1
|
Noor Ul Ayan H, Nitschke Y, Mughal AR, Thiele H, Malik NA, Hussain I, Haider SMI, Rutsch F, Erdmann J, Tariq M, Aherrahrou Z, Ahmad I. Homozygous splice-site variant in ENPP1 underlies generalized arterial calcification of infancy. BMC Pediatr 2024; 24:733. [PMID: 39538190 PMCID: PMC11558987 DOI: 10.1186/s12887-024-05123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) plays a critical role by converting extracellular ATP to AMP, generating extracellular PPi, a potential inhibitor of calcification. Pathogenic variants in the ENPP1 cause generalized arterial calcification of infancy (GACI [OMIM 208000]). GACI, is an ultra-rare disease characterized by early-onset calcification of large and medium-sized arteries, leading to severe cardiovascular complications such as heart failure, pulmonary stenosis (PS), hypertension, and more. In this study, we report a novel homozygous splice-site pathogenic variant in ENPP1 (NM_006208, c.2230 + 5G > A; p.Asp701Asnfs*2) residing in C-terminal nuclease-like domain (NLD) of ENPP1 protein in a Pakistani family diagnosed with severe valvular PS and mild right ventricular hypertrophy (RVH). cDNA assays confirmed the skipping of exon 21, and the splice product underwent nonsense-mediated decay. Functional studies on fibroblasts from the patient demonstrated increased calcification and decreased enzymatic activity of ENPP1, recapitulating the hallmarks of GACI. By combining genetic analysis with the in vitro study, we substantiate that ENPP1:c.2230 + 5G > A variant is pathogenic, underscoring its role in the development of GACI.
Collapse
Affiliation(s)
- Hafiza Noor Ul Ayan
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, 48149, Germany
| | | | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, 50931, Germany
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Ijaz Hussain
- Peshawar Institute of Cardiology, Peshawar, 25000, Pakistan
| | - Syed Muhammad Ijlal Haider
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, 48149, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany.
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany.
| |
Collapse
|
2
|
Du B, Ru J, Zhan Z, Lin C, Liu Y, Mao W, Zhang J. Insight into small-molecule inhibitors targeting extracellular nucleotide pyrophosphatase/phosphodiesterase1 for potential multiple human diseases. Eur J Med Chem 2024; 268:116286. [PMID: 38432057 DOI: 10.1016/j.ejmech.2024.116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinxiao Ru
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixuan Zhan
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wuyu Mao
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Vít O, Petrák J. Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer. Folia Biol (Praha) 2023; 69:149-162. [PMID: 38583176 DOI: 10.14712/fb2023069050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.
Collapse
Affiliation(s)
- Ondřej Vít
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
4
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
5
|
Ralph D, Levine MA, Richard G, Morrow M, Flynn E, Uitto J, Li Q. Mutation update: Variants of the ENPP1 gene in pathologic calcification, hypophosphatemic rickets, and cutaneous hypopigmentation with punctate keratoderma. Hum Mutat 2022; 43:1183-1200. [PMID: 35475527 PMCID: PMC9357117 DOI: 10.1002/humu.24391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
ENPP1 encodes ENPP1, an ectonucleotidase catalyzing hydrolysis of ATP to AMP and inorganic pyrophosphate (PPi), and an endogenous plasma protein physiologically preventing ectopic calcification of connective tissues. Mutations in ENPP1 have been reported in association with a range of human genetic diseases. In this mutation update, we provide a comprehensive review of all the pathogenic variants, likely pathogenic variants, and variants of unknown significance in ENPP1 associated with three autosomal recessive disorders-generalized arterial calcification of infancy (GACI), autosomal recessive hypophosphatemic rickets type 2 (ARHR2), and pseudoxanthoma elasticum (PXE), as well as with a predominantly autosomal dominant disorder-Cole disease. The classification of all variants is determined using the latest ACMG guidelines. A total of 140 ENPP1 variants were curated consisting of 133 previously reported variants and seven novel variants, with missense variants being the most prevalent (70.0%, 98/140). While the pathogenic variants are widely distributed in the ENPP1 gene of patientsgen without apparent genotype-phenotype correlation, eight out of nine variants associated with Cole disease are confined to the somatomedin-B-like (SMB) domains critical for homo-dimerization of the ENPP1 protein.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
6
|
Structure and function of the Ecto-Nucleotide Pyrophosphatase-Phosphodiesterase (ENPP) family: tidying up diversity. J Biol Chem 2021; 298:101526. [PMID: 34958798 PMCID: PMC8808174 DOI: 10.1016/j.jbc.2021.101526] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1–7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1–7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1–3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4–7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.
Collapse
|
7
|
van Beusekom B, Damaskos G, Hekkelman ML, Salgado-Polo F, Hiruma Y, Perrakis A, Joosten RP. LAHMA: structure analysis through local annotation of homology-matched amino acids. Acta Crystallogr D Struct Biol 2021; 77:28-40. [PMID: 33404523 PMCID: PMC7787103 DOI: 10.1107/s2059798320014473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022] Open
Abstract
Comparison of homologous structure models is a key step in analyzing protein structure. With a wealth of homologous structures, comparison becomes a tedious process, and often only a small (user-biased) selection of data is used. A multitude of structural superposition algorithms are then typically used to visualize the structures together in 3D and to compare them. Here, the Local Annotation of Homology-Matched Amino acids (LAHMA) website (https://lahma.pdb-redo.eu) is presented, which compares any structure model with all of its close homologs from the PDB-REDO databank. LAHMA displays structural features in sequence space, allowing users to uncover differences between homologous structure models that can be analyzed for their relevance to chemistry or biology. LAHMA visualizes numerous structural features, also allowing one-click comparison of structure-quality plots (for example the Ramachandran plot) and `in-browser' structural visualization of 3D models.
Collapse
Affiliation(s)
- Bart van Beusekom
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - George Damaskos
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten L. Hekkelman
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Yoshitaka Hiruma
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Robbie P. Joosten
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
8
|
Crystal structure and substrate binding mode of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3). Sci Rep 2018; 8:10874. [PMID: 30022031 PMCID: PMC6052110 DOI: 10.1038/s41598-018-28814-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/12/2018] [Indexed: 01/29/2023] Open
Abstract
Ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) is a membrane-bound glycoprotein that regulates extracellular levels of nucleotides. NPP3 is known to contribute to the immune response on basophils by hydrolyzing ATP and to regulate the glycosyltransferase activity in Neuro2a cells. Here, we report on crystal structures of the nuclease and phosphodiesterase domains of rat NPP3 in complex with different substrates, products and substrate analogs giving insight into details of the catalytic mechanism. Complex structures with a phosphate ion, the product AMP and the substrate analog AMPNPP provide a consistent picture of the coordination of the substrate in which one zinc ion activates the threonine nucleophile whereas the other zinc ion binds the phosphate group. Co-crystal structures with the dinucleotide substrates Ap4A and UDPGlcNAc reveal a binding pocket for the larger leaving groups of these substrates. The crystal structures as well as mutational and kinetic analysis demonstrate that the larger leaving groups interact only weakly with the enzyme such that the substrate affinity is dominated by the interactions of the first nucleoside group. For this moiety, the nucleobase is stacked between Y290 and F207 and polar interactions with the protein are only formed via water molecules thus explaining the limited nucleobase selectivity.
Collapse
|
9
|
Ninou I, Magkrioti C, Aidinis V. Autotaxin in Pathophysiology and Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:180. [PMID: 29951481 PMCID: PMC6008954 DOI: 10.3389/fmed.2018.00180] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
Lysophospholipid signaling is emerging as a druggable regulator of pathophysiological responses, and especially fibrosis, exemplified by the relative ongoing clinical trials in idiopathic pulmonary fibrosis (IPF) patients. In this review, we focus on ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2), or as more widely known Autotaxin (ATX), a secreted lysophospholipase D (lysoPLD) largely responsible for extracellular lysophosphatidic acid (LPA) production. In turn, LPA is a bioactive phospholipid autacoid, forming locally upon increased ATX levels and acting also locally through its receptors, likely guided by ATX's structural conformation and cell surface associations. Increased ATX activity levels have been detected in many inflammatory and fibroproliferative conditions, while genetic and pharmacologic studies have confirmed a pleiotropic participation of ATX/LPA in different processes and disorders. In pulmonary fibrosis, ATX levels rise in the broncheoalveolar fluid (BALF) and stimulate LPA production. LPA engagement of its receptors activate multiple G-protein mediated signal transduction pathways leading to different responses from pulmonary cells including the production of pro-inflammatory signals from stressed epithelial cells, the modulation of endothelial physiology, the activation of TGF signaling and the stimulation of fibroblast accumulation. Genetic or pharmacologic targeting of the ATX/LPA axis attenuated disease development in animal models, thus providing the proof of principle for therapeutic interventions.
Collapse
Affiliation(s)
- Ioanna Ninou
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Christiana Magkrioti
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| |
Collapse
|
10
|
Gorelik A, Randriamihaja A, Illes K, Nagar B. Structural basis for nucleotide recognition by the ectoenzyme CD203c. FEBS J 2018; 285:2481-2494. [PMID: 29717535 DOI: 10.1111/febs.14489] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) enzyme family modulates purinergic signaling by degrading extracellular nucleotides. CD203c (NPP3, ENPP3) regulates the inflammatory response of basophils via ATP hydrolysis and is a marker for allergen sensitivity on the surface of these cells. Multiple other roles and substrates have also been proposed for this protein. In order to gain insight into its molecular functions, we determined the crystal structure of human NPP3 as well as its complex with an ATP analog. The enzyme exhibits little preference for nucleobase type, and forms specific contacts with the alpha and beta phosphate groups of its ligands. Dimerization of the protein does not affect its catalytic activity. These findings expand our understanding of substrate recognition within the NPP family. DATABASE Structural data are available in the Protein Data Bank under the accession numbers 6C01 (human NPP3) and 6C02 (human NPP3 T205A N594S with AMPCPP).
Collapse
Affiliation(s)
- Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Antsa Randriamihaja
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Nikolaou A, Kokotou MG, Limnios D, Psarra A, Kokotos G. Autotaxin inhibitors: a patent review (2012-2016). Expert Opin Ther Pat 2017; 27:815-829. [DOI: 10.1080/13543776.2017.1323331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maroula G. Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Lyu L, Wang B, Xiong C, Zhang X, Zhang X, Zhang J. Selective export of autotaxin from the endoplasmic reticulum. J Biol Chem 2017; 292:7011-7022. [PMID: 28298439 DOI: 10.1074/jbc.m116.774356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members.
Collapse
Affiliation(s)
- Lin Lyu
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Baolu Wang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chaoyang Xiong
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaotian Zhang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoyan Zhang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Junjie Zhang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
N-glycosylation of human sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is essential for stability, secretion and activity. Biochem J 2017; 474:1071-1092. [PMID: 28104755 DOI: 10.1042/bcj20160735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a recently identified phosphodiesterase, which is a secreted N-linked glycoprotein. SMPDL3A is highly homologous to acid sphingomyelinase (aSMase), but unlike aSMase cannot cleave sphingomyelin. Rather, SMPDL3A hydrolyzes nucleotide tri- and diphosphates and their derivatives. While recent structural studies have shed light on these unexpected substrate preferences, many other aspects of SMPDL3A biology, which may give insight into its function in vivo, remain obscure. Here, we investigate the roles of N-glycosylation in the expression, secretion and activity of human SMPDL3A, using inhibitors of N-glycosylation and site-directed mutagenesis, with either THP-1 macrophages or CHO cells expressing human SMPDL3A. Tunicamycin (TM) treatment resulted in expression of non-glycosylated SMPDL3A that was not secreted, and was largely degraded by the proteasome. Proteasomal inhibition restored levels of SMPDL3A in TM-treated cells, although this non-glycosylated protein lacked phosphodiesterase activity. Enzymatic deglycosylation of purified recombinant SMPDL3A also resulted in significant loss of phosphodiesterase activity. Site-directed mutagenesis of individual N-glycosylation sites in SMPDL3A identified glycosylation of Asn69 and Asn222 as affecting maturation of its N-glycans and secretion. Glycosylation of Asn356 in SMPDL3A, an N-linked site conserved throughout the aSMase-like family, was critical for protection against proteasomal degradation and preservation of enzymatic activity. We provide the first experimental evidence for a predicted 22 residue N-terminal signal peptide in SMPDL3A, which is essential for facilitating glycosylation and is removed from the mature protein secreted from CHO cells. In conclusion, site-specific N-glycosylation is essential for the intracellular stability, secretion and activity of human SMPDL3A.
Collapse
|
14
|
Jethwa SA, Leah EJ, Zhang Q, Bright NA, Oxley D, Bootman MD, Rudge SA, Wakelam MJO. Exosomes bind to autotaxin and act as a physiological delivery mechanism to stimulate LPA receptor signalling in cells. J Cell Sci 2016; 129:3948-3957. [PMID: 27557622 DOI: 10.1242/jcs.184424] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/14/2016] [Indexed: 12/23/2022] Open
Abstract
Autotaxin (ATX; also known as ENPP2), the lysophospholipase responsible for generating the lipid receptor agonist lysophosphatidic acid (LPA), is a secreted enzyme. Here we show that, once secreted, ATX can bind to the surface of cell-secreted exosomes. Exosome-bound ATX is catalytically active and carries generated LPA. Once bound to a cell, through specific integrin interactions, ATX releases the LPA to activate cell surface G-protein-coupled receptors of LPA; inhibition of signalling by the receptor antagonist Ki1642 suggests that these receptors are LPAR1 and LPAR3. The binding stimulates downstream signalling, including phosphorylation of AKT and mitogen-activated protein kinases, the release of intracellular stored Ca2+ and cell migration. We propose that exosomal binding of LPA-loaded ATX provides a means of efficiently delivering the lipid agonist to cell surface receptors to promote signalling. We further propose that this is a means by which ATX-LPA signalling operates physiologically.
Collapse
Affiliation(s)
- Susanna A Jethwa
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Emma J Leah
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Qifeng Zhang
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - David Oxley
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Martin D Bootman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon A Rudge
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | |
Collapse
|
15
|
Federico L, Jeong KJ, Vellano CP, Mills GB. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 2016; 57:25-35. [PMID: 25977291 PMCID: PMC4689343 DOI: 10.1194/jlr.r060020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
Stein AJ, Bain G, Prodanovich P, Santini AM, Darlington J, Stelzer NMP, Sidhu RS, Schaub J, Goulet L, Lonergan D, Calderon I, Evans JF, Hutchinson JH. Structural Basis for Inhibition of Human Autotaxin by Four Potent Compounds with Distinct Modes of Binding. Mol Pharmacol 2015; 88:982-92. [PMID: 26371182 DOI: 10.1124/mol.115.100404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is a bioactive phospholipid that regulates diverse biological processes, including cell proliferation, migration, and survival/apoptosis, through the activation of a family of G protein-coupled receptors. The ATX-LPA pathway has been implicated in many pathologic conditions, including cancer, fibrosis, inflammation, cholestatic pruritus, and pain. Therefore, ATX inhibitors represent an attractive strategy for the development of therapeutics to treat a variety of diseases. Mouse and rat ATX have been crystallized previously with LPA or small-molecule inhibitors bound. Here, we present the crystal structures of human ATX in complex with four previously unpublished, structurally distinct ATX inhibitors. We demonstrate that the mechanism of inhibition of each compound reflects its unique interactions with human ATX. Our studies may provide a basis for the rational design of novel ATX inhibitors.
Collapse
Affiliation(s)
- Adam J Stein
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Gretchen Bain
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Pat Prodanovich
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Angelina M Santini
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Janice Darlington
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Nina M P Stelzer
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Ranjinder S Sidhu
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Jeffrey Schaub
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Lance Goulet
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Dave Lonergan
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Imelda Calderon
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - Jilly F Evans
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| | - John H Hutchinson
- Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
| |
Collapse
|
17
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
18
|
Greenman R, Gorelik A, Sapir T, Baumgart J, Zamor V, Segal-Salto M, Levin-Zaidman S, Aidinis V, Aoki J, Nitsch R, Vogt J, Reiner O. Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Front Neurosci 2015; 9:53. [PMID: 25788872 PMCID: PMC4349085 DOI: 10.3389/fnins.2015.00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.
Collapse
Affiliation(s)
- Raanan Greenman
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Jan Baumgart
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany ; Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Vanessa Zamor
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Michal Segal-Salto
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot, Israel
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming' Athens, Greece
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University Miyagi, Japan
| | - Robert Nitsch
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Johannes Vogt
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
19
|
Greiner-Tollersrud OK. The non-classical N-glycan processing pathway of bovine brain ecto-nucleotide phosphodiesterase/pyrophosphatase 6 (eNPP6) is brain specific and not due to mannose-6-phosphorylation. Neurochem Res 2014; 39:2025-9. [PMID: 25142936 DOI: 10.1007/s11064-014-1412-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/27/2022]
Abstract
Ecto-nucleotide phosphodiesterase/pyrophosphatase 6 (eNPP6) is a glycosylphosphatidylinositol (GPI)-anchored alkaline lysophospholipase C which is predominantly expressed in brain myelin and kidney. Due to shedding of the GPI-anchor eNPP6 occurs also as a soluble isoform (s-eNPP6). eNPP 6 consists of two identical monomers of 55 kDa joined by a disulfide bridge, and possesses four N-glycans in each monomer. In brain s-eNPP6 the N-glycans are mainly hybrid and high mannose type structures, reminiscent of processed mannose-6-phosphorylated glycans. Here we completed characterization of the site-specific glycan structures of bovine brain s-eNPP6, and determined the endo H-sensitivity glycan profiles of s-eNPP6 from bovine liver and kidney. Whereas in brain s-eNPP6 all of the N-glycans were endo H-sensitive, in liver and kidney only one of the glycosylation sites was occupied by an endo H-sensitive glycan, likely N406, which is located within the cleft formed by the dimer interface. Thus, the non-classical glycan processing pathway of brain eNPP 6 is not due to mannose-6-phosphorylation, suggesting that there is an alternative Golgi glycan-processing pathway of eNPP6 in brain. The resulting brain-specific expression of accessible hybrid and oligomannosidic glycans may be physiologically important within the cell-cell communication system of the brain.
Collapse
|
20
|
Bovine brain myelin glycerophosphocholine choline phosphodiesterase is an alkaline lysosphingomyelinase of the eNPP-family, regulated by lysosomal sorting. Neurochem Res 2012; 38:300-10. [PMID: 23161088 DOI: 10.1007/s11064-012-0921-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 11/01/2012] [Accepted: 11/08/2012] [Indexed: 01/03/2023]
Abstract
Glycerophosphocholine choline phosphodiesterase (GPC-Cpde) is a glycosylphosphatidylinositol (GPI)-anchored alkaline hydrolase that is expressed in the brain and kidney. In brain the hydrolase is synthesized by the oligodendrocytes and expressed on the myelin membrane. There are two forms of brain GPC-Cpde, a membrane-linked (mGPC-Cpde) and a soluble (sGPC-Cpde). Here we report the characterisation sGPC-Cpde from bovine brain. The amino acid sequence was identical to ectonucleotide pyrophosphatase/phosphodiesterase 6 (eNPP6) precursor, lacking the N-terminal signal peptide region and a C-terminal stretch, suggesting that the hydrolase was solubilised by C-terminal proteolysis, releasing the GPI-anchor. sGPC-Cpde existed as two isoforms, a homodimer joined by a disulfide bridge linking C414 from each monomer, and a monomer resulting from proteolysis N-terminally to this disulfide bond. The only internal disulfide bridge, linking C142 and C154, stabilises the choline-binding pocket. sGPC-Cpde was specific for lysosphingomyelin, displaying 1 to 2 orders of magnitude higher catalytic activity than towards GPC and lysophosphatidylcholine, suggesting that GPC-Cpde may function in the sphingomyelin signaling, rather than in the homeostasis of acylglycerophosphocholine metabolites. The truncated high mannose and bisected hybrid type glycans linked to N118 and N341 of sGPC-Cpde is a hallmark of glycans in lysosomal glycoproteins, subjected to GlcNAc-1-phosphorylation en route through Golgi. Thus, sGPC-Cpde may originate from the lysosomes, suggesting that lysosomal sorting contributes to the level of mGPC-Cpde on the myelin membrane.
Collapse
|
21
|
Koyama M, Nishimasu H, Ishitani R, Nureki O. Molecular Dynamics Simulation of Autotaxin: Roles of the Nuclease-like Domain and the Glycan Modification. J Phys Chem B 2012; 116:11798-808. [DOI: 10.1021/jp303198u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Michio Koyama
- Department of Biophysics and
Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032,
Japan
| | - Hiroshi Nishimasu
- Department of Biophysics and
Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032,
Japan
| | - Ryuichiro Ishitani
- Department of Biophysics and
Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032,
Japan
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
| | - Osamu Nureki
- Department of Biophysics and
Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032,
Japan
| |
Collapse
|
22
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 799] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
23
|
Yuelling LW, Waggener CT, Afshari FS, Lister JA, Fuss B. Autotaxin/ENPP2 regulates oligodendrocyte differentiation in vivo in the developing zebrafish hindbrain. Glia 2012; 60:1605-18. [PMID: 22821873 DOI: 10.1002/glia.22381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 06/05/2012] [Indexed: 01/12/2023]
Abstract
During development, progenitors that are committed to differentiate into oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated within discrete regions of the neuroepithelium. More specifically, within the developing spinal cord and hindbrain ventrally located progenitor cells that are characterized by the expression of the transcription factor olig2 give temporally rise to first motor neurons and then oligodendrocyte progenitors. The regulation of this temporal neuron-glial switch has been found complex and little is known about the extrinsic factors regulating it. Our studies described here identified a zebrafish ortholog to mammalian atx, which displays evolutionarily conserved expression pattern characteristics. Most interestingly, atx was found to be expressed by cells of the cephalic floor plate during a time period when ventrally-derived oligodendrocyte progenitors arise in the developing hindbrain of the zebrafish. Knock-down of atx expression resulted in a delay and/or inhibition of the timely appearance of oligodendrocyte progenitors and subsequent developmental stages of the oligodendrocyte lineage. This effect of atx knock-down was not accompanied by changes in the number of olig2-positive progenitor cells, the overall morphology of the axonal network or the number of somatic abducens motor neurons. Thus, our studies identified Atx as an extrinsic factor that is likely secreted by cells from the floor plate and that is involved in regulating specifically the progression of olig2-positive progenitor cells into lineage committed oligodendrocyte progenitors.
Collapse
Affiliation(s)
- Larra W Yuelling
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
24
|
Nishimasu H, Ishitani R, Aoki J, Nureki O. A 3D view of autotaxin. Trends Pharmacol Sci 2012; 33:138-45. [DOI: 10.1016/j.tips.2011.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 12/26/2022]
|
25
|
Ohuchi H, Fukui H, Matsuyo A, Tomonari S, Tanaka M, Arai H, Noji S, Aoki J. Autotaxin controls caudal diencephalon-mesencephalon development in the chick. Dev Dyn 2011; 239:2647-58. [PMID: 20737506 DOI: 10.1002/dvdy.22403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The diencephalon is the embryonic anlagen of the higher integration centers of the brain. Recent studies have elucidated how the cells in the rostral diencephalon acquire their regional identities. However, the understanding of the mechanisms under which the caudal diencephalon is formed is still limited. Here we focus on the role of Autotaxin (ATX), a lysophospholipid-generating exoenzyme, whose mRNA is detected in the caudal diencephalon. RNA interference against ATX altered the expression pattern of Pax6-regualted genes, Tcf4, Lim1, and En1, implying that ATX is required for the maintenance of the regional identity of the caudal diencephalon and the diencephalon-mesencephalon boundary (DMB). Furthermore, ATX-RNAi inhibited neuroepithelial cell proliferation on both sides of the DMB. We propose a dual role of ATX in chick brain development, in which ATX not only contributes to the formation of caudal diencephalon as a short-range signal, but also regulates the growth of mesencephalon as a long-range signal.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nishimasu H, Okudaira S, Hama K, Mihara E, Dohmae N, Inoue A, Ishitani R, Takagi J, Aoki J, Nureki O. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol 2011; 18:205-12. [PMID: 21240269 DOI: 10.1038/nsmb.1998] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 11/19/2010] [Indexed: 01/08/2023]
Abstract
Autotaxin (ATX, also known as Enpp2) is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine to generate lysophosphatidic acid (LPA), a lipid mediator that activates G protein-coupled receptors to evoke various cellular responses. Here, we report the crystal structures of mouse ATX alone and in complex with LPAs with different acyl-chain lengths and saturations. These structures reveal that the multidomain architecture helps to maintain the structural rigidity of the lipid-binding pocket, which accommodates the respective LPA molecules in distinct conformations. They indicate that a loop region in the catalytic domain is a major determinant for the substrate specificity of the Enpp family enzymes. Furthermore, along with biochemical and biological data, these structures suggest that the produced LPAs are delivered from the active site to cognate G protein-coupled receptors through a hydrophobic channel.
Collapse
Affiliation(s)
- Hiroshi Nishimasu
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hausmann J, Kamtekar S, Christodoulou E, Day JE, Wu T, Fulkerson Z, Albers HMHG, van Meeteren LA, Houben AJS, van Zeijl L, Jansen S, Andries M, Hall T, Pegg LE, Benson TE, Kasiem M, Harlos K, Kooi CWV, Smyth SS, Ovaa H, Bollen M, Morris AJ, Moolenaar WH, Perrakis A. Structural basis of substrate discrimination and integrin binding by autotaxin. Nat Struct Mol Biol 2011; 18:198-204. [PMID: 21240271 PMCID: PMC3064516 DOI: 10.1038/nsmb.1980] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/08/2010] [Indexed: 12/11/2022]
Abstract
Autotaxin (ATX) or ecto-nucleotide pyrophosphatase/phosphodiesterase-2 (ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemo-attractant for many cell types. ATX-LPA signaling has roles in various pathologies including tumour progression and inflammation. However, the molecular basis of substrate recognition and catalysis, and the mechanism of interaction with target cells, has been elusive. Here we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We identify a hydrophobic lipid-binding pocket and map key residues required for catalysis and selection between nucleotide and phospholipid substrates. We show that ATX interacts with cell-surface integrins via its N-terminal somatomedin-B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling, and enable new approaches to target ATX with small-molecule therapeutics.
Collapse
Affiliation(s)
- Jens Hausmann
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hausmann J, Christodoulou E, Kasiem M, De Marco V, van Meeteren LA, Moolenaar WH, Axford D, Owen RL, Evans G, Perrakis A. Mammalian cell expression, purification, crystallization and microcrystal data collection of autotaxin/ENPP2, a secreted mammalian glycoprotein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1130-5. [PMID: 20823545 PMCID: PMC2935246 DOI: 10.1107/s1744309110032938] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/16/2010] [Indexed: 11/15/2022]
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycosylated mammalian enzyme that exhibits lysophospholipase D activity, hydrolyzing lysophosphatidylcholine to the signalling lipid lysophosphatidic acid. ATX is an approximately 100 kDa multi-domain protein encompassing two N-terminal somatomedin B-like domains, a central catalytic phosphodiesterase domain and a C-terminal nuclease-like domain. Protocols for the efficient expression of ATX from stably transfected mammalian HEK293 cells in amounts sufficient for crystallographic studies are reported. Purification resulted in protein that crystallized readily, but various attempts to grow crystals suitable in size for routine crystallographic structure determination were not successful. However, the available micrometre-thick plates diffracted X-rays beyond 2.0 A resolution and allowed the collection of complete diffraction data to about 2.6 A resolution. The problems encountered and the current advantages and limitations of diffraction data collection from thin crystal plates are discussed.
Collapse
Affiliation(s)
- Jens Hausmann
- Division of Biochemistry B8, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Evangelos Christodoulou
- Division of Biochemistry B8, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Mobien Kasiem
- Division of Biochemistry B8, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Valeria De Marco
- Division of Biochemistry B8, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Laurens A. van Meeteren
- Division of Cell Biology B6, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wouter H. Moolenaar
- Division of Cell Biology B6, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Anastassis Perrakis
- Division of Biochemistry B8, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
29
|
Day JE, Hall T, Pegg LE, Benson TE, Hausmann J, Kamtekar S. Crystallization and preliminary X-ray diffraction analysis of rat autotaxin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1127-9. [PMID: 20823544 DOI: 10.1107/s1744309110030228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 07/29/2010] [Indexed: 01/06/2023]
Abstract
Rat autotaxin has been cloned, expressed, purified to homogeneity and crystallized via hanging-drop vapour diffusion using PEG 3350 as precipitant and ammonium iodide and sodium thiocyanate as salts. The crystals diffracted to a maximum resolution of 2.05 A and belonged to space group P1, with unit-cell parameters a=53.8, b=63.3, c=70.5 A, alpha=98.8, beta=106.2, gamma=99.8 degrees. Preliminary X-ray diffraction analysis indicated the presence of one molecule per asymmetric unit, with a solvent content of 47%.
Collapse
Affiliation(s)
- Jacqueline E Day
- Pfizer Global Research and Development, St Louis Laboratories, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | | | | | | | | | | |
Collapse
|
30
|
Nakanaga K, Hama K, Aoki J. Autotaxin--an LPA producing enzyme with diverse functions. J Biochem 2010; 148:13-24. [PMID: 20495010 DOI: 10.1093/jb/mvq052] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autotaxin (ATX) is an ecto-enzyme responsible for lysophosphatidic acid (LPA) production in blood. ATX is present in various biological fluids such as cerebrospinal and seminal fluids and accounts for bulk LPA production in these fluids. ATX is a member of the nucleotide pyrophosphatase/phosphodiesterase (NPP) family and was originally isolated from conditioned medium of melanoma cells as an autocrine motility stimulating factor. LPA, a second-generation lipid mediator, binds to its cognate G protein-coupled receptors through which it exerts a number of biological functions including influencing cell motility and proliferation stimulating activity. Some of the biological roles of LPA can be mediated by ATX. However, there are other LPA-producing pathways independent of ATX. The accumulating evidences for physiological and pathological functions of ATX strongly support that ATX is an important therapeutic target. This review summarizes the historical aspects, structural basis, pathophysiological functions identified in mice studies and clinical relevance discovered by measuring the blood ATX level in human. The general features and functions of each NPP family member will be also briefly reviewed. The presence of the ATX gene in other model organisms and recently developed ATX inhibitors, both of which will be definitely useful for further functional analysis of ATX, will also be mentioned.
Collapse
Affiliation(s)
- Keita Nakanaga
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | |
Collapse
|
31
|
Joye IJ, Beliën T, Brijs K, Proost P, Soetaert W, Delcour JA. Characterisation of the first wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase resembling mammalian counterparts. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Jansen S, Andries M, Vekemans K, Vanbilloen H, Verbruggen A, Bollen M. Rapid clearance of the circulating metastatic factor autotaxin by the scavenger receptors of liver sinusoidal endothelial cells. Cancer Lett 2009; 284:216-21. [DOI: 10.1016/j.canlet.2009.04.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 04/02/2009] [Accepted: 04/23/2009] [Indexed: 12/15/2022]
|
33
|
Jansen S, Andries M, Derua R, Waelkens E, Bollen M. Domain interplay mediated by an essential disulfide linkage is critical for the activity and secretion of the metastasis-promoting enzyme autotaxin. J Biol Chem 2009; 284:14296-302. [PMID: 19329427 DOI: 10.1074/jbc.m900790200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autotaxin or NPP2 (nucleotide pyrophosphatase/phosphodiesterase 2) is a secreted lysophospholipase-D that promotes metastasis and tumor growth by its ability to generate lysophosphatidic acid. Considerable evidence suggests that inhibitors of NPP2 can be used as a novel therapy for the treatment of cancer. Although most attention is currently directed toward the development of inhibitors of the catalytic site, we have explored whether NPP2 can also be targeted through its non-catalytic nuclease-like domain. We demonstrate here that the catalytic and nuclease-like domains are covalently linked by an essential disulfide bridge between Cys(413) and Cys(805). Within the nuclease-like domain, residues 829-850 are involved in the secretion of NPP2, and Lys(852) is required for the expression of catalytic activity. These data show that the nuclease-like domain is crucial for catalysis by NPP2 and is a possible target to generate inhibitors.
Collapse
Affiliation(s)
- Silvia Jansen
- Laboratory of Biosignalling and Therapeutics ,University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
34
|
North EJ, Osborne DA, Bridson PK, Baker DL, Parrill AL. Autotaxin structure-activity relationships revealed through lysophosphatidylcholine analogs. Bioorg Med Chem 2009; 17:3433-42. [PMID: 19345587 DOI: 10.1016/j.bmc.2009.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/10/2009] [Accepted: 03/14/2009] [Indexed: 10/21/2022]
Abstract
Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA). LPA stimulates cell proliferation, cell survival, and cell migration and is involved in obesity, rheumatoid arthritis, neuropathic pain, atherosclerosis and various cancers, suggesting that ATX inhibitors have broad therapeutic potential. Product feedback inhibition of ATX by LPA has stimulated structure-activity studies focused on LPA analogs. However, LPA displays mixed mode inhibition, indicating that it can bind to both the enzyme and the enzyme-substrate complex. This suggests that LPA may not interact solely with the catalytic site. In this report we have prepared LPC analogs to help map out substrate structure-activity relationships. The structural variances include length and unsaturation of the fatty tail, choline and polar linker presence, acyl versus ether linkage of the hydrocarbon chain, and methylene and nitrogen replacement of the choline oxygen. All LPC analogs were assayed in competition with the synthetic substrate, FS-3, to show the preference ATX has for each alteration. Choline presence and methylene replacement of the choline oxygen were detrimental to ATX recognition. These findings provide insights into the structure of the enzyme in the vicinity of the catalytic site as well as suggesting that ATX produces rate enhancement, at least in part, by substrate destabilization.
Collapse
Affiliation(s)
- E Jeffrey North
- Department of Chemistry and Computational Research on Materials Institute, The University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | |
Collapse
|
35
|
Saunders LP, Ouellette A, Bandle R, Chang WC, Zhou H, Misra RN, De La Cruz EM, Braddock DT. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion. Mol Cancer Ther 2008; 7:3352-62. [PMID: 18852138 DOI: 10.1158/1535-7163.mct-08-0463] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autotaxin (ATX) is a prometastatic enzyme initially isolated from the conditioned medium of human melanoma cells that stimulates a myriad of biological activities, including angiogenesis and the promotion of cell growth, survival, and differentiation through the production of lysophosphatidic acid (LPA). ATX increases the aggressiveness and invasiveness of transformed cells, and ATX levels directly correlate with tumor stage and grade in several human malignancies. To study the role of ATX in the pathogenesis of malignant melanoma, we developed antibodies and small-molecule inhibitors against recombinant human protein. Immunohistochemistry of paraffin-embedded human tissue shows that ATX levels are markedly increased in human primary and metastatic melanoma relative to benign nevi. Chemical screens identified several small-molecule inhibitors with binding constants ranging from nanomolar to low micromolar. Cell migration and invasion assays with melanoma cell lines show that ATX markedly stimulates melanoma cell migration and invasion, an effect suppressed by ATX inhibitors. The migratory phenotype can be rescued by the addition of the enzymatic product of ATX, LPA, confirming that the observed inhibition is linked to suppression of LPA production by ATX. Chemical analogues of the inhibitors show structure-activity relationships important for ATX inhibition and indicate pathways for their optimization. These studies suggest that ATX is an approachable molecular target for the rational design of chemotherapeutic agents directed against malignant melanoma.
Collapse
Affiliation(s)
- Lauren P Saunders
- Department of Molecular Biophysics and Biochemistry, Yale University, P. O. Box 208114, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Federico L, Pamuklar Z, Smyth SS, Morris AJ. Therapeutic potential of autotaxin/lysophospholipase d inhibitors. Curr Drug Targets 2008; 9:698-708. [PMID: 18691016 DOI: 10.2174/138945008785132439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lysophosphatidic acids (LPAs) are structurally simple lipid phosphate esters with a widely appreciated role as extracellular signaling molecules. LPA binds to selective cell surface receptors to promote cell growth, survival, motility and differentiation. Studies using LPA receptor knockout mice and experimental therapeutics targeting these receptors identify roles for LPA signaling in processes that include cardiovascular disease and function, angiogenesis, reproduction, cancer progression and neuropathic pain. These studies identify considerable functional redundancy between these receptors and raise the possibility that additional lysophosphatidic acid receptors remain to be identified. LPA is present in the blood and other biological fluids at physiologically relevant concentrations and can likely be rapidly generated and degraded in different locations, for example at sites of inflammation, vascular injury and thrombosis or in the tumor micro environment. Recent work identifies a secreted enzyme, autotaxin (ATX), as the key component of an extracellular pathway for generation of lysophosphatidic acid by lysophospholipase D catalyzed hydrolysis of lysophospholipid substrates. In contrast to the apparently redundant functions of LPA receptors, studies using ATX knock out and transgenic mice indicate that this enzyme is uniquely required for LPA signaling during early development and serves as the primary determinant of circulating LPA levels in adult animals. Accordingly, pharmacological inhibition of ATX may be a viable and potentially effective way to interfere with LPA signaling in the cardiovascular system and possibly other settings such as tumor metastasis for therapeutic benefit. In this review we provide an update on recent advances in defining roles for LPA signaling in major disease processes and discuss recent progress in understanding the regulation and function of autotaxin focusing on strategies for the identification and initial evaluation of small molecule autotaxin inhibitors.
Collapse
Affiliation(s)
- Lorenzo Federico
- Division of Cardiovascular Medicine, The Gill Heart Institute, 900 S. Limestone Street, 326 CTW Building, Lexington, KY 40536-0200, USA
| | | | | | | |
Collapse
|
37
|
Nakasaki T, Tanaka T, Okudaira S, Hirosawa M, Umemoto E, Otani K, Jin S, Bai Z, Hayasaka H, Fukui Y, Aozasa K, Fujita N, Tsuruo T, Ozono K, Aoki J, Miyasaka M. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1566-76. [PMID: 18818380 DOI: 10.2353/ajpath.2008.071153] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.
Collapse
Affiliation(s)
- Tae Nakasaki
- Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Differential effects of N-glycans on surface expression suggest structural differences between the acid-sensing ion channel (ASIC) 1a and ASIC1b. Biochem J 2008; 412:469-75. [PMID: 18307415 DOI: 10.1042/bj20071614] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ASICs (acid-sensing ion channels) are H(+)-gated Na(+) channels with a widespread expression pattern in the central and the peripheral nervous system. ASICs have a simple topology with two transmembrane domains, cytoplasmic termini and a large ectodomain between the transmembrane domains; this topology has been confirmed by the crystal structure of chicken ASIC1. ASIC1a and ASIC1b are two variants encoded by the asic1 gene. The variable part of the protein includes the cytoplasmic N-terminus, the first transmembrane domain and approximately the first third of the ectodomain. Both variants contain two consensus sequences for N-linked glycosylation in the common, distal part of the ectodomain. In contrast with ASIC1a, ASIC1b contains two additional consensus sequences in the variable, proximal part of the ectodomain. Here we show that all the extracellular asparagine residues within the putative consensus sequences for N-glycosylation carry glycans. The two common distal glycans increase surface expression of the channels, but are no absolute requirement for channel activity. In sharp contrast, the presence of at least one of the two proximal glycans, which are specific to ASIC1b, is an absolute requirement for surface expression of ASIC1b. This result suggests substantial differences in the structure of the proximal ectodomain between the two ASIC1 variants.
Collapse
|
39
|
Parrill AL. Lysophospholipid interactions with protein targets. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:540-6. [PMID: 18501204 DOI: 10.1016/j.bbalip.2008.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 12/21/2022]
Abstract
Bioactive lysophospholipids include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), cyclic-phosphatidic acid (CPA) and alkyl glycerolphosphate (AGP). These lipid mediators stimulate a variety of responses that include cell survival, proliferation, migration, invasion, wound healing, and angiogenesis. Responses to lysophospholipids depend upon interactions with biomolecular targets in the G protein-coupled receptor (GPCR) and nuclear receptor families, as well as enzymes. Our current understanding of lysophospholipid interactions with these targets is based on a combination of lysophospholipid analog structure activity relationship studies as well as more direct structural characterization techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and experimentally-validated molecular modeling. The direct structural characterization studies are the focus of this review, and provide the insight necessary to stimulate structure-based therapeutic lead discovery efforts in the future.
Collapse
Affiliation(s)
- Abby L Parrill
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
40
|
van Meeteren LA, Moolenaar WH. Regulation and biological activities of the autotaxin-LPA axis. Prog Lipid Res 2007; 46:145-60. [PMID: 17459484 DOI: 10.1016/j.plipres.2007.02.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 02/20/2007] [Accepted: 02/23/2007] [Indexed: 12/22/2022]
Abstract
Autotaxin (ATX), or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2), is an exo-enzyme originally identified as a tumor cell autocrine motility factor. ATX is unique among the NPPs in that it primarily functions as a lysophospholipase D, converting lysophosphatidylcholine into the lipid mediator lysophosphatidic acid (LPA). LPA acts on specific G protein-coupled receptors to elicit a wide range of cellular responses, ranging from cell proliferation and migration to neurite remodeling and cytokine production. While LPA signaling has been studied extensively over the last decade, we are only now beginning to explore the properties and biological importance of ATX as the major LPA-producing phospholipase. In this review, we highlight recent advances in our understanding of the ATX-LPA axis, giving first an update on LPA action and then focusing on ATX, in particular its regulation, its link to cancer and its vital role in vascular development.
Collapse
Affiliation(s)
- Laurens A van Meeteren
- Division of Cellular Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
| | | |
Collapse
|