressing BSD2 in tobacco chloroplasts however did not alter Rubisco content, activation status, leaf photosynthesis rate, or plant growth in the field or in the glasshouse at 20°C or 35°C. Our findings indicate BSD2 functions exclusively in Rubisco biogenesis, can efficiently facilitate heterologous plant Rubisco assembly, and is produced in amounts nonlimiting to tobacco growth.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Rosemary Birch
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Celine Kelso
- School of Chemistry, Molecular Horizons, University of Wollongong, New South Wales, Australia
| | - Sophie Holland
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jennifer L Beck
- School of Chemistry, Molecular Horizons, University of Wollongong, New South Wales, Australia
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
9
|
Antonovsky N, Gleizer S, Milo R. Engineering carbon fixation in E. coli : from heterologous RuBisCO expression to the Calvin–Benson–Bassham cycle. Curr Opin Biotechnol 2017; 47:83-91. [DOI: 10.1016/j.copbio.2017.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/13/2017] [Indexed: 11/26/2022]
|
10
|
Turmo A, Gonzalez-Esquer CR, Kerfeld CA. Carboxysomes: metabolic modules for CO2 fixation. FEMS Microbiol Lett 2017; 364:4082729. [DOI: 10.1093/femsle/fnx176] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/12/2017] [Indexed: 11/13/2022] Open
|
11
|
Giessen TW, Silver PA. Engineering carbon fixation with artificial protein organelles. Curr Opin Biotechnol 2017; 46:42-50. [DOI: 10.1016/j.copbio.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
12
|
Young JN, Heureux AMC, Rickaby REM, Morel FMM, Whitney SM, Sharwood RE. Rubisco Extraction and Purification from Diatoms. Bio Protoc 2017; 7:e2191. [PMID: 34458500 DOI: 10.21769/bioprotoc.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 02/18/2017] [Indexed: 11/02/2022] Open
Abstract
This protocol describes a method to extract ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) from diatoms (Bacillariophyta) to determine catalytic performance. This protocol has been adapted from use in cyanobacteria and higher plants (Andrews, 1988; Whitney and Sharwood, 2007). First part (steps A1-A3) of the extraction provides a crude extract of Rubisco that is sufficient for carboxylation assays to measure the Michaelis constant for CO2 (KC) and the catalytic turnover rate ( kcat c ). However, the further purification steps outlined (steps B1-B4) are needed for measurements of Rubisco CO2/O2 Specificity (SC/O, [ Kane et al., 1994 ]).
Collapse
Affiliation(s)
- Jodi N Young
- Department of Oceanography, University of Washington, Seattle, USA
| | - Ana M C Heureux
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | | | | | - Spencer M Whitney
- Plant Science Division, Research School of Biology, the Australian National University, Canberra, Australia
| | - Robert E Sharwood
- Plant Science Division, Research School of Biology, the Australian National University, Canberra, Australia
| |
Collapse
|
13
|
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. THE NEW PHYTOLOGIST 2017; 213:494-510. [PMID: 27935049 DOI: 10.1111/nph.14351] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/10/2016] [Indexed: 05/19/2023]
Abstract
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Center of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
14
|
Long BM, Rae BD, Rolland V, Förster B, Price GD. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:1-8. [PMID: 26999306 DOI: 10.1016/j.pbi.2016.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 05/21/2023]
Abstract
Global population growth is projected to outpace plant-breeding improvements in major crop yields within decades. To ensure future food security, multiple creative efforts seek to overcome limitations to crop yield. Perhaps the greatest limitation to increased crop yield is photosynthetic inefficiency, particularly in C3 crop plants. Recently, great strides have been made toward crop improvement by researchers seeking to introduce the cyanobacterial CO2-concentrating mechanism (CCM) into plant chloroplasts. This strategy recognises the C3 chloroplast as lacking a CCM, and being a primordial cyanobacterium at its essence. Hence the collection of solute transporters, enzymes, and physical structures that make cyanobacterial CO2-fixation so efficient are viewed as a natural source of genetic material for C3 chloroplast improvement. Also we highlight recent outstanding research aimed toward the goal of introducing a cyanobacterial CCM into C3 chloroplasts and consider future research directions.
Collapse
Affiliation(s)
- Benedict M Long
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Benjamin D Rae
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Vivien Rolland
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3445-56. [PMID: 27129950 PMCID: PMC4892730 DOI: 10.1093/jxb/erw163] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat (c)), oxygenation (k cat (o)), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23-68 µM), SC/O (57-116mol mol(-1)), and K O (413-2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat (c) for each diatom Rubisco showed less variation (2.1-3.7s(-1)), thus averting the canonical trade-off typically observed between K C and k cat (c) for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily.
Collapse
Affiliation(s)
- Jodi N Young
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Ana M C Heureux
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Robert E Sharwood
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - François M M Morel
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Spencer M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Wilson RH, Alonso H, Whitney SM. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth. Sci Rep 2016; 6:22284. [PMID: 26926260 PMCID: PMC4772096 DOI: 10.1038/srep22284] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022] Open
Abstract
In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth.
Collapse
Affiliation(s)
- Robert H. Wilson
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Hernan Alonso
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Spencer M. Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
17
|
Whitney SM, Birch R, Kelso C, Beck JL, Kapralov MV. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. Proc Natl Acad Sci U S A 2015; 112:3564-9. [PMID: 25733857 PMCID: PMC4371954 DOI: 10.1073/pnas.1420536112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants.
Collapse
Affiliation(s)
- Spencer M Whitney
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and
| | - Rosemary Birch
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and
| | - Celine Kelso
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer L Beck
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Maxim V Kapralov
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and
| |
Collapse
|
18
|
Xin CP, Tholen D, Devloo V, Zhu XG. The benefits of photorespiratory bypasses: how can they work? PLANT PHYSIOLOGY 2015; 167:574-85. [PMID: 25516604 PMCID: PMC4326737 DOI: 10.1104/pp.114.248013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bypassing the photorespiratory pathway is regarded as a way to increase carbon assimilation and, correspondingly, biomass production in C3 crops. Here, the benefits of three published photorespiratory bypass strategies are systemically explored using a systems-modeling approach. Our analysis shows that full decarboxylation of glycolate during photorespiration would decrease photosynthesis, because a large amount of the released CO2 escapes back to the atmosphere. Furthermore, we show that photosynthesis can be enhanced by lowering the energy demands of photorespiration and by relocating photorespiratory CO2 release into the chloroplasts. The conductance of the chloroplast membranes to CO2 is a key feature determining the benefit of the relocation of photorespiratory CO2 release. Although our results indicate that the benefit of photorespiratory bypasses can be improved by increasing sedoheptulose bisphosphatase activity and/or increasing the flux through the bypass, the effectiveness of such approaches depends on the complex regulation between photorespiration and other metabolic pathways.
Collapse
Affiliation(s)
- Chang-Peng Xin
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Danny Tholen
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Vincent Devloo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Xin-Guang Zhu
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| |
Collapse
|
19
|
von Caemmerer S, Tazoe Y, Evans JR, Whitney SM. Exploiting transplastomically modified Rubisco to rapidly measure natural diversity in its carbon isotope discrimination using tuneable diode laser spectroscopy. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3759-67. [PMID: 24687980 PMCID: PMC4085952 DOI: 10.1093/jxb/eru036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carbon isotope discrimination (Δ) during C3 photosynthesis is dominated by the fractionation occurring during CO2-fixation by the enzyme Rubisco. While knowing the fractionation by enzymes is pivotal to fully understanding plant carbon metabolism, little is known about variation in the discrimination factor of Rubisco (b) as it is difficult to measure using existing in vitro methodologies. Tuneable diode laser absorption spectroscopy has improved the ability to make rapid measurements of Δ concurrently with photosynthetic gas exchange. This study used this technique to estimate b in vivo in five tobacco (Nicotiana tabacum L. cv Petit Havana [N,N]) genotypes expressing alternative Rubisco isoforms. For transplastomic tobacco producing Rhodospirillum rubrum Rubisco b was 23.8±0.7‰, while Rubisco containing the large subunit Leu-335-Val mutation had a b-value of 13.9±0.7‰. These values were significantly less than that for Rubisco from wild-type tobacco (b=29‰), a C3 species. Transplastomic tobacco producing chimeric Rubisco comprising tobacco Rubisco small subunits and the catalytic large subunits from either the C4 species Flaveria bidentis or the C3-C4 species Flaveria floridana had b-values of 27.8±0.8 and 28.6±0.6‰, respectively. These values were not significantly different from tobacco Rubisco.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| | - Youshi Tazoe
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| | - John R Evans
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
20
|
O’Donnelly K, Zhao G, Patel P, Butt MS, Mak LH, Kretschmer S, Woscholski R, Barter LMC. Isolation and kinetic characterisation of hydrophobically distinct populations of form I Rubisco. PLANT METHODS 2014; 10:17. [PMID: 24987448 PMCID: PMC4076768 DOI: 10.1186/1746-4811-10-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) is a Calvin Cycle enzyme involved in CO2 assimilation. It is thought to be a major cause of photosynthetic inefficiency, suffering from both a slow catalytic rate and lack of specificity due to a competing reaction with oxygen. Revealing and understanding the engineering rules that dictate Rubisco's activity could have a significant impact on photosynthetic efficiency and crop yield. RESULTS This paper describes the purification and characterisation of a number of hydrophobically distinct populations of Rubisco from both Spinacia oleracea and Brassica oleracea extracts. The populations were obtained using a novel and rapid purification protocol that employs hydrophobic interaction chromatography (HIC) as a form I Rubisco enrichment procedure, resulting in distinct Rubisco populations of expected enzymatic activities, high purities and integrity. CONCLUSIONS We demonstrate here that HIC can be employed to isolate form I Rubisco with purities and activities comparable to those obtained via ion exchange chromatography (IEC). Interestingly, and in contrast to other published purification methods, HIC resulted in the isolation of a number of hydrophobically distinct Rubisco populations. Our findings reveal a so far unaccounted diversity in the hydrophobic properties within form 1 Rubisco. By employing HIC to isolate and characterise Spinacia oleracea and Brassica oleracea, we show that the presence of these distinct Rubisco populations is not species specific, and we report for the first time the kinetic properties of Rubisco from Brassica oleracea extracts. These observations may aid future studies concerning Rubisco's structural and functional properties.
Collapse
Affiliation(s)
- Kerry O’Donnelly
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Guangyuan Zhao
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Priya Patel
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - M Salman Butt
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Lok Hang Mak
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Simon Kretschmer
- Department of Chemistry, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Rudiger Woscholski
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Laura M C Barter
- Institute of Chemical Biology, Department of Chemistry, Imperial College, Flowers Building, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
21
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
22
|
Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci U S A 2011; 108:14688-93. [PMID: 21849620 PMCID: PMC3167554 DOI: 10.1073/pnas.1109503108] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Improving global yields of important agricultural crops is a complex challenge. Enhancing yield and resource use by engineering improvements to photosynthetic carbon assimilation is one potential solution. During the last 40 million years C(4) photosynthesis has evolved multiple times, enabling plants to evade the catalytic inadequacies of the CO(2)-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). Compared with their C(3) ancestors, C(4) plants combine a faster rubisco with a biochemical CO(2)-concentrating mechanism, enabling more efficient use of water and nitrogen and enhanced yield. Here we show the versatility of plastome manipulation in tobacco for identifying sequences in C(4)-rubisco that can be transplanted into C(3)-rubisco to improve carboxylation rate (V(C)). Using transplastomic tobacco lines expressing native and mutated rubisco large subunits (L-subunits) from Flaveria pringlei (C(3)), Flaveria floridana (C(3)-C(4)), and Flaveria bidentis (C(4)), we reveal that Met-309-Ile substitutions in the L-subunit act as a catalytic switch between C(4) ((309)Ile; faster V(C), lower CO(2) affinity) and C(3) ((309)Met; slower V(C), higher CO(2) affinity) catalysis. Application of this transplastomic system permits further identification of other structural solutions selected by nature that can increase rubisco V(C) in C(3) crops. Coengineering a catalytically faster C(3) rubisco and a CO(2)-concentrating mechanism within C(3) crop species could enhance their efficiency in resource use and yield.
Collapse
Affiliation(s)
- Spencer M Whitney
- Research School of Biology, Australian National University, Canberra ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Raines CA. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. PLANT PHYSIOLOGY 2011; 155:36-42. [PMID: 21071599 PMCID: PMC3075778 DOI: 10.1104/pp.110.168559] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/07/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Christine A Raines
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.
| |
Collapse
|
24
|
Genkov T, Meyer M, Griffiths H, Spreitzer RJ. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas. J Biol Chem 2010; 285:19833-41. [PMID: 20424165 PMCID: PMC2888394 DOI: 10.1074/jbc.m110.124230] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/23/2010] [Indexed: 11/06/2022] Open
Abstract
There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO(2) fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclear genes encodes the Rubisco small subunits, which can also influence the carboxylation catalytic efficiency and CO(2)/O(2) specificity of the enzyme. To further define the role of the small subunit in Rubisco function, small subunits from spinach, Arabidopsis, and sunflower were assembled with algal large subunits by transformation of a Chlamydomonas reinhardtii mutant that lacks the rbcS gene family. Foreign rbcS cDNAs were successfully expressed in Chlamydomonas by fusing them to a Chlamydomonas rbcS transit peptide sequence engineered to contain rbcS introns. Although plant Rubisco generally has greater CO(2)/O(2) specificity but a lower carboxylation V(max) than Chlamydomonas Rubisco, the hybrid enzymes have 3-11% increases in CO(2)/O(2) specificity and retain near normal V(max) values. Thus, small subunits may make a significant contribution to the overall catalytic performance of Rubisco. Despite having normal amounts of catalytically proficient Rubisco, the hybrid mutant strains display reduced levels of photosynthetic growth and lack chloroplast pyrenoids. It appears that small subunits contain the structural elements responsible for targeting Rubisco to the algal pyrenoid, which is the site where CO(2) is concentrated for optimal photosynthesis.
Collapse
Affiliation(s)
- Todor Genkov
- From the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 and
| | - Moritz Meyer
- the Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Howard Griffiths
- the Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Robert J. Spreitzer
- From the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 and
| |
Collapse
|
25
|
|
26
|
Zhu XG, Long SP, Ort DR. Improving photosynthetic efficiency for greater yield. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:235-61. [PMID: 20192734 DOI: 10.1146/annurev-arplant-042809-112206] [Citation(s) in RCA: 888] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO(2) concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China.
| | | | | |
Collapse
|
27
|
Whitney SM, Kane HJ, Houtz RL, Sharwood RE. Rubisco oligomers composed of linked small and large subunits assemble in tobacco plastids and have higher affinities for CO2 and O2. PLANT PHYSIOLOGY 2009; 149:1887-95. [PMID: 19233903 PMCID: PMC2663749 DOI: 10.1104/pp.109.135210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 02/15/2009] [Indexed: 05/19/2023]
Abstract
Manipulation of Rubisco within higher plants is complicated by the different genomic locations of the large (L; rbcL) and small (S; RbcS) subunit genes. Although rbcL can be accurately modified by plastome transformation, directed genetic manipulation of the multiple nuclear-encoded RbcS genes is more challenging. Here we demonstrate the viability of linking the S and L subunits of tobacco (Nicotiana tabacum) Rubisco using a flexible 40-amino acid tether. By replacing the rbcL in tobacco plastids with an artificial gene coding for a S40L fusion peptide, we found that the fusions readily assemble into catalytic (S40L)8 and (S40L)16 oligomers that are devoid of unlinked S subunits. While there was little or no change in CO2/O2 specificity or carboxylation rate of the Rubisco oligomers, their Kms for CO2 and O2 were reduced 10% to 20% and 45%, respectively. In young maturing leaves of the plastome transformants (called ANtS40L), the S40L-Rubisco levels were approximately 20% that of wild-type controls despite turnover of the S40L-Rubisco oligomers being only slightly enhanced relative to wild type. The reduced Rubisco content in ANtS40L leaves is partly attributed to problems with folding and assembly of the S40L peptides in tobacco plastids that relegate approximately 30% to 50% of the S40L pool to the insoluble protein fraction. Leaf CO2-assimilation rates in ANtS40L at varying pCO2 corresponded with the kinetics and reduced content of the Rubisco oligomers. This fusion strategy provides a novel platform to begin simultaneously engineering Rubisco L and S subunits in tobacco plastids.
Collapse
Affiliation(s)
- Spencer Michael Whitney
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | |
Collapse
|
28
|
Zhu XG, Long SP. Can Increase in Rubisco Specificity Increase Carbon Gain by Whole Canopy? A Modeling Analysis. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
29
|
Peterhansel C, Niessen M, Kebeish RM. Metabolic Engineering Towards the Enhancement of Photosynthesis†. Photochem Photobiol 2008; 84:1317-23. [DOI: 10.1111/j.1751-1097.2008.00427.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Mueller-Cajar O, Whitney SM. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. PHOTOSYNTHESIS RESEARCH 2008; 98:667-75. [PMID: 18626786 PMCID: PMC2758363 DOI: 10.1007/s11120-008-9324-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/26/2008] [Indexed: 05/18/2023]
Abstract
During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure-function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO(2)-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, Australian Capital Territory 2601 Australia
- Department of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Spencer M. Whitney
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, Australian Capital Territory 2601 Australia
| |
Collapse
|
31
|
Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem J 2008; 414:205-14. [DOI: 10.1042/bj20080668] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The photosynthetic CO2-fixing enzyme Rubisco [ribulose-P2 (D-ribulose-1,5-bisphosphate) carboxylase/oxygenase] has long been a target for engineering kinetic improvements. Towards this goal we used an RDE (Rubisco-dependent Escherichia coli) selection system to evolve Synechococcus PCC6301 Form I Rubisco under different selection pressures. In the fastest growing colonies, the Rubisco L (large) subunit substitutions I174V, Q212L, M262T, F345L or F345I were repeatedly selected and shown to increase functional Rubisco expression 4- to 7-fold in the RDE and 5- to 17-fold when expressed in XL1-Blue E. coli. Introducing the F345I L-subunit substitution into Synechococcus PCC7002 Rubisco improved its functional expression 11-fold in XL1-Blue cells but could not elicit functional Arabidopsis Rubisco expression in the bacterium. The L subunit substitutions L161M and M169L were complementary in improving Rubisco yield 11-fold, whereas individually they improved yield ∼5-fold. In XL1-Blue cells, additional GroE chaperonin enhanced expression of the I174V, Q212L and M262T mutant Rubiscos but engendered little change in the yield of the more assembly-competent F345I or F345L mutants. In contrast, the Rubisco chaperone RbcX stimulated functional assembly of wild-type and mutant Rubiscos. The kinetic properties of the mutated Rubiscos varied with noticeable reductions in carboxylation and oxygenation efficiency accompanying the Q212L mutation and a 2-fold increase in Kribulose-P2 (KM for the substrate ribulose-P2) for the F345L mutant, which was contrary to the ∼30% reductions in Kribulose-P2 for the other mutants. These results confirm the RDE systems versatility for identifying mutations that improve functional Rubisco expression in E. coli and provide an impetus for developing the system to screen for kinetic improvements.
Collapse
|
32
|
Whitney SM, Sharwood RE. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1909-21. [PMID: 18250079 DOI: 10.1093/jxb/erm311] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inability to assemble Rubisco from any photosynthetic eukaryote within Escherichia coli has hampered structure-function studies of higher plant Rubisco. Precise genetic manipulation of the tobacco chloroplast genome (plastome) by homologous recombination has facilitated the successful production of transplastomic lines that have either mutated the Rubisco large subunit (L) gene, rbcL, or replaced it with foreign variants. Here the capacity of a new tobacco transplastomic line, (cm)trL, to augment future Rubisco engineering studies is demonstrated. Initially the rbcL was replaced with the selectable marker gene, aadA, and an artificial codon-modified (cm)rbcM gene that codes for the structurally novel Rubisco dimer (L(2), approximately 100 kDa) from Rhodosprillum rubrum. To obtain (cm)trL, the aadA was excised by transiently introducing a T-DNA encoding CRE recombinase biolistically. Selection using aadA enabled transplantation of mutated and wild-type tobacco Rubisco genes into the (cm)trL plastome with an efficiency that was 3- to 10-fold higher than comparable transformations into wild-type tobacco. Transformants producing the re-introduced form I tobacco Rubisco variants (hexadecamers comprising eight L and eight small subunits, approximately 520 kDa) were identified by non-denaturing PAGE with fully segregated homoplasmic lines (where no L(2) Rubisco was produced) obtained within 6-9 weeks after transformation which enabled their Rubisco kinetics to be quickly examined. Here the usefulness of (cm)trL in more readily examining the production, folding, and assembly capabilities of both mutated tobacco and foreign form I Rubisco subunits in tobacco plastids is discussed, and the feasibility of quickly assessing the kinetic properties of those that functionally assemble is demonstrated.
Collapse
Affiliation(s)
- Spencer M Whitney
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | |
Collapse
|
33
|
Sharwood RE, von Caemmerer S, Maliga P, Whitney SM. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. PLANT PHYSIOLOGY 2008; 146:83-96. [PMID: 17993544 PMCID: PMC2230571 DOI: 10.1104/pp.107.109058] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/01/2007] [Indexed: 05/18/2023]
Abstract
Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.
Collapse
Affiliation(s)
- Robert Edward Sharwood
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
34
|
Mueller-Cajar O, Morell M, Whitney SM. Directed evolution of rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Biochemistry 2007; 46:14067-74. [PMID: 18004873 DOI: 10.1021/bi700820a] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) occupies a critical position in photosynthetic CO2-fixation and consequently has been the focus of intense study. Crystal-structure-guided site-directed mutagenesis studies have met with limited success in engineering kinetic improvements to Rubisco, highlighting our inadequate understanding of structural constraints at the atomic level that dictate the enzyme's catalytic chemistry. Bioselection provides an alternative random mutagenic approach that is useful for identifying and elucidating imperceptible structure-function relationships. Using the dimeric Form II Rubisco from Rhodospirillum rubrum, its gene (rbcM) was randomly mutated and introduced under positive selection into Escherichia coli cells metabolically engineered to be dependent on Rubisco to detoxify its substrate ribulose 1,5-bisphosphate. Thirteen colonies displaying improved fitness were isolated, and all were found to harbor mutations in rbcM at one of two codons, histidine-44 or aspartate-117, that are structurally adjacent amino acids located about 10 A from the active site. Biochemical characterization of the mutant enzymes showed the mutations reduced their CO2/O2 specificity by 40% and decreased their carboxylation turnover rate by 20-40%. Structural analyses showed histidine-44 and aspartate-117 form a hydrogen bond in R. rubrum Rubisco and that the residues are conserved among other Form II Rubiscos. This study demonstrated the utility of directed evolution in E. coli for identifying catalytically relevant residues (in particular nonobvious residues disconnected from active site residues) and their potential molecular interactions that influence Rubisco's catalytic chemistry.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, Australian Capital Territory 2601, Australia
| | | | | |
Collapse
|
35
|
Greene D, Whitney S, Matsumura I. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J 2007; 404:517-24. [PMID: 17391103 PMCID: PMC1896282 DOI: 10.1042/bj20070071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photosynthetic CO2-fixing enzyme, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), is responsible for most of the world's biomass, but is a slow non-specific catalyst. We seek to identify and overcome the chemical and biological constraints that limit the evolutionary potential of Rubisco in Nature. Recently, the horizontal transfer of Calvin cycle genes (rbcL, rbcS and prkA) from cyanobacteria (Synechococcus PCC6301) to gamma-proteobacteria (Escherichia coli) was emulated in the laboratory. Three unique Rubisco variants containing single (M259T) and double (M259T/A8S, M259T/F342S) amino acid substitutions in the L (large) subunit were identified after three rounds of random mutagenesis and selection in E. coli. Here we show that the M259T mutation did not increase steady-state levels of rbcL mRNA or L protein. It instead improved the yield of properly folded L subunit in E. coli 4-9-fold by decreasing its natural propensity to misfold in vivo and/or by enhancing its interaction with the GroES-GroEL chaperonins. The addition of osmolites to the growth media enhanced productive folding of the M259T L subunit relative to the wild-type L subunit, while overexpression of the trigger factor and DnaK/DnaJ/GrpE chaperones impeded Rubisco assembly. The evolved enzymes showed improvement in their kinetic properties with the M259T variant showing a 12% increase in carboxylation turnover rate (k(c)cat), a 15% improvement in its K(M) for CO2 and no change in its K(M) for ribulose-1,5-bisphosphate or its CO2/O2 selectivity. The results of the present study show that the directed evolution of the Synechococcus Rubisco in E. coli can elicit improvements in folding and catalytic efficiency.
Collapse
Affiliation(s)
- Dina N. Greene
- *Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, U.S.A
| | - Spencer M. Whitney
- †Molecular Plant Physiology, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Ichiro Matsumura
- *Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|