1
|
Napoli M, Bauer J, Bonod C, Vadon-Le Goff S, Moali C. PCPE-2 (procollagen C-proteinase enhancer-2): The non-identical twin of PCPE-1. Matrix Biol 2024; 134:59-78. [PMID: 39251075 DOI: 10.1016/j.matbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
PCPE-2 was discovered at the beginning of this century, and was soon identified as a close homolog of PCPE-1 (procollagen C-proteinase enhancer 1). After the demonstration that it could also stimulate the proteolytic maturation of fibrillar procollagens by BMP-1/tolloid-like proteinases (BTPs), PCPE-2 did not attract much attention as it was thought to fulfill the same functions as PCPE-1 which was already well-described. However, the tissue distribution of PCPE-2 shows both common points and significant differences with PCPE-1, suggesting that their activities are not fully overlapping. Also, the recently established connections between PCPE-2 (gene name PCOLCE2) and several important diseases such as atherosclerosis, inflammatory diseases and cancer have highlighted the need for a thorough reappraisal of the in vivo roles of this regulatory protein. In this context, the recent finding that, while retaining the ability to bind fibrillar procollagens and to activate their C-terminal maturation, PCPE-2 can also bind BTPs and inhibit their activity has substantially extended its potential functions. In this review, we describe the current knowledge about PCPE-2 with a focus on collagen fibrillogenesis, lipid metabolism and inflammation, and discuss how we could further advance our understanding of PCPE-2-dependent biological processes.
Collapse
Affiliation(s)
- Manon Napoli
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Julien Bauer
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Christelle Bonod
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Catherine Moali
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France.
| |
Collapse
|
2
|
Freiburg CD, Solomon-Degefa H, Freiburg P, Mörgelin M, Bolduc V, Schmitz S, Ala P, Muntoni F, Behrmann E, Bönnemann CG, Schiavinato A, Paulsson M, Wagener R. The UCMD-Causing COL6A1 ( c.930 + 189 C > T) Intron Mutation Leads to the Secretion and Aggregation of Single Mutated Collagen VI α1 Chains. Hum Mutat 2023; 2023:6892763. [PMID: 40225172 PMCID: PMC11919215 DOI: 10.1155/2023/6892763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 04/05/2025]
Abstract
Collagen VI is a unique member of the collagen family. Its assembly is a complex multistep process and the vulnerability of the process is manifested in muscular diseases. Mutations in COL6A1, COL6A2, and COL6A3 lead to the severe Ullrich Congenital Muscular Dystrophy (UCMD) and a spectrum of disease of varying severity including the milder Bethlem muscular dystrophy. The recently identified dominant intronic mutation in COL6A1 (c.930 + 189C > T) leads to the partial in-frame insertion of a pseudoexon between exon 11 and exon 12. The pseudoexon is translated into 24 amino acid residues in the N-terminal region of the triple helix and results in the interruption of the typical G-X-Y motif. This recurrent de novo mutation leads to UCMD with a severe progression within the first decade of life. Here, we demonstrate that a mutation-specific antibody detects the mutant chain colocalizing with wild type collagen VI in the endomysium in patient muscle. Surprisingly, in the cell culture of patient dermal fibroblasts, the mutant chain is secreted as a single α chain, while in parallel, normal collagen VI tetramers are assembled with the wild-type α1 chain. The mutant chain cannot be incorporated into collagen VI tetramers but forms large aggregates in the extracellular matrix that may retain the ability to interact with collagen VI and potentially with other molecules. Also, α1 chain-deficient WI-26 VA4 cells transfected with the mutant α1 chain do not assemble collagen VI tetramers but, instead, form aggregates. Interestingly, both the wild type and the mutant single α1 chains form amorphous aggregates when expressed in HEK293 cells in the absence of α2 and α3 chains. The detection of aggregated, assembly incompetent, mutant collagen VI α1 chains provides novel insights into the disease pathophysiology of UCMD patients with the COL6A1 (c.930 + 189C > T) mutation.
Collapse
Affiliation(s)
- Carolin D. Freiburg
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Patrick Freiburg
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Sebastian Schmitz
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pierpaolo Ala
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Elmar Behrmann
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Saccuzzo EG, Youngblood HA, Lieberman RL. Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res 2023; 95:101188. [PMID: 37217093 PMCID: PMC10330797 DOI: 10.1016/j.preteyeres.2023.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
4
|
Añazco C, Riedelsberger J, Vega-Montoto L, Rojas A. Exploring the Interplay between Polyphenols and Lysyl Oxidase Enzymes for Maintaining Extracellular Matrix Homeostasis. Int J Mol Sci 2023; 24:10985. [PMID: 37446164 PMCID: PMC10342021 DOI: 10.3390/ijms241310985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Collagen, the most abundant structural protein found in mammals, plays a vital role as a constituent of the extracellular matrix (ECM) that surrounds cells. Collagen fibrils are strengthened through the formation of covalent cross-links, which involve complex enzymatic and non-enzymatic reactions. Lysyl oxidase (LOX) is responsible for catalyzing the oxidative deamination of lysine and hydroxylysine residues, resulting in the production of aldehydes, allysine, and hydroxyallysine. These intermediates undergo spontaneous condensation reactions, leading to the formation of immature cross-links, which are the initial step in the development of mature covalent cross-links. Additionally, non-enzymatic glycation contributes to the formation of abnormal cross-linking in collagen fibrils. During glycation, specific lysine and arginine residues in collagen are modified by reducing sugars, leading to the creation of Advanced Glycation End-products (AGEs). These AGEs have been associated with changes in the mechanical properties of collagen fibers. Interestingly, various studies have reported that plant polyphenols possess amine oxidase-like activity and can act as potent inhibitors of protein glycation. This review article focuses on compiling the literature describing polyphenols with amine oxidase-like activity and antiglycation properties. Specifically, we explore the molecular mechanisms by which specific flavonoids impact or protect the normal collagen cross-linking process. Furthermore, we discuss how these dual activities can be harnessed to generate properly cross-linked collagen molecules, thereby promoting the stabilization of highly organized collagen fibrils.
Collapse
Affiliation(s)
- Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente 1141, Talca 3462227, Chile;
| | - Lorenzo Vega-Montoto
- Chemical and Radiation Measurement, Idaho National Laboratory (INL), 1705 N. Yellowstone Hwy, Idaho Falls, ID 83415, USA;
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 3480112, Chile;
| |
Collapse
|
5
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
6
|
Przyklenk M, Heumüller SE, Freiburg C, Lütke S, Sengle G, Koch M, Paulsson M, Schiavinato A, Wagener R. Lack of evidence for a role of anthrax toxin receptors as surface receptors for collagen VI and for its cleaved-off C5 domain/endotrophin. iScience 2022; 25:105116. [PMID: 36185380 PMCID: PMC9515600 DOI: 10.1016/j.isci.2022.105116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
The microfibril-forming collagen VI is proteolytically cleaved and it was proposed that the released C-terminal Kunitz domain (C5) of the α3 chain is an adipokine important for tumor progression and fibrosis. Designated “endotrophin,” C5 is a potent biomarker for fibroinflammatory diseases. However, the biochemical mechanisms behind endotrophin activity were not investigated. Earlier, anthrax toxin receptor 1 was found to bind C5, but this potential interaction was not further studied. Given the proposed physiological role of endotrophin, we aimed to determine how the signal is transmitted. Surprisingly, we could not detect any interaction between endotrophin and anthrax toxin receptor 1 or its close relative, anthrax toxin receptor 2. Moreover, we detect no binding of fully assembled collagen VI to either receptor. We also studied the collagen VI receptor NG2 (CSPG4) and confirmed that NG2 binds assembled collagen VI, but not cleaved C5/endotrophin. A cellular receptor for C5/endotrophin, therefore, still remains elusive. ANTXR1 does not support collagen VI or C5/endotrophin binding to the cell surface ANTXR2 does not support collagen VI or C5/endotrophin binding to the cell surface NG2/CSPG4 supports collagen VI, but not C5/endotrophin binding to the cell surface
Collapse
|
7
|
Zhang JL, Richetti S, Ramezani T, Welcker D, Lütke S, Pogoda HM, Hatzold J, Zaucke F, Keene DR, Bloch W, Sengle G, Hammerschmidt M. Vertebrate extracellular matrix protein hemicentin-1 interacts physically and genetically with basement membrane protein nidogen-2. Matrix Biol 2022; 112:132-154. [PMID: 36007682 PMCID: PMC10015821 DOI: 10.1016/j.matbio.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Stefania Richetti
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Daniela Welcker
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans-Martin Pogoda
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Research Unit for Osteoarthritis, Department for Orthopedics, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR, United States
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Lethal Congenital Contracture Syndrome 11: A Case Report and Literature Review. J Clin Med 2022; 11:jcm11133570. [PMID: 35806855 PMCID: PMC9267849 DOI: 10.3390/jcm11133570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Lethal congenital contracture syndrome 11 (LCCS11) is caused by homozygous or compound heterozygous variants in the GLDN gene on chromosome 15q21. GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report a fetus with ultrasound alterations detected at 28 weeks of gestation. The fetus exhibited hydrops, short long bones, fixed limb joints, absent fetal movements, and polyhydramnios. The pregnancy was terminated and postmortem studies confirmed the prenatal findings: distal arthrogryposis, fetal growth restriction, pulmonary hypoplasia, and retrognathia. The fetus had a normal chromosomal microarray analysis. Exome sequencing revealed two novel compound heterozygous variants in the GLDN associated with LCCS11. This manuscript reports this case and performs a literature review of all published LCCS11 cases.
Collapse
|
9
|
Esho T, Tufa SF, Kobbe B, Wohl AP, Sengle G, Paulsson M, Keene DR, Wagener R. Anchoring cords, a distinct suprastructure in the developing skin. J Invest Dermatol 2022; 142:2940-2948.e2. [DOI: 10.1016/j.jid.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
|
10
|
Morcos YAT, Lütke S, Tenbieg A, Hanisch FG, Pryymachuk G, Piekarek N, Hoffmann T, Keller T, Janoschek R, Niehoff A, Zaucke F, Dötsch J, Hucklenbruch-Rother E, Sengle G. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep 2022; 12:1340. [PMID: 35079041 PMCID: PMC8789892 DOI: 10.1038/s41598-022-05060-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The C-terminal pro-fibrillin-1 propeptide asprosin is described as white adipose tissue derived hormone that stimulates rapid hepatic glucose release and activates hunger-promoting hypothalamic neurons. Numerous studies proposed correlations of asprosin levels with clinical parameters. However, the enormous variability of reported serum and plasma asprosin levels illustrates the need for sensitive and reliable detection methods in clinical samples. Here we report on newly developed biochemical methods for asprosin concentration and detection in several body fluids including serum, plasma, saliva, breast milk, and urine. Since we found that glycosylation impacts human asprosin detection we analyzed its glycosylation profile. Employing a new sandwich ELISA revealed that serum and saliva asprosin correlate strongly, depend on biological sex, and feeding status. To investigate the contribution of connective tissue-derived asprosin to serum levels we screened two cohorts with described cartilage turnover. Serum asprosin correlated with COMP, a marker for cartilage degradation upon running exercise and after total hip replacement surgery. This together with our finding that asprosin is produced by primary human chondrocytes and expressed in human cartilage suggests a contribution of cartilage to serum asprosin. Furthermore, we determined asprosin levels in breast milk, and urine, for the first time, and propose saliva asprosin as an accessible clinical marker for future studies.
Collapse
Affiliation(s)
- Yousef A T Morcos
- Center for Biochemistry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Antje Tenbieg
- Center for Biochemistry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franz-Georg Hanisch
- Center for Biochemistry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Galyna Pryymachuk
- Department of Anatomy I, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nadin Piekarek
- Department of Anatomy I, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorben Hoffmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Titus Keller
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopaedics (Friedrichsheim), University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Forte-Gomez HF, Gioia R, Tonelli F, Kobbe B, Koch P, Bloch W, Paulsson M, Zaucke F, Forlino A, Wagener R. Structure, evolution and expression of zebrafish cartilage oligomeric matrix protein (COMP, TSP5). CRISPR-Cas mutants show a dominant phenotype in myosepta. Front Endocrinol (Lausanne) 2022; 13:1000662. [PMID: 36452329 PMCID: PMC9702538 DOI: 10.3389/fendo.2022.1000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
COMP (Cartilage Oligomeric Matrix Protein), also named thrombospondin-5, is a member of the thrombospondin family of extracellular matrix proteins. It is of clinical relevance, as in humans mutations in COMP lead to chondrodysplasias. The gene encoding zebrafish Comp is located on chromosome 11 in synteny with its mammalian orthologs. Zebrafish Comp has a domain structure identical to that of tetrapod COMP and shares 74% sequence similarity with murine COMP. Zebrafish comp is expressed from 5 hours post fertilization (hpf) on, while the protein is first detectable in somites of 11 hpf embryos. During development and in adults comp is strongly expressed in myosepta, craniofacial tendon and ligaments, around ribs and vertebra, but not in its name-giving tissue cartilage. As in mammals, zebrafish Comp forms pentamers. It is easily extracted from 5 days post fertilization (dpf) whole zebrafish. The lack of Comp expression in zebrafish cartilage implies that its cartilage function evolved recently in tetrapods. The expression in tendon and myosepta may indicate a more fundamental function, as in evolutionary distant Drosophila muscle-specific adhesion to tendon cells requires thrombospondin. A sequence encoding a calcium binding motif within the first TSP type-3 repeat of zebrafish Comp was targeted by CRISPR-Cas. The heterozygous and homozygous mutant Comp zebrafish displayed a patchy irregular Comp staining in 3 dpf myosepta, indicating a dominant phenotype. Electron microscopy revealed that the endoplasmic reticulum of myosepta fibroblasts is not affected in homozygous fish. The disorganized extracellular matrix may indicate that this mutation rather interferes with extracellular matrix assembly, similar to what is seen in a subgroup of chondrodysplasia patients. The early expression and easy detection of mutant Comp in zebrafish points to the potential of using the zebrafish model for large scale screening of small molecules that can improve secretion or function of disease-associated COMP mutants.
Collapse
Affiliation(s)
| | - Roberta Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Birgit Kobbe
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Peter Koch
- Department of Pharmacology, University Clinic Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Raimund Wagener
- Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
- *Correspondence: Raimund Wagener,
| |
Collapse
|
12
|
Martin MD, Huard DJ, Guerrero-Ferreira RC, Desai IM, Barlow BM, Lieberman RL. Molecular architecture and modifications of full-length myocilin. Exp Eye Res 2021; 211:108729. [DOI: 10.1016/j.exer.2021.108729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 01/06/2023]
|
13
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
14
|
Patterson-Orazem AC, Qerqez AN, Azouz LR, Ma MT, Hill SE, Ku Y, Schildmeyer LA, Maynard JA, Lieberman RL. Recombinant antibodies recognize conformation-dependent epitopes of the leucine zipper of misfolding-prone myocilin. J Biol Chem 2021; 297:101067. [PMID: 34384785 PMCID: PMC8408531 DOI: 10.1016/j.jbc.2021.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.
Collapse
Affiliation(s)
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lisa A Schildmeyer
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Malavasi EL, Ghosh A, Booth DG, Zagnoni M, Sherman DL, Brophy PJ. Dynamic early clusters of nodal proteins contribute to node of Ranvier assembly during myelination of peripheral neurons. eLife 2021; 10:68089. [PMID: 34240706 PMCID: PMC8289411 DOI: 10.7554/elife.68089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated sodium channels cluster in macromolecular complexes at nodes of Ranvier to promote rapid nerve impulse conduction in vertebrate nerves. Node assembly in peripheral nerves is thought to be initiated at heminodes at the extremities of myelinating Schwann cells, and fusion of heminodes results in the establishment of nodes. Here we show that assembly of 'early clusters' of nodal proteins in the murine axonal membrane precedes heminode formation. The neurofascin (Nfasc) proteins are essential for node assembly, and the formation of early clusters also requires neuronal Nfasc. Early clusters are mobile and their proteins are dynamically recruited by lateral diffusion. They can undergo fusion not only with each other but also with heminodes, thus contributing to the development of nodes in peripheral axons. The formation of early clusters constitutes the earliest stage in peripheral node assembly and expands the repertoire of strategies that have evolved to establish these essential structures.
Collapse
Affiliation(s)
- Elise Lv Malavasi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aniket Ghosh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel G Booth
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Michele Zagnoni
- Centre for Microsystems & Photonics, Dept. Electronic and Electrical Engineering, University of Strathclyde, Strathclyde, United Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Knockout of myoc Provides Evidence for the Role of Myocilin in Zebrafish Sex Determination Associated with Wnt Signalling Downregulation. BIOLOGY 2021; 10:biology10020098. [PMID: 33573230 PMCID: PMC7912607 DOI: 10.3390/biology10020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Myocilin is a secreted glycoprotein with a poorly understood biological function and it is mainly known as the first glaucoma gene. To explore the normal role of this protein in vivo we developed a myoc knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries a homozygous variant (c.236_239delinsAAAGGGGAAGGGGA) that is predicted to result in a loss-of-function of the protein because of a premature termination codon p.(V75EfsX60) that resulted in a significant reduction of myoc mRNA levels. Immunohistochemistry showed the presence of myocilin in wild-type embryonic (96 h post-fertilization) anterior segment eye structures and caudal muscles. The protein was also detected in different adult ocular and non-ocular tissues. No gross macroscopic or microscopic alterations were identified in the KO zebrafish, but, remarkably, we observed absence of females among the adult KO animals and apoptosis in the immature juvenile gonad (28 dpf) of these animals, which is characteristic of male development. Transcriptomic analysis showed that adult KO males overexpressed key genes involved in male sex determination and presented differentially expressed Wnt signalling genes. These results show that myocilin is required for ovary differentiation in zebrafish and provides in vivo support for the role of myocilin as a Wnt signalling pathway modulator. In summary, this myoc KO zebrafish line can be useful to investigate the elusive function of this protein, and it provides evidence for the unexpected function of myocilin as a key factor in zebrafish sex determination.
Collapse
|
17
|
Wakabayashi T. Transmembrane Collagens in Neuromuscular Development and Disorders. Front Mol Neurosci 2021; 13:635375. [PMID: 33536873 PMCID: PMC7848082 DOI: 10.3389/fnmol.2020.635375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular development is a multistep process and involves interactions among various extracellular and transmembrane molecules that facilitate the precise targeting of motor axons to synaptogenic regions of the target muscle. Collagenous proteins with transmembrane domains have recently emerged as molecules that play essential roles in multiple aspects of neuromuscular formation. Membrane-associated collagens with interrupted triple helices (MACITs) are classified as an unconventional subtype of the collagen superfamily and have been implicated in cell adhesion in a variety of tissues, including the neuromuscular system. Collagen XXV, the latest member of the MACITs, plays an essential role in motor axon growth within the developing muscle. In humans, loss-of-function mutations of collagen XXV result in developmental ocular motor disorders. In contrast, collagen XIII contributes to the formation and maintenance of neuromuscular junctions (NMJs), and disruption of its function leads to the congenital myasthenic syndrome. Transmembrane collagens are conserved not only in mammals but also in organisms such as C. elegans, where a single MACIT, COL-99, has been documented to function in motor innervation. Furthermore, in C. elegans, a collagen-like transmembrane protein, UNC-122, is implicated in the structural and functional integrity of the NMJ. This review article summarizes recent advances in understanding the roles of transmembrane collagens and underlying molecular mechanisms in multiple aspects of neuromuscular development and disorders.
Collapse
Affiliation(s)
- Tomoko Wakabayashi
- Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
19
|
Salzer JL. Control of Channel Clustering by Cleavage. Neuron 2020; 106:707-709. [PMID: 32497505 DOI: 10.1016/j.neuron.2020.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enrichment of sodium channels at nodes of Ranvier, a hallmark of myelinated axons, underlies effective saltatory conduction. In this issue of Neuron, Eshed-Eisenbach et al. (2020) demonstrate that proteolysis of gliomedin, which drives initial channel clustering, provides a novel mechanism to ensure fidelity of channel localization to nodes.
Collapse
Affiliation(s)
- James L Salzer
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Tonelli F, Cotti S, Leoni L, Besio R, Gioia R, Marchese L, Giorgetti S, Villani S, Gistelinck C, Wagener R, Kobbe B, Fiedler I, Larionova D, Busse B, Eyre D, Rossi A, Witten P, Forlino A. Crtap and p3h1 knock out zebrafish support defective collagen chaperoning as the cause of their osteogenesis imperfecta phenotype. Matrix Biol 2020; 90:40-60. [DOI: 10.1016/j.matbio.2020.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
|
21
|
Eshed-Eisenbach Y, Devaux J, Vainshtein A, Golani O, Lee SJ, Feinberg K, Sukhanov N, Greenspan DS, Susuki K, Rasband MN, Peles E. Precise Spatiotemporal Control of Nodal Na + Channel Clustering by Bone Morphogenetic Protein-1/Tolloid-like Proteinases. Neuron 2020; 106:806-815.e6. [PMID: 32209430 DOI: 10.1016/j.neuron.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 01/31/2023]
Abstract
During development of the peripheral nervous system (PNS), Schwann-cell-secreted gliomedin induces the clustering of Na+ channels at the edges of each myelin segment to form nodes of Ranvier. Here we show that bone morphogenetic protein-1 (BMP1)/Tolloid (TLD)-like proteinases confine Na+ channel clustering to these sites by negatively regulating the activity of gliomedin. Eliminating the Bmp1/TLD cleavage site in gliomedin or treating myelinating cultures with a Bmp1/TLD inhibitor results in the formation of numerous ectopic Na+ channel clusters along axons that are devoid of myelin segments. Furthermore, genetic deletion of Bmp1 and Tll1 genes in mice using a Schwann-cell-specific Cre causes ectopic clustering of nodal proteins, premature formation of heminodes around early ensheathing Schwann cells, and altered nerve conduction during development. Our results demonstrate that by inactivating gliomedin, Bmp1/TLD functions as an additional regulatory mechanism to ensure the correct spatial and temporal assembly of PNS nodes of Ranvier.
Collapse
Affiliation(s)
- Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jerome Devaux
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, 34295 Montpellier, France
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Se-Jin Lee
- The Jackson Laboratory and Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Konstantin Feinberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natasha Sukhanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
22
|
Eshed-Eisenbach Y, Peles E. The clustering of voltage-gated sodium channels in various excitable membranes. Dev Neurobiol 2020; 81:427-437. [PMID: 31859465 DOI: 10.1002/dneu.22728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023]
Abstract
In excitable membranes, the clustering of voltage-gated sodium channels (VGSC) serves to enhance excitability at critical sites. The two most profoundly studied sites of channel clustering are the axon initial segment, where action potentials are generated and the node of Ranvier, where action potentials propagate along myelinated axons. The clustering of VGSC is found, however, in other highly excitable sites such as axonal terminals, postsynaptic membranes of dendrites and muscle fibers, and pre-myelinated axons. In this review, different examples of axonal as well as non-axonal clustering of VGSC are discussed and the underlying mechanisms are compared. Whether the clustering of channels is intrinsically or extrinsically induced, it depends on the submembranous actin-based cytoskeleton that organizes these highly specialized membrane microdomains through specific adaptor proteins.
Collapse
Affiliation(s)
- Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Spatio-temporal expression and distribution of collagen VI during zebrafish development. Sci Rep 2019; 9:19851. [PMID: 31882701 PMCID: PMC6934817 DOI: 10.1038/s41598-019-56445-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 01/27/2023] Open
Abstract
Collagen VI (ColVI) is an extracellular matrix (ECM) protein involved in a range of physiological and pathological conditions. Zebrafish (Danio rerio) is a powerful model organism for studying vertebrate development and for in vivo analysis of tissue patterning. Here, we performed a thorough characterization of ColVI gene and protein expression in zebrafish during development and adult life. Bioinformatics analyses confirmed that zebrafish genome contains single genes encoding for α1(VI), α2(VI) and α3(VI) ColVI chains and duplicated genes encoding for α4(VI) chains. At 1 day post-fertilization (dpf) ColVI transcripts are expressed in myotomes, pectoral fin buds and developing epidermis, while from 2 dpf abundant transcript levels are present in myosepta, pectoral fins, axial vasculature, gut and craniofacial cartilage elements. Using newly generated polyclonal antibodies against zebrafish α1(VI) protein, we found that ColVI deposition in adult fish delineates distinct domains in the ECM of several organs, including cartilage, eye, skin, spleen and skeletal muscle. Altogether, these data provide the first detailed characterization of ColVI expression and ECM deposition in zebrafish, thus paving the way for further functional studies in this species.
Collapse
|
24
|
Gene Expression Profiling of the Extracellular Matrix Signature in Macrophages of Different Activation Status: Relevance for Skin Wound Healing. Int J Mol Sci 2019; 20:ijms20205086. [PMID: 31615030 PMCID: PMC6829210 DOI: 10.3390/ijms20205086] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) provides structural support for tissue architecture and is a major effector of cell behavior during skin repair and inflammation. Macrophages are involved in all stages of skin repair but only limited knowledge exists about macrophage-specific expression and regulation of ECM components. In this study, we used transcriptome profiling and bioinformatic analysis to define the unique expression of ECM-associated genes in cultured macrophages. Characterization of the matrisome revealed that most genes were constitutively expressed and that several genes were uniquely regulated upon interferon gamma (IFNγ) and dexamethasone stimulation. Among those core matrisome and matrisome-associated components transforming growth factor beta (TGFβ)-induced, matrix metalloproteinase 9 (MMP9), elastin microfibril interfacer (EMILIN)-1, netrin-1 and gliomedin were also present within the wound bed at time points that are characterized by profound macrophage infiltration. Hence, macrophages are a source of ECM components in vitro as well as during skin wound healing, and identification of these matrisome components is a first step to understand the role and therapeutic value of ECM components in macrophages and during wound healing.
Collapse
|
25
|
Heumüller SE, Talantikite M, Napoli M, Armengaud J, Mörgelin M, Hartmann U, Sengle G, Paulsson M, Moali C, Wagener R. C-terminal proteolysis of the collagen VI α3 chain by BMP-1 and proprotein convertase(s) releases endotrophin in fragments of different sizes. J Biol Chem 2019; 294:13769-13780. [PMID: 31346034 DOI: 10.1074/jbc.ra119.008641] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/23/2019] [Indexed: 01/31/2023] Open
Abstract
The assembly of collagen VI microfibrils is a multistep process in which proteolytic processing within the C-terminal globular region of the collagen VI α3 chain plays a major role. However, the mechanisms involved remain elusive. Moreover, C5, the short and most C-terminal domain of the α3 chain, recently has been proposed to be released as an adipokine that enhances tumor progression, fibrosis, inflammation, and insulin resistance and has been named "endotrophin." Serum endotrophin could be a useful biomarker to monitor the progression of such disorders as chronic obstructive pulmonary disease, systemic sclerosis, and kidney diseases. Here, using biochemical and isotopic MS-based analyses, we found that the extracellular metalloproteinase bone morphogenetic protein 1 (BMP-1) is involved in endotrophin release and determined the exact BMP-1 cleavage site. Moreover, we provide evidence that several endotrophin-containing fragments are present in various tissues and body fluids. Among these, a large C2-C5 fragment, which contained endotrophin, was released by furin-like proprotein convertase cleavage. By using immunofluorescence microscopy and EM, we also demonstrate that these proteolytic maturations occur after secretion of collagen VI tetramers and during microfibril assembly. Differential localization of N- and C-terminal regions of the collagen VI α3 chain revealed that cleavage products are deposited in tissue and cell cultures. The detailed information on the processing of the collagen VI α3 chain reported here provides a basis for unraveling the function of endotrophin (C5) and larger endotrophin-containing fragments and for refining their use as biomarkers of disease progression.
Collapse
Affiliation(s)
| | - Maya Talantikite
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Manon Napoli
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Jean Armengaud
- Commissariat à l'Energie Atomique (CEA)-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Innovative Technologies for Detection and Diagnostics Laboratory, 30200 Bagnols-sur-Cèze, France
| | | | - Ursula Hartmann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Raimund Wagener
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany .,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
26
|
Patterson-Orazem AC, Lieberman RL. Antibodies Used to Detect Glaucoma-Associated Myocilin: More or Less Than Meets the Eye? Invest Ophthalmol Vis Sci 2019; 60:2034-2037. [PMID: 31067323 PMCID: PMC6890424 DOI: 10.1167/iovs.19-26843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antibodies are key reagents used in vision research, indeed across biomedical research, but they often do not reveal the whole story about a sample. It is important for researchers to be aware of aspects of antibodies that may affect or limit data interpretation. Federal agencies now require funded grants to demonstrate how they will authenticate reagents used. There is also a push for recombinant antibodies, enabled by phage display technology awarded the 2018 Nobel Prize in Chemistry, which allow for thorough validation and a fixed DNA sequence. Here, we discuss how issues surrounding antibodies are pertinent to detecting myocilin, a protein found in trabecular meshwork and associated with a portion of hereditary glaucoma. Confirmation of myocilin expression in tissues and cell culture has been adopted as validation standard in trabecular meshwork research; thus, a discussion of antibody characteristics and fidelity is critical. Further, based on our basic structural understanding of myocilin architecture and its biophysical aggregation properties, we provide a wish list for the characteristics of next-generation antibody reagents for vision researchers. In the long term, well-characterized antibodies targeting myocilin will enable new insights into its function and involvement in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Athéna C Patterson-Orazem
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
27
|
Baba H, Ishibashi T. The Role of Sulfatides in Axon–Glia Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:165-179. [DOI: 10.1007/978-981-32-9636-7_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Bekku Y, Oohashi T. Under the ECM Dome: The Physiological Role of the Perinodal Extracellular Matrix as an Ion Diffusion Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:107-122. [DOI: 10.1007/978-981-32-9636-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Schira J, Heinen A, Poschmann G, Ziegler B, Hartung HP, Stühler K, Küry P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism. FASEB J 2018; 33:4703-4715. [PMID: 30592632 DOI: 10.1096/fj.201801799r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Schwann cells promote nerve regeneration by adaptation of a regenerative phenotype referred to as repair mediating Schwann cell. Down-regulation of myelin proteins, myelin clearance, formation of Bungner's bands, and secretion of trophic factors characterize this cell type. We have previously shown that the sphingosine-1-phosphate receptor agonist Fingolimod/FTY720P promotes the generation of this particular Schwann cell phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth of dorsal root ganglion neurons. Despite its biomedical relevance, a detailed characterization of the corresponding Schwann cell secretome is lacking, and the impact of FTY720P on enhancing neurite growth is not defined. Here, we applied a label-free quantitative mass spectrometry approach to characterize the secretomes derived from primary neonatal and adult rat Schwann cells in response to FTY720P. We identified a large proportion of secreted proteins with a high overlap between the neonatal and adult Schwann cells, which can be associated with biologic processes such as development, axon growth, and regeneration. Moreover, FTY720P-treated Schwann cells release proteins downstream of Smad signaling known to support neurite growth. Our results therefore uncover a network of trophic factors involved in glial-mediated repair of the peripheral nervous system.-Schira, J., Heinen, A., Poschmann, G., Ziegler, B., Hartung, H.-P., Stühler, K., Küry, P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism.
Collapse
Affiliation(s)
- Jessica Schira
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany.,Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and
| | - André Heinen
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and
| | - Brigida Ziegler
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and.,Institute for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
30
|
Murakami K, Kikugawa S, Kobayashi Y, Uehara S, Suzuki T, Kato H, Udagawa N, Nakamura Y. Olfactomedin-like protein OLFML1 inhibits Hippo signaling and mineralization in osteoblasts. Biochem Biophys Res Commun 2018; 505:419-425. [PMID: 30266405 DOI: 10.1016/j.bbrc.2018.09.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
Congenital scoliosis is a lateral curvature of the spine that is due to the presence of vertebral anomalies. Although genetic and environmental factors are involved in the pathogenesis of congenital scoliosis, the specific cause of only a small number of individuals has been identified to date. We identified a de novo missense mutation in the olfactomedin-like 1 (OLFML1) gene by whole-exome sequencing of a patient with congenital scoliosis. Then, we carried out further functional investigation in mice. An assessment of the tissue distribution of Olfml1 revealed it to be prominently expressed in developing skeletal tissues, specifically osteoblasts. Short hairpin RNA-mediated knockdown of Olfml1 in osteoblasts induced the translocation of Yes-associated protein (YAP) transcriptional coactivator from the cytoplasm to the nucleus, which accelerated the Hippo signaling pathway to promote osteoblast mineralization. In contrast, experimentally induced gain of function of Olfml1 retained YAP in the cytoplasm. There appears to exist a novel cell-autonomous mechanism by which osteoblasts avoid excess mineralization through Olfml1. Our results also indicate that mutation of OLFML1 leads to impaired osteoblast differentiation and abnormal development of bone tissue.
Collapse
Affiliation(s)
- Kohei Murakami
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan; Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Shingo Kikugawa
- DNA Chip Research Inc., 1-15-1 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Takako Suzuki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
31
|
Abdillahi SM, Maaß T, Kasetty G, Strömstedt AA, Baumgarten M, Tati R, Nordin SL, Walse B, Wagener R, Schmidtchen A, Mörgelin M. Collagen VI Contains Multiple Host Defense Peptides with Potent In Vivo Activity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1007-1020. [PMID: 29925677 DOI: 10.4049/jimmunol.1700602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/01/2018] [Indexed: 11/19/2022]
Abstract
Collagen VI is a ubiquitous extracellular matrix component that forms extensive microfibrillar networks in most connective tissues. In this study, we describe for the first time, to our knowledge, that the collagen VI von Willebrand factor type A-like domains exhibit a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria in human skin infections in vivo. In silico sequence and structural analysis of VWA domains revealed that they contain cationic and amphipathic peptide sequence motifs, which might explain the antimicrobial nature of collagen VI. In vitro and in vivo studies show that these peptides exhibited significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa through membrane disruption. Our findings shed new light on the role of collagen VI-derived peptides in innate host defense and provide templates for development of peptide-based antibacterial therapies.
Collapse
Affiliation(s)
- Suado M Abdillahi
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Tobias Maaß
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Gopinath Kasetty
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Adam A Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Maria Baumgarten
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Ramesh Tati
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sara L Nordin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Björn Walse
- Saromics Biostructures AB, 223 63 Lund, Sweden
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, 2400 Copenhagen, Denmark and
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.,Colzyx AB, 223 81 Lund, Sweden
| |
Collapse
|
32
|
Patterson-Orazem AC, Hill SE, Fautsch MP, Lieberman RL. Epitope mapping of commercial antibodies that detect myocilin. Exp Eye Res 2018; 173:109-112. [PMID: 29752947 DOI: 10.1016/j.exer.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/17/2018] [Accepted: 05/05/2018] [Indexed: 01/26/2023]
Abstract
The presence of myocilin is often used in the process of validating trabecular meshwork (TM) cells and eye tissues, but the antibody reagents used for detection are poorly characterized. Indeed, for over a century, researchers have been using antibodies to track proteins of interest in a variety of biological contexts, but many antibodies remain ill-defined at the molecular level and in their target epitope. Such issues have prompted efforts from major funding agencies to validate reagents and combat reproducibility issues across biomedical sciences. Here we characterize the epitopes recognized by four commercial myocilin antibodies, aided by structurally and biochemically characterized myocilin fragments. All four antibodies recognize enriched myocilin secreted from human TM cell media. The detection of myocilin fragments by ELISA and Western blot reveal a variety of epitopes across the myocilin polypeptide chain. A more precise understanding of myocilin antibody targets, including conformational specificity, should aid the community in standardizing protocols across laboratories and in turn, lead to a better understanding of eye physiology and disease.
Collapse
Affiliation(s)
- Athéna C Patterson-Orazem
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, United States
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, United States
| | - Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, United States.
| |
Collapse
|
33
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
34
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
35
|
Hill SE, Nguyen E, Donegan RK, Patterson-Orazem AC, Hazel A, Gumbart JC, Lieberman RL. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin. Structure 2017; 25:1697-1707.e5. [PMID: 29056483 PMCID: PMC5685557 DOI: 10.1016/j.str.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023]
Abstract
Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shannon E Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elaine Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
36
|
Monavarfeshani A, Knill CN, Sabbagh U, Su J, Fox MA. Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse Brain. Front Integr Neurosci 2017; 11:20. [PMID: 28912695 PMCID: PMC5583603 DOI: 10.3389/fnint.2017.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Unconventional collagens are nonfribrillar proteins that not only contribute to the structure of extracellular matrices but exhibit unique bio-activities. Although roles for unconventional collagens have been well-established in the development and function of non-neural tissues, only recently have studies identified roles for these proteins in brain development, and more specifically, in the formation and refinement of synaptic connections between neurons. Still, our understanding of the full cohort of unconventional collagens that are generated in the mammalian brain remains unclear. Here, we sought to address this gap by assessing the expression of transmembrane collagens (i.e., collagens XIII, XVII, XXIII and XXV) in mouse brain. Using quantitative PCR and in situ hybridization (ISH), we demonstrate both region- and cell-specific expression of these unique collagens in the developing brain. For the two most highly expressed transmembrane collagens (i.e., collagen XXIII and XXV), we demonstrate that they are expressed by select subsets of neurons in different parts of the brain. For example, collagen XXIII is selectively expressed by excitatory neurons in the mitral/tufted cell layer of the accessory olfactory bulb (AOB) and by cells in the inner nuclear layer (INL) of the retina. On the other hand, collagen XXV, which is more broadly expressed, is generated by subsets of excitatory neurons in the dorsal thalamus and midbrain and by inhibitory neurons in the retina, ventral thalamus and telencephalon. Not only is col25a1 expression present in retina, it appears specifically enriched in retino-recipient nuclei within the brain (including the suprachiasmatic nucleus (SCN), lateral geniculate complex, olivary pretectal nucleus (OPN) and superior colliculus). Taken together, the distinct region- and cell-specific expression patterns of transmembrane collagens suggest that this family of unconventional collagens may play unique, yet-to-be identified roles in brain development and function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Courtney N Knill
- Virginia Tech Carilion School of Medicine, Virginia TechRoanoke, VA, United States
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia TechBlacksburg, VA, United States
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States.,Department of Pediatrics, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
37
|
Maluenda J, Manso C, Quevarec L, Vivanti A, Marguet F, Gonzales M, Guimiot F, Petit F, Toutain A, Whalen S, Grigorescu R, Coeslier AD, Gut M, Gut I, Laquerrière A, Devaux J, Melki J. Mutations in GLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis. Am J Hum Genet 2016; 99:928-933. [PMID: 27616481 DOI: 10.1016/j.ajhg.2016.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022] Open
Abstract
Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through linkage analysis, homozygosity mapping, and exome sequencing in four unrelated families affected by lethal AMC, we identified biallelic mutations in GLDN in the affected individuals. GLDN encodes gliomedin, a secreted cell adhesion molecule involved in the formation of the nodes of Ranvier. Transmission electron microscopy of the sciatic nerve from one of the affected individuals showed a marked lengthening defect of the nodes. The GLDN mutations found in the affected individuals abolish the cell surface localization of gliomedin and its interaction with its axonal partner, neurofascin-186 (NF186), in a cell-based assay. The axoglial contact between gliomedin and NF186 is essential for the initial clustering of Na+ channels at developing nodes. These results indicate a major role of gliomedin in node formation and the development of the peripheral nervous system in humans. These data indicate that mutations of GLDN or CNTNAP1 (MIM: 616286), encoding essential components of the nodes of Ranvier and paranodes, respectively, lead to inherited nodopathies, a distinct disease entity among peripheral neuropathies.
Collapse
Affiliation(s)
- Jérôme Maluenda
- INSERM UMR-1169, Université Paris Saclay, Le Kremlin Bicêtre 94276, France
| | - Constance Manso
- UMR-7286, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13444, France
| | - Loic Quevarec
- INSERM UMR-1169, Université Paris Saclay, Le Kremlin Bicêtre 94276, France
| | - Alexandre Vivanti
- INSERM UMR-1169, Université Paris Saclay, Le Kremlin Bicêtre 94276, France
| | - Florent Marguet
- Pathology Laboratory, Rouen University Hospital, Rouen 76000, France; INSERM, NéoVasc Laboratory, University of Rouen, Rouen 76000, France
| | - Marie Gonzales
- Département de Génétique Médicale, Hôpital Trousseau and Université Pierre et Marie Curie, Paris 75571, France
| | - Fabien Guimiot
- INSERM U-1141, Service de Biologie du Développement, Hôpital Robert Debré, Paris 75019, France
| | - Florence Petit
- Clinique de Génétique Guy Fontaine, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire, Lille 59037, France
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, Centre Hospitalier Universitaire de Tours, Tours 37044, France
| | - Sandra Whalen
- Département de Génétique Médicale, Hôpital Trousseau and Université Pierre et Marie Curie, Paris 75571, France
| | - Romulus Grigorescu
- Département de Génétique Médicale, Hôpital Trousseau and Université Pierre et Marie Curie, Paris 75571, France
| | - Anne Dieux Coeslier
- Clinique de Génétique Guy Fontaine, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire, Lille 59037, France
| | - Marta Gut
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Baldiri i Reixac 4, Barcelona 08028, Spain
| | - Ivo Gut
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Baldiri i Reixac 4, Barcelona 08028, Spain
| | - Annie Laquerrière
- Pathology Laboratory, Rouen University Hospital, Rouen 76000, France; INSERM, NéoVasc Laboratory, University of Rouen, Rouen 76000, France
| | - Jérôme Devaux
- UMR-7286, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13444, France
| | - Judith Melki
- INSERM UMR-1169, Université Paris Saclay, Le Kremlin Bicêtre 94276, France.
| |
Collapse
|
38
|
Maaß T, Bayley CP, Mörgelin M, Lettmann S, Bonaldo P, Paulsson M, Baldock C, Wagener R. Heterogeneity of Collagen VI Microfibrils: STRUCTURAL ANALYSIS OF NON-COLLAGENOUS REGIONS. J Biol Chem 2016; 291:5247-58. [PMID: 26742845 PMCID: PMC4777857 DOI: 10.1074/jbc.m115.705160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/23/2015] [Indexed: 11/29/2022] Open
Abstract
Collagen VI, a collagen with uncharacteristically large N- and C-terminal non-collagenous regions, forms a distinct microfibrillar network in most connective tissues. It was long considered to consist of three genetically distinct α chains (α1, α2, and α3). Intracellularly, heterotrimeric molecules associate to form dimers and tetramers, which are then secreted and assembled to microfibrils. The identification of three novel long collagen VI α chains, α4, α5, and α6, led to the question if and how these may substitute for the long α3 chain in collagen VI assembly. Here, we studied structural features of the novel long chains and analyzed the assembly of these into tetramers and microfibrils. N- and C-terminal globular regions of collagen VI were recombinantly expressed and studied by small angle x-ray scattering (SAXS). Ab initio models of the N-terminal globular regions of the α4, α5, and α6 chains showed a C-shaped structure similar to that found for the α3 chain. Single particle EM nanostructure of the N-terminal globular region of the α4 chain confirmed the C-shaped structure revealed by SAXS. Immuno-EM of collagen VI extracted from tissue revealed that like the α3 chain the novel long chains assemble to homotetramers that are incorporated into mixed microfibrils. Moreover, SAXS models of the C-terminal globular regions of the α1, α2, α4, and α6 chains were generated. Interestingly, the α1, α2, and α4 C-terminal globular regions dimerize. These self-interactions may play a role in tetramer formation.
Collapse
Affiliation(s)
- Tobias Maaß
- From the Center for Biochemistry, Medical Faculty
| | - Christopher P Bayley
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Matthias Mörgelin
- the Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden, and
| | | | - Paolo Bonaldo
- the Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Mats Paulsson
- From the Center for Biochemistry, Medical Faculty, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, and Center for Musculoskeletal Biomechanics, University of Cologne, D-50931 Cologne, Germany
| | - Clair Baldock
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom,
| | - Raimund Wagener
- From the Center for Biochemistry, Medical Faculty, Center for Molecular Medicine,
| |
Collapse
|
39
|
Hwang JY, Kim YJ, Choi BY, Kim BJ, Han BG. Meta analysis identifies a novel susceptibility locus associated with heel bone strength in the Korean population. Bone 2016; 84:47-51. [PMID: 26686025 DOI: 10.1016/j.bone.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Calcaneal quantitative ultrasound has been recognized as a non-invasive method for evaluation of bone strength and prediction of osteoporotic fracture. METHODS To extend a thorough genetic catalog for osteoporotic bone properties, we performed a genome-wide association study (rural cohort I, n=1895) of speed of sound (SOS) using the 1000 genome-based imputation in the discovery stage and then carried out in silico lookups (rural cohort II and III, n=2,967) and de novo genotyping (rural cohort IV, n=4,296) in the replication stage. RESULTS In the combined meta-analysis (n=9,158), we identified a novel variant associated with SOS (rs2445771 in the GLDN gene, P=2.27×10(-9)) reaching genome-wide significance in the Korean population. We further demonstrated that allele-specific regulatory modifications found to be associated with functional enrichments by ENCODE annotations. CONCLUSION Our findings could provide additional insights into understanding of genetic and epigenetic regulations on bone metabolism.
Collapse
Affiliation(s)
- Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Young Jin Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Bong-Jo Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea.
| | - Bok-Ghee Han
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
40
|
Gebauer JM, Kobbe B, Paulsson M, Wagener R. Structure, evolution and expression of collagen XXVIII: Lessons from the zebrafish. Matrix Biol 2016; 49:106-119. [DOI: 10.1016/j.matbio.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022]
|
41
|
Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie 2015; 122:300-13. [PMID: 26382969 DOI: 10.1016/j.biochi.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Sylvain D Vallet
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
42
|
Hill SE, Donegan RK, Nguyen E, Desai TM, Lieberman RL. Molecular Details of Olfactomedin Domains Provide Pathway to Structure-Function Studies. PLoS One 2015; 10:e0130888. [PMID: 26121352 PMCID: PMC4488277 DOI: 10.1371/journal.pone.0130888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Olfactomedin (OLF) domains are found within extracellular, multidomain proteins in numerous tissues of multicellular organisms. Even though these proteins have been implicated in human disorders ranging from cancers to attention deficit disorder to glaucoma, little is known about their structure(s) and function(s). Here we biophysically, biochemically, and structurally characterize OLF domains from H. sapiens olfactomedin-1 (npoh-OLF, also called noelin, pancortin, OLFM1, and hOlfA), and M. musculus gliomedin (glio-OLF, also called collomin, collmin, and CRG-L2), and compare them with available structures of myocilin (myoc-OLF) recently reported by us and R. norvegicus glio-OLF and M. musculus latrophilin-3 (lat3-OLF) by others. Although the five-bladed β-propeller architecture remains unchanged, numerous physicochemical characteristics differ among these OLF domains. First, npoh-OLF and glio-OLF exhibit prominent, yet distinct, positive surface charges and copurify with polynucleotides. Second, whereas npoh-OLF and myoc-OLF exhibit thermal stabilities typical of human proteins near 55°C, and most myoc-OLF variants are destabilized and highly prone to aggregation, glio-OLF is nearly 20°C more stable and significantly more resistant to chemical denaturation. Phylogenetically, glio-OLF is most similar to primitive OLFs, and structurally, glio-OLF is missing distinguishing features seen in OLFs such as the disulfide bond formed by N- and C- terminal cysteines, the sequestered Ca2+ ion within the propeller central hydrophilic cavity, and a key loop-stabilizing cation-π interaction on the top face of npoh-OLF and myoc-OLF. While deciphering the explicit biological functions, ligands, and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, we used structural insights gained here to generate a new antibody selective for myoc-OLF over npoh-OLF and glio-OLF as a first step in overcoming the impasse in detailed functional characterization of these biomedically important protein domains.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rebecca K. Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Elaine Nguyen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Tanay M. Desai
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol 2015; 44-46:14-23. [DOI: 10.1016/j.matbio.2015.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022]
|
44
|
Pronker MF, Bos TGAA, Sharp TH, Thies-Weesie DME, Janssen BJC. Olfactomedin-1 Has a V-shaped Disulfide-linked Tetrameric Structure. J Biol Chem 2015; 290:15092-101. [PMID: 25903135 PMCID: PMC4463452 DOI: 10.1074/jbc.m115.653485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the “V” is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal β-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and β-propeller combination (Olfm1coil-Olf) that reveals a disulfide-linked dimeric arrangement with the β-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members.
Collapse
Affiliation(s)
- Matti F Pronker
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Trusanne G A A Bos
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Thomas H Sharp
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands and
| | - Bert J C Janssen
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| |
Collapse
|
45
|
Colombelli C, Palmisano M, Eshed-Eisenbach Y, Zambroni D, Pavoni E, Ferri C, Saccucci S, Nicole S, Soininen R, McKee KK, Yurchenco PD, Peles E, Wrabetz L, Feltri ML. Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin. J Cell Biol 2015; 208:313-29. [PMID: 25646087 PMCID: PMC4315246 DOI: 10.1083/jcb.201403111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023] Open
Abstract
Fast neural conduction requires accumulation of Na(+) channels at nodes of Ranvier. Dedicated adhesion molecules on myelinating cells and axons govern node organization. Among those, specific laminins and dystroglycan complexes contribute to Na(+) channel clustering at peripheral nodes by unknown mechanisms. We show that in addition to facing the basal lamina, dystroglycan is found near the nodal matrix around axons, binds matrix components, and participates in initial events of nodogenesis. We identify the dystroglycan-ligand perlecan as a novel nodal component and show that dystroglycan is required for the selective accumulation of perlecan at nodes. Perlecan binds the clustering molecule gliomedin and enhances clustering of node of Ranvier components. These data show that proteoglycans have specific roles in peripheral nodes and indicate that peripheral and central axons use similar strategies but different molecules to form nodes of Ranvier. Further, our data indicate that dystroglycan binds free matrix that is not organized in a basal lamina.
Collapse
Affiliation(s)
- Cristina Colombelli
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Marilena Palmisano
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203 Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Desirée Zambroni
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Ernesto Pavoni
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Stefania Saccucci
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Sophie Nicole
- Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France Institut National de la Santé et de la Recherche Médicale, U1127, 75019 Paris, France Sorbonne Universités, Université Pierre et Marie Currie, UMRS1127, 75252 Paris, France Centre National de la Recherche Scientifique, UMR 7225, 75013 Paris, France
| | - Raija Soininen
- Oulu Center for Cell-Extracellular Matrix Research, University of Oulu, 90014 Oulu, Finland
| | | | | | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lawrence Wrabetz
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203 Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203
| | - M Laura Feltri
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203 Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203
| |
Collapse
|
46
|
Han H, Kursula P. The olfactomedin domain from gliomedin is a β-propeller with unique structural properties. J Biol Chem 2014; 290:3612-21. [PMID: 25525261 DOI: 10.1074/jbc.m114.627547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All members of the olfactomedin (OLF) family have a conserved extracellular OLF domain, for which a structure has not been available. We present here the crystal structure of the OLF domain from gliomedin. Gliomedin is a protein expressed by Schwann cells in peripheral nerves, important for the formation of the nodes of Ranvier. Gliomedin interacts with neuronal cell adhesion molecules, such as neurofascin, but the structural details of the interaction are not known. The structure of the OLF domain presents a five-bladed β-propeller fold with unusual geometric properties. The symmetry of the structure is not 5-fold, but rather reveals a twisted arrangement. The conserved top face of the gliomedin OLF domain is likely to be important for binding to neuronal ligands. Our results provide a structural basis for the functions of gliomedin in Schwann cells, enable the understanding of the role of the gliomedin OLF domain in autoimmune neuropathies, and unravel the locations of human disease-causing mutations in other OLF family members, including myocilin.
Collapse
Affiliation(s)
- Huijong Han
- From the Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland, the German Electron Synchrotron (DESY), 22607 Hamburg, Germany, and
| | - Petri Kursula
- From the Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland, the German Electron Synchrotron (DESY), 22607 Hamburg, Germany, and the Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
47
|
Han H, Kursula P. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the extracellular olfactomedin domain of gliomedin. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1536-9. [PMID: 25372825 DOI: 10.1107/s2053230x14020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/09/2014] [Indexed: 11/10/2022]
Abstract
Gliomedin (GLDN) is one of the essential proteins in the development of the nodes of Ranvier in the vertebrate peripheral nervous system. An olfactomedin (OLF) domain is located at the GLDN extracellular C-terminus and is involved in the accumulation of neuronal plasma membrane voltage-gated sodium channels in the nodes by interacting with neurofascin and NrCAM. No structures of OLF domains have previously been reported. Here, the crystallization of the rat GLDN OLF domain, which was expressed in an insect-cell system, is reported. The crystal diffracted to 1.55 Å resolution and belonged to space group P2₁, with unit-cell parameters a=37.5, b=141.7, c=46.0 Å, β=110.6°, and had two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Huijong Han
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| |
Collapse
|
48
|
Chowdhury A, Herzog C, Hasselbach L, Khouzani HL, Zhang J, Hammerschmidt M, Rudat C, Kispert A, Gaestel M, Menon MB, Tudorache I, Hilfiker-Kleiner D, Mühlfeld C, Schmitto JD, Müller M, Theilmeier G. Expression of fibulin-6 in failing hearts and its role for cardiac fibroblast migration. Cardiovasc Res 2014; 103:509-20. [PMID: 24951538 DOI: 10.1093/cvr/cvu161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS The cardiac extracellular matrix (ECM) undergoes a dynamic transition following myocardial infarction. Fibulin-6 is expressed in cell junctions particularly in tissues subjected to significant mechanical stress. Fibulin-6 deficiency results in defective cell migration in nematodes and early embryonic lethality in mice. The role of fibulin-6 in healthy and failing myocardium is unknown. We have examined the expression and distribution pattern of fibulin-6 during myocardial remodelling (MR) and detailed its effect on the migratory function of cardiac fibroblasts (CFs) in response to TGF-β1. METHODS AND RESULTS In healthy murine myocardium, fibulin-6 expression is largely confined to larger coronary arteries. It is induced during the early and the late phase of remodelling after infarction in murine hearts predominantly in the scar-muscle junction. Similar results are obtained in human ischaemic cardiomyopathy. Fibulin-6 is mostly expressed in close vicinity to vimentin-positive cells and is also abundantly expressed in vitro in cultured neonatal CF. TGF-β1 does not induce smooth muscle actin in fibroblasts deficient of fibulin-6, which also compromised their migration. Cells that had migrated expressed more fibulin-6 compared with stationary cells. Plated on fibulin-6-depleted matrix, stress fibre induction in fibroblast in response to TGF-β1 was impaired. In ex vivo explant cultures from post-infarct myocardium, the number of emigrating fibroblasts was also significantly reduced by fibulin-6 siRNA knockdown. CONCLUSION Fibulin-6, a fibroblast-released ECM protein, may play an important role during MR by imparting an effect on CF migration in close and complementary interplay with TGF-β1 signalling.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Lisa Hasselbach
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Houra Loghmani Khouzani
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Jinli Zhang
- Institute of Developmental Biology, Cologne University, Cologne, Germany
| | | | - Carsten Rudat
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, Hannover, Germany
| | - Manoj B Menon
- Institute of Physiological Chemistry, Hannover Medical School, Hannover, Germany
| | - Igor Tudorache
- Department of Cardio-Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | - Christian Mühlfeld
- Institute of Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Jan Dieter Schmitto
- Department of Cardio-Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Martin Müller
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Gregor Theilmeier
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| |
Collapse
|
49
|
Faivre-Sarrailh C, Devaux JJ. Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases. Front Cell Neurosci 2013; 7:196. [PMID: 24194699 PMCID: PMC3810605 DOI: 10.3389/fncel.2013.00196] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Specific cell adhesion molecules (CAMs) are dedicated to the formation of axo-glial contacts at the nodes of Ranvier of myelinated axons. They play a central role in the organization and maintenance of the axonal domains: the node, paranode, and juxtaparanode. In particular, CAMs are essential for the accumulation of voltage-gated sodium channels at the nodal gap that ensures the rapid and saltatory propagation of the action potentials (APs). The mechanisms regulating node formation are distinct in the central and peripheral nervous systems, and recent studies have highlighted the relative contribution of paranodal junctions and nodal extracellular matrix. In addition, CAMs at the juxtaparanodal domains mediate the clustering of voltage-gated potassium channels which regulate the axonal excitability. In several human pathologies, the axo-glial contacts are altered leading to disruption of the nodes of Ranvier or mis-localization of the ion channels along the axons. Node alterations and the failure of APs to propagate correctly from nodes to nodes along the axons both contribute to the disabilities in demyelinating diseases. This article reviews the mechanisms regulating the association of the axo-glial complexes and the role of CAMs in inherited and acquired neurological diseases.
Collapse
|
50
|
Kwon HS, Johnson TV, Joe MK, Abu-Asab M, Zhang J, Chan CC, Tomarev SI. Myocilin mediates myelination in the peripheral nervous system through ErbB2/3 signaling. J Biol Chem 2013; 288:26357-71. [PMID: 23897819 DOI: 10.1074/jbc.m112.446138] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glaucoma-associated gene, myocilin, is expressed in ocular and non-ocular tissues including the peripheral nervous system, but its functions in these tissues remain poorly understood. We demonstrate that in sciatic nerve, myocilin is expressed in Schwann cells with high concentrations at the nodes of Ranvier. There, myocilin interacts with gliomedin, neurofascin, and NrCAM, which are essential for node formation and function. Treatment of isolated dorsal root ganglion cultures with myocilin stimulates clustering of the nodal proteins neurofascin and sodium channel Nav1.2. Sciatic nerves of myocilin null mice express reduced levels of several myelin-associated and basal membrane proteins compared with those of wild-type littermates. They also demonstrate reduced myelin sheath thickness and partial disorganization of the nodes. Myocilin signaling through ErbB2/3 receptors may contribute to these observed effects. Myocilin binds to ErbB2/ErbB3, activates these receptors, and affects the downstream PI3K-AKT signaling pathway. These data implicate a role for myocilin in the development and/or maintenance of myelination and nodes of Ranvier in sciatic nerve.
Collapse
Affiliation(s)
- Heung Sun Kwon
- From the Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, and
| | | | | | | | | | | | | |
Collapse
|