1
|
Franke K, Bal G, Li Z, Zuberbier T, Babina M. Clorfl86/RHEX Is a Negative Regulator of SCF/KIT Signaling in Human Skin Mast Cells. Cells 2023; 12:cells12091306. [PMID: 37174705 PMCID: PMC10177086 DOI: 10.3390/cells12091306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Mast cells (MCs) are key effector cells in allergic and inflammatory diseases, and the SCF/KIT axis regulates most aspects of the cells' biology. Using terminally differentiated skin MCs, we recently reported on proteome-wide phosphorylation changes initiated by KIT dimerization. C1orf186/RHEX was revealed as one of the proteins to become heavily phosphorylated. Its function in MCs is undefined and only some information is available for erythroblasts. Using public databases and our own data, we now report that RHEX exhibits highly restricted expression with a clear dominance in MCs. While expression is most pronounced in mature MCs, RHEX is also abundant in immature/transformed MC cell lines (HMC-1, LAD2), suggesting early expression with further increase during differentiation. Using RHEX-selective RNA interference, we reveal that RHEX unexpectedly acts as a negative regulator of SCF-supported skin MC survival. This finding is substantiated by RHEX's interference with KIT signal transduction, whereby ERK1/2 and p38 both were more strongly activated when RHEX was attenuated. Comparing RHEX and capicua (a recently identified repressor) revealed that each protein preferentially suppresses other signaling modules elicited by KIT. Induction of immediate-early genes strictly requires ERK1/2 in SCF-triggered MCs; we now demonstrate that RHEX diminution translates to this downstream event, and thereby enhances NR4A2, JUNB, and EGR1 induction. Collectively, our study reveals RHEX as a repressor of KIT signaling and function in MCs. As an abundant and selective lineage marker, RHEX may have various roles in the lineage, and the provided framework will enable future work on its involvement in other crucial processes.
Collapse
Affiliation(s)
- Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
2
|
Cannarella R, Mancuso F, Arato I, Lilli C, Bellucci C, Gargaro M, Curto R, Aglietti MC, La Vignera S, Condorelli RA, Luca G, Calogero AE. Sperm-carried IGF2 downregulated the expression of mitogens produced by Sertoli cells: A paracrine mechanism for regulating spermatogenesis? Front Endocrinol (Lausanne) 2022; 13:1010796. [PMID: 36523595 PMCID: PMC9744929 DOI: 10.3389/fendo.2022.1010796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor 2 (IGF2) mRNA has been found in human and mouse spermatozoa. It is currently unknown whether the IGF2 protein is expressed in human spermatozoa and, if so, its possible role in the cross-talk between germ and Sertoli cells (SCs) during spermatogenesis. METHODS To accomplish this, we analyzed sperm samples from four consecutive Caucasian men. Furthermore, to understand its role during the spermatogenetic process, porcine SCs were incubated with increasing concentrations (0.33, 3.33, and 10 ng/mL) of recombinant human IGF2 (rhIGF2) for 48 hours. Subsequently, the experiments were repeated by pre-incubating SCs with the non-competitive insulin-like growth factor 1 receptor (IGF1R) inhibitor NVP-AEW541. The following outcomes were evaluated: 1) Gene expression of the glial cell-line derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and stem cell factor (SCF) mitogens; 2) gene and protein expression of follicle-stimulating hormone receptor (FSHR), anti-Müllerian hormone (AMH), and inhibin B; 3) SC proliferation. RESULTS We found that the IGF2 protein was present in each of the sperm samples. IGF2 appeared as a cytoplasmic protein localized in the equatorial and post-acrosomal segment and with a varying degree of expression in each cell. In SCs, IGF2 significantly downregulated GDNF gene expression in a concentration-dependent manner. FGF2 and SCF were downregulated only by the highest concentration of IGF2. Similarly, IGF2 downregulated the FSHR gene and FSHR, AMH, and inhibin B protein expression. Finally, IGF2 significantly suppressed the SC proliferation rate. All these findings were reversed by pre-incubation with NVP-AEW541, suggesting an effect mediated by the interaction of IGF2 with the IGFR. CONCLUSION In conclusion, sperm IGF2 seems to downregulate the expression of mitogens, which are known to be physiologically released by the SCs to promote gonocyte proliferation and spermatogonial fate adoption. These findings suggest the presence of paracrine regulatory mechanisms acting on the seminiferous epithelium during spermatogenesis, by which germ cells can influence the amount of mitogens released by the SCs, their sensitivity to FSH, and their rate of proliferation.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- *Correspondence: Rossella Cannarella,
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria C. Aglietti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovani Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Wang HN, Ji K, Zhang LN, Xie CC, Li WY, Zhao ZF, Chen JJ. Inhibition of c-Fos expression attenuates IgE-mediated mast cell activation and allergic inflammation by counteracting an inhibitory AP1/Egr1/IL-4 axis. J Transl Med 2021; 19:261. [PMID: 34130714 PMCID: PMC8207675 DOI: 10.1186/s12967-021-02932-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Activator protein-1 (AP1), a c-Fos–JUN transcription factor complex, mediates many cytobiological processes. c-Fos has been implicated in immunoglobulin (Ig)E activation of mast cells (MCs) via high-affinity IgE Fc receptor (FcεRI) binding. This study examined c-Fos involvement in MC activation and tested the effects of the c-Fos/AP1 inhibitor T-5224 on MCs activation and allergic responses. Methods In vitro studies were conducted with two MC model systems: rat basophilic leukemia cells (RBLs) and mouse bone marrow derived mast cells (BMMCs). MC degranulation and effector functions were examined with β-hexosaminidase release and cytokine secretion assays. c-Fos/AP1 was inhibited with T-5224. c-Fos activity was suppressed with short hairpin RNA targeting c-Fos (shFos). In vivo immune responses were evaluated in passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA) models, as well as in an oxazolone (OXA)-induced model of atopic dermatitis, a common allergic disease. Results c-Fos expression was elevated transcriptionally and translationally in IgE-stimulated MCs. c-Fos binding of the Egr1 (early growth response 1) promoter upregulated Egr1 transcription, leading to production of interleukin (IL)4. T-5224 reduced FcεRI-mediated MC degranulation (evidenced by β-hexosaminidase activity and histamine levels) and diminished EGR1 and IL4 expression. T-5224 attenuated IgE-mediated allergic responses in PCA and ASA models, and it suppressed MC-mediated atopic dermatitis in mice. Conclusion IgE binding can activate MCs via a c-Fos/Egr1/IL-4 axis. T-5224 suppresses MC activation in vitro and in vivo and thus represents a promising potential strategy for targeting MC activation to treat allergic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02932-0.
Collapse
Affiliation(s)
- Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
4
|
Guo Y, Proaño-Pérez E, Muñoz-Cano R, Martin M. Anaphylaxis: Focus on Transcription Factor Activity. Int J Mol Sci 2021; 22:ijms22094935. [PMID: 34066544 PMCID: PMC8124588 DOI: 10.3390/ijms22094935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
Anaphylaxis is a severe allergic reaction, rapid in onset, and can lead to fatal consequences if not promptly treated. The incidence of anaphylaxis has risen at an alarming rate in past decades and continues to rise. Therefore, there is a general interest in understanding the molecular mechanism that leads to an exacerbated response. The main effector cells are mast cells, commonly triggered by stimuli that involve the IgE-dependent or IgE-independent pathway. These signaling pathways converge in the release of proinflammatory mediators, such as histamine, tryptases, prostaglandins, etc., in minutes. The action and cell targets of these proinflammatory mediators are linked to the pathophysiologic consequences observed in this severe allergic reaction. While many molecules are involved in cellular regulation, the expression and regulation of transcription factors involved in the synthesis of proinflammatory mediators and secretory granule homeostasis are of special interest, due to their ability to control gene expression and change phenotype, and they may be key in the severity of the entire reaction. In this review, we will describe our current understanding of the pathophysiology of human anaphylaxis, focusing on the transcription factors' contributions to this systemic hypersensitivity reaction. Host mutation in transcription factor expression, or deregulation of their activity in an anaphylaxis context, will be updated. So far, the risk of anaphylaxis is unpredictable thus, increasing our knowledge of the molecular mechanism that leads and regulates mast cell activity will enable us to improve our understanding of how anaphylaxis can be prevented or treated.
Collapse
Affiliation(s)
- Yanru Guo
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Elizabeth Proaño-Pérez
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Allergy Section, Pneumology Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- ARADyAL (Asthma, Drug Adverse Reactions and Allergy) Research Network, 28029 Madrid, Spain
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- ARADyAL (Asthma, Drug Adverse Reactions and Allergy) Research Network, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4024541; Fax: +34-93-4035882
| |
Collapse
|
5
|
Wang Y, Ma H, Tao X, Luo Y, Wang H, He J, Fang Q, Guo S, Song C. SCF promotes the production of IL-13 via the MEK-ERK-CREB signaling pathway in mast cells. Exp Ther Med 2019; 18:2491-2496. [PMID: 31555361 PMCID: PMC6755428 DOI: 10.3892/etm.2019.7866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Mast cells serve a key role in the occurrence and development of allergy. As an important growth factor of mast cells, stem cell factor (SCF) has an effect on the apoptosis, chemotaxis, adhesion, degranulation and other biological characteristics of mast cells. However, there are few studies regarding the effect of SCF signal on the production of cytokines from mast cells, particularly Th2 type cytokines. In the present study, the expression and secretion of IL-13 in P815 cells stimulated by SCF were detected by fluorescence quantitative PCR and ELISA, and western blotting and EMSA were used to detect ERK phosphorylation and activation of CREB in stimulated P815 cells. The results demonstrated that the production of IL-13 was significantly increased in P815 cells stimulated by SCF (1–100 ng/ml; P<0.01). There was an obvious phosphorylation of ERK and CREB activation in P815 cells stimulated by SCF (50 ng/ml). Compared with the SCF single stimulation group, the production of IL-13 was significantly reduced in P815 cells stimulated with U0126 (ERK-MEK/pathway inhibitor) or H-89 (CREB inhibitor) combined with SCF stimulation group (P<0.01). However, JSI-124 (JAK/STAT3 pathway inhibitor), Wortmannin (PI3K/Akt pathway inhibitor) and PDTC (NF-κB inhibitor) had no effect on the role of SCF promoting the P815 cells producing IL-13. Therefore, SCF signaling promotes mast cell P815 to produce IL-13, and this effect is associated with the MEK-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hua Ma
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiangnan Tao
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yulan Luo
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Helong Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jing He
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shujun Guo
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
6
|
Effects of GH and IGF1 on Basal and FSH-Modulated Porcine Sertoli Cells In-Vitro. J Clin Med 2019; 8:jcm8060811. [PMID: 31174315 PMCID: PMC6617362 DOI: 10.3390/jcm8060811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/13/2023] Open
Abstract
Several lines of evidence suggest that insulin-like growth factor 1 (IGF1) is involved in Sertoli cell (SC) proliferation and that its receptor (IGF1R) could mediate follicle-stimulating hormone (FSH) effects. To examine the role of the growth hormone (GH)-IGF1 axis on SC function, we evaluated the effects of GH and IGF1 on basal and FSH-modulated SC proliferation, as well as on anti-Müllerian hormone (AMH) and inhibin B expression and secretion in-vitro. SCs from neonatal pigs were incubated with (1) placebo, (2) 100 nM highly purified urofollitropin (hpFSH), (3) 100 nM recombinant GH (rGH), (4) 100 nM recombinant IGF1 (rIGF1), (5) 100 nM hpFSH plus 100 nM rGH, (6) 100 nM hpFSH plus 100 nM rIGF1, for 48 h. We found that IGF1, but not FSH nor GH, stimulated SC proliferation. Furthermore, an inhibitory effect of FSH, GH and IGF1 on AMH secretion, and a stimulatory role of FSH and IGF1, but not GH, on inhibin B secretion were found. These results suggest that the GH-IGF1 axis influences basal and FSH-modulated SC proliferation and function. We speculate that SC proliferation occurring in childhood might be supported by the increased serum IGF1 levels observed during this period of life.
Collapse
|
7
|
Cannarella R, Arato I, Condorelli RA, Mongioì LM, Lilli C, Bellucci C, La Vignera S, Luca G, Mancuso F, Calogero AE. Effects of Insulin on Porcine Neonatal Sertoli Cell Responsiveness to FSH In Vitro. J Clin Med 2019; 8:jcm8060809. [PMID: 31174276 PMCID: PMC6617126 DOI: 10.3390/jcm8060809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
There is ongoing debate as to whether the decline of sperm production in recent times may be related to a parallel increase in the rate of obesity and diabetes. Lower anti-Müllerian hormone (AMH) and inhibin B secretion have been observed in young hyperinsulinemic patients compared to healthy controls, suggesting a Sertoli cell (SC) dysfunction. The pathophysiological mechanisms underlying SC dysfunction in these patients are poorly understood. To the best of our knowledge, no evidence is available on the effects of insulin on SC function. Therefore, this study was undertaken to assess the effects of insulin on basal and follicle-stimulating hormone (FSH)-stimulated SC function in vitro. To accomplish this, we evaluated the expression of AMH, inhibin B and FSHR genes, the secretion of AMH and inhibin B and the phosphorylation of AKT473 and SC proliferation on neonatal porcine SC after incubation with FSH and/or insulin. We found that similar to FSH, the expression and secretion of AMH is suppressed by insulin. Co-incubation with FSH and insulin decreased AMH secretion significantly more than with FSH alone. Insulin had no effect on the expression and secretion of the inhibin B gene, but co-incubation with FSH and insulin had a lower effect on inhibin B secretion than that found with FSH alone. FSH and/or insulin increased AKT473 phosphorylation and SC proliferation. In conclusion, the results of this study showed that insulin modulates SC function. We hypothesize that hyperinsulinemia may therefore influence testicular function even before puberty begins. Therefore, particular care should be taken to avoid the onset of hyperinsulinemia in children to prevent a future deleterious effect on fertility.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Iva Arato
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Cinzia Lilli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Catia Bellucci
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Francesca Mancuso
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
8
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
9
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Cao C, Li L, Li H, He X, Wu G, Yu X. Cyclic biaxial tensile strain promotes bone marrow-derived mesenchymal stem cells to differentiate into cardiomyocyte-like cells by miRNA-27a. Int J Biochem Cell Biol 2018; 99:125-132. [PMID: 29627440 DOI: 10.1016/j.biocel.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
A physical stimuli, it has been reported that cyclic tensile strain can promote bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into cardiomyocytes, but the underlying mechanisms have been poorly elucidated so far. Here, we used a mimicking loading strain, cyclic biaxial tensile strain (CBTS), and found it can promote BMSCs to differentiate into cardiomyocytes. When the CBTS were loaded, the cells expressed cardiac-specific markers GATA4, TNNT2, MEF-2c, and Cx43, meanwhile we found miR-27a decreased and stem cell factor (SCF) increased. When we overexpressed miR-27a, the cardiac-specific markers were down-regulated; we got the same results when SCF was knocked down by siRNA. Interestingly, we found SCF is a potential target of miR-27a by a bioinformatic analysis. So, we overexpressed miR-27a, and found SCF decreased both in mRNA and protein level. And, When miR-27a was co-transfected with SCF-3'UTR, it significantly reduced the luciferase activity, but not when co-transfected with SCF-3'UTR mutation plasmid. Furthermore, after transfected both miR-27a and SCF siRNA, and the protein expression of the markers were more down-regulated than that of single of them. Taken together, we found CBTS can promote BMSCs to differentiate into cardiomyocytes, and miR-27a functions as a mechano-sensitive miRNA in this process by targeting SCF.
Collapse
Affiliation(s)
- Chengjian Cao
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Liang Li
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China.
| | - Huiming Li
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Xueling He
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Geng Wu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Xiaoqin Yu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| |
Collapse
|
12
|
Cildir G, Pant H, Lopez AF, Tergaonkar V. The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. J Exp Med 2017; 214:2491-2506. [PMID: 28811324 PMCID: PMC5584128 DOI: 10.1084/jem.20170910] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cildir et al. discuss the recent findings in transcriptional regulation of mast cell development and activation and provide insights into the plasticity and clinical targeting of mast cell functions. Mast cells are unique tissue-resident immune cells that express an array of receptors that can be activated by several extracellular cues, including antigen–immunoglobulin E (IgE) complexes, bacteria, viruses, cytokines, hormones, peptides, and drugs. Mast cells constitute a small population in tissues, but their extraordinary ability to respond rapidly by releasing granule-stored and newly made mediators underpins their importance in health and disease. In this review, we document the biology of mast cells and introduce new concepts and opinions regarding their role in human diseases beyond IgE-mediated allergic responses and antiparasitic functions. We bring to light recent discoveries and developments in mast cell research, including regulation of mast cell functions, differentiation, survival, and novel mouse models. Finally, we highlight the current and future opportunities for therapeutic intervention of mast cell functions in inflammatory diseases.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Harshita Pant
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia .,Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|
13
|
McLeod JJA, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine 2015; 75:57-61. [PMID: 26088754 PMCID: PMC4532630 DOI: 10.1016/j.cyto.2015.05.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
IL-4 was identified as the first cytokine to be produced by mast cells and is responsible for promoting mast cell IL-13 production. IL-4 and IL-13 play a prominent role in stimulating and maintaining the allergic response. As closely related genes, IL-4 and IL-13 share a common receptor subunit, IL-4Rα, necessary for signaling. Here we summarize the literature on mast cell activation associated with IL-4 and IL-13 production, including downstream signaling. We also describe the positive and negative roles each cytokine plays in mast cell immunity and detail the differences that exist between mouse and human mast cell responses to IL-4 and IL-13.
Collapse
Affiliation(s)
- Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States.
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| |
Collapse
|
14
|
Bi L, Wang G, Yang D, Li S, Liang B, Han Z. Effects of autologous bone marrow-derived stem cell mobilization on acute tubular necrosis and cell apoptosis in rats. Exp Ther Med 2015; 10:851-856. [PMID: 26622404 DOI: 10.3892/etm.2015.2592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 12/01/2014] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to investigate the effects of stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) on bone marrow-derived stem cell (BMSC) mobilization in rat models of renal ischemia/reperfusion (I/R) injury. In addition, the effects of SCF and G-CSF on cellular apoptosis were explored in order to determine the protective mechanism of the two factors against renal I/R injury. A unilateral renal I/R injury model was established for the model and treatment groups. The treatment and treatment control groups were subcutaneously injected with SCF (200 µg/kg/day) and G-CSF (50 µg/kg/day) 24 h after the establishment of the model for five consecutive days. The total number of leukocytes in the peripheral blood and the cellular percentages of cluster of differentiation (CD)34+, renal CD34+ and apoptotic cells were detected. The total number of leukocytes in the peripheral blood and the percentages of CD34+ cells in the treatment and treatment control groups reached maximum levels on the fifth postoperative day and were significantly higher than those in the normal control and model groups. The number of renal CD34+ cells in the treatment group was significantly increased compared with that in the treatment control and model groups. The apoptotic indices (AIs) of the model and treatment groups were higher than those of the normal control and treatment control groups. The AI of the model group was significantly higher than that of the treatment group. In conclusion, the combined application of SCF and G-CSF can mobilize sufficient numbers of BMSCs and cause cellular 'homing' to the injured site, thus inhibiting apoptosis and promoting the repair of renal tubular injury.
Collapse
Affiliation(s)
- Lingyun Bi
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Guohong Wang
- Laboratory of Physiology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Dasheng Yang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Shujun Li
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Bin Liang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ziming Han
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
15
|
Wu Z, Li Y, MacNeil AJ, Junkins RD, Berman JN, Lin TJ. Calcineurin–Rcan1 Interaction Contributes to Stem Cell Factor–Mediated Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5885-94. [DOI: 10.4049/jimmunol.1301271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Junkins RD, Shen A, Rosen K, McCormick C, Lin TJ. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 2013; 8:e72263. [PMID: 24015228 PMCID: PMC3756076 DOI: 10.1371/journal.pone.0072263] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Ann Shen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kirill Rosen
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
17
|
MacNeil AJ, Yang YJ, Lin TJ. MAPK kinase 3 specifically regulates Fc epsilonRI-mediated IL-4 production by mast cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:3374-82. [PMID: 21841136 DOI: 10.4049/jimmunol.1003126] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells play a central role in allergic inflammation and are activated through cross-linking of FcεRI receptor-bound IgE, initiating a signaling cascade resulting in production of biologically potent mediators. Signaling pathways in the regulation of specific mediators remain incompletely defined. In this study, we examined the role of MAPK kinase 3 (MKK3) in IgE-dependent mast cell activation. In an in vivo model of passive cutaneous anaphylaxis, MKK3-deficient mice showed a deficit in late-phase IgE-dependent inflammation. To characterize the mechanism of this deficiency, we cultured bone marrow-derived mast cells (BMMCs) from wild-type and MKK3-deficient mice. We found that FcεRI-mediated mast cell activation induced rapid MKK3 phosphorylation by 5 min, diminishing slowly after 6 h. In MKK3-deficient BMMCs, phosphorylation of p38 was reduced at early and later time points. Among 40 cytokines tested using a protein array, IL-4 was the only cytokine specifically downregulated in MKK3-deficient BMMCs. Reduced IL-4 expression was seen in the local skin of MKK3-deficient mice following passive cutaneous allergic reaction. Furthermore, early growth response-1 (Egr1) bound to the promoter of IL-4 in FcεRI-activated mast cells, and Egr1 transcription factor activity was diminished in MKK3-deficient BMMCs. Finally, mast cell-deficient mice reconstituted with MKK3-deficient BMMCs displayed a significantly impaired late-phase allergic inflammatory response. Thus, mast cell MKK3 signaling contributes to IgE-dependent allergic inflammation and is a specific regulator of FcεRI-induced IL-4 production.
Collapse
Affiliation(s)
- Adam J MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | | | | |
Collapse
|
18
|
Targeted knockdown of canine KIT (stem cell factor receptor) using RNA interference. Vet Immunol Immunopathol 2011; 141:151-6. [PMID: 21397955 DOI: 10.1016/j.vetimm.2011.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 01/25/2011] [Accepted: 02/14/2011] [Indexed: 11/23/2022]
Abstract
Canine mast cell tumours often express KIT mutations that result in constitutive activation of the c-kit receptor and which are associated with more aggressive disease. The aim of the current study was to determine whether small inhibitory RNA (SiRNA) molecules could specifically target canine KIT mRNA for knock-down. Canine beta-2 microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and KIT sequences were cloned into the psiCHECK™-2 vector. SiRNA molecules, designed to target gene-specific sequences, were co-transfected with plasmid DNA into Chinese hamster ovary (CHO) cells. Renilla and firefly luciferase activity was measured using the Dual-GLO(®) Luciferase Assay (Promega). Using this reporter system, canine housekeeping gene-specific SiRNA molecules demonstrated knockdown of their targets (72.0% knockdown for B2M and 94.5% knockdown for GAPDH). An SiRNA molecule targeting exon 2 of canine KIT successfully knocked-down reporter gene expression of a KIT(26-407) construct (90.8% knockdown). An SiRNA molecule targeting a 48 base-pair in-tandem duplication mutation in KIT exon 11 selectively knocked down expression of the KIT(1569-1966mutant) construct (93.1% knockdown) but had no effect on the KIT(1569-1918wild-type) construct. The results show that RNA interference can be used to inhibit canine KIT mRNA expression and has the potential to selectively target the mutant version of KIT that is expressed by some malignant mast cells.
Collapse
|