1
|
Wei M, Wang Y, Zhang Y, Qiao Y. Plin5: A potential therapeutic target for type 2 diabetes mellitus. Diabetol Metab Syndr 2025; 17:114. [PMID: 40176076 PMCID: PMC11963521 DOI: 10.1186/s13098-025-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a kind of metabolic disease characterized by aberrant insulin secretion as a result of -cell loss or injury, or by impaired insulin sensitivity of peripheral tissues, which finally results in insulin resistance and a disturbance of glucose and lipid metabolism. Among them, lipid metabolism disorders lead to lipotoxicity through oxidative stress and inflammatory response, destroying the structure and function of tissues and cells. Abnormal lipid metabolism can lead to abnormal insulin signaling and disrupt glucose metabolism through a variety of pathways. Therefore, emphasizing lipid metabolism may be a crucial step in the prevention and treatment of T2DM. Plin5 is a lipid droplet surface protein, which can bi-directionally regulate lipid metabolism and plays an important role in lipolysis and fat synthesis. Plin5 can simultaneously decrease the buildup of free fatty acids in the cytoplasm, improve mitochondrial uptake of free fatty acids, speed up fatty acid oxidation through lipid drops-mitochondria interaction, and lessen lipotoxicity. In oxidative tissues like the heart, liver, and skeletal muscle, Plin5 is extensively expressed. And Plin5 is widely involved in β-cell apoptosis, insulin resistance, oxidative stress, inflammatory response and other pathological processes, which has important implications for exploring the pathogenesis of T2DM. In addition, recent studies have found that Plin5 is also closely related to T2DM and cancer, which provides a new perspective for exploring the relationship between T2DM and cancer.
Collapse
Affiliation(s)
- Mengjuan Wei
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Imierska M, Zabielski P, Roszczyc-Owsiejczuk K, Pogodzińska K, Błachnio-Zabielska A. Impact of reduced hepatic ceramide levels in high-fat diet mice on glucose metabolism. J Nutr Biochem 2025; 135:109785. [PMID: 39427846 DOI: 10.1016/j.jnutbio.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dysregulation of insulin action in hepatocytes, common in obesity, significantly contributes to insulin resistance, type 2 diabetes, and metabolic syndrome. Previous research highlights ceramides' role in these conditions. This study explores the impact of ceramides by silencing the serine palmitoyltransferase (Sptlc2) gene, crucial for the initial ceramide biosynthesis, using hydrodynamic gene delivery. Male C57BL/6 mice were randomly divided into three groups: one on a low-fat diet (LFD) receiving scrambled shRNA plasmids, another on a high-fat diet (HFD) with scrambled shRNA plasmids, and a third on HFD with a plasmid targeting Sptlc2. Analyses included RT-PCR for gene expression, western blot for protein levels, and UHPLC/MS/MS for lipid profiling. Glucose metabolism was evaluated via oral glucose tolerance tests, homeostatic model assessment of insulin resistance, and glucose-6-phosphate analysis. Results showed that HFD induces insulin resistance by inhibiting insulin signaling and increasing active lipid levels in hepatocytes. Sptlc2 silencing reduced ceramide accumulation, improving insulin signaling and glucose metabolism. Notably, ceramide synthesis inhibition did not significantly affect other lipid levels, highlighting ceramide's critical role in hepatic insulin resistance.
Collapse
Affiliation(s)
- Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
3
|
Wu CY, Chen Y, Chen MT, Fu TT, Liu J, Liu FF, Xu CJ, Li WS, Li BL, Jiang ZP, Rao Y, Huang L. Natural linoleic acid from marine fungus Eutypella sp. F0219 blocks KEAP1/NRF2 interaction and ameliorates MASLD by targeting FABP4. Free Radic Biol Med 2024; 224:630-643. [PMID: 39299527 DOI: 10.1016/j.freeradbiomed.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Ectopic lipid accumulation induced lipotoxicity plays a crucial role in exacerbating the development of metabolic dysfunction-associated steatotic liver disease (MASLD), which affects over 30 % of the worldwide population and 85 % of the obese population. The growing demand for effective therapeutic agents highlights the need for high-efficacy lipotoxicity ameliorators and relevant therapeutic targets in the fight against MASLD. This study aimed to discover natural anti-lipotoxic and anti-MASLD candidates and elucidate the underlying mechanism and therapeutic targets. Utilizing palmitic acid (PA)-induced HepG-2 and primary mouse hepatocyte models, we identified linoleic acid (HN-002), a ligand of fatty acid binding protein 4 (FABP4), from the marine fungus Eutypella sp. F0219. HN-002 dose-dependently prevented lipid overload-induced hepatocyte damage and lipid accumulation, inhibited fatty acid esterification, and ameliorated oxidative stress. These beneficial effects were associated with improvements in mitochondrial adaptive oxidation. HN-002 treatment enhanced lipid transport into mitochondria and oxidation, inhibited mitochondrial depolarization, and reduced mitochondrial ROS (mtROS) level in PA-treated hepatocytes. Mechanistically, HN-002 treatment disrupted the interaction between KEAP1 and NRF2, leading to NRF2 deubiquitylation and nuclear translocation, which activated beneficial metabolic regulation. In vivo, HN-002 treatment (20 mg/kg/per 2 days, i. p.) for 25 days effectively reversed hepatic steatosis and liver injury in the fast/refeeding plus high-fat/high-cholesterol diet induced MASLD mice. These therapeutic effects were associated with enhanced mitochondrial adaptive oxidation and activation of NRF2 signaling in the liver. These data suggest that HN-002 would be an interesting candidate for MASLD by improving mitochondrial oxidation via the FABP4/KEAP1/NRF2 axis. The discovery offers new insights into developing novel anti- MASLD agents derived from marine sources.
Collapse
Affiliation(s)
- Chen-Yan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Yue Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Meng-Ting Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Ting-Ting Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Fei-Fei Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Wan-Shan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Bao-Li Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| |
Collapse
|
4
|
Zabielski P, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Błachnio-Zabielska AU. Silencing the glycerol-3-phosphate acyltransferase-1 gene in the liver of mice fed a high-fat diet, enhances insulin sensitivity and glucose metabolism by promoting fatty acid beta-oxidation. Biomed Pharmacother 2024; 180:117531. [PMID: 39383732 DOI: 10.1016/j.biopha.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Liver plays a central role in systemic glucose and lipid metabolism. High-fat diet (HFD) and obesity are related to hepatic lipid accumulation and insulin resistance (InsR). Diacylglycerols (DAG) play a key role in the induction of InsR, however their involvement in hepatic InsR remains debated. This study aimed to clarify and confirm the role of glycero-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme in DAG synthesis, in the progression of hepatic InsR in the context of HFD-induced lipid accumulation and insulin resistance in the liver. METHODS Liver-targeted GPAT1 silencing was performed using shRNA-mediated hydrodynamic gene delivery. Lipid species including LCA-CoA, sphingolipids, DAG and acyl-carnitines were quantified using UHPLC/MS/MS while insulin signalling was assessed at protein level by Western Blot. Hepatic glucose metabolism, including glucose-6-pasphate content and gluconeogenesis rate was evaluated using GC/MS. RESULTS HFD-fed animals developed InsR, evidenced by increased HOMA-IR, enhanced gluconeogenesis and reduced glycogen content compared to controls. Hepatic GPAT1 silencing in HFD-fed animals resulted in a significant reduction of DAG and TAG levels, increased acyl-carnitines content and upregulated mitochondrial β-oxidation protein expression. These changes were accompanied by improved insulin signalling, enhanced glycogen storage, and reduced gluconeogenesis. CONCLUSIONS Silencing GPAT1, and thereby reducing glycerolipid synthesis, promotes β-oxidation and ameliorates HFD-induced hepatic insulin resistance, confirming the enzyme's pivotal role in liver metabolic dysfunction associated with increased lipid supply.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
5
|
Ji W, Xie X, Bai G, He Y, Li L, Zhang L, Qiang D. Metabolomic approaches to dissect dysregulated metabolism in the progression of pre-diabetes to T2DM. Mol Omics 2024; 20:333-347. [PMID: 38686662 DOI: 10.1039/d3mo00130j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Many individuals with pre-diabetes eventually develop diabetes. Therefore, profiling of prediabetic metabolic disorders may be an effective targeted preventive measure. We aimed to elucidate the metabolic mechanism of progression of pre-diabetes to type 2 diabetes mellitus (T2DM) from a metabolic perspective. Four sets of plasma samples (20 subjects per group) collected according to fasting blood glucose (FBG) concentration were subjected to metabolomic analysis. An integrative approach of metabolome and WGCNA was employed to explore candidate metabolites. Compared with the healthy group (FBG < 5.6 mmol L-1), 113 metabolites were differentially expressed in the early stage of pre-diabetes (5.6 mmol L-1 ⩽ FBG < 6.1 mmol L-1), 237 in the late stage of pre-diabetes (6.1 mmol L-1 ⩽ FBG < 7.0 mmol L-1), and 245 in the T2DM group (FBG ⩾ 7.0 mmol L-1). A total of 27 differentially expressed metabolites (DEMs) were shared in all comparisons. Among them, L-norleucine was downregulated, whereas ethionamide, oxidized glutathione, 5-methylcytosine, and alpha-D-glucopyranoside beta-D-fructofuranosyl were increased with the rising levels of FBG. Surprisingly, 15 (11 lyso-phosphatidylcholines, L-norleucine, oxidized glutathione, arachidonic acid, and 5-oxoproline) of the 27 DEMs were ferroptosis-associated metabolites. WGCNA clustered all metabolites into 8 modules and the pathway enrichment analysis of DEMs showed a significant annotation to the insulin resistance-related pathway. Integrated analysis of DEMs, ROC and WGCNA modules determined 12 potential biomarkers for pre-diabetes and T2DM, including L-norleucine, 8 of which were L-arginine or its metabolites. L-Norleucine and L-arginine could serve as biomarkers for pre-diabetes. The inventory of metabolites provided by our plasma metabolome offers insights into T2DM physiology metabolism.
Collapse
Affiliation(s)
- Wenrui Ji
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Guirong Bai
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Yanting He
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Ling Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Dan Qiang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| |
Collapse
|
6
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
7
|
Guo L, Lei J, Li P, Wang Y, Wang J, Song T, Zhu B, Jia J, Miao J, Cui H. Hedan tablet ameliorated non-alcoholic steatohepatitis by moderating NF-κB and lipid metabolism-related pathways via regulating hepatic metabolites. J Cell Mol Med 2024; 28:e18194. [PMID: 38506086 PMCID: PMC11967700 DOI: 10.1111/jcmm.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Liying Guo
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jinyan Lei
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Peng Li
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Yuming Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jing Wang
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Taotao Song
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Bo Zhu
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jianwei Jia
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jing Miao
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
8
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
9
|
Jung IR, Ahima RS, Kim SF. Inositol polyphosphate multikinase modulates free fatty acids-induced insulin resistance in primary mouse hepatocytes. J Cell Biochem 2023; 124:1695-1704. [PMID: 37795573 DOI: 10.1002/jcb.30478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Smith KR, Wang W, Miller MR, Boucher M, Reynold JE, Daurio NA, Li D, Hirenallur-Shanthappa D, Ahn Y, Beebe DA, Kelly KL, Ross TT, Bence KK, Wan M. GPAT1 Deficiency in Mice Modulates NASH Progression in a Model-Dependent Manner. Cell Mol Gastroenterol Hepatol 2023; 17:279-291. [PMID: 37844795 PMCID: PMC10829521 DOI: 10.1016/j.jcmgh.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.
Collapse
Affiliation(s)
- Kathleen R Smith
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Wenshan Wang
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Melissa R Miller
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Magalie Boucher
- WRDM Drug Safety, Research and Development, Pfizer Inc, Groton, Connecticut
| | - Jessica E Reynold
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Natalie A Daurio
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Dongmei Li
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | | | - Youngwook Ahn
- WRDM Target Sciences, Pfizer Inc, Cambridge, Massachusetts
| | - David A Beebe
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kenneth L Kelly
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Trenton T Ross
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kendra K Bence
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Min Wan
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts.
| |
Collapse
|
11
|
Jung IR, Ahima RS, Kim SF. IPMK modulates FFA-induced insulin resistance in primary mouse hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538310. [PMID: 37162825 PMCID: PMC10168377 DOI: 10.1101/2023.04.26.538310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Insulin resistance is a critical mediator of the development of non-alcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of non-alcoholic fatty liver disease (NAFLD). Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of Akt phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-Acetyl Cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Glycerol-3-phosphate Acyltransferases and Metabolic Syndrome: Recent Advances and Future Perspectives. Expert Rev Mol Med 2022; 24:e30. [PMID: 36059117 DOI: 10.1017/erm.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J 2022; 46:15-37. [PMID: 34965646 PMCID: PMC8831809 DOI: 10.4093/dmj.2021.0280] [Citation(s) in RCA: 427] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022] Open
Abstract
Insulin resistance is the pivotal pathogenic component of many metabolic diseases, including type 2 diabetes mellitus, and is defined as a state of reduced responsiveness of insulin-targeting tissues to physiological levels of insulin. Although the underlying mechanism of insulin resistance is not fully understood, several credible theories have been proposed. In this review, we summarize the functions of insulin in glucose metabolism in typical metabolic tissues and describe the mechanisms proposed to underlie insulin resistance, that is, ectopic lipid accumulation in liver and skeletal muscle, endoplasmic reticulum stress, and inflammation. In addition, we suggest potential therapeutic strategies for addressing insulin resistance.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Division of Molecular Medicine, Gachon University College of Medicine, Incheon, Korea
- Corresponding author: Cheol Soo Choi https://orcid.org/0000-0001-9627-058X Division of Molecular Medicine, Gachon University College of Medicine, 21 Namdongdaero 774beon-gil, Namdong-gu, Incheon 21565, Korea E-mail:
| |
Collapse
|
14
|
Ahn J, Lee H, Jung CH, Ha SY, Seo HD, Kim YI, Ha T. 6-Gingerol Ameliorates Hepatic Steatosis via HNF4α/miR-467b-3p/GPAT1 Cascade. Cell Mol Gastroenterol Hepatol 2021; 12:1201-1213. [PMID: 34139323 PMCID: PMC8445893 DOI: 10.1016/j.jcmgh.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS The development of nonalcoholic fatty liver disease (NAFLD) can be modulated by microRNAs (miRNA). Dietary polyphenols modulate the expression of miRNA such as miR-467b-3p in the liver. In addition, 6-gingerol (6-G), the functional polyphenol of ginger, has been reported to ameliorate hepatic steatosis; however, the exact mechanism involved and the role of miRNA remain elusive. In this study, we assessed the role of miR-467b-3p in the pathogenesis of hepatic steatosis and the regulation of miR-467b-3p by 6-G through the hepatocyte nuclear factor 4α (HNF4α). METHODS miR-467b-3p expression was measured in free fatty acid (FFA)-treated hepatocytes or liver from high-fat diet (HFD)-fed mice. Gain- or loss-of-function of miR-467b-3p was induced using miR-467b-3p-specific miRNA mimic or miRNA inhibitor, respectively. 6-G was exposed to FFA-treated cells and HFD-fed mice. The HNF4α/miR-467b-3p/GPAT1 axis was measured in mouse and human fatty liver tissues. RESULTS We found that miR-467b-3p was down-regulated in liver tissues from HFD-fed mice and in FFA-treated Hepa1-6 cells. Overexpression of miR-467b-3p decreased intracellular lipid accumulation in FFA-treated hepatocytes and mitigated hepatic steatosis in HFD-fed mice via negative regulation of glycerol-3-phosphate acyltransferase-1 (GPAT1). In addition, miR-467b-3p up-regulation by 6-G was observed. 6-G inhibited FFA-induced lipid accumulation and mitigated hepatic steatosis. Moreover, it increased the transcriptional activity of HNF4α, resulting in the increase of miR-467b-3p and subsequent decrease of GPAT1. HNF4α/miR-467b-3p/GPAT1 signaling also was observed in human samples with hepatic steatosis. CONCLUSIONS Our findings establish a novel mechanism by which 6-G improves NAFLD. This suggests that targeting of the HNF4α/miR-467b-3p/GPAT1 cascade may be used as a potential therapeutic strategy to control NAFLD.
Collapse
Affiliation(s)
- Jiyun Ahn
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Hyunjung Lee
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Chang Hwa Jung
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University of Medicine and Science, Incheon, Korea
| | - Hyo-Deok Seo
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Young In Kim
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Taeyoul Ha
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
15
|
Maude H, Lau W, Maniatis N, Andrew T. New Insights Into Mitochondrial Dysfunction at Disease Susceptibility Loci in the Development of Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:694893. [PMID: 34456865 PMCID: PMC8385132 DOI: 10.3389/fendo.2021.694893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
This study investigated the potential genetic mechanisms which underlie adipose tissue mitochondrial dysfunction in Type 2 diabetes (T2D), by systematically identifying nuclear-encoded mitochondrial genes (NEMGs) among the genes regulated by T2D-associated genetic loci. The target genes of these 'disease loci' were identified by mapping genetic loci associated with both disease and gene expression levels (expression quantitative trait loci, eQTL) using high resolution genetic maps, with independent estimates co-locating to within a small genetic distance. These co-locating signals were defined as T2D-eQTL and the target genes as T2D cis-genes. In total, 763 cis-genes were associated with T2D-eQTL, of which 50 were NEMGs. Independent gene expression datasets for T2D and insulin resistant cases and controls confirmed that the cis-genes and cis-NEMGs were enriched for differential expression in cases, providing independent validation that genetic maps can identify informative functional genes. Two additional results were consistent with a potential role of T2D-eQTL in regulating the 50 identified cis-NEMGs in the context of T2D risk: (1) the 50 cis-NEMGs showed greater differential expression compared to other NEMGs and (2) other NEMGs showed a trend towards significantly decreased expression if their expression levels correlated more highly with the subset of 50 cis-NEMGs. These 50 cis-NEMGs, which are differentially expressed and associated with mapped T2D disease loci, encode proteins acting within key mitochondrial pathways, including some of current therapeutic interest such as the metabolism of branched-chain amino acids, GABA and biotin.
Collapse
Affiliation(s)
- Hannah Maude
- Department of Metabolism, Digestion & Reproduction, Imperial College, London, United Kingdom
| | - Winston Lau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nikolas Maniatis
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Toby Andrew
- Department of Metabolism, Digestion & Reproduction, Imperial College, London, United Kingdom
- *Correspondence: Toby Andrew,
| |
Collapse
|
16
|
Halama A, Suleiman NN, Kulinski M, Bettahi I, Hassoun S, Alkasem M, Abdalhakam I, Iskandarani A, Samra TA, Atkin SL, Suhre K, Abou-Samra AB. The metabolic footprint of compromised insulin sensitivity under fasting and hyperinsulinemic-euglycemic clamp conditions in an Arab population. Sci Rep 2020; 10:17164. [PMID: 33051490 PMCID: PMC7555540 DOI: 10.1038/s41598-020-73723-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022] Open
Abstract
Metabolic pathways that are corrupted at early stages of insulin resistance (IR) remain elusive. This study investigates changes in body metabolism in clinically healthy and otherwise asymptomatic subjects that may become apparent already under compromised insulin sensitivity (IS) and prior to IR. 47 clinically healthy Arab male subjects with a broad range of IS, determined by hyperinsulinemic-euglycemic clamp (HIEC), were investigated. Untargeted metabolomics and complex lipidomics were conducted on serum samples collected under fasting and HIEC conditions. Linear models were used to identify associations between metabolites concentrations and IS levels. Among 1896 identified metabolites, 551 showed significant differences between fasting and HIEC, reflecting the metabolic switch in energy utilization. At fasting, 336 metabolites, predominantly di- and tri-acylglycerols, showed significant differences between subjects with low and high levels of IS. Changes in amino acid, carbohydrate and fatty acid metabolism in response to insulin were impaired in subjects with low IS. Association of altered mannose and amino acids with IS was also replicated in an independent cohort of T2D patients. We identified metabolic phenotypes that characterize clinically healthy Arab subjects with low levels of IS at their fasting state. Our study is providing further insights into the metabolic pathways that precede IR.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Noor N Suleiman
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ilham Bettahi
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shaimaa Hassoun
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Meis Alkasem
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahem Abdalhakam
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad Iskandarani
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tareq A Samra
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Stephen L Atkin
- Weill Cornell Medicine-Qatar, Doha, Qatar.,Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Abdul Badi Abou-Samra
- Department of Internal Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar. .,Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
17
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
18
|
Desai SM, Sanap AP, Bhonde RR. Treat liver to beat diabetes. Med Hypotheses 2020; 144:110034. [PMID: 32758878 DOI: 10.1016/j.mehy.2020.110034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
Management of Type 2 Diabetes (T2DM) with existing strategies of life style and pharmaceutical interventions has gained limited success as evidenced by its uncontrolled progression. Two key organs which are involved in pathophysiology of T2DM are liver and pancreas, both are the derivatives of endoderm with common precursor. In the invertebrates, hepatopancreas performs function of both liver and pancreas. It is known that derangement in glycolysis, neoglucogenesis, and glycogenolysis lead to hyperglycemia in T2DM although insulin levels are high. Several studies have reported implication of abnormal liver function in the development of metabolic syndrome i.e. T2DM. Partial hepatectomy has been shown to improve glycemic status in animal models of diabetes. This could be because liver and pancreas share same regenerating factors. These evidences suggest that abnormal liver status can impair pancreatic beta cell function and survival along with peripheral insulin resistance. We therefore hypothesize that restoring deranged liver functions may aid in the better control and management of T2DM. If found true, it may shift current intervention strategy towards liver rather than pancreas in the treatment of T2DM.
Collapse
Affiliation(s)
- Shivani M Desai
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Avinash P Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pune, India
| | | |
Collapse
|
19
|
Liao K, Pellicano AJ, Jiang K, Prakash N, Li J, Bhutkar S, Hu Z, Ali Q, Goldberg ID, Narayan P. Glycerol-3-phosphate Acyltransferase1 Is a Model-Agnostic Node in Nonalcoholic Fatty Liver Disease: Implications for Drug Development and Precision Medicine. ACS OMEGA 2020; 5:18465-18471. [PMID: 32743224 PMCID: PMC7391940 DOI: 10.1021/acsomega.0c02350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/03/2020] [Indexed: 05/04/2023]
Abstract
Left untreated nonalcoholic fatty liver disease (NAFLD) can progress to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The observed failure of clinical trials in NASH may suggest that current model systems do not fully recapitulate human disease, and/or hallmark pathological features of NASH may not be driven by the same pathway in every animal model let alone in each patient. Identification of a model-agnostic disease-associated node can spur the development of effective drugs for the treatment of liver disease. Glycerol-3-phosphate acyltransferase1 (GPAT1) plays a pivotal role in lipid accumulation by shunting fats away from oxidation. In the present study, hepatic GPAT1 expression was evaluated in three etiologically different models of NAFLD. Compared to the sham cohort, hepatic GPAT1 mRNA levels were elevated by ∼5-fold in steatosis and NASH with fibrosis with immunofluorescent staining revealing increased GPAT1 in the fatty liver. A significant and direct correlation (r = 0.88) was observed between hepatic GPAT1 mRNA expression and severity of the liver disease. Picrosirius red staining revealed a logarithmic relation between hepatic GPAT1 mRNA expression and scar. These data suggest that hepatic GPAT1 is an early disease-associated model-agnostic node in NAFLD and form the basis for the development of a potentially successful therapeutic against NASH.
Collapse
|
20
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
21
|
Guasch-Ferré M, Santos JL, Martínez-González MA, Clish CB, Razquin C, Wang D, Liang L, Li J, Dennis C, Corella D, Muñoz-Bravo C, Romaguera D, Estruch R, Santos-Lozano JM, Castañer O, Alonso-Gómez A, Serra-Majem L, Ros E, Canudas S, Asensio EM, Fitó M, Pierce K, Martínez JA, Salas-Salvadó J, Toledo E, Hu FB, Ruiz-Canela M. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites, Mediterranean diet, and type 2 diabetes. Am J Clin Nutr 2020; 111:835-844. [PMID: 32060497 PMCID: PMC7138680 DOI: 10.1093/ajcn/nqaa016] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle metabolites have been associated with type 2 diabetes (T2D). However, the associations of these metabolites with T2D incidence and the potential effect of dietary interventions remain unclear. OBJECTIVES We aimed to evaluate the association of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with insulin resistance and T2D incidence, and the potential modifying effect of Mediterranean diet (MedDiet) interventions. METHODS We included 251 incident T2D cases and 638 noncases in a nested case-cohort study within the PREDIMED Study during median follow-up of 3.8 y. Participants were allocated to MedDiet + extra-virgin olive oil, MedDiet + nuts, or control diet. Plasma metabolites were measured using a targeted approach by LC-tandem MS. We tested the associations of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with subsequent T2D risk using weighted Cox regression models and adjusting for potential confounders. We designed a weighted score combining all these metabolites and applying the leave-one-out cross-validation approach. RESULTS Baseline circulating concentrations of hexose monophosphate, pyruvate, lactate, alanine, glycerol-3 phosphate, and isocitrate were significantly associated with higher T2D risk (17-44% higher risk for each 1-SD increment). The weighted score including all metabolites was associated with a 30% (95% CI: 1.12, 1.51) higher relative risk of T2D for each 1-SD increment. Baseline lactate and alanine were associated with baseline and 1-y changes of homeostasis model assessment of insulin resistance. One-year increases in most metabolites and in the weighted score were associated with higher relative risk of T2D after 1 y of follow-up. Lower risks were observed in the MedDiet groups than in the control group although no significant interactions were found after adjusting for multiple comparisons. CONCLUSIONS We identified a panel of glycolysis/gluconeogenesis-related metabolites that was significantly associated with T2D risk in a Mediterranean population at high cardiovascular disease risk. A MedDiet could counteract the detrimental effects of these metabolites.This trial was registered at controlled-trials.com as ISRCTN35739639.
Collapse
Affiliation(s)
- Marta Guasch-Ferré
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), University of Navarra, Pamplona, Spain
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
| | - Clary B Clish
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cristina Razquin
- Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), University of Navarra, Pamplona, Spain
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
| | - Dong Wang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Courtney Dennis
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Dolores Corella
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Carlos Muñoz-Bravo
- Department of Public Health and Psychiatry, University of Málaga, Málaga, Spain
| | - Dora Romaguera
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Mallorca, Spain
| | - Ramón Estruch
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Department of Internal Medicine, Department of Endocrinology and Nutrition Biomedical Research Institute August Pi Sunyer (IDI-BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - José Manuel Santos-Lozano
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Department of Family Medicine, Primary Care Division of Sevilla, San Pablo Health Center, Sevilla, Spain
| | - Olga Castañer
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Angel Alonso-Gómez
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Bioaraba Health Research Institute; Osakidetza Baseque Health Service, Araba University Hospital; Unibersity of the Basque Country UPV/EHU; Vitoria-Gasteiz, Spain
| | - Luis Serra-Majem
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria and Service of Preventive Medicine, Complejo Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canary Health Service, Las Palmas de Gran Canaria, Spain
| | - Emilio Ros
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition Biomedical Research Institute August Pi Sunyer (IDI-BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Sílvia Canudas
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
| | - Eva M Asensio
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Kerry Pierce
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - J Alfredo Martínez
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, IMDEA Food, Madrid, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), University of Navarra, Pamplona, Spain
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), University of Navarra, Pamplona, Spain
- The Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Banerjee A, Das D, Paul R, Roy S, Bhattacharjee A, Prasad SK, Banerjee O, Mukherjee S, Maji BK. Altered composition of high-lipid diet may generate reactive oxygen species by disturbing the balance of antioxidant and free radicals. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0141/jbcpp-2019-0141.xml. [PMID: 32229664 DOI: 10.1515/jbcpp-2019-0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Background In the present era, obesity is increasing rapidly, and high dietary intake of lipid could be a noteworthy risk factor for the occasion of obesity, as well as nonalcoholic fatty liver disease, which is the independent risk factor for type 2 diabetes and cardiovascular disease. For a long time, high-lipid diet (HLD) in "fast food" is turning into part of our everyday life. So, we were interested in fulfilling the paucity of studies by means of preliminary evaluation of these three alternative doses of HLD on a rat model and elucidating the possible mechanism of these effects and divulging the most alarming dose. Methods Thirty-two rats were taken, and of these, 24 were fed with HLD in three distinctive compositions of edible coconut oil and vanaspati ghee in a ratio of 2:3, 3:2 and 1:1 (n = 8), orally through gavage at a dose of 10 mL/kg body weight for a period of 28 days, whereas the other eight were selected to comprise the control group. Results After completion of the experiment, followed by analysis of data it was revealed that hyperlipidemia with increased liver and cardiac marker enzymes, are associated with hepatocellular injury and cardiac damage. The data also supported increased proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). As oxidative stress parameter increased in both liver and heart, there is also an increased in TNF-α due to an increased expression of inducible nitric oxide (NO) synthase, which led to a high production of NO. Moreover, HLD treatment explicitly weakens reasonability of hepatocytes and cardiomyocytes conceivably through G0/G1 or S stage capture or perhaps by means of enlistment of sub-G0/G1 DNA fragmentation and a sign of apoptosis. Conclusions Based on the outcomes, it tends to be inferred that consequences of the present examination uncovered HLD in combination of 2:3 applies most encouraging systemic damage by reactive oxygen species generation and hyperlipidemia and necroapoptosis of the liver and heart. Hence, outcome of this study may help to formulate health care strategy and warns about the food habit in universal population regarding the use of hydrogenated and saturated fats (vanaspati ghee) in diet.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Debasmita Das
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Rajarshi Paul
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Sandipan Roy
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Ankita Bhattacharjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Shilpi Kumari Prasad
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Oly Banerjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India, Phone: +91-9433509890
| |
Collapse
|
23
|
Yang L, Liu Z, Ou K, Wang T, Li Z, Tian Y, Wang Y, Kang X, Li H, Liu X. Evolution, dynamic expression changes and regulatory characteristics of gene families involved in the glycerophosphate pathway of triglyceride synthesis in chicken (Gallus gallus). Sci Rep 2019; 9:12735. [PMID: 31484941 PMCID: PMC6726641 DOI: 10.1038/s41598-019-48893-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
It is well documented that four gene families, including the glycerophosphate acyltransferases (GPATs), acylglycerophosphate acyltransferases (AGPATs), lipid phosphate phosphohydrolases (LPINs) and diacylglycerol acyltransferases (DGATs), are involved in the glycerophosphate pathway of de novo triglyceride (TG) biosynthesis in mammals. However, no systematic analysis has been conducted to characterize the gene families in poultry. In this study, the sequences of gene family members in the glycerophosphate pathway were obtained by screening the public databases. The phylogenetic tree, gene structures and conserved motifs of the corresponding proteins were evaluated. Dynamic expression changes of the genes at different developmental stages were analyzed by qRT-PCR. The regulatory characteristics of the genes were analyzed by in vivo experiments. The results showed that the GPAT, AGPAT and LPIN gene families have 2, 7 and 2 members, respectively, and they were classified into 2, 4 and 2 cluster respectively based on phylogenetic analysis. All of the genes except AGPAT1 were extensively expressed in various tissues. Estrogen induction upregulated the expression of GPAM and AGPAT2, downregulated the expression of AGPAT3, AGPAT9, LPIN1 and LPIN2, and had no effect on the expression of the other genes. These findings provide a valuable resource for further investigation of lipid metabolism in liver of chicken.
Collapse
Affiliation(s)
- Liyu Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziming Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK
| | - Taian Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| |
Collapse
|
24
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
25
|
Transcriptional Regulation of Acyl-CoA:Glycerol- sn-3-Phosphate Acyltransferases. Int J Mol Sci 2019; 20:ijms20040964. [PMID: 30813330 PMCID: PMC6412627 DOI: 10.3390/ijms20040964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:glycerol-sn-3-phosphate acyltransferase (GPAT) is an enzyme responsible for the rate-limiting step in the synthesis of glycerophospholipids and triacylglycerol (TAG). The enzymes of mammalian species are classified into four isoforms; GPAT1 and GPAT2 are localized in the mitochondrial outer membrane, whereas GPAT3 and GPAT4 are localized in the endoplasmic reticulum membrane. The activity of each enzyme expressed is associated with physiological and pathological functions. The transcriptional regulation is well known, particularly in GPAT1. GPAT1 mRNA expression is mainly regulated by the binding of the transcriptional factor SREBP-1c to the specific element (the sterol regulatory element) flanking the GPAT1 promoter. The TAG level is controlled by the insulin-induced transcriptional expression of GPAT1, which occupies most of the GPAT activity in the liver. The transcriptional regulation of the other three GPAT isoforms remains undetermined in detail. It is predicted that retinoic acid serves as a transcription factor in the GPAT2 promoter. PPARγ (peroxisome proliferator-activated receptor γ) increases the mRNA expression of GPAT3, which is associated with TAG synthesis in adipose tissues. Although GPAT has been considered to be a key enzyme in the production of TAG, unexpected functions have recently been reported, particularly in GPAT2. It is likely that GPAT2 is associated with tumorigenesis and normal spermatogenesis. In this review, the physiological and pathophysiological roles of the four GPAT isoforms are described, alongside the transcriptional regulation of these enzymes.
Collapse
|
26
|
Tillander V, Miniami A, Alves-Bezerra M, Coleman RA, Cohen DE. Thioesterase superfamily member 2 promotes hepatic insulin resistance in the setting of glycerol-3-phosphate acyltransferase 1-induced steatosis. J Biol Chem 2018; 294:2009-2020. [PMID: 30523156 DOI: 10.1074/jbc.ra118.005184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatic insulin resistance in the setting of steatosis is attributable at least in part to the accumulation of bioactive lipids that suppress insulin signaling. The mitochondria-associated glycerol-3-phosphate acyltransferase 1 (GPAT1) catalyzes the first committed step in glycerolipid synthesis, and its activity diverts fatty acids from mitochondrial β-oxidation. GPAT1 overexpression in mouse liver leads to hepatic steatosis even in the absence of overnutrition. The mice develop insulin resistance owing to the generation of saturated diacylglycerol and phosphatidic acid molecular species that reduce insulin signaling by activating PKCϵ and by suppressing mTORC2, respectively. Them2, a mitochondria-associated acyl-CoA thioesterase, also participates in the trafficking of fatty acids into oxidative versus glycerolipid biosynthetic pathways. Them2 -/- mice are protected against diet-induced hepatic steatosis and insulin resistance. To determine whether Them2 contributes to hepatic insulin resistance due to hepatic overexpression of GPAT1, recombinant adenovirus was used to overexpress GPAT1 in livers of chow-fed Them2 +/+ and Them2 -/- mice. Hepatic GPAT1 overexpression led to steatosis in both genotypes. In the setting of GPAT1 overexpression, glucose tolerance was reduced in Them2 +/+ but not Them2 -/- mice, without influencing whole-body insulin sensitivity or basal hepatic glucose production. Improved glucose tolerance in Them2 -/- mice was associated with reduced PKCϵ translocation. Preserved insulin receptor activity was supported by Thr-308 phosphorylation of Akt following GPAT1 overexpression in Them2 -/- hepatocytes. These findings suggest a pathogenic role of Them2 in the biosynthesis of glycerolipid metabolites that promote hepatic insulin resistance.
Collapse
Affiliation(s)
- Veronika Tillander
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021.,the Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, 14152 Huddinge, Sweden
| | - Akihiro Miniami
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021.,the Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan, and
| | - Michele Alves-Bezerra
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021
| | - Rosalind A Coleman
- the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David E Cohen
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021,
| |
Collapse
|
27
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1700] [Impact Index Per Article: 242.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
28
|
Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr Diabetes 2018; 8:34. [PMID: 29799006 PMCID: PMC5968029 DOI: 10.1038/s41387-018-0045-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/16/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) is the rate-limiting enzyme in the de novo pathway of glycerolipid synthesis. It catalyzes the conversion of glycerol-3-phosphate and long-chain acyl-CoA to lysophosphatidic acid. In mammals, four isoforms of GPATs have been identified based on subcellular localization, substrate preferences, and NEM sensitivity, and they have been classified into two groups, one including GPAT1 and GPAT2, which are localized in the mitochondrial outer membrane, and the other including GPAT3 and GPAT4, which are localized in the endoplasmic reticulum membrane. GPATs play a pivotal role in the regulation of triglyceride and phospholipid synthesis. Through gain-of-function and loss-of-function experiments, it has been confirmed that GPATs play a critical role in the development of obesity, hepatic steatosis, and insulin resistance. In line with this, the role of GPATs in metabolism was supported by studies using a GPAT inhibitor, FSG67. Additionally, the functional characteristics of GPATs and the relation between three isoforms (GPAT1, 3, and 4) and insulin resistance has been described in this review.
Collapse
|
29
|
Jia Y, Yee JK, Wang C, Nikolaenko L, Diaz-Arjonilla M, Cohen JN, French SW, Liu PY, Lue Y, Lee WNP, Swerdloff RS. Testosterone protects high-fat/low-carbohydrate diet-induced nonalcoholic fatty liver disease in castrated male rats mainly via modulating endoplasmic reticulum stress. Am J Physiol Endocrinol Metab 2018; 314:E366-E376. [PMID: 28928235 PMCID: PMC5966753 DOI: 10.1152/ajpendo.00124.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We previously showed that testosterone (T) deficiency enhanced high-fat/low-carbohydrate diet (HFD)-induced hepatic steatosis in rats independent of insulin resistance and that T replacement reduced hepatic macrovesicular fat accumulation and inflammation. The present report explores the mechanism of T's protective effects on HFD-induced steatohepatitis. Adult male rats were randomized into four treatment groups for 15 wk: intact rats on regular chow diet or HFD, and castrated rats on HFD with or without T replacement. Fatty acid β-oxidation and de novo synthesis were not changed by castration and T replacement, but expression of lipid export proteins ApoB100 and microsomal triglyceride transfer protein (MTP) was suppressed by HFD in both intact and castrated rats but restored by T replacement. Macrovesicular lipid droplet-related proteins perilipin 1 and fat-specific protein 27 were increased by HFD in castrated rats and suppressed by T replacement. Higher activation/expression of ER stress proteins (PERK, IRE-1α, JNK, NF-κB, and CHOP) was demonstrated in castrated rats fed HFD compared with intact animals, and T replacement suppressed these changes. We conclude that 1) HFD leads to ApoB100/MTP suppression reducing export of lipids; 2) castration promotes progression to steatohepatitis through activation of the ER stress pathway and enhancement of macrovesicular droplet protein expression; and 3) testosterone suppresses ER stress, inhibits the formation of macrovesicular lipid droplets, promotes lipid export, and ameliorates steatohepatitis induced by HFD and castration.
Collapse
Affiliation(s)
- Yue Jia
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Jennifer K Yee
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Christina Wang
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Liana Nikolaenko
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Maruja Diaz-Arjonilla
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Joshua N Cohen
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Peter Y Liu
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - YanHe Lue
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Wai-Nang P Lee
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Ronald S Swerdloff
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Department of Pathology, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| |
Collapse
|
30
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
31
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
32
|
Hayashi M, Kido K, Hodate K. Microarray analysis of Longissimus thoracis muscle gene expressions in vitamin A-restricted Japanese Black steers in middle fattening stage. Anim Sci J 2017; 89:88-96. [PMID: 28960613 DOI: 10.1111/asj.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022]
Abstract
Vitamin A (VA) restriction in beef cattle improves meat marbling; however, the underlying molecular mechanisms remain incompletely understood. We performed microarray analysis to clarify the effect of VA restriction on Longissimus thoracis gene expressions in Japanese Black steers. Six Japanese Black steers 13-14 months of age were divided into two groups: S group (n = 3), which received VA supplementation, and R group (n = 3), in which dietary VA intake was restricted. Steers were fattened for 7 months, following which tissue samples were obtained. Extracted RNA samples were analyzed by Affymetrix Genechip Bovine Genome Array. Lists of genes highly expressed in the R and S groups were obtained. The lists were functionally interpreted using functional annotation software, DAVID. In the R and S groups, 48 and 40 genes were significantly highly expressed, respectively. The gene list of the R group included CD36, LPL, GPAM, DGAT2, and SCD and additional genes annotated 'PPAR signaling pathway,' 'lipid biosynthesis' and 'mitochondrion,' whereas that of the S group included COL1A2, FN1 and DCN and additional genes annotated 'extracellular matrix.' Changes in the expression of these genes are possibly involved in marbling improvement in beef cattle by VA restriction.
Collapse
Affiliation(s)
- Masayuki Hayashi
- NARO Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kyoko Kido
- NARO Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Miyota, Nagano, Japan
| | | |
Collapse
|
33
|
Insulin Resistance, Obesity and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:277-304. [PMID: 28585204 DOI: 10.1007/978-3-319-48382-5_12] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipotoxicity , originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. Lipotoxicity has roles in insulin resistance and pancreatic beta cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling, have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
|
34
|
Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol Sci 2017; 38:649-665. [PMID: 28551355 DOI: 10.1016/j.tips.2017.04.004] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Although ample evidence links hepatic lipid accumulation with hepatic insulin resistance, the mechanistic basis of this association is incompletely understood and controversial. Diacylglycerols (DAGs) and ceramides have emerged as the two best-studied putative mediators of lipid-induced hepatic insulin resistance. Both lipids were first associated with insulin resistance in skeletal muscle and were subsequently hypothesized to mediate insulin resistance in the liver. However, the putative roles for DAGs and ceramides in hepatic insulin resistance have proved more complex than originally imagined, with various genetic and pharmacologic manipulations yielding a vast and occasionally contradictory trove of data to sort. In this review we examine the state of this field, turning a critical eye toward both DAGs and ceramides as putative mediators of lipid-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Max C Petersen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald I Shulman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Lee GH, Oh KJ, Kim HR, Han HS, Lee HY, Park KG, Nam KH, Koo SH, Chae HJ. Effect of BI-1 on insulin resistance through regulation of CYP2E1. Sci Rep 2016; 6:32229. [PMID: 27576594 PMCID: PMC5006057 DOI: 10.1038/srep32229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Diet-induced obesity is a major contributing factor to the progression of hepatic insulin resistance. Increased free fatty acids in liver enhances endoplasmic reticulum (ER) stress and production of reactive oxygen species (ROS), both are directly responsible for dysregulation of hepatic insulin signaling. BI-1, a recently studied ER stress regulator, was examined to investigate its association with ER stress and ROS in insulin resistance models. To induce obesity and insulin resistance, BI-1 wild type and BI-1 knock-out mice were fed a high-fat diet for 8 weeks. The BI-1 knock-out mice had hyperglycemia, was associated with impaired glucose and insulin tolerance under high-fat diet conditions. Increased activity of NADPH-dependent CYP reductase-associated cytochrome p450 2E1 (CYP2E1) and exacerbation of ER stress in the livers of BI-1 knock-out mice was also observed. Conversely, stable expression of BI-1 in HepG2 hepatocytes was shown to reduce palmitate-induced ER stress and CYP2E1-dependent ROS production, resulting in the preservation of intact insulin signaling. Stable expression of CYP2E1 led to increased ROS production and dysregulation of insulin signaling in hepatic cells, mimicking palmitate-mediated hepatic insulin resistance. We propose that BI-1 protects against obesity-induced hepatic insulin resistance by regulating CYP2E1 activity and ROS production.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Kyoung-Jin Oh
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea.,Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Hye-Sook Han
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, 700-721, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, KRIBB, Ochang-eup, 363-883, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
36
|
Fatty acids and chronic low grade inflammation associated with obesity and the metabolic syndrome. Eur J Pharmacol 2016; 785:207-214. [DOI: 10.1016/j.ejphar.2016.04.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
|
37
|
Niu YF, Wang X, Hu DX, Balamurugan S, Li DW, Yang WD, Liu JS, Li HY. Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:60. [PMID: 26973714 PMCID: PMC4788866 DOI: 10.1186/s13068-016-0478-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/02/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND The marine diatom, Phaeodactylum tricornutum, has become a model for studying lipid metabolism and its triacylglycerol (TAG) synthesis pathway makes it an ideal target for metabolic engineering to improve lipid productivity. However, the genetic background and metabolic networks of fatty acid biosynthesis in diatoms are not well understood. Glycerol-3-phosphate acyltransferase (GPAT) is the critical enzyme that catalyzes the first step of TAG formation. So far, characterization of GPAT in marine microalgae has not been reported, especially at the level of comprehensive sequence-structure and functional analysis. RESULTS A GPAT was cloned from P. tricornutum and overexpressed in P. tricornutum. Volumes of oil bodies were produced and the neutral lipid content was increased by twofold determined by Nile red fluorescence staining. Fatty acid composition was analyzed by GC-MS, which showed significantly higher proportion of unsaturated fatty acids compared to wild type. CONCLUSION These results suggested that the identified GPAT could upregulate TAG biosynthesis in P. tricornutum. Moreover, this study offers insight into the lipid metabolism of diatoms and supports the role of microalgal strains for biofuels production.
Collapse
Affiliation(s)
- Ying-Fang Niu
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
- />Shenzhen Polytechnic, Shenzhen, 518000 China
| | - Xiang Wang
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Dong-Xiong Hu
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Srinivasan Balamurugan
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Da-Wei Li
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Wei-Dong Yang
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Jie-Sheng Liu
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Hong-Ye Li
- />Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
38
|
Inhibition of mitochondrial β-oxidation by miR-107 promotes hepatic lipid accumulation and impairs glucose tolerance in vivo. Int J Obes (Lond) 2015; 40:861-9. [DOI: 10.1038/ijo.2015.225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/18/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023]
|
39
|
Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015; 72:3931-52. [PMID: 26153463 PMCID: PMC4575688 DOI: 10.1007/s00018-015-1982-3] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.
Collapse
Affiliation(s)
- Thomas Oliver Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| |
Collapse
|
40
|
Rhein Elicits In Vitro Cytotoxicity in Primary Human Liver HL-7702 Cells by Inducing Apoptosis through Mitochondria-Mediated Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221172 PMCID: PMC4484835 DOI: 10.1155/2015/329831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective. To study rhein-induced apoptosis signaling pathway and to investigate its molecular mechanisms in primary human hepatic cells. Results. Cell viability of HL-7702 cells treated with rhein showed significant decrease in dose-dependent manner. Following rhein treatment (25 μM, 50 μM, and 100 μM) for 12 h, the detection of apoptotic cells was significantly analyzed by flow cytometry and nuclear morphological changes by Hoechst 33258, respectively. Fatty degeneration studies showed upregulation level of the relevant hepatic markers (P < 0.01). Caspase activities expressed significant upregulation of caspase-3, caspase-9, and caspase-8. Moreover, apoptotic cells by rhein were significantly inhibited by Z-LEHD-FMK and Z-DEVD-FMK, caspase-9 inhibitor, and caspase-3 inhibitor, respectively. Overproduction of reactive oxygen species, lipid peroxidation, and loss of mitochondrial membrane potential were detected by fluorometry. Additionally, NAC, a ROS scavenger, significantly attenuated rhein-induced oxidative damage in HL-7702 cells. Furthermore, real-time qPCR results showed significant upregulation of p53, PUMA, Apaf-1, and Casp-9 and Casp-3 mRNA, with no significant changes of Fas and Cytochrome-c. Immunoblotting revealed significant Cytochrome-c release from mitochondria into cytosol and no change in Fas expression. Conclusion. Taken together, these observations suggested that rhein could induce apoptosis in HL-7702 cells via mitochondria-mediated signal pathway with involvement of oxidative stress mechanism.
Collapse
|
41
|
Zhang C, Hwarng G, Cooper DE, Grevengoed TJ, Eaton JM, Natarajan V, Harris TE, Coleman RA. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol. J Biol Chem 2014; 290:3519-28. [PMID: 25512376 DOI: 10.1074/jbc.m114.602789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.
Collapse
Affiliation(s)
- Chongben Zhang
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gwen Hwarng
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel E Cooper
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Trisha J Grevengoed
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James M Eaton
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Viswanathan Natarajan
- the Departments of Pharmacology & Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Rosalind A Coleman
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
42
|
Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Oka S, Tanikawa T, Sugiura T. Glycerophosphate/Acylglycerophosphate acyltransferases. BIOLOGY 2014; 3:801-30. [PMID: 25415055 PMCID: PMC4280512 DOI: 10.3390/biology3040801] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 11/16/2022]
Abstract
Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) and acyl-CoA: 1-acyl-glycerol-3-phosphate acyltransferase (AGPAT) are involved in the de novo synthesis of triacylglycerol (TAG) and glycerophospholipids. Many enzymes belonging to the GPAT/AGPAT family have recently been identified and their physiological or pathophysiological roles have been proposed. The roles of GPAT/AGPAT in the synthesis of TAG and obesity-related diseases were revealed through the identification of causative genes of these diseases or analyses of genetically manipulated animals. Recent studies have suggested that some isoforms of GPAT/AGPAT family enzymes are involved in the fatty acid remodeling of phospholipids. The enzymology of GPAT/AGPAT and their physiological/pathological roles in the metabolism of glycerolipids have been described and discussed in this review.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yasuhiro Hayashi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Naoki Matsumoto
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yoko Nemoto-Sasaki
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Saori Oka
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takashi Tanikawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takayuki Sugiura
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| |
Collapse
|
43
|
Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, Meikle PJ, Bruce CR, Watt MJ. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 2014; 3:652-63. [PMID: 25161888 PMCID: PMC4142393 DOI: 10.1016/j.molmet.2014.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 01/28/2023] Open
Abstract
Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)(-/-) mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5 (-/-) mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5 (-/-) mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action.
Collapse
Affiliation(s)
- Rachael R. Mason
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruzaidi Mokhtar
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Maria Matzaris
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Ahrathy Selathurai
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Greg M. Kowalski
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nancy Mokbel
- Garvan Institute of Medical Research, Darlinghurst., New South Wales, 2006, Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Clinton R. Bruce
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew J. Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
44
|
Zhang C, Cooper DE, Grevengoed TJ, Li LO, Klett EL, Eaton JM, Harris TE, Coleman RA. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor. Am J Physiol Endocrinol Metab 2014; 307:E305-15. [PMID: 24939733 PMCID: PMC4121579 DOI: 10.1152/ajpendo.00034.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.
Collapse
Affiliation(s)
- Chongben Zhang
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Lei O Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Eric L Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - James M Eaton
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina;
| |
Collapse
|
45
|
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510:84-91. [PMID: 24899308 DOI: 10.1038/nature13478] [Citation(s) in RCA: 850] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes.
Collapse
|
46
|
Abstract
Increased hepatic lipid content is associated with hepatic as well as whole‐body insulin resistance and is typical for individuals with type 2 diabetes mellitus. However, whether insulin resistance causes hepatic steatosis or whether hepatic steatosis per se reduces insulin sensitivity remains unclear. Multiple metabolic pathways lead to the development of hepatic steatosis, including enhanced free fatty acid release from adipose tissues (lipolysis), increased de novo fatty acid synthesis (lipogenesis), decreased mitochondrial β‐oxidation and decreased very low‐density lipoprotein secretion. Although the molecular mechanisms leading to the development of hepatic steatosis in the pathogenesis of type 2 diabetes mellitus are complex, several recent animal models have shown that modulating important enzymes involved in hepatic fatty acid and glycerolipid synthesis might be a key for treating hepatic insulin resistance. We highlight recent advances in the understanding of the molecular mechanisms leading to the development of hepatic steatosis and insulin resistance. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00111.x, 2011)
Collapse
Affiliation(s)
- Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
47
|
Targeting Hepatic Glycerolipid Synthesis and Turnover to Treat Fatty Liver Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/498369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of metabolic abnormalities ranging from simple hepatic steatosis (accumulation of neutral lipid) to development of steatotic lesions, steatohepatitis, and cirrhosis. NAFLD is extremely prevalent in obese individuals and with the epidemic of obesity; nonalcoholic steatohepatitis (NASH) has become the most common cause of liver disease in the developed world. NASH is rapidly emerging as a prominent cause of liver failure and transplantation. Moreover, hepatic steatosis is tightly linked to risk of developing insulin resistance, diabetes, and cardiovascular disease. Abnormalities in hepatic lipid metabolism are part and parcel of the development of NAFLD and human genetic studies and work conducted in experimentally tractable systems have identified a number of enzymes involved in fat synthesis and degradation that are linked to NAFLD susceptibility as well as progression to NASH. The goal of this review is to summarize the current state of our knowledge on these pathways and focus on how they contribute to etiology of NAFLD and related metabolic diseases.
Collapse
|
48
|
Abstract
Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.
Collapse
|
49
|
Khalid M, Manzoor S, Tariq M, Imran M, Ashraf W, Ahmed QL, Javed F. Investigation of biomarkers in peripheral blood cells of Pakistani chronic HCV patients with genotype 3a: an assessment of HCV-induced pathogenesis. Future Virol 2014. [DOI: 10.2217/fvl.14.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ABSTRACT: Aim: The main objective of the current study was to measure the mRNA expression of potent genes involved in oxidative stress, fibrosis and insulin resistance in chronic HCV patients using peripheral white blood cells. Materials & methods: A total of 50 individuals were selected for this study, including 40 chronic HCV patients and ten healthy individuals. RNA was extracted from human peripheral white blood cells of chronic HCV-infected patients and healthy individuals. Transcript analysis of selected genes was performed using real-time PCR. Results: A significant increase was observed in the mRNA expression of Nox4, TGF-β, TNF-α and collagen, while a significant decrease was observed in mRNA expression of Cu/Zn SOD and IL-10. However, there was no significant change found in mRNA expression of SOCS3 and SOCS7 level. Conclusion: The current study confirms the significant expression of different genes in peripheral white blood cells of chronic HCV patients. This could be an easy, cost-efficient approach for the assessment of HCV-induced pathologies at extrahepatic sites, which could be further validated in comparison with liver tissue biopsies.
Collapse
Affiliation(s)
- Madiha Khalid
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Muqddas Tariq
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Muhammad Imran
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Waseem Ashraf
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Qazi Laeeque Ahmed
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Farakh Javed
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| |
Collapse
|
50
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|