1
|
Kang W, Choi D, Roh J, Jung Y, Ha Y, Yang S, Park T. The Role of Cyclic Adenosine Monophosphate (cAMP) in Modulating Glucocorticoid Receptor Signaling and Its Implications on Glucocorticoid-Related Collagen Loss. Int J Mol Sci 2023; 24:10180. [PMID: 37373328 DOI: 10.3390/ijms241210180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glucocorticoid receptors (GRs) play a pivotal role in the stress response of the body, but overactivation can disrupt normal physiological functions. This study explores the role of cyclic adenosine monophosphate (cAMP) in GR activation and the associated mechanisms. We initially used the human embryonic kidney 293 cell line (HEK293) and found that cAMP enhancement, using forskolin and 3-isobutyl-1-methylxanthine (IBMX), did not alter glucocorticoid signaling under normal conditions, as evidenced by glucocorticoid response element (GRE) activity and the translocation of GR. However, in stressful conditions induced by dexamethasone, a synthetic glucocorticoid, cAMP was found to lessen glucocorticoid signaling within a short time frame but amplify it over an extended period in HEK293 cells. Bioinformatic analysis revealed that cAMP upregulation triggers the extracellular signal-regulated kinase (ERK) pathway, which influences GR translocation and ultimately regulates its activity. This stress-modulating function of cAMP was also investigated in the Hs68 dermal fibroblast line, known for its susceptibility to glucocorticoids. We found that cAMP enhancement via forskolin reduces GRE activity and reverses collagen loss in Hs68 cells exposed to dexamethasone. These findings underline the context-specific role of cAMP signaling in managing glucocorticoid signaling and its potential therapeutic application in treating stress-related pathological conditions like skin aging characterized by collagen reduction.
Collapse
Affiliation(s)
- Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jiyun Roh
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Yearim Jung
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Yoojeong Ha
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Suhjin Yang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
2
|
Kamalumpundi V, Shams E, Tucker C, Cheng L, Peterson J, Thangavel S, Ofori O, Correia M. Mechanisms and pharmacotherapy of hypertension associated with type 2 diabetes. Biochem Pharmacol 2022; 206:115304. [DOI: 10.1016/j.bcp.2022.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
|
3
|
Li S, Luo Z, Meng S, Qiu X, Zheng F, Dai W, Zhang X, Sui W, Yan Q, Tang D, Dai Y. Label-free quantitative proteomic and phosphoproteomic analyses of renal biopsy tissues in membranous nephropathy. Proteomics Clin Appl 2021; 16:e2000069. [PMID: 34543527 DOI: 10.1002/prca.202000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. However, the underlying mechanisms of its occurrence and development are not completely clear. Thus, it is essential to explore the mechanisms. EXPERIMENTAL DESIGN Here, we employed label-free quantification and liquid chromatography-tandem mass spectrometry analysis techniques to investigate the proteomic and phosphoproteomic alterations in renal biopsy tissues of MN patients. Samples were collected from 16 MN patients and 10 controls. Immunohistochemistry (IHC) was performed to validate the hub phosphoprotein. RESULTS We focused on the changes in the phosphoproteome in MN group versus control group (CG). Totally, 1704 phosphoproteins containing 3241 phosphosites were identified and quantified. The phosphorylation levels of 216 phosphoproteins containing 297 phosphosites were differentially regulated in stage II MN group versus CG, and 333 phosphoproteins containing 461 phosphosites were differentially phosphorylated in stage III MN group versus CG. In each comparison, several differential phosphoproteins were factors, kinases and receptors involved in cellular processes, biological regulation and other biological processes. The subcellular location of most of the differential phosphoproteins was the nucleus. Protein-protein interaction analysis showed that the connections among the differential phosphoproteins were extremely complex, and several signalling pathways probably associated with MN were identified. The hub phosphoprotein was validated by IHC. CONCLUSIONS AND CLINICAL RELEVANCE This investigation can provide direct insight into the global phosphorylation events in MN group versus CG and may help to shed light on the potential pathogenic mechanisms of MN.
Collapse
Affiliation(s)
- Shanshan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifeng Luo
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Shuhui Meng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofen Qiu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, Texas, USA
| | - Xinzhou Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
4
|
microRNA-29b prevents renal fibrosis by attenuating renal tubular epithelial cell-mesenchymal transition through targeting the PI3K/AKT pathway. Int Urol Nephrol 2021; 53:1941-1950. [PMID: 33742315 PMCID: PMC8380229 DOI: 10.1007/s11255-021-02836-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/06/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aimed to investigate the effects of miR-29b on renal interstitial fibrosis in the obstructed kidney of mouse with unilateral ureteral obstruction (UUO) via inhibiting phosphatidylinositol 3-kinase/protein kinaseB (PI3K/AKT) signaling pathway. METHODS Adult male CD-1 mice were intraperitoneally injected with vehicle or PI3K inhibitor LY294002 (3 mg/kg, 30 mg/kg) daily for 1 or 2 weeks after performing UUO or sham operation. The mice were sacrificed on days 7 and 14 after surgery. The rat proximal tubular epithelial cell (TEC) line NRK-52E was cultured in DMEM and treated with various concentrations angiotensin II (AngII). Obstructed and sham mouse kidneys were analyzed via HE, Masson and immunohistochemistry to assess the degree of renal fibrosis. Real-time quantitative polymerase chain reaction assays (RT-PCR) were performed to investigate changes in the levels of expression of miR-29b and Western blot was used to analyze the activation of PI3K/AKT signaling and expression of E-cadherin, α-smooth muscle actin (α-SMA). RESULTS Histologic analyses of obstructed kidney revealed that LY294002 attenuated the degree of renal fibrosis. In this study, loss of miR-29b accompanied with increased epithelial-mesenchymal transition (EMT) was observed in renal tubules of mice after UUO and cultured NRK-52E cells exposed to AngII. LY294002 also prominently decreased phosphorylation of AKT in vivo and vitro. By RT-PCR and Western blot analysis, LY294002 blocked the PI3K/AKT-induced loss of E-cadherin expression and de novo increase of the expression of α-SMA in a time- and dose-dependent manner. The overexpression of miR-29b markedly reversed the phenotype induced by AngII in NRK-52E cells and the downregulation miR-29b expression with an miR-29b inhibitor resulted in enhanced EMT. In addition, the PI3K/AKT signaling pathway was found to be suppressed in the presence of overexpression of miR-29b by direct hybridization with 3'-untranslated region (3'-UTR) of PIK3R2. CONCLUSION Our findings suggested that miR-29b significantly prevented tubulointerstitial injury in mouse model of UUO by attenuating renal tubular epithelial cell-mesenchymal transition via repressing PI3K/AKT signaling pathway.
Collapse
|
5
|
Yano N, Zhang L, Wei D, Dubielecka PM, Wei L, Zhuang S, Zhu P, Qin G, Liu PY, Chin YE, Zhao TC. Irisin counteracts high glucose and fatty acid-induced cytotoxicity by preserving the AMPK-insulin receptor signaling axis in C2C12 myoblasts. Am J Physiol Endocrinol Metab 2020; 318:E791-E805. [PMID: 32182124 PMCID: PMC7272726 DOI: 10.1152/ajpendo.00219.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Irisin, a newly identified myokine, is critical to modulating body metabolism and biological homeostasis. However, whether irisin protects the skeletal muscles against metabolic stresses remains unknown. In this study, we determine the effect of irisin on high glucose and fatty acid-induced damages using irisin-overexpressed mouse C2C12 (irisin-C2C12) myoblasts and skeletal muscle from irisin-injected mice. Compared with empty vector-transfected control C2C12 cells, irisin overexpression resulted in a marked increase in cell viability and decrease in apoptosis under high-glucose stress. Progression of the cell cycle into the G2/M phase in the proliferative condition was also observed with irisin overexpression. Furthermore, glucose uptake, glycogen accumulation, and phosphorylation of AMPKα/insulin receptor (IR) β-subunit/Erk1/2 in response to insulin stimulation were enhanced by irisin overexpression. In irisin-C2C12 myoblasts, these responses of phosphorylation were preserved under palmitate treatment, which induced insulin resistance in the control cells. These effects of irisin were reversed by inhibiting AMPK with compound C. In addition, high glucose-induced suppression of the mitochondrial membrane potential was also prevented by irisin. Moreover, suppression of IR in irisin-C2C12 myoblasts by cotransfection of shRNA against IR also mitigated the effects of irisin while not affecting AMPKα phosphorylation. As an in vivo study, soleus muscles from irisin-injected mice showed elevated phosphorylation of AMPKα and Erk1/2 and glycogen contents. Our results indicate that irisin counteracts the stresses generated by high glucose and fatty acid levels and irisin overexpression serves as a novel approach to elicit cellular protection. Furthermore, AMPK activation is a crucial factor that regulates insulin action as a downstream target.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Ling Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Dennis Wei
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul Y Liu
- Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
6
|
Arise KK, Kumar P, Garg R, Samivel R, Zhao H, Pandya K, Nguyen C, Lindsey S, Pandey KN. Angiotensin II represses Npr1 expression and receptor function by recruitment of transcription factors CREB and HSF-4a and activation of HDACs. Sci Rep 2020; 10:4337. [PMID: 32152395 PMCID: PMC7062852 DOI: 10.1038/s41598-020-61041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
The two vasoactive hormones, angiotensin II (ANG II; vasoconstrictive) and atrial natriuretic peptide (ANP; vasodilatory) antagonize the biological actions of each other. ANP acting through natriuretic peptide receptor-A (NPRA) lowers blood pressure and blood volume. We tested hypothesis that ANG II plays critical roles in the transcriptional repression of Npr1 (encoding NPRA) and receptor function. ANG II significantly decreased NPRA mRNA and protein levels and cGMP accumulation in cultured mesangial cells and attenuated ANP-mediated relaxation of aortic rings ex vivo. The transcription factors, cAMP-response element-binding protein (CREB) and heat-shock factor-4a (HSF-4a) facilitated the ANG II-mediated repressive effects on Npr1 transcription. Tyrosine kinase (TK) inhibitor, genistein and phosphatidylinositol 3-kinase (PI-3K) inhibitor, wortmannin reversed the ANG II-dependent repression of Npr1 transcription and receptor function. ANG II enhanced the activities of Class I histone deacetylases (HDACs 1/2), thereby decreased histone acetylation of H3K9/14ac and H4K8ac. The repressive effect of ANG II on Npr1 transcription and receptor signaling seems to be transduced by TK and PI-3K pathways and modulated by CREB, HSF-4a, HDACs, and modified histones. The current findings suggest that ANG II-mediated repressive mechanisms of Npr1 transcription and receptor function may provide new molecular targets for treatment and prevention of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Kiran K Arise
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Ramachandran Samivel
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Hanqing Zhao
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Krishna Pandya
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Christian Nguyen
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Sarah Lindsey
- Department of Pharmacology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Li S, Li W, Wu R, Yin R, Sargsyan D, Raskin I, Kong AN. Epigenome and transcriptome study of moringa isothiocyanate in mouse kidney mesangial cells induced by high glucose, a potential model for diabetic-induced nephropathy. AAPS JOURNAL 2019; 22:8. [PMID: 31807911 DOI: 10.1208/s12248-019-0393-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
Moringa isothiocyanate (MIC-1) is a bioactive constituent found abundantly in Moringa oleifera which possesses antioxidant and anti-inflammation properties. However, epigenome and transcriptome effects of MIC-1 in kidney mesangial cells challenged with high glucose (HG), a pre-condition for diabetic nephropathy (DN) remain unknown. Herein, we examined the transcriptome gene expression and epigenome DNA methylation in mouse kidney mesangial cells (MES13) using next-generation sequencing (NGS) technology. After HG treatment, epigenome and transcriptome were significantly altered. More importantly, MIC-1 exposure reversed some of the changes caused by HG. Integrative analysis of RNA-Seq data identified 20 canonical pathways showing inverse correlations between HG and MIC-1. These pathways included GNRH signaling, P2Y purigenic receptor signaling pathway, calcium signaling, LPS/IL-1-mediated inhibition of RXR function, and oxidative ethanol degradation III. In terms of alteration of DNA methylation patterns, 173 differentially methylation regions (DMRs) between the HG group and low glucose (LG) group and 149 DMRs between the MIC-1 group and the HG group were found. Several HG related DMRs could be reversed by MIC-1 treatment. Integrative analysis of RNA-Seq and Methyl-Seq data yielded a subset of genes associated with HG and MIC-1, and the gene expression changes may be driven by promoter CpG status. These genes include Col4a2, Tceal3, Ret, and Agt. In summary, our study provides novel insights related to transcriptomic and epigenomic/CpG methylomic alterations in MES13 upon challenged by HG but importantly, MIC-1 treatment reverses some of the transcriptome and epigenome/CpG methylome. These results may provide potential molecular targets and therapeutic strategies for DN.
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ilya Raskin
- Department of Plant Biology & Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
8
|
Effect of mycophenolate and rapamycin on renal fibrosis in lupus nephritis. Clin Sci (Lond) 2019; 133:1721-1744. [DOI: 10.1042/cs20190536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
Abstract
Lupus nephritis (LN) leads to chronic kidney disease (CKD) through progressive fibrosis. Mycophenolate inhibits inosine monophosphate dehydrogenase and is a standard treatment for LN. The mammalian or mechanistic target of rapamycin (mTOR) pathway is activated in LN. Rapamycin inhibits mTOR and is effective in preventing kidney transplant rejection, with the additional merits of reduced incidence of malignancies and viral infections. The effect of mycophenolate or rapamycin on kidney fibrosis in LN has not been investigated. We investigated the effects of mycophenolate and rapamycin in New Zealand Black and White first generation (NZB/W F1) murine LN and human mesangial cells (HMCs), focusing on mechanisms leading to kidney fibrosis. Treatment of mice with mycophenolate or rapamycin improved nephritis manifestations, decreased anti-double stranded (ds) DNA antibody titer and reduced immunoglobulin G (IgG) deposition in the kidney. Both mycophenolate and rapamycin, especially the latter, decreased glomerular mTOR Ser2448 phosphorylation. Renal histology in untreated mice showed mesangial proliferation and progressive glomerulosclerosis with tubular atrophy, and increased expression of transforming growth factor β1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1), α-smooth muscle actin (α-SMA), fibronectin (FN) and collagen. Both mycophenolate and rapamycin ameliorated the histopathological changes. Results from in vitro experiments showed that both mycophenolate and rapamycin decreased mesangial cell proliferation and their binding with anti-dsDNA antibodies. Mycophenolate and rapamycin also down-regulated mTOR and extracellular signal-regulated kinase (ERK) phosphorylation and inhibited fibrotic responses in mesangial cells that were induced by anti-dsDNA antibodies or TGF-β1. Our findings suggest that, in addition to immunosuppression, mycophenolate and rapamycin may reduce fibrosis in LN, which has important implications in preventing CKD in patients with LN.
Collapse
|
9
|
A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:49-79. [PMID: 31399961 DOI: 10.1007/978-981-13-8871-2_4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is a common kidney disease in people with diabetes, which is also a serious microvascular complication of diabetes and the main cause of end-stage renal disease (ESRD) in developed and developing countries. Renal fibrosis is a finally pathological change in DN. Nevertheless, the relevant mechanism of cause to renal fibrosis in DN is still complex. In this review, we summarized that the role of cell growth factors, epithelial-mesenchymal transition (EMT) in the renal fibrosis of DN, we also highlighted the miRNA and inflammatory cells, such as macrophage, T lymphocyte, and mastocyte modulate the progression of DN. In addition, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules, such as Notch, Wnt, mTOR, Epac-Rap-1 pathway, may play a pivotal role in the modulation of ECM accumulation and renal fibrosis in DN. This review aims to elucidate the mechanism of renal fibrosis in DN and has provided new insights into possible therapeutic interventions to inhibit renal fibrosis and delay the development of DN.
Collapse
|
10
|
Zhou D, Ota K, Nardin C, Feldman M, Widman A, Wind O, Simon A, Reilly M, Levin LR, Buck J, Wakamatsu K, Ito S, Zippin JH. Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH. Sci Signal 2018; 11:11/555/eaau7987. [PMID: 30401788 DOI: 10.1126/scisignal.aau7987] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The production of melanin increases skin pigmentation and reduces the risk of skin cancer. Melanin production depends on the pH of melanosomes, which are more acidic in lighter-skinned than in darker-skinned people. We showed that inhibition of soluble adenylyl cyclase (sAC) controlled pigmentation by increasing the pH of melanosomes both in cells and in vivo. Distinct from the canonical melanocortin 1 receptor (MC1R)-dependent cAMP pathway that controls pigmentation by altering gene expression, we found that inhibition of sAC increased pigmentation by increasing the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis, which is more active at basic pH. We demonstrated that the effect of sAC activity on pH and melanin production in human melanocytes depended on the skin color of the donor. Last, we identified sAC inhibitors as a new class of drugs that increase melanosome pH and pigmentation in vivo, suggesting that pharmacologic inhibition of this pathway may affect skin cancer risk or pigmentation conditions.
Collapse
Affiliation(s)
- Dalee Zhou
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Koji Ota
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charlee Nardin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.,Service de Dermatologie, Centre Hospitalier Universitaire, Besançon 25030, France
| | - Michelle Feldman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Adam Widman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Olivia Wind
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Michael Reilly
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
11
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
12
|
Hu H, Hu S, Xu S, Gao Y, Zeng F, Shui H. miR-29b regulates Ang II-induced EMT of rat renal tubular epithelial cells via targeting PI3K/AKT signaling pathway. Int J Mol Med 2018; 42:453-460. [PMID: 29568897 DOI: 10.3892/ijmm.2018.3579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Renal interstitial fibrosis is a necessary step in the progression of chronic kidney to end stage renal disease. MicroRNA-29 (miR-29) has been shown to play essential roles in epithelial-mesenchymal transition (EMT), and thus may contribute to the regulation of renal interstitial fibrosis. However, the role of miR-29 in the regulation of EMT during chronic kidney disease and renal transplantation has been a source of intense debate, and the mechanisms underlying this process are incompletely understood. In this study, we investigated the function of miR-29b in the regulation of EMT and to gain a better understanding of the mechanism by which miR-29b modulates EMT by targeting the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway during the process of renal interstitial fibrosis. The rat proximal tubular epithelial cell line NRK-52E was cultured in DMEM and treated with angiotensin II (Ang II) at various concentrations. RT-PCR was performed to investigate changes in the levels of expression of miR-29b in NRK-52E cells and western blotting was used to analyze the expression of PI3K, p-AKT, vimentin and keratin 18. The result of the study show that treatment of NRK-52E cells with Ang II induced the transition of the cellular phenotype from epithelial to mesenchymal and upregulated the PI3K/AKT signaling pathway; this was also found following treatment with a phosphatase and tensin homolog on chromosome 10 (PTEN)-specific inhibitor. Increased expression of miR-29b was able to reverse the phenotype induced by Ang II in NRK-52E cells and blocking miR-29b activity with an miR-29b inhibitor resulted in enhanced EMT. Additionally, the PI3K/AKT signaling pathway was found to be suppressed in the presence of enhanced expression of miR-29b by direct binding to 3'-untranslated region (3'-UTR) of PIK3R2. We concluded that miR-29b plays an important role in the negative regulation of Ang II-induced EMT via PI3K/AKT signaling pathway and propose that enhancing miR-29b level or blocking PI3K/AKT signaling pathway may be a novel therapeutic target in renal interstitial fibrosis.
Collapse
Affiliation(s)
- Hongtao Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shuang Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shen Xu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yue Gao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Zeng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
13
|
Chen Y, Peng FF, Jin J, Chen HM, Yu H, Zhang BF. Src-mediated ligand release-independent EGFR transactivation involves TGF-β-induced Smad3 activation in mesangial cells. Biochem Biophys Res Commun 2017; 493:914-920. [PMID: 28943431 DOI: 10.1016/j.bbrc.2017.09.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022]
Abstract
A great deal of evidence highlighted the pathophysiologic importance of TGF-β1/Smad3 pathway in masangial extracellular matrix (ECM) accumulation, but some alternative signaling pathways are also involved. TGF-β was shown recently to induce rapid and transient epidermal-like growth factor receptor (EGFR) transactivation and subsequent fibronectin expression via heparin-binding epidermal-like growth factors (HB-EGF) release and binding in mesangial cells, which is independent of Smad2 activation. However, whether TGF-β could induce persistent EGFR transactivation remains to be identified. The present study demonstrates that in addition to transient EGFR transactivation, TGF-β1 can also induce continuous EGFR transactivation by a non-ligand-dependent pathway in rat mesangial cells. This sustained EGFR transactivation is mainly due to Src kinase-mediated persistent EGFR tyrosine phosphorylation at Y845 rather than Y1173. TGF-β1-induced early Smad3 phosphorylation is independent of transient EGFR transactivation and ERK1/2 activation initiated by HB-EGF release, whereas Src-mediated chronic EGFR transactivation and ERK1/2 activation participate in Smad3 activation in a relatively modest and delayed manner. Therefore, the present study further clarifies the mechanisms of EGFR transactivation in the TGF-β-initiated ECM upregulation and raises the possibility that targeting EGFR may provide a viable alternative strategy for inhibiting TGF-β in chronic kidney disease.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, PR China
| | - Fang-Fang Peng
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, PR China
| | - Jing Jin
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, PR China
| | - Hong-Min Chen
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, PR China
| | - Hong Yu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, PR China
| | - Bai-Fang Zhang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, PR China.
| |
Collapse
|
14
|
Zhang J, Yang J, Huang T, Shu Y, Chen L. Identification of novel proliferative diabetic retinopathy related genes on protein–protein interaction network. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.09.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Muta K, Morgan DA, Grobe JL, Sigmund CD, Rahmouni K. mTORC1 Signaling Contributes to Drinking But Not Blood Pressure Responses to Brain Angiotensin II. Endocrinology 2016; 157:3140-8. [PMID: 27254006 PMCID: PMC4967111 DOI: 10.1210/en.2016-1243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a molecular node that couples extracellular cues to a wide range of cellular events controlling various physiological processes. Here, we identified mTORC1 signaling as a critical mediator of angiotensin II (Ang II) action in the brain. In neuronal GT1-7 cells, we show that Ang II stimulates neuronal mTORC1 signaling in an Ang II type 1 receptor-dependent manner. In mice, a single intracerebroventricular (ICV) injection or chronic sc infusion of Ang II activated mTORC1 signaling in the subfornical organ, a critical brain region in cardiovascular control and fluid balance. Moreover, transgenic sRA mice with brain-specific overproduction of Ang II displayed increased mTORC1 signaling in the subfornical organ. To test the functional role of brain mTORC1 in mediating the action of Ang II, we examined the consequence of mTORC1 inhibition with rapamycin on Ang II-induced increase in water intake and arterial pressure. ICV pretreatment with rapamycin blocked ICV Ang II-mediated increases in the frequency, duration, and amount of water intake but did not interfere with the pressor response evoked by Ang II. In addition, ICV delivery of rapamycin significantly reduced polydipsia, but not hypertension, of sRA mice. These results demonstrate that mTORC1 is a novel downstream pathway of Ang II type 1 receptor signaling in the brain and selectively mediates the effect of Ang II on drinking behavior.
Collapse
Affiliation(s)
- Kenjiro Muta
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Donald A Morgan
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Justin L Grobe
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Kamal Rahmouni
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
16
|
Shariati B, Thompson EL, Nicol GD, Vasko MR. Epac activation sensitizes rat sensory neurons through activation of Ras. Mol Cell Neurosci 2015; 70:54-67. [PMID: 26596174 DOI: 10.1016/j.mcn.2015.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 10/24/2022] Open
Abstract
Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization.
Collapse
Affiliation(s)
- Behzad Shariati
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric L Thompson
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Grant D Nicol
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS One 2014; 9:e104888. [PMID: 25127116 PMCID: PMC4134245 DOI: 10.1371/journal.pone.0104888] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/18/2014] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (Dox) is one of the most widely used antitumor drugs, but its cumulative cardiotoxicity have been major concerns in cancer therapeutic practice for decades. Recent studies established that metformin (Met), an oral anti-diabetic drug, provides protective effects in Dox-induced cardiotoxicity. Met has been shown to increase fatty acid oxidation, an effect mediated by AMP activated protein kinase (AMPK). Here we delineate the intracellular signaling factors involved in Met mediated protection against Dox-induced cardiotoxicity in the H9c2 cardiomyoblast cell line. Treatment with low dose Met (0.1 mM) increased cell viabilities and Ki-67 expressions while decreasing LDH leakages, ROS generations and [Ca2+]i. The protective effect was reversed by a co-treatment with compound-C, an AMPK specific inhibitor, or by an over expression of a dominant-negative AMPKα cDNA. Inhibition of PKA with H89 or a suppression of Src kinase by a small hairpin siRNA also abrogated the protective effect of the low dose Met. Whereas, with a higher dose of Met (1.0 mM), the protective effects were abolished regardless of the enhanced AMPK, PKA/CREB1 and Src kinase activity. In high dose Met treated cells, expression of platelet-derived growth factor receptor (PDGFR) was significantly suppressed. Furthermore, the protective effect of low dose Met was totally reversed by co-treatment with AG1296, a PDGFR specific antagonist. These data provide in vitro evidence supporting a signaling cascade by which low dose Met exerts protective effects against Dox via sequential involvement of AMPK, PKA/CREB1, Src and PDGFR. Whereas high dose Met reverses the effect by suppressing PDGFR expression.
Collapse
Affiliation(s)
- Laura C. Kobashigawa
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Yan Chun Xu
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - James F. Padbury
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Yi-Tang Tseng
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail: (YT); (NY)
| | - Naohiro Yano
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail: (YT); (NY)
| |
Collapse
|
18
|
Perez-Aso M, Fernandez P, Mediero A, Chan ES, Cronstein BN. Adenosine 2A receptor promotes collagen production by human fibroblasts via pathways involving cyclic AMP and AKT but independent of Smad2/3. FASEB J 2013; 28:802-12. [PMID: 24200882 DOI: 10.1096/fj.13-241646] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activation of adenosine A2A receptor (A2AR) promotes fibrosis and collagen synthesis. However, the underlying mechanism is still unclear, not least because cAMP, its principal effector, has been found to inhibit TGFβ1-induced collagen synthesis. Here, we show that in primary normal human dermal fibroblasts, A2AR stimulation with CGS21680 elicits a modest cAMP increase (150 ± 12% of control; EC50 54.8 nM), which stimulates collagen1 (Col1) and collagen3 (Col3), but maximal cAMP resulting from direct activation of adenylyl cyclase by forskolin (15,689 ± 7038% of control; EC50 360.7 nM) inhibits Col1 and increases Col3. Similar to Col1 expression, fibroblast proliferation increased following physiological cAMP increases by CGS21680 but was inhibited by cAMP increases beyond the physiological range by forskolin. The A2AR-mediated increase of Col1 and Col3 was mediated by AKT, while Col3, but not Col1, expression was dependent on p38 and repressed by ERK. TGFβ1 induced phosphorylation of Smad2/3 and increased Col3 expression, which was prevented by Smad3 depletion. In contrast, CGS21680 did not activate Smad2/3, and Smad2/3 knockdown did not prevent CGS21680-induced Col1 or Col3 increases. Our results indicate that cAMP is a concentration-dependent switch for collagen production via noncanonical, AKT-dependent, Smad2/3-independent signaling. These observations explain the paradoxical effects of cAMP on collagen expression.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- 1Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
19
|
Taniguchi K, Xia L, Goldberg HJ, Lee KW, Shah A, Stavar L, Masson EA, Momen A, Shikatani EA, John R, Husain M, Fantus IG. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 2013; 62:3874-86. [PMID: 23942551 PMCID: PMC3806624 DOI: 10.2337/db12-1010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic exposure to high glucose leads to diabetic nephropathy characterized by increased mesangial matrix protein (e.g., collagen) accumulation. Altered cell signaling and gene expression accompanied by oxidative stress have been documented. The contribution of the tyrosine kinase, c-Src (Src), which is sensitive to oxidative stress, was examined. Cultured rat mesangial cells were exposed to high glucose (25 mmol/L) in the presence and absence of Src inhibitors (PP2, SU6656), Src small interfering RNA (siRNA), and the tumor necrosis factor-α-converting enzyme (TACE) inhibitor, TAPI-2. Src was investigated in vivo by administration of PP2 to streptozotocin (STZ)-induced diabetic DBA2/J mice. High glucose stimulated Src, TACE, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2, p38), and collagen IV accumulation in mesangial cells. PP2 and SU6656 blocked high glucose-stimulated phosphorylation of Src Tyr-416, EGFR, and MAPKs. These inhibitors and Src knockdown by siRNA, as well as TAPI-2, also abrogated high glucose-induced phosphorylation of these targets and collagen IV accumulation. In STZ-diabetic mice, albuminuria, increased Src pTyr-416, TACE activation, ERK and EGFR phosphorylation, glomerular collagen accumulation, and podocyte loss were inhibited by PP2. These data indicate a role for Src in a high glucose-Src-TACE-heparin-binding epidermal growth factor-EGFR-MAPK-signaling pathway to collagen accumulation. Thus, Src may provide a novel therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Kanta Taniguchi
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ling Xia
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Howard J. Goldberg
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ken W.K. Lee
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anu Shah
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Laura Stavar
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Elodie A.Y. Masson
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Abdul Momen
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - Eric A. Shikatani
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mansoor Husain
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - I. George Fantus
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: I. George Fantus,
| |
Collapse
|
20
|
Angiotensin II induces endothelin-1 expression in human hepatic stellate cells. Dig Dis Sci 2013; 58:2542-9. [PMID: 23625292 DOI: 10.1007/s10620-013-2685-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Both angiotensin (Ang)-II and endothelin-1 (ET-1) are involved in the pathogenesis of liver fibrosis. Activated hepatic stellate cells (HSCs) are considered a key effector of liver fibrosis. AIMS To explore the effect of Ang-II on ET-1 expression in cultured human HSCs and the underlying mechanisms. METHODS Human HSCs were treated with Ang-II in different concentrations (0.1, 0.5, 1, 5, or 10 nM) for different lengths of time (0.5, 1, 2, 4, or 6 h) with or without transcription inhibitor actinomycin D, Ang-II type 1 (AT1) receptor blocker losartan, AT2 receptor blocker PD123177, or different kinase inhibitors. RESULTS Ang-II increased the ET-1 mRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the ET-1 protein level. Actinomycin D (1 mg/ml), losartan (50 μM), and phosphatidylinositol-3 kinase inhibitor LY294002 (50 μM) abolished the promoting effect of Ang-II on ET-1 expression. Ang-II (10 nM) significantly increased the expression of α-smooth muscle actin and type I collagen in HSCs, which was abolished by losartan, LY294002, ET A receptor blocker BQ123, and ET-1 siRNA, but not PD123177 and ET B receptor blocker BQ788. CONCLUSIONS Ang-II induces ET-1 expression in human HSCs via the AT1 receptor by the PI3 K/Akt signaling pathway. The ET-1/ET A receptor axis could mediate the promoting effects of Ang-II on HSCs' transdifferentiation into myofibroblast-like cells. This is the first evidence of crosstalk between the Ang-II/AT1 axis and the ET-1 system in regard to the pathogenesis of liver fibrosis.
Collapse
|
21
|
Perez-Aso M, Mediero A, Cronstein BN. Adenosine A2A receptor (A2AR) is a fine-tune regulator of the collagen1:collagen3 balance. Purinergic Signal 2013; 9:573-83. [PMID: 23749290 DOI: 10.1007/s11302-013-9368-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/15/2013] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a potent endogenous anti-inflammatory and immunosuppressive metabolite that is a potent modulator of tissue repair. However, the adenosine A2A receptor (A2AR)-mediated promotion of collagen synthesis is detrimental in settings such as scarring and scleroderma. The signaling cascade from A2AR stimulation to increased collagen production is complex and obscure, not least because cAMP and its downstream molecules PKA and Epac1 have been reported to inhibit collagen production. We therefore examined A2AR-stimulated signaling for collagen production by normal human dermal fibroblasts (NHDF). Collagen1 (Col1) and collagen3 (Col3) content after A2AR activation by CGS21680 was studied by western blotting. Contribution of PKA and Epac was analyzed by the PKA inhibitor PKI and by knockdowns of the PKA-Cα, -Cβ, -Cγ, Epac1, and Epac2. CGS21680 stimulates Col1 expression at significantly lower concentrations than those required to stimulate Col3 expression. A2AR stimulates Col1 expression by a PKA-dependent mechanism since PKA inhibition or PKA-Cα and -Cβ knockdown prevents A2AR-mediated Col1 increase. In contrast, A2AR represses Col3 via PKA but stimulates both Col1 and Col3 via an Epac2-dependent mechanism. A2AR stimulation with CGS21680 at 0.1 μM increased Col3 expression only upon PKA blockade. A2AR activation downstream signaling for Col1 and Col3 expression proceeds via two distinct pathways with varying sensitivity to cAMP activation; more highly cAMP-sensitive PKA activation stimulates Col1 expression, and less cAMP-sensitive Epac activation promotes both Col1 and Col3 expression. These observations may explain the dramatic change in Col1:Col3 ratio in hypertrophic and immature scars, where adenosine is present in higher concentrations than in normal skin.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, MSB 255, New York, NY, 10016, USA,
| | | | | |
Collapse
|
22
|
Tariq M, Masoud MS, Mehmood A, Khan SN, Riazuddin S. Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats. J Transl Med 2013; 11:115. [PMID: 23648189 PMCID: PMC3660237 DOI: 10.1186/1479-5876-11-115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/02/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetes mellitus is affecting more than 300 million people worldwide. Current treatment strategies cannot prevent secondary complications. Stem cells due to their regenerative power have long been the attractive target for the cell-based therapies. Mesenchymal stem cells (MSCs) possess the ability to differentiate into several cell types and to escape immune recognition in vitro. MSCs can be differentiated into insulin-producing cells (IPCs) and could be an exciting therapy for diabetes but problems like poor engraftment and survivability need to be confronted. It was hypothesized that stromal cell derived factor- 1alpha (SDF-1alpha) will enhance therapeutic potential of stem cell derived IPCs by increasing their survival and proliferation rate. METHODS Novel culture conditions were developed to differentiate bone marrow derived mesenchymal stem cells (BMSCs) into IPCs by using endocrine differentiation inducers and growth factors via a three stage protocol. In order to enhance their therapeutic potential, we preconditioned IPCs with SDF-1alpha. RESULTS Our results showed that SDF-1alpha increases survival and proliferation of IPCs and protects them from glucotoxicity under high glucose conditions in vitro. SDF-1alpha also enhances the glucose responsive insulin secretion in IPCs in vitro. SDF-1alpha preconditioning reverses hyperglycemia and increase serum insulin in drug induced diabetic rats. CONCLUSIONS The differentiation of BMSCs into IPCs and enhancement of their therapeutic potential by SDF-1alpha preconditioning may contribute to cell based therapies for diabetes.
Collapse
Affiliation(s)
- Muhammad Tariq
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Current Affiliation: Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, AK, Pakistan
| | - Muhammad Sharif Masoud
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Current Affiliation: Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
23
|
Yang SK, Xiao L, Li J, Liu F, Sun L, Kanwar YS. Role of guanine-nucleotide exchange factor Epac in renal physiology and pathophysiology. Am J Physiol Renal Physiol 2013; 304:F831-9. [PMID: 23364803 PMCID: PMC3625846 DOI: 10.1152/ajprenal.00711.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
Exchange proteins directly activated by cAMP [Epac(s)] were discovered more than a decade ago as new sensors for the second messenger cAMP. The Epac family members, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2, and they function independently of protein kinase A. Given the importance of cAMP in kidney homeostasis, several molecular and cellular studies using specific Epac agonists have analyzed the role and regulation of Epac proteins in renal physiology and pathophysiology. The specificity of the functions of Epac proteins may depend upon their expression and localization in the kidney as well as their abundance in the microcellular environment. This review discusses recent literature data concerning the involvement of Epac in renal tubular transport physiology and renal glomerular cells where various signaling pathways are known to be operative. In addition, the potential role of Epac in kidney disorders, such as diabetic kidney disease and ischemic kidney injury, is discussed.
Collapse
Affiliation(s)
- Shi-kun Yang
- Department of Nephrology, The Second Xiangya Hospital, Kidney Institute of Nephrology, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
24
|
Karimian G, Buist-Homan M, Mikus B, Henning RH, Faber KN, Moshage H. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis. PLoS One 2012; 7:e52647. [PMID: 23300732 PMCID: PMC3530435 DOI: 10.1371/journal.pone.0052647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (AT-II) is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R) and thereby activates hepatic stellate cells (HSCs). AT-II receptor blockers (ARBs) are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-1R blockers may induce hepatocyte injury. Therefore, we investigated the effect of AT-II and its receptor blockers on cytokine-, oxidative stress- and bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to TNF-α/Actinomycin D, the ROS-generating agent menadione or the bile salts: glycochenodeoxycholic acid (GCDCA) and tauro-lithocholic acid-3 sulfate (TLCS), to induce apoptosis. AT-II (100 nmol/L) was added 10 minutes prior to the cell death-inducing agent. AT-1R antagonists (Sartans) and the AT-2R antagonist PD123319 were used at 1 µmol/L. Apoptosis (caspase-3 activity, acridine orange staining) and necrosis (Sytox green staining) were quantified. Expression of CHOP (marker for ER stress) and AT-II receptor mRNAs were quantified by Q-PCR. AT-II dose-dependently reduced GCDCA-induced apoptosis of hepatocytes (−50%, p<0.05) without inducing necrosis. In addition, AT-II reduced TLCS-induced apoptosis of hepatocytes (−50%, p<0.05). However, AT-II did not suppress TNF/Act-D and menadione-induced apoptosis. Only the AT-1R antagonists abolished the protective effect of AT-II against GCDCA-induced apoptosis. AT-II increased phosphorylation of ERK and a significant reversal of the protective effect of AT-II was observed when signaling kinases, including ERK, were inhibited. Moreover, AT-II prevented the GCDCA-induced expression of CHOP (the marker of the ER-mediated apoptosis).
Collapse
Affiliation(s)
- Golnar Karimian
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Yu J, Taylor L, Rich C, Toselli P, Stone P, Green D, Warburton R, Hill N, Goldstein R, Polgar P. Transgenic expression of an altered angiotensin type I AT1 receptor resulting in marked modulation of vascular type I collagen. J Cell Physiol 2012; 227:2013-21. [PMID: 21751211 DOI: 10.1002/jcp.22929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The angiotensin II (AngII) type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle cells (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by Western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in AngII responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not AngII activated, while in the aSMCs from wild-type (WT) mice the cascade was AngII activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G-protein linked signaling remained unaltered in response to AngII. Akt and PI3K activation inhibitors blocked AngII-stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/mTOR/p70S6K regulation of collagen production by AngII with participation of Smad2 and Stat3 cascades in this process.
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hua P, Feng W, Rezonzew G, Chumley P, Jaimes EA. The transcription factor ETS-1 regulates angiotensin II-stimulated fibronectin production in mesangial cells. Am J Physiol Renal Physiol 2012; 302:F1418-29. [PMID: 22357921 DOI: 10.1152/ajprenal.00477.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.
Collapse
Affiliation(s)
- Ping Hua
- Division of Nephrology, University of Alabama at Birmingham, 1530 3rd Ave. South, Birmingham, AL 35294-1150, USA
| | | | | | | | | |
Collapse
|
27
|
Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab 2012; 302:E201-8. [PMID: 22028412 PMCID: PMC3340897 DOI: 10.1152/ajpendo.00497.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Elevated tissue levels of angiotensin II (ANG II) are associated with impairment of insulin actions in metabolic and cardiovascular tissues. ANG II-stimulated activation of mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K) in cardiovascular tissues is implicated in cardiac hypertrophy and vascular remodeling. However, the role of ANG II-stimulated mTOR/p70S6K in vascular endothelium is poorly understood. In the present study, we observed that ANG II stimulated p70S6K in bovine aortic endothelial cells. ANG II increased phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser(636/639) and inhibited the insulin-stimulated phosphorylation of endothelial nitric oxide synthase (eNOS). An inhibitor of mTOR, rapamycin, attenuated the ANG II-stimulated phosphorylation of p70S6K and phosphorylation of IRS-1 (Ser(636/639)) and blocked the ability of ANG II to impair insulin-stimulated phosphorylation of eNOS, nitric oxide production, and mesenteric-arteriole vasodilation. Moreover, point mutations of IRS-1 at Ser(636/639) to Ala prevented the ANG II-mediated inhibition of insulin signaling. From these results, we conclude that activation of mTOR/p70S6K by ANG II in vascular endothelium may contribute to impairment of insulin-stimulated vasodilation through phosphorylation of IRS-1 at Ser(636/639). This ANG II-mediated impairment of vascular actions of insulin may help explain the role of ANG II as a link between insulin resistance and hypertension.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Universityof Alabama at Birmingham Comprehensive Diabetes Center, AL 35294, USA.
| | | | | | | |
Collapse
|
28
|
Alvin ZV, Laurence GG, Coleman BR, Zhao A, Hajj-Moussa M, Haddad GE. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes. Med Sci Monit 2011; 17:BR165-72. [PMID: 21709626 PMCID: PMC3539556 DOI: 10.12659/msm.881843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Material/Methods Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Results Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10−6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Conclusions Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.
Collapse
Affiliation(s)
- Zikiar V Alvin
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
29
|
Banes-Berceli AKL, Al-Azawi H, Proctor D, Qu H, Femminineo D, Hill-Pyror C, Webb RC, Brands MW. Angiotensin II utilizes Janus kinase 2 in hypertension, but not in the physiological control of blood pressure, during low-salt intake. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1169-76. [PMID: 21813872 PMCID: PMC3197339 DOI: 10.1152/ajpregu.00071.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/18/2011] [Indexed: 11/22/2022]
Abstract
Janus kinase (JAK) 2 is activated by ANG II in vitro and in vivo, and chronic blockade of JAK2 by the JAK2 inhibitor AG-490 has been shown recently to attenuate ANG II hypertension in mice. In this study, AG-490 was infused intravenously in chronically instrumented rats to determine if the blunted hypertension was linked to attenuation of the renal actions of ANG II. In male Sprague-Dawley rats, after a control period, ANG II at 10 ng·kg(-1)·min(-1) was infused intravenously with or without AG-490 at 10 ng·kg(-1)·min(-1) iv for 11 days. ANG II infusion (18 h/day) increased mean arterial pressure from 91 ± 3 to 168 ± 7 mmHg by day 11. That response was attenuated significantly in the ANG II + AG-490 group, with mean arterial pressure increasing only from 92 ± 5 to 127 ± 3 mmHg. ANG II infusion markedly decreased urinary sodium excretion, caused a rapid and sustained decrease in glomerular filtration rate to ∼60% of control, and increased renal JAK2 phosphorylation; all these responses were blocked by AG-490. However, chronic AG-490 treatment had no effect on the ability of a separate group of normal rats to maintain normal blood pressure when they were switched rapidly to a low-sodium diet, whereas blood pressure fell dramatically in losartan-treated rats on a low-sodium diet. These data suggest that activation of the JAK/STAT pathway is critical for the development of ANG II-induced hypertension by mediating its effects on renal sodium excretory capability, but the physiological control of blood pressure by ANG II with a low-salt diet does not require JAK2 activation.
Collapse
|
30
|
Tilley DG. Functional relevance of biased signaling at the angiotensin II type 1 receptor. Endocr Metab Immune Disord Drug Targets 2011; 11:99-111. [PMID: 21476968 DOI: 10.2174/187153011795564133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/07/2011] [Indexed: 01/04/2023]
Abstract
Angiotensin II type 1 receptor antagonists (AT1R blockers, or ARBs) are used commonly in the treatment of cardiovascular disorders such as heart failure and hypertension. Their clinical success arises from their ability to prevent deleterious Gα(q) protein activation downstream of AT1R, which leads to a decrease in morbidity and mortality. Recent studies have identified AT1R ligands that concurrently inhibit Gα(q) protein-dependent signaling and activate Gα(q) protein-independent/β-arrestin-dependent signaling downstream of AT1R, events that may actually improve cardiovascular performance more than conventional ARBs. The ability of such ligands to induce intracellular signaling events in an AT1R-β-arrestin-dependent manner while preventing AT1R-Gα(q) protein activity defines them as biased AT1R ligands. This mini-review will highlight recent studies that have defined biased signaling at the AT1R and discuss the possible clinical relevance of β-arrestin-biased AT1R ligands in the cardiovascular system.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA 1917, USA.
| |
Collapse
|
31
|
Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. Cell Signal 2011; 23:1257-66. [DOI: 10.1016/j.cellsig.2011.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 12/14/2022]
|
32
|
Johnston A, Ponzetti K, Anwer MS, Webster CRL. cAMP-guanine exchange factor protection from bile acid-induced hepatocyte apoptosis involves glycogen synthase kinase regulation of c-Jun NH2-terminal kinase. Am J Physiol Gastrointest Liver Physiol 2011; 301:G385-400. [PMID: 21546580 PMCID: PMC3280825 DOI: 10.1152/ajpgi.00430.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 05/01/2011] [Indexed: 01/31/2023]
Abstract
Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3'-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH(2)-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.
Collapse
Affiliation(s)
| | | | - M. S. Anwer
- Biomedical Science, Tufts Cummings School of Veterinary Medicine, Grafton, Massachusetts
| | | |
Collapse
|
33
|
Bu L, Qu S, Gao X, Zou JJ, Tang W, Sun LL, Liu ZM. Enhanced angiotensin-converting enzyme 2 attenuates angiotensin II-induced collagen production via AT1 receptor-phosphoinositide 3-kinase-Akt pathway. Endocrine 2011; 39:139-47. [PMID: 21188549 DOI: 10.1007/s12020-010-9435-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/25/2010] [Indexed: 01/29/2023]
Abstract
Recent reports support a protective role for angiotensin-converting enzyme 2 (ACE2) against glomerular diseases, especially by decreasing of extracellular matrix (ECM) proteins. However, the mechanism regulating this effect appears to be complex and poorly understood. Our aim was to investigate whether or not ACE2 ameliorates the profibrotic effects of Ang II-mediated, Akt-dependent pathways in the mouse mesangial cell line, MES-13.Gene transfer of ACE2 suppressed Ang II-activated Akt-phosphorylation, accompanied by a decreased level of collagen type I in cells. In addition, Ang II-induced collagen type I synthesis in MES-13s by activating the Ang II/AT-1R-PI3K pathway. This transactivation was dependent on cAMP/Epac but not on PKA. TGF-βRI played a pivotal role in this signaling pathway inducing collagen deposition effects which could be reversed by ACE2 gene transfer in MES-13 cells. The results revealed that gene transfer of ACE2 regulated Ang II-mediated AT1R-TGFβRI-PI3K-Akt signaling and involved the synthesis of collagen. The beneficial effect of ACE2 overexpression appeared to result mainly from blocking phosphorylation of Akt in mesangial cells, suggesting that the ACE2 gene might be a novel therapeutic target for glomerular diseases.
Collapse
Affiliation(s)
- Le Bu
- Department of Endocrinology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Uttarwar L, Peng F, Wu D, Kumar S, Gao B, Ingram AJ, Krepinsky JC. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells. Am J Physiol Renal Physiol 2011; 300:F921-31. [PMID: 21289053 DOI: 10.1152/ajprenal.00436.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- L Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Grandoch M, Roscioni SS, Schmidt M. The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol 2009; 159:265-84. [PMID: 19912228 DOI: 10.1111/j.1476-5381.2009.00458.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic degenerative inflammatory diseases, such as chronic obstructive pulmonary disease and Alzheimer's dementia, afflict millions of people around the world, causing death and debilitation. Despite the global impact of these diseases, there have been few innovative breakthroughs into their cause, treatment or cure. As with many debilitating disorders, chronic degenerative inflammatory diseases may be associated with defective or dysfunctional responses to second messengers, such as cyclic adenosinemonophosphate (cAMP). The identification of the cAMP-activated guanine nucleotide exchange factors for Ras-like GTPases, Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II), profoundly altered the prevailing assumptions concerning cAMP signalling, which until then had been solely associated with protein kinase A (PKA). Studies of the molecular mechanisms of Epac-related signalling have demonstrated that these novel cAMP sensors regulate many physiological processes either alone and/or in concert with PKA. These include calcium handling, cardiac and smooth muscle contraction, learning and memory, cell proliferation and differentiation, apoptosis, and inflammation. The diverse signalling properties of cAMP might be explained by spatio-temporal compartmentalization, as well as A-kinase anchoring proteins, which seem to coordinate Epac signalling networks. Future research should focus on the Epac-regulated dynamics of cAMP, and, hopefully, the development of compounds that specifically interfere with the Epac signalling system in order to determine the precise significance of Epac proteins in chronic degenerative inflammatory disorders.
Collapse
Affiliation(s)
- Maria Grandoch
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | | | | |
Collapse
|
36
|
High ambient glucose induces angiotensin-independent AT-1 receptor activation, leading to increases in proliferation and extracellular matrix accumulation in MES-13 mesangial cells. Biochem J 2009; 423:129-43. [DOI: 10.1042/bj20082277] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy is associated with mesangial ECM (extracellular matrix) accumulation. We have shown that AT-1R [Ang II (angiotensin II) type I receptor] signalling induces ECM proteins via transactivation of PI3K (phosphoinositide 3-kinase) in mesangial cells. In the present study, we examined the mechanisms underlying the effect of high ambient glucose on cell proliferation and ECM expansion in a mesangial context. High glucose induced increases in PI3K activity, proliferation and ECM accumulation in mesangial cells. These effects were abrogated by losartan, an AT-1R antagonist, but not by [Sar1,Thr8]-Ang II (Sar is sarcosine), an inactive analogue of Ang II, or by a neutralizing antibody against Ang I/II. Overexpression of a constitutively active PI3Kα or AT-1R alone was sufficient to induce similar changes by high glucose. In contrast, overexpression of an inactive AT-1R lowered the basal levels and rendered the cells non-responsive to high glucose. Moreover, cells overexpressing wild-type AT-1R had enhanced sensitivity to acute Ang II stimulation. These cells, however, did not respond to conditioned medium obtained from mesangial cells cultured in high glucose. We further demonstrated that iAng (intracellular Ang II) can be induced by high glucose but only under certain conditions. Efficient suppression of iAng by short hairpin RNA against angiotensinogen, however, did not affect high glucose-induced effects on MES-13 cells. These results suggest that high ambient glucose induces activation of AT-1R in an Ang II-independent manner to transactivate PI3K, resulting in proliferation and ECM accumulation in mesangial cells.
Collapse
|
37
|
Berna MJ, Tapia JA, Sancho V, Thill M, Pace A, Hoffmann KM, Gonzalez-Fernandez L, Jensen RT. Gastrointestinal growth factors and hormones have divergent effects on Akt activation. Cell Signal 2009; 21:622-638. [PMID: 19166928 PMCID: PMC2677382 DOI: 10.1016/j.cellsig.2009.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/16/2008] [Accepted: 01/02/2009] [Indexed: 12/11/2022]
Abstract
Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigated in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters [CCK, bombesin, carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations (pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations (nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory effects can be seen, which are mediated by different mechanisms.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
- Universitätsklinikum Eppendorf, Medizinische Klinik I, 20246 Hamburg, Germany
| | - Jose A. Tapia
- Departamento de Fisiologia, Universidad de Extremadura, Cáceres 10071, Spain
| | - Veronica Sancho
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Michelle Thill
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Universitätsklinikum Eppendorf, Klinik und Poliklinik für Augenheilkunde, 20246 Hamburg, Germany
| | - Andrea Pace
- Universitätsklinikum Eppendorf, Medizinische Klinik I, 20246 Hamburg, Germany
| | - K. Martin Hoffmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 30, A-8036 Graz, Austria
| | | | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
38
|
Gates A, Hohenester S, Anwer MS, Webster CRL. cAMP-GEF cytoprotection by Src tyrosine kinase activation of phosphoinositide-3-kinase p110 beta/alpha in rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 2009; 296:G764-74. [PMID: 19196950 PMCID: PMC2670669 DOI: 10.1152/ajpgi.90622.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclic AMP protects against hepatocyte apoptosis by a protein kinase A-independent cAMP-GEF/phosphoinositide-3-kinase (PI3K)/Akt signaling pathway. However, the signaling pathway coupling cAMP-GEF with PI3K is unknown. The aim of this study was to investigate the role of Src tyrosine kinases (Src-TYK) and PI3K-p110 isoforms in this pathway. Studies were done in rat hepatocytes using the hydrophobic bile acid glycochenodeoxycholic acid (GCDC) to induce apoptosis. cAMP-binding guanine nucleotide exchange factors (cAMP-GEFs) were selectively activated by using 4-(4-chloro-phenylthio)-2'-O-methyladenosine-3'-5'-cyclic monophosphate (CPT-2-Me-cAMP), which sequentially phosphorylated Src-TYK (within 1 min) followed by Akt (within 5 min). The Src inhibitors PP2 and SU6656 inhibited basal and CPT-2-Me-cAMP-mediated Src and Akt phosphorylation. These inhibitors had no effect on CPT-2-Me-cAMP-mediated activation of Rap GTPases. CPT-2-Me-cAMP induced transient Src dependent autophosphorylation of the epidermal growth factor receptor (EGFR). Inhibition of the EGFR with AG 1478 partially inhibited the ability of CPT-2-Me to phosphorylate Akt. Whereas PP2 completely abolished the protective effect of CPT-2-Me-cAMP in GCDC induced apoptosis, AG 1478 partially inhibited the cytoprotective effect. CPT-2-Me-cAMP treatment resulted in Src-dependent activation of the p110 beta and alpha subunits of PI3K, but only the latter was sensitive to inhibition with AG 1478. In conclusion, activation of cAMP-GEFs results in phosphorylation of Src-TYK and Akt and activation of the p110 beta/alpha subunits of PI3K. Maximal cAMP-GEF-mediated Akt phosphorylation as well as protection from bile acid-induced apoptosis requires activation of Src-TYK and the EGFR. These studies support the existence of two pathways: cAMP-GEF/Rap/Src/PI3Kbeta/Akt and cAMP-GEF/Rap/Src/EGFR/PI3Kalpha/Akt, both of which are necessary for maximal cytoprotective effect of cAMP-GEFs in hepatocytes.
Collapse
Affiliation(s)
- Anna Gates
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Simon Hohenester
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Cynthia R. L. Webster
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
39
|
Yano N, Suzuki D, Endoh M, Tseng A, Stabila JP, McGonnigal BG, Zhao TC, Padbury JF, Tseng YT. Beta-adrenergic receptor mediated protection against doxorubicin-induced apoptosis in cardiomyocytes: the impact of high ambient glucose. Endocrinology 2008; 149:6449-61. [PMID: 18719028 PMCID: PMC2613054 DOI: 10.1210/en.2008-0292] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have demonstrated that the beta2-adrenergic receptor (beta2AR)-Galphai signaling pathway exerts a cardiac antiapoptotic effect. The goals of this study were to determine the intracellular signaling factors involved in beta2AR-mediated protection against doxorubicin-induced apoptosis in H9c2 cardiomyocyte and explore the impact of high ambient glucose on the antiapoptotic effect. Under physiological glucose environment (100 mg/dl), beta2AR stimulation prevented doxorubicin-induced apoptosis, which was attenuated by cotreatment with wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, or transfection of a dominant-negative Akt. Inhibition of Src kinase with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d] pyrimidine or cSrc small interfering RNA 32 also attenuated the antiapoptotic effect. Inhibition of platelet-derived growth factor receptor (PDGFR) with AG1296 reversed the beta2AR-induced antiapoptotic effect. Transfection of an active Src cDNA (Y529F) alone was sufficient to render the cells resistant to apoptosis, and the resistance was blocked by wortmannin. Transfection of an active PI3K minigene (iSH2-p110) alone also induced resistance to apoptosis, and the resistance was reversed by an Akt-inhibitor but not by AG1296. High ambient glucose (450 mg/dl) caused two major effects: 1) it significantly reduced betaAR-induced PDGFR phosphorylation, Src kinase activity, and activation of PI3K signaling pathway; and 2) it partially attenuated beta2AR-induced antiapoptotic effect. These data provide in vitro evidence supporting a signaling cascade by which beta2AR exerts a protective effect against doxorubicin-induced apoptosis via sequential involvement of Galphai, Gbetagamma, Src, PDGFR, PI3K, and Akt. High ambient glucose significantly attenuates beta2AR-mediated cardioprotection by suppressing factors involved in this cascade including PDGFR, Src, and PI3K/Akt.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Pediatrics, Women and Infant's Hospital, 101 Dudley Street, Kilguss 122, Providence, Rhode Island 02905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Block K, Eid A, Griendling KK, Lee DY, Wittrant Y, Gorin Y. Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: role in mesangial cell hypertrophy and fibronectin expression. J Biol Chem 2008; 283:24061-76. [PMID: 18559349 DOI: 10.1074/jbc.m803964200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to hypertrophy and extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces an increase in PDK-1 (3-phosphoinositide-dependent protein kinase-1) kinase activity that required its phosphorylation on tyrosine 9 and 373/376. Introduction into the cells of PDK-1, mutated on these tyrosine residues or kinase-inactive, attenuates Ang II-induced hypertrophy and fibronectin accumulation. Ang II-mediated PDK-1 activation and tyrosine phosphorylation (total and on residues 9 and 373/376) are inhibited in cells transfected with small interfering RNA for Src, indicating that Src is upstream of PDK-1. In cells expressing oxidation-resistant Src mutant C487A, Ang II-induced hypertrophy and fibronectin expression are prevented, suggesting that the pathway is redox-sensitive. Ang II also up-regulates Nox4 protein, and siNox4 abrogates the Ang II-induced increase in intracellular reactive oxygen species (ROS) generation. Small interfering RNA for Nox4 also inhibits Ang II-induced activation of Src and PDK-1 tyrosine phosphorylation (total and on residues 9 and 373/376), demonstrating that Nox4 functions upstream of Src and PDK-1. Importantly, inhibition of Nox4, Src, or PDK-1 prevents the stimulatory effect of Ang II on fibronectin accumulation and cell hypertrophy. This work provides the first evidence that Nox4-derived ROS are responsible for Ang II-induced PDK-1 tyrosine phosphorylation and activation through stimulation of Src. Importantly, this pathway contributes to Ang II-induced MC hypertrophy and fibronectin accumulation. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Karen Block
- Department of Medicine, University of Texas Health Science Center, 7723 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
41
|
Li Y, Konings IBM, Zhao J, Price LS, de Heer E, Deen PMT. Renal expression of exchange protein directly activated by cAMP (Epac) 1 and 2. Am J Physiol Renal Physiol 2008; 295:F525-33. [PMID: 18495799 DOI: 10.1152/ajprenal.00448.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the kidney, many physiological processes of ion transport and cellular proliferation are mediated via cAMP, which classically activates protein kinase A (PKA). Recently, however, two new cAMP targets, the exchange protein directly activated by cAMP (Epac) 1 and 2, were identified, which mediate alternative pathways to PKA. To investigate their renal expression, antibodies specifically recognizing Epac1 and Epac2 were generated and used in rat immunohistochemistry with antibodies recognizing aquaporin-1 (AQP1), Tamm-Horsfall protein, Calbindin-D(28K), and AQP2 to mark proximal tubules (PT)/thin descending limbs of Henle's loop (tDLH), thick ascending limbs of Henle's loop (TAL), distal convoluted tubule/connecting tubule (DCT/CNT), and the collecting duct (CD) principal cells, respectively. Epac1 and Epac2 were expressed at the brush border of PT cells but were absent from tDLH cells. In the TAL, Epac1 and Epac2 were expressed throughout the cells with some confinement toward the apical membrane. In the DCT/CNT, Epac1 was confined to the apical region of the cells, whereas Epac2 was mainly expressed in the apical and basolateral regions. In the CD, a dispersed Epac1 expression was found in intercalated cells only (cortical CD), principal and intercalated cells [outer medullary CD (OMCD)], and mainly AQP2-negative cells in the inner medullary CD (IMCD). In contrast, Epac2 expression was at the apical and basolateral membrane of cortical principal cells, dispersed and apical in the OMCD, and in all cells of the IMCD. A similar distribution for Epac1/2 was found in the human kidney. The observed expression in different tubular segments suggests a major role for Epac 1/2 in tubular transport physiology and cellular proliferation.
Collapse
Affiliation(s)
- Yuedan Li
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Effect of angiotensin II receptor blocker on glucose-induced mRNA expressions of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat mesangial cells. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200711010-00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|