1
|
Guo X, Li H, Yan C, Lei J, Zhou R, Shi Y. Molecular mechanism of substrate recognition and cleavage by human γ-secretase. Science 2024; 384:1091-1095. [PMID: 38843321 DOI: 10.1126/science.adn5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
Successive cleavages of amyloid precursor protein C-terminal fragment with 99 residues (APP-C99) by γ-secretase result in amyloid-β (Aβ) peptides of varying lengths. Most cleavages have a step size of three residues. To elucidate the underlying mechanism, we determined the atomic structures of human γ-secretase bound individually to APP-C99, Aβ49, Aβ46, and Aβ43. In all cases, the substrate displays the same structural features: a transmembrane α-helix, a three-residue linker, and a β-strand that forms a hybrid β-sheet with presenilin 1 (PS1). Proteolytic cleavage occurs just ahead of the substrate β-strand. Each cleavage is followed by unwinding and translocation of the substrate α-helix by one turn and the formation of a new β-strand. This mechanism is consistent with existing biochemical data and may explain the cleavages of other substrates by γ-secretase.
Collapse
Affiliation(s)
- Xuefei Guo
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haotian Li
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Zhou
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Science and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang, China
- Research Center for Industries of the Future; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
2
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Chang C, Banerjee SL, Park SS, Zhang XL, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. eLife 2024; 12:RP89176. [PMID: 38289221 PMCID: PMC10945567 DOI: 10.7554/elife.89176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Sara L Banerjee
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Xiao Lei Zhang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
| | | | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- School of Life Sciences, Keele UniversityKeeleUnited Kingdom
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of Washington School of MedicineSeattleUnited States
- Department of Pharmacology, University of Washington School of MedicineSeattleUnited States
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| |
Collapse
|
4
|
Chang C, Banerjee SL, Park SS, Zhang X, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544638. [PMID: 37693478 PMCID: PMC10491099 DOI: 10.1101/2023.06.12.544638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in C. elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signaling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Sara L. Banerjee
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Xiaolei Zhang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - David Cotnoir-White
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| |
Collapse
|
5
|
Nabavi M, Hiesinger PR. Turnover of synaptic adhesion molecules. Mol Cell Neurosci 2023; 124:103816. [PMID: 36649812 DOI: 10.1016/j.mcn.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Molecular interactions between pre- and postsynaptic membranes play critical roles during the development, function and maintenance of synapses. Synaptic interactions are mediated by cell surface receptors that may be held in place by trans-synaptic adhesion or intracellular binding to membrane-associated scaffolding and signaling complexes. Despite their role in stabilizing synaptic contacts, synaptic adhesion molecules undergo turnover and degradation during all stages of a neuron's life. Here we review current knowledge about membrane trafficking mechanisms that regulate turnover of synaptic adhesion molecules and the functional significance of turnover for synapse development and function. Based on recent proteomics, genetics and imaging studies, synaptic adhesion molecules exhibit remarkably high turnover rates compared to other synaptic proteins. Degradation occurs predominantly via endolysosomal mechanisms, with little evidence for roles of proteasomal or autophagic degradation. Basal turnover occurs both during synaptic development and maintenance. Neuronal activity typically stabilizes synaptic adhesion molecules while downregulating neurotransmitter receptors based on turnover. In conclusion, constitutive turnover of synaptic adhesion molecules is not a necessarily destabilizing factor, but a basis for the dynamic regulation of trans-synaptic interactions during synapse formation and maintenance.
Collapse
Affiliation(s)
- Melinda Nabavi
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany
| | - P Robin Hiesinger
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany.
| |
Collapse
|
6
|
Zhu G, Lin Y, Ge T, Singh S, Liu H, Fan L, Wang S, Rhen J, Jiang D, Lyu Y, Yin Y, Li X, Benoit DSW, Li W, Xu Y, Pang J. A novel peptide inhibitor of Dll4-Notch1 signalling and its pro-angiogenic functions. Br J Pharmacol 2022; 179:1716-1731. [PMID: 34796471 PMCID: PMC9040338 DOI: 10.1111/bph.15743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The Dll4-Notch1 signalling pathway plays an important role in sprouting angiogenesis, vascular remodelling and arterial or venous specificity. Genetic or pharmacological inhibition of Dll4-Notch1 signalling leads to excessive sprouting angiogenesis. However, transcriptional inhibitors of Dll4-Notch1 signalling have not been described. EXPERIMENTAL APPROACH We designed a new peptide targeting Notch signalling, referred to as TAT-ANK, and assessed its effects on angiogenesis. In vitro, tube formation and fibrin gel bead assay were carried out, using human umbilical vein endothelial cells (HUVECs). In vivo, Matrigel plug angiogenesis assay, a developmental retinal model and tumour models in mice were used. The mechanisms underlying TAT-ANK activity were investigated by immunochemistry, western blotting, immunoprecipitation, RT-qPCR and luciferase reporter assays. KEY RESULTS The amino acid residues 179-191 in the G-protein-coupled receptor-kinase-interacting protein-1 (GIT1-ankyrin domain) are crucial for GIT1 binding to the Notch transcription repressor, RBP-J. We designed the peptide TAT-ANK, based on residues 179-191 in GIT1. TAT-ANK significantly inhibited Dll4 expression and Notch 1 activation in HUVECs by competing with activated Notch1 to bind to RBP-J. The analyses of biological functions showed that TAT-ANK promoted angiogenesis in vitro and in vivo by inhibiting Dll4-Notch1 signalling. CONCLUSIONS AND IMPLICATIONS We synthesized and investigated the biological actions of TAT-ANK peptide, a new inhibitor of Notch signalling. This peptide will be of significant interest to research on Dll4-Notch1 signalling and to clinicians carrying out clinical trials using Notch signalling inhibitors. Furthermore, our findings will have important conceptual and therapeutic implications for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Lin
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tandi Ge
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shekhar Singh
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linlin Fan
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shumin Wang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jordan Rhen
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lyu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiheng Yin
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danielle S. W. Benoit
- Departments of Biomedical Engineering and Chemical Engineering, Materials Science Program, and Centers for Musculoskeletal Research and Oral Biology, University of Rochester, Rochester, New York, USA
| | - Weiming Li
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
7
|
Bodin R, Paillé V, Oullier T, Durand T, Aubert P, Le Berre-Scoul C, Hulin P, Neunlist M, Cissé M. The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons. J Biol Chem 2021; 297:101300. [PMID: 34648765 PMCID: PMC8569587 DOI: 10.1016/j.jbc.2021.101300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.
Collapse
Affiliation(s)
- Raphael Bodin
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Tony Durand
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Philippe Aubert
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | | | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Moustapha Cissé
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.
| |
Collapse
|
8
|
Yoon Y, Voloudakis G, Doran N, Zhang E, Dimovasili C, Chen L, Shao Z, Darmanis S, Tang C, Tang J, Wang VX, Hof PR, Robakis NK, Georgakopoulos A. PS1 FAD mutants decrease ephrinB2-regulated angiogenic functions, ischemia-induced brain neovascularization and neuronal survival. Mol Psychiatry 2021; 26:1996-2012. [PMID: 32541930 PMCID: PMC7736163 DOI: 10.1038/s41380-020-0812-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis. Importantly, brain EC cultures expressing PS1 FAD mutants decrease the EphB4-stimulated γ-secretase cleavage of ephrinB2 and reduce production of the angiogenic peptide ephrinB2/CTF2, the VE-cadherin angiogenic complexes and EC sprouting and tube formation. These data suggest that FAD mutants may attenuate ischemia-induced brain angiogenesis. Supporting this hypothesis, ischemia-induced VE-cadherin angiogenic complexes, levels of neoangiogenesis marker Endoglin, vascular density, and cerebral blood flow recovery, are all decreased in brains of mouse models expressing PS1 FAD mutants. Ischemia-induced brain neuronal death and cognitive deficits also increase in these mice. Furthermore, a small peptide comprising the C-terminal sequence of peptide ephrinB2/CTF2 rescues angiogenic functions of brain ECs expressing PS1 FAD mutants. Together, our data show that PS1 FAD mutations impede the EphB4/ephrinB2-mediated angiogenic functions of ECs and impair brain neovascularization, neuronal survival and cognitive recovery following ischemia. Furthermore, our data reveal a novel brain angiogenic mechanism targeted by PS1 FAD mutants and a potential therapeutic target for ischemia-induced neurodegeneration. Importantly, FAD mutant effects occur in absence of neuropathological hallmarks of AD, supporting that such hallmarks may form downstream of mutant effects on neoangiogenesis and neuronal survival.
Collapse
Affiliation(s)
- YoneJung Yoon
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan Doran
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhiping Shao
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Cheuk Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Jun Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Victoria X Wang
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 2021; 142:147-196. [PMID: 33706917 DOI: 10.1016/bs.ctdb.2020.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the nervous system develops, newly differentiated neurons need to extend their axons toward their synaptic targets to form functional neural circuits. During this highly dynamic process of axon pathfinding, guidance receptors expressed at the tips of motile axons interact with soluble guidance cues or membrane tethered molecules present in the environment to be either attracted toward or repelled away from the source of these cues. As competing cues are often present at the same location and during the same developmental period, guidance receptors need to be both spatially and temporally regulated in order for the navigating axons to make appropriate guidance decisions. This regulation is exerted by a diverse array of molecular mechanisms that have come into focus over the past several decades and these mechanisms ensure that the correct complement of surface receptors is present on the growth cone, a fan-shaped expansion at the tip of the axon. This dynamic, highly motile structure is defined by a lamellipodial network lining the periphery of the growth cone interspersed with finger-like filopodial projections that serve to explore the surrounding environment. Once axon guidance receptors are deployed at the right place and time at the growth cone surface, they respond to their respective ligands by initiating a complex set of signaling events that serve to rearrange the growth cone membrane and the actin and microtubule cytoskeleton to affect axon growth and guidance. In this review, we highlight recent advances that shed light on the rich complexity of mechanisms that regulate axon guidance receptor distribution, activation and downstream signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Gorla M, Bashaw GJ. Molecular mechanisms regulating axon responsiveness at the midline. Dev Biol 2020; 466:12-21. [PMID: 32818516 DOI: 10.1016/j.ydbio.2020.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
During embryonic development in bilaterally symmetric organisms, correct midline crossing is important for the proper formation of functional neural circuits. The aberrant development of neural circuits can result in multiple neurodevelopmental disorders, including horizontal gaze palsy, congenital mirror movement disorder, and autism spectrum disorder. Thus, understanding the molecular mechanisms that regulate proper axon guidance at the midline can provide insights into the pathology of neurological disorders. The signaling mechanisms that regulate midline crossing have been extensively studied in the Drosophila ventral nerve cord and the mouse embryonic spinal cord. In this review, we discuss these axon guidance mechanisms, highlighting the most recent advances in the understanding of how commissural axons switch their responsiveness from attractants to repellents during midline crossing.
Collapse
Affiliation(s)
- Madhavi Gorla
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Al Rahim M, Yoon Y, Dimovasili C, Shao Z, Huang Q, Zhang E, Kezunovic N, Chen L, Schaffner A, Huntley GW, Ubarretxena-Belandia I, Georgakopoulos A, Robakis NK. Presenilin1 familial Alzheimer disease mutants inactivate EFNB1- and BDNF-dependent neuroprotection against excitotoxicity by affecting neuroprotective complexes of N-methyl-d-aspartate receptor. Brain Commun 2020; 2:fcaa100. [PMID: 33005890 PMCID: PMC7520050 DOI: 10.1093/braincomms/fcaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Excitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires de novo formation of 'survival complexes' which are factor-stimulated complexes of N-methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection. EPH receptor B2- and N-methyl-d-aspartate receptor-derived peptides designed to disrupt formation of survival complexes also decrease the factor-stimulated neuroprotection. Strikingly, factor-dependent neuroprotection and levels of the de novo factor-stimulated survival complexes decrease dramatically in neurons expressing presenilin 1 familial Alzheimer disease mutants. Mouse neurons and brains expressing presenilin 1 familial Alzheimer disease mutants contain increased amounts of constitutive presenilin 1-N-methyl-d-aspartate receptor complexes unresponsive to factors. Interestingly, the stability of the familial Alzheimer disease presenilin 1-N-methyl-d-aspartate receptor complexes differs from that of wild type complexes and neurons of mutant-expressing brains are more vulnerable to cerebral ischaemia than neurons of wild type brains. Furthermore, N-methyl-d-aspartate receptor-mediated excitatory post-synaptic currents at CA1 synapses are altered by presenilin 1 familial Alzheimer disease mutants. Importantly, high levels of presenilin 1-N-methyl-d-aspartate receptor complexes are also found in post-mortem brains of Alzheimer disease patients expressing presenilin 1 familial Alzheimer disease mutants. Together, our data identify a novel presenilin 1-dependent neuroprotective mechanism against excitotoxicity and indicate a pathway by which presenilin 1 familial Alzheimer disease mutants decrease factor-depended neuroprotection against excitotoxicity and ischaemia in the absence of Alzheimer disease neuropathological hallmarks which may form downstream of neuronal damage. These findings have implications for the pathogenic effects of familial Alzheimer disease mutants and therapeutic strategies.
Collapse
Affiliation(s)
- Md Al Rahim
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonejung Yoon
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Huang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nebojsa Kezunovic
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Schaffner
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W Huntley
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anastasios Georgakopoulos
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol 2020; 105:27-42. [PMID: 32616437 DOI: 10.1016/j.semcdb.2020.05.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/09/2022]
Abstract
The intramembrane protease γ-secretase is a hetero-tetrameric protein complex with presenilin as the catalytic subunit and cleaves its membrane protein substrates within their single transmembrane domains. γ-Secretase is well known for its role in Notch signalling and in Alzheimer's disease, where it catalyzes the formation of the pathogenic amyloid β (Aβ) peptide. However, in the 21 years since its discovery many more substrates and substrate candidates of γ-secretase were identified. Although the physiological relevance of the cleavage of many substrates remains to be studied in more detail, the substrates demonstrate a broad role for γ-secretase in embryonic development, adult tissue homeostasis, signal transduction and protein degradation. Consequently, chronic γ-secretase inhibition may cause significant side effects due to inhibition of cleavage of multiple substrates. This review provides a list of 149 γ-secretase substrates identified to date and highlights by which expeirmental approach substrate cleavage was validated. Additionally, the review lists the cleavage sites where they are known and discusses the functional implications of γ-secretase cleavage with a focus on substrates identified in the recent past, such as CHL1, TREM2 and TNFR1. A comparative analysis demonstrates that γ-secretase substrates mostly have a long extracellular domain and require ectodomain shedding before γ-secretase cleavage, but that γ-secretase is also able to cleave naturally short substrates, such as the B cell maturation antigen. Taken together, the list of substrates provides a resource that may help in the future development of drugs inhibiting or modulating γ-secretase activity in a substrate-specific manner.
Collapse
Affiliation(s)
- Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
Valenzuela JI, Perez F. Localized Intercellular Transfer of Ephrin-As by Trans-endocytosis Enables Long-Term Signaling. Dev Cell 2019; 52:104-117.e5. [PMID: 31866204 DOI: 10.1016/j.devcel.2019.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/02/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Ephrins can elicit either contact-mediated cell-cell adhesion or repulsion, depending on the efficiency of the removal of their ligand-receptor complexes from the cell surface, thus controlling tissue morphogenesis and oncogenic development. However, the dynamic of the turnover of newly assembled ephrin-Eph complexes during cell-cell interactions remains mostly unexplored. Here, we show that ephrin-A1-EphA2 complexes are locally formed at the tip of the filopodia, at cell-to-cell contacts. Clusters of ephrin-A1 from donor cells surf on filopodia associated to EphA2-bearing subdomains of acceptor cells. Full-length ephrin-A1 is transferred to acceptor cells by trans-endocytosis through a proteolysis-independent mechanism. Trans-endocytosed ephrin-A1 bound to its receptor enables signaling to be emitted from endo-lysosomes of acceptor cells. Localized trans-endocytosis of ephrin-A1 sustains contact-mediated repulsion on cancer cells. Our results uncover the essential role played by local concentration at the tip of filopodia and the trans-endocytosis of full-length ephrin to maintain long-lasting ephrin signaling.
Collapse
Affiliation(s)
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
14
|
Javier-Torrent M, Marco S, Rocandio D, Pons-Vizcarra M, Janes PW, Lackmann M, Egea J, Saura CA. Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA. eLife 2019; 8:43646. [PMID: 31577226 PMCID: PMC6774734 DOI: 10.7554/elife.43646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
EphA/ephrin signaling regulates axon growth and guidance of neurons, but whether this process occurs also independently of ephrins is unclear. We show that presenilin-1 (PS1)/γ-secretase is required for axon growth in the developing mouse brain. PS1/γ-secretase mediates axon growth by inhibiting RhoA signaling and cleaving EphA3 independently of ligand to generate an intracellular domain (ICD) fragment that reverses axon defects in PS1/γ-secretase- and EphA3-deficient hippocampal neurons. Proteomic analysis revealed that EphA3 ICD binds to non-muscle myosin IIA (NMIIA) and increases its phosphorylation (Ser1943), which promotes NMIIA filament disassembly and cytoskeleton rearrangement. PS1/γ-secretase-deficient neurons show decreased phosphorylated NMIIA and NMIIA/actin colocalization. Moreover, pharmacological NMII inhibition reverses axon retraction in PS-deficient neurons suggesting that NMIIA mediates PS/EphA3-dependent axon elongation. In conclusion, PS/γ-secretase-dependent EphA3 cleavage mediates axon growth by regulating filament assembly through RhoA signaling and NMIIA, suggesting opposite roles of EphA3 on inhibiting (ligand-dependent) and promoting (receptor processing) axon growth in developing neurons.
Collapse
Affiliation(s)
- Míriam Javier-Torrent
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Marco
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Rocandio
- Institut de Recerca Biomédica de Lleida, Universitat de Lleida, Lleida, Spain
| | - Maria Pons-Vizcarra
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Joaquim Egea
- Institut de Recerca Biomédica de Lleida, Universitat de Lleida, Lleida, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Chen Y, Fu AKY, Ip NY. Synaptic dysfunction in Alzheimer's disease: Mechanisms and therapeutic strategies. Pharmacol Ther 2018; 195:186-198. [PMID: 30439458 DOI: 10.1016/j.pharmthera.2018.11.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the elderly population, is characterized by progressive cognitive decline and pathological hallmarks of amyloid plaques and neurofibrillary tangles. However, its pathophysiological mechanisms are poorly understood, and diagnostic tools and interventions are limited. Here, we review recent research on the amyloid hypothesis and beta-amyloid-induced dysfunction of neuronal synapses through distinct cell surface receptors. We also review how tau protein leads to synaptotoxicity through pathological modification, localization, and propagation. Finally, we discuss experimental therapeutics for AD and propose potential applications of disease-modifying strategies targeting synaptic failure for improved treatment of AD.
Collapse
Affiliation(s)
- Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China.
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Liu Z, Thakar A, Santoro SW, Pratt KG. Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing. Dev Neurobiol 2018; 78:1171-1190. [PMID: 30246932 DOI: 10.1002/dneu.22638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
As the catalytic component of γ-secretase, presenilin (PS) has long been studied in the context of Alzheimer's disease through cleaving the amyloid precursor protein. PS/γ-secretase, however, also cleaves a multitude of single-pass transmembrane proteins that are important during development, including Notch, the netrin receptor DCC, cadherins, drebrin-A, and the EphB2 receptor. Because transgenic PS-KO mice do not survive to birth, studies of this molecule during later embryonic or early postnatal stages of development have been carried out using cell cultures or conditional knock-out mice, respectively. As a result, the function of PS in synapse formation had not been well-addressed. Here, we study the role of PS in the developing Xenopus tadpole retinotectal circuit, an in-vivo model that allows for protein expression to be manipulated specifically during the peak of synapse formation between retinal ganglion cells and tectal neurons. We found that inhibiting PS in the postsynaptic tectal neurons impaired tadpole visual avoidance behavior. Whole cell recordings indicated weaker retinotectal synaptic transmission which was characterized by significant reductions in both NMDA receptor (NMDAR)- and AMPA receptor (AMPAR)-mediated currents. We also found that expression of the C-tail fragment of the EphB2 receptor, which is normally cleaved by PS/γ-secretase and which has been shown to upregulate NMDARs at the synapse, rescued the reduced NMDAR-mediated responses. Our data determine that normal PS function is important for proper formation and strengthening of retinotectal synapses through cleaving the EphB2 receptor.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Amit Thakar
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Stephen W Santoro
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
18
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
19
|
Raikwar NS, Shibuya M, Thomas CP. VEGF-A selectively inhibits FLT1 ectodomain shedding independent of receptor activation and receptor endocytosis. Am J Physiol Cell Physiol 2018; 315:C214-C224. [PMID: 29719170 PMCID: PMC6139503 DOI: 10.1152/ajpcell.00247.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 11/22/2022]
Abstract
Ectodomain shedding and regulated intracellular proteolysis can determine the fate or function of cell surface proteins. Fms-related tyrosine kinase (FLT) or VEGF receptor 1 is a high-affinity cell surface VEGF-A receptor tyrosine kinase that is constitutively cleaved to release an NH2-terminal VEGF-A binding ectodomain that, once shed, can antagonize the effects of VEGF-A in the extracellular milieu. We evaluated the effect of VEGF-A on FLT1 cleavage in native cells and in transient and stable expression systems. We demonstrate that VEGF-A inhibits FLT1 ectodomain cleavage in a time- and dose-dependent manner, whereas VEGF-A knockdown in HEK293 cells increases ectodomain shedding. Although kinase insert domain receptor (KDR) or VEGF receptor 2, analogous to FLT1, is also subject to extracellular and intracellular cleavage, VEGF-A does not inhibit KDR cleavage. VEGF-A inhibition of FLT1 cleavage is not dependent on FLT1 tyrosine kinase activity or the intracellular FLT1 residues. N-acetylleucylleucylnorleucinal (ALLN), a proteasomal inhibitor; bafilomycin A, an inhibitor of endosomal acidification; and dynasore, a dynamin inhibitor, all increase the abundance of FLT1 and the shed ectodomain, indicating that FLT1 is subject to dynamin-mediated endocytosis and susceptible to proteasomal and lysosomal degradation. VEGF-A inhibition of cleavage is not reversed by ALLN, bafilomycin A, or dynasore. However, a 30 AA deletion in the extracellular immunoglobulin 7 domain leads to enhanced cleavage of Flt1 with a significant reduction of the VEGF inhibitory effect. Our results indicate that the inhibition of FLT1 ectodomain cleavage by VEGF-A is dependent neither on receptor activation nor on internalization nor a consequence of receptor degradation and likely represents a direct inhibitory effect on receptor cleavage.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Christie P Thomas
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Department of Pediatrics, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Department of Obstetrics, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Graduate Program in Molecular Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Veterans Affairs Medical Center , Iowa City, Iowa
| |
Collapse
|
20
|
Kreitman M, Noronha A, Yarden Y. Irreversible modifications of receptor tyrosine kinases. FEBS Lett 2018; 592:2199-2212. [PMID: 29790151 DOI: 10.1002/1873-3468.13095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023]
Abstract
Each group of the 56 receptor tyrosine kinases (RTK) binds with one or more soluble growth factors and coordinates a vast array of cellular functions. These outcomes are tightly regulated by inducible post-translational events, such as tyrosine phosphorylation, ubiquitination, ectodomain shedding, and regulated intramembrane proteolysis. Because of the delicate balance required for appropriate RTK function, cells may become pathogenic upon dysregulation of RTKs themselves or their post-translational covalent modifications. For example, reduced ectodomain shedding and decreased ubiquitination of the cytoplasmic region, both of which enhance growth factor signals, characterize malignant cells. Whereas receptor phosphorylation and ubiquitination are reversible, proteolytic cleavage events are irreversible, and either modification might alter the subcellular localization of RTKs. Herein, we focus on ectodomain shedding by metalloproteinases (including ADAM family proteases), cleavage within the membrane or cytoplasmic regions of RTKs (by gamma-secretases and caspases, respectively), and complete receptor proteolysis in lysosomes and proteasomes. Roles of irreversible modifications in RTK signaling, pathogenesis, and pharmacology are highlighted.
Collapse
Affiliation(s)
- Matthew Kreitman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Malik VA, Di Benedetto B. The Blood-Brain Barrier and the EphR/Ephrin System: Perspectives on a Link Between Neurovascular and Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:127. [PMID: 29706868 PMCID: PMC5906525 DOI: 10.3389/fnmol.2018.00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.
Collapse
Affiliation(s)
- Victoria A Malik
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Okumura F, Joo-Okumura A, Obara K, Petersen A, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2. Mol Biol Cell 2017; 28:3532-3541. [PMID: 28931592 PMCID: PMC5683763 DOI: 10.1091/mbc.e17-07-0450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022] Open
Abstract
Eph receptor tyrosine kinases are important for cancer development and progression as well as in cellular repulsive responses. We determined that SOCS box-containing protein SPSB4 destabilizes EphB2 cytoplasmic fragments. SPSB4 is a novel ubiquitin ligase regulating EphB2-dependent cell repulsive responses. Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Keisuke Obara
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Alexander Petersen
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
23
|
Merilahti JAM, Ojala VK, Knittle AM, Pulliainen AT, Elenius K. Genome-wide screen of gamma-secretase-mediated intramembrane cleavage of receptor tyrosine kinases. Mol Biol Cell 2017; 28:3123-3131. [PMID: 28904208 PMCID: PMC5662267 DOI: 10.1091/mbc.e17-04-0261] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) have been demonstrated to signal via regulated intramembrane proteolysis, in which ectodomain shedding and subsequent intramembrane cleavage by gamma-secretase leads to release of a soluble intracellular receptor fragment with functional activity. For most RTKs, however, it is unknown whether they can exploit this new signaling mechanism. Here we used a system-wide screen to address the frequency of susceptibility to gamma-secretase cleavage among human RTKs. The screen covering 45 of the 55 human RTKs identified 12 new as well as all nine previously published gamma-secretase substrates. We biochemically validated the screen by demonstrating that the release of a soluble intracellular fragment from endogenous AXL was dependent on the sheddase disintegrin and metalloprotease 10 (ADAM10) and the gamma-secretase component presenilin-1. Functional analysis of the cleavable RTKs indicated that proliferation promoted by overexpression of the TAM family members AXL or TYRO3 depends on gamma-secretase cleavage. Taken together, these data indicate that gamma-secretase-mediated cleavage provides an additional signaling mechanism for numerous human RTKs.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
| | - Veera K Ojala
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Anna M Knittle
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Arto T Pulliainen
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Klaus Elenius
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland .,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Department of Oncology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
24
|
Kemmerling N, Wunderlich P, Theil S, Linnartz-Gerlach B, Hersch N, Hoffmann B, Heneka MT, de Strooper B, Neumann H, Walter J. Intramembranous processing by γ-secretase regulates reverse signaling of ephrin-B2 in migration of microglia. Glia 2017; 65:1103-1118. [PMID: 28370426 DOI: 10.1002/glia.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
The Eph-ephrin system plays pivotal roles in cell adhesion and migration. The receptor-like functions of the ephrin ligands allow the regulation of intracellular processes via reverse signaling. γ-Secretase mediated processing of ephrin-B has previously been linked to activation of Src, a kinase crucial for focal adhesion and podosome phosphorylation. Here, we analyzed the role of γ-secretase in the stimulation of reverse ephrin-B2 signaling in the migration of mouse embryonic stem cell derived microglia. The proteolytic generation of the ephrin-B2 intracellular domain (ICD) by γ-secretase stimulates Src and focal adhesion kinase (FAK). Inhibition of γ-secretase decreased the phosphorylation of Src and FAK, and reduced cell motility. These effects were associated with enlargement of the podosomal surface. Interestingly, expression of ephrin-B2 ICD could rescue these effects, indicating that this proteolytic fragment mediates the activation of Src and FAK, and thereby regulates podosomal dynamics in microglial cells. Together, these results identify γ-secretase as well as ephrin-B2 as regulators of microglial migration.
Collapse
Affiliation(s)
- Nadja Kemmerling
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | | | - Sandra Theil
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | | | - Nils Hersch
- Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Michael T Heneka
- Department of Neurology, University of Bonn, Bonn, 53127, Germany.,German Center for Neurodegenerative Diseases, Bonn, 53127, Germany
| | - Bart de Strooper
- KULeuven Centre for Human Genetics, Leuven, 3000, Belgium.,Centre for Brain and Disease, VIB (Flanders Institute for Biotechnology), Leuven, 3000, Belgium
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, 53127, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| |
Collapse
|
25
|
Miller MA, Sullivan RJ, Lauffenburger DA. Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clin Cancer Res 2016; 23:623-629. [PMID: 27895032 DOI: 10.1158/1078-0432.ccr-16-0869] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Proteases known as sheddases cleave the extracellular domains of their substrates from the cell surface. The A Disintegrin and Metalloproteinases ADAM10 and ADAM17 are among the most prominent sheddases, being widely expressed in many tissues, frequently overexpressed in cancer, and promiscuously cleaving diverse substrates. It is increasingly clear that the proteolytic shedding of transmembrane receptors impacts pathophysiology and drug response. Receptor substrates of sheddases include the cytokine receptors TNFR1 and IL6R; the Notch receptors; type-I and -III TGFβ receptors; receptor tyrosine kinases (RTK) such as HER2, HER4, and VEGFR2; and, in particular, MET and TAM-family RTKs AXL and Mer (MerTK). Activation of receptor shedding by mechanical cues, hypoxia, radiation, and phosphosignaling offers insight into mechanisms of drug resistance. This particularly holds for kinase inhibitors targeting BRAF (such as vemurafenib and dabrafenib) and MEK (such as trametinib and cobimetinib), along with direct sheddase inhibitors. Receptor proteolysis can be detected in patient fluids and is especially relevant in melanoma, glioblastoma, lung cancer, and triple-negative breast cancer where RTK substrates, MAPK signaling, and ADAMs are frequently dysregulated. Translatable strategies to exploit receptor shedding include combination kinase inhibitor regimens, recombinant decoy receptors based on endogenous counterparts, and, potentially, immunotherapy. Clin Cancer Res; 23(3); 623-9. ©2016 AACR.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan J Sullivan
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
26
|
Johnson C, Segovia B, Kandpal RP. EPHA7 and EPHA10 Physically Interact and Differentially Co-localize in Normal Breast and Breast Carcinoma Cell Lines, and the Co-localization Pattern Is Altered in EPHB6-expressing MDA-MB-231 Cells. Cancer Genomics Proteomics 2016; 13:359-368. [PMID: 27566654 PMCID: PMC5070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma cell (EPH) receptors comprise the most abundant receptor tyrosine kinase family characterized to date in mammals including humans. These proteins are involved in axon guidance, tissue organization, vascular development and the intricate process of various diseases including cancer. These diverse functions of EPH receptors are attributed, in part, to their abilities for heterodimerization. While the interacting partners of kinase-deficient EPHB6 receptor have been characterized, the interaction of the kinase-dead EPHA10 with any other receptor has not been identified. By using co-immunoprecipitation, we demonstrated physical interaction between kinase-deficient EPHA10 with kinase-sufficient EPHA7 receptor. Immunocytochemical analyses have revealed that these two receptors co-localize on the cell surface, and soluble portions of the receptors exist as a complex in the cytoplasm as well as the nuclei. While EPHA7 and EPHA10 co-localize similarly on the membrane in MCF10A and MCF7 cells, they were differentially co-localized in MDA-MB-231 cells stably transfected with empty pcDNA vector (MDA-MB-231-PC) or an expression construct of EPHB6 (MDA-MB-231-B6). The full-length isoforms of these receptors were co-localized on the cell surface, and the soluble forms were present as a complex in the cytoplasm as well as the nucleus in MDA-MB-231-PC cells. MDA-MB-231-B6 cells, on the other hand, were distinguished by the absence of any signal in the nuclei. Our results represent the first demonstration of physical interaction between EPHA10 and EPHA7 and their cellular co-localization. Furthermore, these observations also suggest gene-regulatory functions of the complex of the soluble forms of these receptors in breast carcinoma cells of differential invasiveness.
Collapse
Affiliation(s)
- Candace Johnson
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A
| | - Briana Segovia
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A
| | - Raj P Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A.
| |
Collapse
|
27
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
28
|
Abstract
We have previously reported the existence of a soluble form of CD200 (sCD200) in human plasma, and found sCD200 to be elevated in the plasma of Chronic Lymphocytic Leukemia (CLL) patients. CLL cells release CD200 at a constitutive level, which could be attenuated partially by ADAM28 silencing. In this study, we further explored mechanisms of CD200 shedding beyond that of ADAM28, and performed biochemical analysis of sCD200 using materials derived from purified CLL cells and Hek293 cells stably transfected with CD200, and antibodies generated specifically against either the extracellular or cytoplasmic regions of CD200. CD200 shedding was enhanced by PMA stimulation, and the loss of cell surface CD200 could be monitored as a reduction in CD200 cell surface expression by flow cytometry, in parallel with an increase in the detection of sCD200 in the supernatant. Western blot analyses and functional studies using CD200R1 expressing Hek293 cells showed that the shed CD200 detected in CLL and Hek293-hCD200 supernatants lacked the cytoplasmic domain of CD200 but retained the functional extracellular domain required for binding to, and phosphorylation of, CD200R. These data confirms that a functionally active CD200 extracellular moiety can be cleaved from the surface of CD200 expressing cells following ectodomain shedding.
Collapse
|
29
|
Ectodomain cleavage of FLT1 regulates receptor activation and function and is not required for its downstream intracellular cleavage. Exp Cell Res 2016; 344:103-111. [PMID: 27017929 DOI: 10.1016/j.yexcr.2016.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/18/2023]
Abstract
FLT1 is a cell surface VEGF receptor which is cleaved to release an N-terminal ectodomain which binds VEGF and PlGF and can antagonize the effects of VEGF in the extracellular milieu. To further evaluate FLT1 processing we expressed tagged FLT1 constructs in HEK293 and COS7 cells where we demonstrate, by deletion mapping, that the cleavage site is immediately adjacent to the transmembrane domain (TMD) between residues 759 and 763. Cleavage reciprocally regulates free VEGF in conditioned media and we show that the cleavage site is also transferable to another transmembrane receptor. A second cleavage event downstream of the ectodomain cleavage releases a cytosolic C-terminal FLT1 fragment and this intracellular cleavage of FLT1 is not catalyzed or regulated by the upstream ectodomain cleavage since abolition of the ectodomain cleavage has no impact on the downstream cleavage event. The downstream cleavage event is not susceptible to γ-secretase inhibitors and overexpression of presenilin 1, the catalytic subunit of γ-secretase did not change the downstream intracellular cleavage event. Furthermore, this cleavage did not occur via a previously published valine residue (767V) in the TMD of FLT1, indicating the existence of another cleavage pathway. We tested the impact of the ectodomain cleavage on p44/42 MAP kinase activation and demonstrate that compared to wild type FLT1, cleavage resistant FLT1 constructs failed to stimulate p44/42 MAP kinase activation. Our results indicate that FLT1 ectodomain cleavage not only regulates the availability of free VEGF in the extracellular milieu but also regulates cellular signaling via the ERK kinase pathway.
Collapse
|
30
|
Neuhaus-Follini A, Bashaw GJ. The Intracellular Domain of the Frazzled/DCC Receptor Is a Transcription Factor Required for Commissural Axon Guidance. Neuron 2015; 87:751-63. [PMID: 26291159 DOI: 10.1016/j.neuron.2015.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/24/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
In commissural neurons of Drosophila, the conserved Frazzled (Fra)/Deleted in Colorectal Cancer (DCC) receptor promotes midline axon crossing by signaling locally in response to Netrin and by inducing transcription of commissureless (comm), an antagonist of Slit-Roundabout midline repulsion, through an unknown mechanism. Here, we show that Fra is cleaved to release its intracellular domain (ICD), which shuttles between the cytoplasm and the nucleus, where it functions as a transcriptional activator. Rescue and gain-of-function experiments demonstrate that the Fra ICD is sufficient to regulate comm expression and that both γ-secretase proteolysis of Fra and Fra's function as a transcriptional activator are required for its ability to regulate comm in vivo. Our data uncover an unexpected role for the Fra ICD as a transcription factor whose activity regulates the responsiveness of commissural axons at the midline and raise the possibility that nuclear signaling may be a common output of axon guidance receptors.
Collapse
Affiliation(s)
- Alexandra Neuhaus-Follini
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Abstract
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.
Collapse
Affiliation(s)
- Lakmali Atapattu
- a Department of Biochemistry and Molecular Biology ; Monash University , Victoria ; Australia
| | | | | |
Collapse
|
32
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
33
|
Bruban J, Voloudakis G, Huang Q, Kajiwara Y, Al Rahim M, Yoon Y, Shioi J, Gama Sosa MA, Shao Z, Georgakopoulos A, Robakis NK. Presenilin 1 is necessary for neuronal, but not glial, EGFR expression and neuroprotection via γ-secretase-independent transcriptional mechanisms. FASEB J 2015; 29:3702-12. [PMID: 25985800 DOI: 10.1096/fj.15-270645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/04/2015] [Indexed: 11/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays pivotal roles in cell proliferation, differentiation, and tissue development, while EGFs protect neurons from toxic insults by binding EGFR and stimulating survival signaling. Furthermore, recent evidence implicates this receptor in neurometabolic disorders like Alzheimer disease and aging. Here we show that absence of presenilin 1 (PS1) results in dramatic decrease (>95%) of neuronal EGFR and that PS1-null (PS1(-/-)) brains have reduced amounts of this receptor. PS1(-/-) cortical neurons contain little EGFR and show no epidermal growth factor-induced survival signaling or protection against excitotoxicity, but exogenous EGFR rescues both functions even in absence of PS1. EGFR mRNA is greatly reduced (>95%) in PS1(-/-) neurons, and PS1(-/-) brains contain decreased amounts of this mRNA, although PS1 affects the stability of neither EGFR nor its mRNA. Exogenous PS1 increases neuronal EGFR mRNA, while down-regulation of PS1 decreases this mRNA. These effects are neuron specific, as PS1 affects the EGFR of neither glial nor fibroblast cells. In addition, PS1 controls EGFR through novel mechanisms shared with neither γ-secretase nor PS2. Our data reveal that PS1 functions as a positive transcriptional regulator of neuronal EGFR controlling its expression in a cell-specific manner. Severe downregulation of EGFR may contribute to developmental abnormalities and lethal phenotype found in PS1, but not PS2, null mice. Furthermore, PS1 may affect neuroprotection and Alzheimer disease by controlling survival signaling of neuronal EGFR.
Collapse
Affiliation(s)
- Julien Bruban
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Georgios Voloudakis
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Qian Huang
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Yuji Kajiwara
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Md Al Rahim
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Yonejung Yoon
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Junichi Shioi
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Miguel A Gama Sosa
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Zhiping Shao
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Anastasios Georgakopoulos
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| | - Nikolaos K Robakis
- *Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Medicine, University of Crete, Heraklion, Crete, Greece; and James J. Peters Department of Veterans Affairs Medical Center, General Medical Research Service, Bronx, New York, USA
| |
Collapse
|
34
|
Tadeu AMB, Lin S, Hou L, Chung L, Zhong M, Zhao H, Horsley V. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells. PLoS One 2015; 10:e0122493. [PMID: 25849374 PMCID: PMC4388500 DOI: 10.1371/journal.pone.0122493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/22/2015] [Indexed: 11/18/2022] Open
Abstract
In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.
Collapse
Affiliation(s)
- Ana Mafalda Baptista Tadeu
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Samantha Lin
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Lin Hou
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Lisa Chung
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Mei Zhong
- Yale University, Yale Stem Cell Center, Genomics Facility, New Haven, CT, 06520, United States of America
| | - Hongyu Zhao
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Valerie Horsley
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
- * E-mail:
| |
Collapse
|
35
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|
36
|
EphA4 receptor shedding regulates spinal motor axon guidance. Curr Biol 2014; 24:2355-65. [PMID: 25264256 DOI: 10.1016/j.cub.2014.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Proteolytic processing of axon guidance receptors modulates their expression and functions. Contact repulsion by membrane-associated ephrins and Eph receptors was proposed to be facilitated by ectodomain cleavage, but whether this phenomenon is required for axon guidance in vivo is unknown. RESULTS In support of established models, we find that cleavage of EphA4 promotes cell-cell and growth cone-cell detachment in vitro. Unexpectedly, however, a cleavage resistant isoform of EphA4 is as effective as a wild-type EphA4 in redirecting motor axons in limbs. Mice in which EphA4 cleavage is genetically abolished have motor axon guidance defects, suggesting an important role of EphA4 cleavage in nonneuronal tissues such as the limb mesenchyme target of spinal motor neurons. Indeed, we find that blocking EphA4 cleavage increases expression of full-length EphA4 in limb mesenchyme, which-via cis-attenuation-apparently reduces the effective concentration of ephrinAs capable of triggering EphA4 forward signaling in the motor axons. CONCLUSIONS We propose that EphA4 cleavage is required to establish the concentration differential of active ephrins in the target tissue that is required for proper axon guidance. Our study reveals a novel mechanism to regulate guidance decision at an intermediate target based on the modulation of ligand availability by the proteolytic processing of the receptor.
Collapse
|
37
|
Kyratzi E, Efthimiopoulos S. Calcium regulates the interaction of amyloid precursor protein with Homer3 protein. Neurobiol Aging 2014; 35:2053-63. [DOI: 10.1016/j.neurobiolaging.2014.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 01/28/2023]
|
38
|
Allonby O, El Zawily AM, Freywald T, Mousseau DD, Chlan J, Anderson D, Benmerah A, Sidhu V, Babu M, DeCoteau J, Freywald A. Ligand stimulation induces clathrin- and Rab5-dependent downregulation of the kinase-dead EphB6 receptor preceded by the disruption of EphB6-Hsp90 interaction. Cell Signal 2014; 26:2645-57. [PMID: 25152371 DOI: 10.1016/j.cellsig.2014.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
Abstract
Ligand-induced internalisation and subsequent downregulation of receptor tyrosine kinases (RTKs) serve to determine biological outputs of their signalling. Intrinsically kinase-deficient RTKs control a variety of biological responses, however, the mechanism of their downregulation is not well understood and its analysis is focused exclusively on the ErbB3 receptor. The Eph group of RTKs is represented by the EphA and EphB subclasses. Each bears one kinase-inactive member, EphA10 and EphB6, respectively, suggesting an important role for these molecules in the Eph signalling network. While EphB6 effects on cell behaviour have been assessed, the mechanism of its downregulation remains elusive. Our work reveals that EphB6 and its kinase-active relative, and signalling partner, EphB4, are downregulated in a similar manner in response to their common ligand, ephrin-B2. Following stimulation, both receptors are internalised through clathrin-coated pits and are degraded in lysosomes. Their targeting for lysosomal degradation relies on the activity of an early endosome regulator, the Rab5 GTPase, as this process is inhibited in the presence of a Rab5 dominant-negative mutant. EphB6 also interacts with the Hsp90 chaperone and EphB6 downregulation is preceded by their rapid dissociation. Moreover, the inhibition of Hsp90 results in EphB6 degradation, mimicking its ligand-induced downregulation. These processes appear to rely on overlapping mechanisms, since Hsp90 inhibition does not significantly enhance ligand-induced EphB6 elimination. Taken together, our observations define a novel mechanism for intrinsically kinase-deficient RTK downregulation and support an intriguing model, where Hsp90 dissociation acts as a trigger for ligand-induced receptor removal.
Collapse
Affiliation(s)
- Odette Allonby
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Amr M El Zawily
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Tanya Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Darrell D Mousseau
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Jennifer Chlan
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Deborah Anderson
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Cancer Research Unit, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Alexandre Benmerah
- INSERM U1163, Laboratory of Inherited Kidney Diseases, 75015 Paris, France; Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France.
| | - Vishaldeep Sidhu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK,S4S 0A2, Canada.
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK,S4S 0A2, Canada.
| | - John DeCoteau
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
39
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
40
|
|
41
|
Jurisch-Yaksi N, Sannerud R, Annaert W. A fast growing spectrum of biological functions of γ-secretase in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2815-27. [PMID: 24099003 DOI: 10.1016/j.bbamem.2013.04.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already >15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease. However, starting with Notch and thereafter a continuously increasing number of novel substrates, γ-secretase is becoming linked to an equally broader range of biological processes. This review presents an updated overview of the current knowledge on the diverse molecular mechanisms and signaling pathways controlled by γ-secretase, with a focus on organ development, homeostasis and dysfunction. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Laboratory for Membrane Trafficking, VIB-Center for the Biology of Disease & Department for Human Genetics (KU Leuven), Leuven, Belgium
| | | | | |
Collapse
|
42
|
Lee H, Lee EJ, Song YS, Kim E. Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/γ-secretase. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130158. [PMID: 24298159 PMCID: PMC3843889 DOI: 10.1098/rstb.2013.0158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-term depression (LTD) reduces the functional strength of excitatory synapses through mechanisms that include the removal of AMPA glutamate receptors from the postsynaptic membrane. LTD induction is also known to result in structural changes at excitatory synapses, including the shrinkage of dendritic spines. Synaptic adhesion molecules are thought to contribute to the development, function and plasticity of neuronal synapses largely through their trans-synaptic adhesions. However, little is known about how synaptic adhesion molecules are altered during LTD. We report here that NGL-3 (netrin-G ligand-3), a postsynaptic adhesion molecule that trans-synaptically interacts with the LAR family of receptor tyrosine phosphatases and intracellularly with the postsynaptic scaffolding protein PSD-95, undergoes a proteolytic cleavage process. NGL-3 cleavage is induced by NMDA treatment in cultured neurons and low-frequency stimulation in brain slices and requires the activities of NMDA glutamate receptors, matrix metalloproteinases (MMPs) and presenilin/γ-secretase. These results suggest that NGL-3 is a novel substrate of MMPs and γ-secretase and that NGL-3 cleavage may regulate synaptic adhesion during LTD.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), , Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
43
|
Trafficking in neurons: Searching for new targets for Alzheimer's disease future therapies. Eur J Pharmacol 2013; 719:84-106. [DOI: 10.1016/j.ejphar.2013.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 11/22/2022]
|
44
|
Abstract
To date, 18 distinct receptor tyrosine kinases (RTKs) are reported to be trafficked from the cell surface to the nucleus in response to ligand binding or heterologous agonist exposure. In most cases, an intracellular domain (ICD) fragment of the receptor is generated at the cell surface and translocated to the nucleus, whereas for a few others the intact receptor is translocated to the nucleus. ICD fragments are generated by several mechanisms, including proteolysis, internal translation initiation, and messenger RNA (mRNA) splicing. The most prevalent mechanism is intramembrane cleavage by γ-secretase. In some cases, more than one mechanism has been reported for the nuclear localization of a specific RTK. The generation and use of RTK ICD fragments to directly communicate with the nucleus and influence gene expression parallels the production of ICD fragments by a number of non-RTK cell-surface molecules that also influence cell proliferation. This review will be focused on the individual RTKs and to a lesser extent on other growth-related cell-surface transmembrane proteins.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | |
Collapse
|
45
|
Robakis NK, Georgakopoulos A. Allelic interference: a mechanism for trans-dominant transmission of loss of function in the neurodegeneration of familial Alzheimer's disease. NEURODEGENER DIS 2013; 13:126-30. [PMID: 24081144 DOI: 10.1159/000354241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Presenilins (PSs) are catalytic components of the γ-secretase complexes that promote the ε-cleavage of cell surface proteins producing cytosolic peptides shown to function in cell signaling and gene expression. In addition, secretase cleavages at γ-sites of amyloid precursor protein substrates produce the amyloid-β (Aβ) peptides found in all people. Aggregation of Aβ peptides form the amyloid fibrils found in amyloid plaques of Alzheimer's disease (AD) patients and aged individuals. A common hypothesis suggests that AD is caused by aggregated Aβ peptides, but treatments with either inhibitors of Aβ production or anti-Aβ antibodies showed no therapeutic value. Importantly, recent evidence [Marambaud et al.: Cell 2003;114:635-645] shows that PS familial AD (FAD) mutations cause a loss of γ-secretase cleavage function at the ε-site of substrates manifested by a decreased production of cytosolic peptides and an accumulation of transmembrane γ-secretase substrates. These data support the hypothesis that PS FAD mutations promote neurotoxicity by inhibiting the γ-secretase-catalyzed ε-cleavage of substrates, thus reducing cell signaling while causing accumulation of membrane-bound cytotoxic peptides. Similar mechanisms may be involved in toxicities observed in clinical trials of γ-secretase inhibitors. A model of allelic interference may explain the dominant negative transmission of neurotoxic loss of function in FAD neurodegeneration.
Collapse
Affiliation(s)
- Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Ican School of Medicine at Mount Sinai Medical Center, New York University, New York, N.Y., USA
| | | |
Collapse
|
46
|
Xuan Z, Barthet G, Shioi J, Xu J, Georgakopoulos A, Bruban J, Robakis NK. Presenilin-1/γ-secretase controls glutamate release, tyrosine phosphorylation, and surface expression of N-methyl-D-aspartate receptor (NMDAR) subunit GluN2B. J Biol Chem 2013; 288:30495-30501. [PMID: 24025330 DOI: 10.1074/jbc.m113.499004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormally high concentrations of extracellular glutamate in the brain may cause neuronal damage via excitotoxicity. Thus, tight regulation of glutamate release is critical to neuronal function and survival. Excitotoxicity is caused mainly by overactivation of the extrasynaptic NMDA receptor (NMDAR) and results in specific cellular changes, including calcium-induced activation of calpain proteases. Here, we report that presenilin-1 (PS1) null mouse cortical neuronal cultures have increased amounts of calpain-dependent spectrin breakdown products (SBDPs) compared with WT cultures. NMDAR antagonists blocked accumulation of SBDPs, suggesting abnormal activation of this receptor in PS1 null cultures. Importantly, an increase in SBDPs was detected in cultures of at least 7 days in vitro but not in younger cultures. Conditioned medium from PS1 null neuronal cultures at 8 days in vitro contained higher levels of glutamate than medium from WT cultures and stimulated production of SBDPs when added to WT cultures. Use of glutamate reuptake inhibitors indicated that accumulation of this neurotransmitter in the media of PS1 null cultures was due to increased rates of release. PS1 null neurons showed decreased cell surface expression and phosphorylation of the GluN2B subunit of NMDAR, indicating decreased amounts of extrasynaptic NMDAR in the absence of PS1. Inhibition of γ-secretase activity in WT neurons caused changes similar to those observed in PS1 null neurons. Together, these data indicate that the PS1/γ-secretase system regulates release of glutamate, tyrosine phosphorylation, and surface expression of GluN2B-containing NMDARs.
Collapse
Affiliation(s)
- Zhao Xuan
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Gael Barthet
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Junichi Shioi
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jindong Xu
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Anastasios Georgakopoulos
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Julien Bruban
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nikolaos K Robakis
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029.
| |
Collapse
|
47
|
Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 2013; 5:5/9/a009159. [PMID: 24003208 DOI: 10.1101/cshperspect.a009159] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Eph receptors are the largest of the RTK families. Like other RTKs, they transduce signals from the cell exterior to the interior through ligand-induced activation of their kinase domain. However, the Eph receptors also have distinctive features. Instead of binding soluble ligands, they generally mediate contact-dependent cell-cell communication by interacting with surface-associated ligands-the ephrins-on neighboring cells. Eph receptor-ephrin complexes emanate bidirectional signals that affect both receptor- and ephrin-expressing cells. Intriguingly, ephrins can also attenuate signaling by Eph receptors coexpressed in the same cell. Additionally, Eph receptors can modulate cell behavior independently of ephrin binding and kinase activity. The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. Its abnormal function has been implicated in various diseases, including cancer. Thus, Eph receptors represent promising therapeutic targets. However, more research is needed to better understand the many aspects of their complex biology that remain mysterious.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
48
|
Rejon CA, Ho CC, Wang Y, Zhou X, Bernard DJ, Hébert TE. Cycloheximide inhibits follicle-stimulating hormone β subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal 2013; 25:1403-12. [PMID: 23499904 DOI: 10.1016/j.cellsig.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), play essential roles in the regulation of vertebrate reproduction. Activins and inhibins have opposing actions on FSH (but not LH) synthesis, either inducing or inhibiting transcription of the FSHβ subunit gene (Fshb). The translational inhibitor cycloheximide (CHX) produces inhibin-like effects in cultured pituitary cells, selectively suppressing FSH production. Using the murine gonadotrope-like cell line, LβT2, as a model, we tested the hypothesis that a component of the activin pathway is highly labile in gonadotrope cells and that its rapid loss following CHX treatment impairs activin-stimulated Fshb transcription. Treatment of cells with CHX for 6h, but not 1h, blocked activin A-stimulated Fshb transcription. Pre-treatment of LβT2 cells with CHX for as few as 2-3h inhibited activin A-stimulated SMAD2/3 phosphorylation without altering total SMAD2/3 protein levels. These data indicated that CHX affects activin signalling upstream of SMAD proteins, most likely at the receptor level. Indeed, CHX rapidly reduced activin A binding to LβT2 cells. We went on to show that activin A signals via the type II receptor ACVR2, rather than ACVR2B, to regulate Fshb transcription and that the receptor has a half life of ~2h in LβT2 cells. The mechanism of ACVR2 turnover remains undefined, but appears to be ligand-, proteasome-, and lysosome-independent. Collectively, these data indicate that CHX produces inhibin-like effects in gonadotropes by preventing de novo synthesis of the highly labile ACVR2, thereby blocking activin signaling to the Fshb promoter.
Collapse
Affiliation(s)
- Carlis A Rejon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Robakis NK. Cell signaling abnormalities may drive neurodegeneration in familial Alzheimer disease. Neurochem Res 2013; 39:570-5. [PMID: 23436150 DOI: 10.1007/s11064-013-1003-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 11/28/2022]
Abstract
Presenilins (PSs) are catalytic components of the γ-secretase complex that produces Aβ peptides. Substrates of γ-secretase are membrane-bound protein fragments deriving from the cleavage of extracellular sequence of cell surface proteins. APP-derived γ-secretase substrates are cleaved at gamma (γ) sites to produce Aβ while cleavage at the epsilon (ε) site produces AICD proposed to function in transcription. In addition to APP, γ-secretase promotes the ε-cleavage of a large number of cell surface proteins producing cytosolic peptides shown to function in cell signaling. A common hypothesis suggests that Alzheimer's disease (AD) is caused by Aβ peptides or their products. Treatment of patients with inhibitors of Aβ production however, showed no therapeutic benefits while inducing cytotoxicity. Similarly, treatments with anti-Aβ antibodies yielded disappointing results. Importantly, recent evidence shows that PS familial AD (FAD) mutations cause a loss of γ-secretase cleavage activity at ε site of substrates thus inhibiting production of biologically important cell signaling peptides while promoting accumulation of membrane-bound cytotoxic substrates. These data support a hypothesis that FAD mutations may increase neurotoxicity by inhibiting the γ-secretase-catalyzed ε cleavage of substrates thus interfering with cell signaling while also promoting accumulation of cytotoxic peptides. Similar mechanisms may explain γ-secretase inhibitor-associated toxicities observed in clinical trials. Here we discuss evidence that FAD neurodegeneration may be caused by loss of γ-secretase cleavage function at ε sites of substrates.
Collapse
Affiliation(s)
- Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York University, One Gustave Levy Pl., Box 1229, New York, NY, 10029, USA,
| |
Collapse
|
50
|
Gael B, Julie D, Shao Z, Xuan Z, Ren Y, Xu J, Arbez N, Mauger G, Bruban J, Georgakopoulos A, Shioi J, Robakis NK. Presenilin mediates neuroprotective functions of ephrinB and brain-derived neurotrophic factor and regulates ligand-induced internalization and metabolism of EphB2 and TrkB receptors. Neurobiol Aging 2013; 34:499-510. [PMID: 22475621 PMCID: PMC3394882 DOI: 10.1016/j.neurobiolaging.2012.02.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Activation of EphB receptors by ephrinB (efnB) ligands on neuronal cell surface regulates important functions, including neurite outgrowth, axonal guidance, and synaptic plasticity. Here, we show that efnB rescues primary cortical neuronal cultures from necrotic cell death induced by glutamate excitotoxicity and that this function depends on EphB receptors. Importantly, the neuroprotective function of the efnB/EphB system depends on presenilin 1 (PS1), a protein that plays crucial roles in Alzheimer's disease (AD) neurodegeneration. Furthermore, absence of one PS1 allele results in significantly decreased neuroprotection, indicating that both PS1 alleles are necessary for full expression of the neuroprotective activity of the efnB/EphB system. We also show that the ability of brain-derived neurotrophic factor (BDNF) to protect neuronal cultures from glutamate-induced cell death depends on PS1. Neuroprotective functions of both efnB and BDNF, however, were independent of γ-secretase activity. Absence of PS1 decreases cell surface expression of neuronal TrkB and EphB2 without affecting total cellular levels of the receptors. Furthermore, PS1-knockout neurons show defective ligand-dependent internalization and decreased ligand-induced degradation of TrkB and Eph receptors. Our data show that PS1 mediates the neuroprotective activities of efnB and BDNF against excitotoxicity and regulates surface expression and ligand-induced metabolism of their cognate receptors. Together, our observations indicate that PS1 promotes neuronal survival by regulating neuroprotective functions of ligand-receptor systems.
Collapse
Affiliation(s)
- Barthet Gael
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Dunys Julie
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhiping Shao
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhao Xuan
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Ymin Ren
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Jindong Xu
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nicolas Arbez
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gweltas Mauger
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Julien Bruban
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Junichi Shioi
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nikolaos K. Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|