1
|
Hoyt KR, Horning P, Georgette Ang P, Karelina K, Obrietan K. Ribosomal S6 kinase signaling regulates neuronal viability during development and confers resistance to excitotoxic cell death in mature neurons. Neuroscience 2024; 558:1-10. [PMID: 39137868 DOI: 10.1016/j.neuroscience.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The Ribosomal S6 Kinase (RSK) family of serine/threonine kinases function as key downstream effectors of the MAPK signaling cascade. In the nervous system, RSK signaling plays crucial roles in neuronal development and contributes to activity-dependent neuronal plasticity. This study examined the role of RSK signaling in cell viability during neuronal development and in neuroprotection in the mature nervous system. Using neuronal cell-culture-based profiling, we found that suppressing RSK signaling led to significant cell death in developing primary neuronal cultures. To this end, treatment with the RSK inhibitors BiD1870 or SL0101 on the first day of culturing resulted in over 80% cell death. In contrast, more mature cultures showed attenuated cell death upon RSK inhibition. Inhibition of RSK signaling during early neuronal development also disrupted neurite outgrowth and cell growth. In maturing hippocampal explant cultures, treatment with BiD1870 had minimal effects on cell viability, but led to a striking augmentation of NMDA-induced cell death. Finally, we used the endothelin 1 (ET-1) model of ischemia to examine the neuroprotective effects of RSK signaling in the mature hippocampus in vivo. Notably, in the absence of RSK inhibition, the granule cell layer (GCL) was resistant to the effects of ET-1; However, disruption of RSK signaling (via the microinjection of BiD1870) prior to ET-1 injection triggered cell death within the GCL, thus indicating a neuroprotective role for RSK signaling in the mature nervous system. Together these data reveal distinct, developmentally-defined, roles for RSK signaling in the nervous system.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Paul Horning
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Pia Georgette Ang
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Regulation of proton partitioning in kinase-activating acute myeloid leukemia and its therapeutic implication. Leukemia 2022; 36:1990-2001. [PMID: 35624145 PMCID: PMC9343251 DOI: 10.1038/s41375-022-01606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Gain-of-function kinase mutations are common in AML and usually portend an inferior prognosis. We reported a novel mechanism whereby kinase mutants induced intracellular alkalization characteristic in oncogenesis. Thirteen kinases were found to activate sodium/hydrogen exchanger (NHE1) in normal hematopoietic progenitors, of which FLT3-ITD, KRASG12D, and BTK phosphorylated NHE1 maintained alkaline intracellular pH (pHi) and supported survival of AML cells. Primary AML samples with kinase mutations also showed increased NHE1 phosphorylation and evidence of NHE1 addiction. Amiloride enhanced anti-leukemic effects and intracellular distribution of kinase inhibitors and chemotherapy. Co-inhibition of NHE1 and kinase synergistically acidified pHi in leukemia and inhibited its growth in vivo. Plasma from patients taking amiloride for diuresis reduced pHi of leukemia and enhanced cytotoxic effects of kinase inhibitors and chemotherapy in vitro. NHE1-mediated intracellular alkalization played a key pathogenetic role in transmitting the proliferative signal from mutated-kinase and could be exploited for therapeutic intervention in AML.
Collapse
|
3
|
Blawn KT, Kellohen KL, Galloway EA, Wahl J, Vivek A, Verkhovsky VG, Barker NK, Cottier KE, Vallecillo TG, Langlais PR, Liktor-Busa E, Vanderah TW, Largent-Milnes TM. Sex hormones regulate NHE1 functional expression and brain endothelial proteome to control paracellular integrity of the blood endothelial barrier. Brain Res 2021; 1763:147448. [PMID: 33771519 PMCID: PMC10494867 DOI: 10.1016/j.brainres.2021.147448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sex hormones have been implicated in pH regulation of numerous physiological systems. One consistent factor of these studies is the sodium-hydrogen exchanger 1 (NHE1). NHE1 has been associated with pH homeostasis at epithelial barriers. Hormone fluctuations have been implicated in protection and risk for breaches in blood brain barrier (BBB)/blood endothelial barrier (BEB) integrity. Few studies, however, have investigated BBB/BEB integrity in neurological disorders in the context of sex-hormone regulation of pH homeostasis. METHODS//RESULTS Physiologically relevant concentrations of 17-β-estradiol (E2, 294 pM), progesterone (P, 100 nM), and testosterone (T,3.12 nM) were independently applied to cultured immortalized bEnd.3 brain endothelial cells to study the BEB. Individual gonadal hormones showed preferential effects on extracellular pH (E2), 14C-sucrose uptake (T), stimulated paracellular breaches (P) with dependence on functional NHE1 expression without impacting transendothelial resistance (TEER) or total protein expression. While total NHE1 expression was not changed as determined via whole cell lysate and subcellular fractionation experiment, biotinylation of NHE1 for surface membrane expression showed E2 reduced functional expression. Quantitative proteomic analysis revealed divergent effects of 17-β-estradiol and testosterone on changes in protein abundance in bEnd.3 endothelial cells as compared to untreated controls. CONCLUSIONS These data suggest that circulating levels of sex hormones may independently control BEB integrity by 1) regulating pH homeostasis through NHE1 functional expression and 2) modifying the endothelial proteome.
Collapse
Affiliation(s)
- Kiera T Blawn
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Emily A Galloway
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Jared Wahl
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Anjali Vivek
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Natalie K Barker
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | | | - Paul R Langlais
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | - Todd W Vanderah
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | |
Collapse
|
4
|
The control of acidity in tumor cells: a biophysical model. Sci Rep 2020; 10:13613. [PMID: 32788634 PMCID: PMC7423962 DOI: 10.1038/s41598-020-70396-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/28/2020] [Indexed: 01/02/2023] Open
Abstract
Acidosis of the tumor microenvironment leads to cancer invasion, progression and resistance to therapies. We present a biophysical model that describes how tumor cells regulate intracellular and extracellular acidity while they grow in a microenvironment characterized by increasing acidity and hypoxia. The model takes into account the dynamic interplay between glucose and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {O}_2$$\end{document}O2 consumption with lactate and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CO}_2$$\end{document}CO2 production and connects these processes to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}^+$$\end{document}H+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HCO}_3^-$$\end{document}HCO3- fluxes inside and outside cells. We have validated the model with independent experimental data and used it to investigate how and to which extent tumor cells can survive in adverse micro-environments characterized by acidity and hypoxia. The simulations show a dominance of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}^+$$\end{document}H+ exchanges in well-oxygenated regions, and of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HCO}_3^-$$\end{document}HCO3- exchanges in the inner hypoxic regions where tumor cells are known to acquire malignant phenotypes. The model also includes the activity of the enzyme Carbonic Anhydrase 9 (CA9), a known marker of tumor aggressiveness, and the simulations demonstrate that CA9 acts as a nonlinear \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {pH}_i$$\end{document}pHi equalizer at any \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {O}_2$$\end{document}O2 level in cells that grow in acidic extracellular environments.
Collapse
|
5
|
Park HK, Song MK, Kim WI, Han JY. Regulation of gene expression after combined scalp acupuncture and transcranial magnetic stimulation in middle cerebral artery occlusion mice. Restor Neurol Neurosci 2020; 38:253-263. [PMID: 32444581 DOI: 10.3233/rnn-190963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of combined repetitive transcranial magnetic stimulation (rTMS) and scalp acupuncture stimulation (SAS) on middle cerebral artery occlusion (MCAO) mice has not yet been reported. The regulation of gene expression after combined stimulation remains unclear. OBJECTIVE To analyze gene expression patterns through ribonucleic acid (RNA) sequencing. METHODS Thirty-six 8-weeks-old C57BL/6J male mice weighing 50-60 grams were used for this experiment. The MCAO was induced with 60-min occlusion and subsequent reperfusion of the middle cerebral artery. Experimental mice were randomly assigned to four groups, with nine mice in each group, as follows: control group (no treatment), SAS group (10 minutes SAS), rTMS group (1 Hz rTMS), and combined group (1 Hz rTMS and SAS). Stimulation was performed from the 3rd day to the 7th day after the induction of MCAO. All mice were sacrificed, and brain tissues were taken from the motor area of the MCAO lesion. We analyzed their gene expression profiles using RNA sequencing technology. RESULTS After stimulation, the grip strength increased in the SAS and rTMS group compared to the control and combined group. The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) was the key up-regulated protein in the SAS group while src homologus and collagene gene (SHC) and p90 ribosomal protein S6 kinases (p90RSK) were key up-regulated proteins in the rTMS group. However, the C-terminal src kinase-homologous kinase (CHK) was down-regulated whereas p90RSK was up-regulated in the combined group based on the RNA sequencing analysis. CONCLUSIONS Each stimulation method showed different patterns with neurotrophin signaling pathway including NFκB, SHC, p90RSK, and CHK. These can be used in further mechanistic studies about gene expression related to neurorecovery.
Collapse
Affiliation(s)
- Hyeng-Kyu Park
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| | - Min-Keun Song
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| | - Wang-In Kim
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| | - Jae-Young Han
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Wright TD, Raybuck C, Bhatt A, Monlish D, Chakrabarty S, Wendekier K, Gartland N, Gupta M, Burow ME, Flaherty PT, Cavanaugh JE. Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer. J Cell Biochem 2019; 121:1156-1168. [PMID: 31464004 DOI: 10.1002/jcb.29350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.
Collapse
Affiliation(s)
- Thomas D Wright
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Christopher Raybuck
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Akshita Bhatt
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Darlene Monlish
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania.,Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Suravi Chakrabarty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katy Wendekier
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Nathan Gartland
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Mohit Gupta
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patrick T Flaherty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Jane E Cavanaugh
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Jiang G, Huang C, Liao X, Li J, Wu XR, Zeng F, Huang C. The RING domain in the anti-apoptotic protein XIAP stabilizes c-Myc protein and preserves anchorage-independent growth of bladder cancer cells. J Biol Chem 2019; 294:5935-5944. [PMID: 30819803 DOI: 10.1074/jbc.ra118.005621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/12/2019] [Indexed: 01/08/2023] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) suppresses apoptosis and plays key roles in the development, growth, migration, and invasion of cancer cells. Therefore, XIAP has recently attracted much attention as a potential antineoplastic therapeutic target, requiring elucidation of the molecular mechanisms underlying its biological activities. Here, using shRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, anchorage-independent growth assay, and invasive assay, we found that XIAP's RING domain, but not its BIR domain, is crucial for XIAP-mediated up-regulation of c-Myc protein expression in human bladder cancer (BC) cells. Mechanistically, we observed that the RING domain stabilizes c-Myc by inhibiting its phosphorylation at Thr-58 and that this inhibition is due to activated ERK1/2-mediated phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser-9. Functional studies further revealed that c-Myc protein promotes anchorage-independent growth and invasion stimulated by the XIAP RING domain in human BC cells. Collectively, the findings in our study uncover that the RING domain of XIAP supports c-Myc protein stability, providing insight into the molecular mechanism and role of c-Myc overexpression in cancer progression. Our observations support the notion of targeting XIAP's RING domain and c-Myc in cancer therapy.
Collapse
Affiliation(s)
- Guosong Jiang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; the Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; the Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Liao
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Xue-Ru Wu
- the Department of Urology, New York University School of Medicine, New York, New York 10016
| | - Fuqing Zeng
- the Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chuanshu Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.
| |
Collapse
|
8
|
Roncal C, Martinez de Lizarrondo S, Salicio A, Chevilley A, Rodriguez JA, Rosell A, Couraud PO, Weksler B, Montaner J, Vivien D, Páramo JA, Orbe J. New thrombolytic strategy providing neuroprotection in experimental ischemic stroke: MMP10 alone or in combination with tissue-type plasminogen activator. Cardiovasc Res 2018; 113:1219-1229. [PMID: 28379489 DOI: 10.1093/cvr/cvx069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/31/2017] [Indexed: 11/14/2022] Open
Abstract
Aims Early reperfusion with tissue-type plasminogen activator (tPA) is an effective therapeutic strategy to treat acute ischemic stroke, but only 1/3 of tPA-treated patients recover and are free from disability. tPA has also shown neurotoxicity in experimental models of cerebral ischemia. Considering that MMP-10 improves stroke injury, we have examined the therapeutic and protective effect of MMP10 and tPA/MMP10 as clot-dissolving and neuroprotective agent in an experimental model of ischemic stroke and studied in vitro the molecular pathways involved in MMP10-mediated effects. Methods and results Cerebral ischemia was induced by the local injection of thrombin into the middle cerebral artery followed by reperfusion with MMP10 (6.5 µg/kg) and tPA (10 mg/kg) alone or in combination with MMP10. Cell cultures were also performed to determine the effect of MMP10 and tPA/MMP10 on brain endothelial cells and neurons. tPA/MMP10 significantly reduced the infarct size in the ischemic stroke model compared with tPA alone (P < 0.05). In vitro, MMP10 reduced the tPA-promoted endothelial ionic permeability, preserved the expression of claudin-5 and decreased ERK1/2 activation. Moreover, combination of tPA/MMP10 prevented tPA-mediated neuronal excitotoxicity and calcium influx. These effects were reversed by blocking MMP10 activity with a monoclonal antibody. Conclusion These results show that MMP10, either alone or in combination with tPA, might represent a new strategy for thrombolysis in ischemic stroke, providing higher protection against cerebrovascular damage.
Collapse
Affiliation(s)
- Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, IdiSNA, CIMA Building, Av. Pio XII, 55, 31008 Pamplona, Navarra, Spain.,CIBERCV, Ministry of Economy and Competitiveness, ISCIII, Spain
| | | | - Agustina Salicio
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, IdiSNA, CIMA Building, Av. Pio XII, 55, 31008 Pamplona, Navarra, Spain
| | - Arnaud Chevilley
- INSERM, UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit (SP2U), Caen, France
| | - Jose A Rodriguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, IdiSNA, CIMA Building, Av. Pio XII, 55, 31008 Pamplona, Navarra, Spain.,CIBERCV, Ministry of Economy and Competitiveness, ISCIII, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Babette Weksler
- Weill Cornell Medical College, Medicine Division of Hematology/Oncology, New York, NY, USA
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Denis Vivien
- INSERM, UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit (SP2U), Caen, France
| | - Jose A Páramo
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, IdiSNA, CIMA Building, Av. Pio XII, 55, 31008 Pamplona, Navarra, Spain.,CIBERCV, Ministry of Economy and Competitiveness, ISCIII, Spain
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, IdiSNA, CIMA Building, Av. Pio XII, 55, 31008 Pamplona, Navarra, Spain.,CIBERCV, Ministry of Economy and Competitiveness, ISCIII, Spain
| |
Collapse
|
9
|
Eskiocak U, Ramesh V, Gill JG, Zhao Z, Yuan SW, Wang M, Vandergriff T, Shackleton M, Quintana E, Johnson TM, DeBerardinis RJ, Morrison SJ. Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma. Nat Commun 2016; 7:12336. [PMID: 27545456 PMCID: PMC4996948 DOI: 10.1038/ncomms12336] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/23/2016] [Indexed: 12/28/2022] Open
Abstract
New therapies are required for melanoma. Here, we report that multiple cardiac glycosides, including digitoxin and digoxin, are significantly more toxic to human melanoma cells than normal human cells. This reflects on-target inhibition of the ATP1A1 Na(+)/K(+) pump, which is highly expressed by melanoma. MEK inhibitor and/or BRAF inhibitor additively or synergistically combined with digitoxin to induce cell death, inhibiting growth of patient-derived melanomas in NSG mice and synergistically extending survival. MEK inhibitor and digitoxin do not induce cell death in human melanocytes or haematopoietic cells in NSG mice. In melanoma, MEK inhibitor reduces ERK phosphorylation, while digitoxin disrupts ion gradients, altering plasma membrane and mitochondrial membrane potentials. MEK inhibitor and digitoxin together cause intracellular acidification, mitochondrial calcium dysregulation and ATP depletion in melanoma cells but not in normal cells. The disruption of ion homoeostasis in cancer cells can thus synergize with targeted agents to promote tumour regression in vivo.
Collapse
Affiliation(s)
- Ugur Eskiocak
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Vijayashree Ramesh
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Jennifer G. Gill
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhiyu Zhao
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Stacy W. Yuan
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Meng Wang
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Travis Vandergriff
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark Shackleton
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Elsa Quintana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | - Timothy M. Johnson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | - Sean J. Morrison
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas Texas 75390, USA
| |
Collapse
|
10
|
Rajagopal S, Deb I, Poddar R, Paul S. Aging is associated with dimerization and inactivation of the brain-enriched tyrosine phosphatase STEP. Neurobiol Aging 2016; 41:25-38. [PMID: 27103516 DOI: 10.1016/j.neurobiolaging.2016.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/21/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
The STriatal-Enriched tyrosine Phosphatase (STEP) is involved in the etiology of several age-associated neurologic disorders linked to oxidative stress and is also known to play a role in neuroprotection by modulating glutamatergic transmission. However, the possible effect of aging on STEP level and activity in the brain is still unclear. In this study, using young (1 month), adult (4 months), and aged (18 months) rats, we show that aging is associated with increase in dimerization and loss of activity of STEP. Increased dimerization of STEP is primarily observed in the cortex and hippocampus and is associated with depletion of both reduced and total glutathione levels, suggesting an increase in oxidative stress. Consistent with this interpretation, studies in cell culture models of glutathione depletion and oxidative stress also demonstrate formation of dimers and higher order oligomers of STEP that involve intermolecular disulfide bond formation between multiple cysteine residues. Conversely, administration of N-acetyl cysteine, a major antioxidant that enhances glutathione biosynthesis, attenuates STEP dimerization both in the cortex and hippocampus. The findings indicate that loss of this intrinsic protective response pathway with age-dependent increase in oxidative stress may be a contributing factor for the susceptibility of the brain to age-associated neurologic disorders.
Collapse
Affiliation(s)
| | - Ishani Deb
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Konstantakou EG, Voutsinas GE, Velentzas AD, Basogianni AS, Paronis E, Balafas E, Kostomitsopoulos N, Syrigos KN, Anastasiadou E, Stravopodis DJ. 3-BrPA eliminates human bladder cancer cells with highly oncogenic signatures via engagement of specific death programs and perturbation of multiple signaling and metabolic determinants. Mol Cancer 2015. [PMID: 26198749 PMCID: PMC4511243 DOI: 10.1186/s12943-015-0399-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Urinary bladder cancer is one of the most fatal and expensive diseases of industrialized world. Despite the strenuous efforts, no seminal advances have been achieved for its clinical management. Given the importance of metabolic reprogramming in cancer cell survival and growth, we have herein employed 3-BrPA, a halogenated derivative of pyruvate and historically considered inhibitor of glycolysis, to eliminate bladder cancer cells with highly oncogenic molecular signatures. METHODS Bladder cancer cells were exposed to 3-BrPA in the absence or presence of several specific inhibitors. Cell viability was determined by MTT and flow-cytometry assays; cell death, signaling activity and metabolic integrity by Western blotting and immunofluorescence; mutant-gene profiling by DNA sequencing; and gene expression by RT-sqPCR. RESULTS 3-BrPA could activate dose-dependent apoptosis (type 1 PCD) and regulated necrosis (type 3 PCD) of T24 (grade III; H-Ras(G12V); p53(ΔY126)), but not RT4 (grade I), cells, with PARP, MLKL, Drp1 and Nec-7-targeted components critically orchestrating necrotic death. However, similarly to RIPK1 and CypD, p53 presented with non-essential contribution to 3-BrPA-induced cellular collapse, while reactivation of mutant p53 with PRIMA-1 resulted in strong synergism of the two agents. Given the reduced expression of MPC components (likely imposing mitochondrial dysfunction) in T24 cells, the suppression of constitutive autophagy (required by cells carrying oncogenic Ras; also, type 2 PCD) and derangement of glucose-homeostasis determinants by 3-BrPA critically contribute to drug-directed depletion of ATP cellular stores. This bioenergetic crisis is translated to severe dysregulation of Akt/FoxO/GSK-3, mTOR/S6, AMPK and MAPK (p44/42, p38 and SAPK/JNK) signaling pathways in 3-BrPA-treated T24 cells. Sensitivity to 3-BrPA (and tolerance to glucose deprivation) does not rely on B-Raf(V600E) or K-Ras(G13D) mutant oncogenic proteins, but partly depends on aberrant signaling activities of Akt, MAPK and AMPK kinases. Interestingly, MCT1- and macropinocytosis-mediated influx of 3-BrPA in T24 represents the principal mechanism that regulates cellular responsiveness to the drug. Besides its capacity to affect transcription in gene-dependent manner, 3-BrPA can also induce GLUT4-specific splicing silencing in both sensitive and resistant cells, thus dictating alternative routes of drug trafficking. CONCLUSIONS Altogether, it seems that 3-BrPA represents a promising agent for bladder cancer targeted therapy.
Collapse
Affiliation(s)
- Eumorphia G Konstantakou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.
| | - Athanassios D Velentzas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| | - Aggeliki-Stefania Basogianni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| | - Efthimios Paronis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Evangelos Balafas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Nikolaos Kostomitsopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Konstantinos N Syrigos
- Oncology Unit GPP, Sotiria General Hospital, Athens School of Medicine, Athens, Greece. .,Yale School of Medicine, New Haven, Connecticut, USA.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Dimitrios J Stravopodis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| |
Collapse
|
12
|
No YR, He P, Yoo BK, Yun CC. Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2. Am J Physiol Cell Physiol 2015; 309:C14-21. [PMID: 25855080 DOI: 10.1152/ajpcell.00067.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023]
Abstract
Na(+)/H(+) exchange by Na(+)/H(+) exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA), a small phospholipid produced ubiquitously by all types of cells, stimulates NHE3 via LPA5 receptor. Stimulation of NHE3 activity by LPA involves LPA5 transactivating EGF receptor (EGFR) in the apical membrane. EGFR activates proline-rich tyrosine kinase 2 (Pyk2) and ERK, both of which are necessary for NHE3 regulation. However, Pyk2 and ERK are regulated by EGFR via independent pathways and appear to converge on an unidentified intermediate that ultimately targets NHE3. The p90 ribosomal S6 kinase (RSK) family of Ser/Thr protein kinases is a known effector of EGFR and ERK. Hence, we hypothesized that RSK may be the convergent effector of Pyk2 and ERK although it is not known whether Pyk2 regulates RSK. In this study, we show that Pyk2 is necessary for the maintenance of phosphoinositide-dependent kinase 1 (PDK1) autophosphorylation, and knockdown of Pyk2 or PDK1 mitigated LPA-induced phosphorylation of RSK and stimulation of NHE3 activity. Additionally, we show that RSK2, but not RSK1, is responsible for NHE3 regulation. RSK2 interacts with NHE3 at the apical membrane domain, where it phosphorylates NHE3. Alteration of S663 of NHE3 ablated LPA-induced phosphorylation of NHE3 and stimulation of the transport activity. Our study identifies RSK2 as a new kinase that regulates NHE3 activity by direct phosphorylation.
Collapse
Affiliation(s)
- Yi Ran No
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Byong Kwon Yoo
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
13
|
Ren J, Song D, Bai Q, Verkhratsky A, Peng L. Fluoxetine induces alkalinization of astroglial cytosol through stimulation of sodium-hydrogen exchanger 1: dissection of intracellular signaling pathways. Front Cell Neurosci 2015; 9:61. [PMID: 25784857 PMCID: PMC4347488 DOI: 10.3389/fncel.2015.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 01/08/2023] Open
Abstract
Clinical evidence suggest astrocytic abnormality in major depression (MD) while treatment with anti-psychotic drugs affects astroglial functions. Astroglial cells are involved in pH homeostasis of the brain by transporting protons (through sodium-proton transporter 1, NHE1, glutamate transporters EAAT1/2 and proton-lactate co-transporter MCT1) and bicarbonate (through the sodium-bicarbonate co-transporter NBC or the chloride-bicarbonate exchanger AE). Here we show that chronic treatment with fluoxetine increases astroglial pHi by stimulating NHE1-mediated proton extrusion. At a clinically relevant concentration of 1 μM, fluoxetine significantly increased astroglial pHi from 7.05 to 7.34 after 3 weeks and from 7.18 to 7.58 after 4 weeks of drug treatment. Stimulation of NHE1 is a result of transporter phosphorylation mediated by several intracellular signaling cascades that include MAPK/ERK1/2, PI3K/AKT and ribosomal S6 kinase (RSK). Fluoxetine stimulated phosphorylation of ERK1/2, AKT and RSK in a concentration dependent manner. Positive crosstalk exists between two signal pathways, MAPK/ERK1/2 and PI3K/AKT activated by fluoxetine since ERK1/2 phosphrylation could be abolished by inhibitors of PI3K, LY294002 and AKT, triciribine, and AKT phosphorylation by inhibitor of MAPK, U0126. As a result, RSK phosphorylation was not only inhibited by U0126 but also by inhibitor of LY294002. The NHE1 phoshorylation resulted in stimulation of NHE1 activity as revealed by the NH4Cl-prepulse technique; the increase of NHE1 activity was dependent on fluoxetine concentration, and could be inhibited by both U0126 and LY294002. Our findings suggest that regulation of astrocytic pHi and brain pH may be one of the mechanisms underlying fluoxetine action.
Collapse
Affiliation(s)
- Jienan Ren
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Dan Song
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Qiufang Bai
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester Manchester, UK ; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science Bilbao, Spain ; University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
14
|
Graham RM, Thompson JW, Webster KA. Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis. Oncotarget 2015; 5:1162-73. [PMID: 24811485 PMCID: PMC4012732 DOI: 10.18632/oncotarget.1699] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pro-apoptotic protein Bnip3 is induced by hypoxia and is present in the core regions of most solid tumors. Bnip3 induces programmed necrosis by an intrinsic caspase independent mitochondrial pathway. Many tumor cells have evolved pathways to evade Bnip3-mediated death attesting to the physiological relevance of the survival threat imposed by Bnip3. We have reported that acidosis can trigger the Bnip3 death pathway in hypoxic cells therefore we hypothesized that manipulation of intracellular pH by pharmacological inhibition of the vacuolar (v)ATPase proton pump, a significant pH control pathway, may activate Bnip3 and promote death of hypoxic cells within the tumor. Here we confirm that bafilomycin A1 (BafA1), a selective vATPase inhibitor, significantly increased death of breast cancer cells in a hypoxia and Bnip3-dependent manner and significantly reduced tumor growth in MCF7 and MDA-MB-231 mouse xenografts. Combined treatment of cells with BafA1 and the ERK1/2 inhibitor U0126 further augmented cell death. Combined treatment of mice containing MDA-MB-231 xenografts with BafA1 and the ERK1/2 inhibitor sorafenib was superior to either treatment alone and supported tumor regression. BafA1 and sorafenib treatments alone reduced MDA-MB-231 cell metastasis and again the combination was significantly more effective than either treatment alone and was without apparent side effects. These results present a novel mechanism to destroy hypoxic tumor cells that may help reverse the resistance of hypoxic tumors to radiation and chemotherapy and perhaps target tumor stem cells.
Collapse
|
15
|
Yuen N, Lam TI, Wallace BK, Klug NR, Anderson SE, O'Donnell ME. Ischemic factor-induced increases in cerebral microvascular endothelial cell Na/H exchange activity and abundance: evidence for involvement of ERK1/2 MAP kinase. Am J Physiol Cell Physiol 2014; 306:C931-42. [PMID: 24647544 DOI: 10.1152/ajpcell.00021.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain edema forms rapidly in the early hours of ischemic stroke by increased secretion of Na, Cl, and water into the brain across an intact blood-brain barrier (BBB), together with swelling of astrocytes as they take up the ions and water crossing the BBB. Our previous studies provide evidence that luminal BBB Na-K-Cl cotransport (NKCC) and Na/H exchange (NHE) participate in ischemia-induced edema formation. NKCC1 and two NHE isoforms, NHE1 and NHE2, reside predominantly at the luminal BBB membrane. NKCC and NHE activities of cerebral microvascular endothelial cells (CMEC) are rapidly stimulated by the ischemic factors hypoxia, aglycemia, and AVP, and inhibition of NKCC and NHE activities by bumetanide and HOE642, respectively, reduces brain Na uptake and edema in the rat middle cerebral artery occlusion model of stroke. The present study was conducted to further explore BBB NHE responses to ischemia. We examined whether ischemic factor-stimulated NHE activity is sustained over several hours, when the majority of edema forms during stroke. We also examined whether ischemic factors alter NHE1 and/or NHE2 protein abundance. Finally, we conducted initial studies of ERK1/2 MAP kinase involvement in BBB NHE and NKCC responses to ischemic factors. We found that hypoxia, aglycemia, and AVP increase CMEC NHE activity through 5 h and that NHE1, but not NHE2, abundance is increased by 1- to 5-h exposures to these factors. Furthermore, we found that these factors rapidly increase BBB ERK1/2 activity and that ERK1/2 inhibition reduces or abolishes ischemic factor stimulation of NKCC and NHE activities.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Tina I Lam
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Breanna K Wallace
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Steven E Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
16
|
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 2014; 115:189-209. [PMID: 24467911 DOI: 10.1016/j.pneurobio.2013.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na(+)/H(+) exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H(+)-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca(2+), Na(+), and Zn(2+), and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention.
Collapse
|
17
|
Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation. PLoS One 2014; 9:e84294. [PMID: 24392123 PMCID: PMC3879304 DOI: 10.1371/journal.pone.0084294] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
Hypoxia ischemia (HI)-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na+/H+ exchanger isoform 1 (NHE1) protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX). 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1–5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na+ and Ca2+ overload. The latter was mediated by reversal of Na+/Ca2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα) during 1–24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na+ and Ca2+ homeostasis, which reduces Na+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.
Collapse
|
18
|
Lee BK, Yoon JS, Lee MG, Jung YS. Protein kinase C-β mediates neuronal activation of Na(+)/H(+) exchanger-1 during glutamate excitotoxicity. Cell Signal 2013; 26:697-704. [PMID: 24378530 DOI: 10.1016/j.cellsig.2013.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/05/2013] [Accepted: 12/22/2013] [Indexed: 11/25/2022]
Abstract
Na(+)/H(+) exchanger-1 (NHE-1) activity is known to play a critical role in the neuronal injury caused by glutamate. However, the underlying mechanism is not clear. This study shows that NHE-1 activation and its phosphorylation during glutamate exposure were attenuated by the inhibition of protein kinase C (PKC)-βI and -βII, leading to reduced neuronal death. In addition, activations of PKC-βI and -βII by PKC-βI and -βII CAT plasmid or by PMA, PKC-β pharmacological activator have stimulated the activity and phosphorylation of NHE-1, which were abolished by inhibition of PKC-β in neuronal cells. Furthermore, the inhibition of PKC-β has mediated neuroprotective effect on glutamate-induced cells, which is similar to neuroprotective efficacy of siRNA NHE-1 transfection. Taken together, these results suggest that activation of the PKC-βI and -βII pathway by glutamate increases the activity and phosphorylation of NHE-1, and that these increases contribute to neuronal cell death. In this study, we demonstrate that PKC-βI and -βII are involved in the regulation of NHE-1 activation following glutamate exposure in neuron.
Collapse
Affiliation(s)
- Bo Kyung Lee
- College of Pharmacy, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea.
| | - Jae Seok Yoon
- Department of Pharmacology, Yonsei University, College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University, College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea; Research Institute of Pharmaceutical Sciences and Technology, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea.
| |
Collapse
|
19
|
Jenkins EC, Debnath S, Varriano S, Gundry S, Fata JE. Na+/H+exchanger 1 (NHE1) function is necessary for maintaining mammary tissue architecture. Dev Dyn 2013; 243:229-42. [DOI: 10.1002/dvdy.24032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/18/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Edmund C. Jenkins
- Department of Biology; College of Staten Island; Staten Island New York
- Biology Doctoral Program; City University of New York Graduate Center; New York New York
| | - Shawon Debnath
- Department of Biology; College of Staten Island; Staten Island New York
- Biochemistry Doctoral Program; City University of New York Graduate Center; New York New York
| | - Sophia Varriano
- Department of Biology; College of Staten Island; Staten Island New York
| | - Stephen Gundry
- Electrical Engineering Doctoral Program; City College of New York, The City University of New York; New York New York
| | - Jimmie E. Fata
- Department of Biology; College of Staten Island; Staten Island New York
- Biology Doctoral Program; City University of New York Graduate Center; New York New York
- Biochemistry Doctoral Program; City University of New York Graduate Center; New York New York
| |
Collapse
|
20
|
Costa-Pessoa JMD, Figueiredo CFDSR, Thieme K, Oliveira-Souza M. The regulation of NHE₁ and NHE₃ activity by angiotensin II is mediated by the activation of the angiotensin II type I receptor/phospholipase C/calcium/calmodulin pathway in distal nephron cells. Eur J Pharmacol 2013; 721:322-31. [PMID: 24076179 DOI: 10.1016/j.ejphar.2013.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 08/22/2013] [Indexed: 02/03/2023]
Abstract
Angiotensin II (Ang II), acting via the AT1 receptor, induces an increase in intracellular calcium [Ca(2+)]i that then interacts with calmodulin (CaM). The Ca(2+)/CaM complex directly or indirectly activates sodium hydrogen exchanger 1 (NHE1) and phosphorylates calmodulin kinase II (CaMKII), which then regulates sodium hydrogen exchanger 3 (NHE3) activity. In this study, we investigated the cellular signaling pathways responsible for Ang II-mediated regulation of NHE1 and NHE3 in Madin-Darby canine kidney (MDCK) cells. The NHE1- and NHE3-dependent pHi recovery rates were evaluated by fluorescence microscopy using the fluorescent probe BCECF/AM, messenger RNA was evaluated with the reverse transcription polymerase chain reaction (RT-PCR), and protein expression was evaluated by immunoblot. We demonstrated that treatment with Ang II (1pM or 1 nM) for 30 min induced, via the AT1 but not the AT2 receptor, an equal increase in NHE1 and NHE3 activity that was reduced by the specific inhibitors HOE 694 and S3226, respectively. Ang II (1 nM) did not change the total expression of NHE1, NHE3 or calmodulin, but it induced CaMKII, cRaf-1, Erk1/2 and p90(RSK) phosphorylation. The stimulatory effects of Ang II (1 nM) on NHE1 or NHE3 activity or protein abundance was reduced by ophiobolin-A (CaM inhibitor), KN93 (CaMKII inhibitor) or PD98059 (Mek inhibitor). These results indicate that after 30 min, Ang II treatment may activate G protein-dependent pathways, including the AT1/PLC/Ca(2+)/CaM pathway, which induces CaMKII phosphorylation to stimulate NHE3 and induces cRaf-1/Mek/Erk1/2/p90(RSK) activity to stimulate NHE1.
Collapse
Affiliation(s)
- Juliana Martins da Costa-Pessoa
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas. University of São Paulo, São Paulo 05508-900, Brazil
| | | | | | | |
Collapse
|
21
|
Sabiporide reduces ischemia-induced arrhythmias and myocardial infarction and attenuates ERK phosphorylation and iNOS induction in rats. BIOMED RESEARCH INTERNATIONAL 2012; 2013:504320. [PMID: 23484128 PMCID: PMC3591136 DOI: 10.1155/2013/504320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to investigate the effects of sabiporide, a potent and selective NHE1 inhibitor, on myocardial ischemia-induced arrhythmias and myocardial infarction and the possible pathways related to the cardioprotection afforded by sabiporide treatment. Anesthetized rats were subjected to myocardial ischemia via left main coronary artery occlusion for 30 minutes, followed by 2 hours of reperfusion. Administration of sabiporide (0.01–3.0 mg/kg) prior to coronary artery occlusion dose-dependently reduced ischemia-induced arrhythmias and infarct size with an ED50 value of 0.14 mg/kg. Administration of sabiporide (1.0 mg/kg) prior to reperfusion also reduced infarct size by 38.6%. The reduction in infarct size was accompanied by a decrease in circulating levels of creatine phosphokinase and troponin I. In addition, sabiporide (1.0 mg/kg) given prior to coronary artery occlusion or immediately before reperfusion significantly reduced phosphorylation of the extracellular signal-regulated kinase (ERK1/2) and the expression of the inducible nitric oxide synthase (iNOS) following myocardial ischemia-reperfusion. This study demonstrates that sabiporide is a potent and effective cardioprotective agent during myocardial ischemia and reperfusion, by reducing serious ventricular arrhythmias and myocardial infarct size. The cardioprotection afforded by sabiporide is attributed in part to inhibition of ERK1/2 phosphorylation and suppression of iNOS expression.
Collapse
|
22
|
Poddar R, Paul S. Novel crosstalk between ERK MAPK and p38 MAPK leads to homocysteine-NMDA receptor-mediated neuronal cell death. J Neurochem 2012; 124:558-70. [PMID: 23176034 DOI: 10.1111/jnc.12102] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/29/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor for both acute and chronic neurological disorders, but little is known about the underlying mechanisms by which elevated homocysteine can promote neuronal cell death. We recently established a role for NMDA receptor-mediated activation of extracellular signal-regulated kinase (ERK)-MAPK in homocysteine-induced neuronal cell death. In this study, we examined the involvement of the stress-induced MAPK, p38 in homocysteine-induced neuronal cell death, and further explored the relationship between the two MAPKs, ERK and p38, in triggering cell death. Homocysteine-mediated NMDA receptor stimulation and subsequent Ca(2+) influx led to a biphasic activation of p38 MAPK characterized by an initial rapid, but transient activation followed by a delayed and more prolonged response. Selective inhibition of the delayed p38 MAPK activity was sufficient to attenuate homocysteine-induced neuronal cell death. Using pharmacological and RNAi approaches, we further demonstrated that both the initial and delayed activation of p38 MAPK is downstream of, and dependent on activation of ERK MAPK. Our findings highlight a novel interplay between ERK and p38 MAPK in homocysteine-NMDA receptor-induced neuronal cell death.
Collapse
Affiliation(s)
- Ranjana Poddar
- University of New Mexico Health Sciences Center, Department of Neurology, 1, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
23
|
Robertson NJ, Kato T, Bainbridge A, Chandrasekaran M, Iwata O, Kapetanakis A, Faulkner S, Cheong J, Iwata S, Hristova M, Cady E, Raivich G. Methyl-isobutyl amiloride reduces brain Lac/NAA, cell death and microglial activation in a perinatal asphyxia model. J Neurochem 2012; 124:645-57. [DOI: 10.1111/jnc.12097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/07/2012] [Accepted: 11/05/2012] [Indexed: 01/12/2023]
Affiliation(s)
| | - Takenori Kato
- Institute for Women's Health; University College London; London UK
- Nagoya City University; Nagoya Japan
| | - Alan Bainbridge
- Medical Physics and Bioengineering; University College London Hospitals; London UK
| | | | - Osuke Iwata
- Institute for Women's Health; University College London; London UK
| | | | - Stuart Faulkner
- Institute for Women's Health; University College London; London UK
| | - Jeanie Cheong
- Institute for Women's Health; University College London; London UK
| | - Sachiko Iwata
- Institute for Women's Health; University College London; London UK
| | - Mariya Hristova
- Institute for Women's Health; University College London; London UK
| | - Ernest Cady
- Medical Physics and Bioengineering; University College London Hospitals; London UK
| | - Gennadij Raivich
- Institute for Women's Health; University College London; London UK
| |
Collapse
|
24
|
Domercq M, Mato S, Soria FN, Sánchez-gómez MV, Alberdi E, Matute C. Zn2+-induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes. Glia 2012; 61:383-93. [DOI: 10.1002/glia.22441] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/19/2012] [Indexed: 01/07/2023]
|
25
|
Jenkins EC, Debnath S, Gundry S, Gundry S, Uyar U, Fata JE. Intracellular pH regulation by Na+/H+ exchanger-1 (NHE1) is required for growth factor-induced mammary branching morphogenesis. Dev Biol 2012; 365:71-81. [DOI: 10.1016/j.ydbio.2012.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/30/2012] [Accepted: 02/09/2012] [Indexed: 01/19/2023]
|
26
|
Na+/H+ Exchangers as Therapeutic Targets for Cerebral Ischemia. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 2012; 226:172-84. [PMID: 21956154 PMCID: PMC4294548 DOI: 10.1002/path.3004] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.
Collapse
|
28
|
Bhuiyan MIH, Jung SY, Kim HJ, Lee YS, Jin C. Major role of the PI3K/Akt pathway in ischemic tolerance induced by sublethal oxygen-glucose deprivation in cortical neurons in vitro. Arch Pharm Res 2011; 34:1023-34. [DOI: 10.1007/s12272-011-0620-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/30/2011] [Accepted: 02/24/2011] [Indexed: 11/27/2022]
|
29
|
Deb I, Poddar R, Paul S. Oxidative stress-induced oligomerization inhibits the activity of the non-receptor tyrosine phosphatase STEP61. J Neurochem 2011; 116:1097-111. [PMID: 21198639 DOI: 10.1111/j.1471-4159.2010.07165.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The neuron-specific tyrosine phosphatase STriatal Enriched Phosphatase (STEP) is emerging as an important mediator of glutamatergic transmission in the brain. STEP is also thought to be involved in the etiology of neurodegenerative disorders that are linked to oxidative stress such as Alzheimer's disease and cerebral ischemia. However, the mechanism by which oxidative stress can modulate STEP activity is still unclear. In this study, we have investigated whether dimerization may play a role in regulating the activity of STEP. Our findings show that STEP(61), the membrane associated isoform, can undergo homodimerization under basal conditions in neurons. Dimerization of STEP(61) involves intermolecular disulfide bond formation between two cysteine residues (Cys 65 and Cys 76 respectively) present in the hydrophobic region at the N-terminus specific to STEP(61). Oxidative stress induced by hydrogen peroxide leads to a significant increase in the formation of dimers and higher-order oligomers of STEP(61). Using two substrates, para-nitrophenylphosphate and extracellular-regulated kinase MAPK we further demonstrate that oligomerization leads to a significant reduction in its enzymatic activity.
Collapse
Affiliation(s)
- Ishani Deb
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
30
|
Ferrazzano P, Shi Y, Manhas N, Wang Y, Hutchinson B, Chen X, Chanana V, Gerdts J, Meyerand ME, Sun D. Inhibiting the Na+/H+ exchanger reduces reperfusion injury: a small animal MRI study. Front Biosci (Elite Ed) 2011; 3:81-8. [PMID: 21196287 DOI: 10.2741/e222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used magnetic resonance imaging (MRI) to assess the efficacy of Na+/H+ exchanger isoform 1 (NHE-1) inhibition following cerebral ischemia. Transient focal cerebral ischemia was induced in wild-type controls (NHE-1(+/+)), NHE-1 genetic knockdown mice (NHE-1(+/-)), and NHE-1(+/+) mice treated with the selective NHE-1 inhibitor HOE642. Diffusion weighted imaging (DWI) revealed a brain lesion as early as 1 hour following reperfusion and illustrated significant protection in NHE-1(+/-) mice (16.2 +/- 7.9 mm3 in NHE-1(+/-) mice vs. 47.5 +/- 16.6 mm3 in NHE-1(+/+) mice). Knockdown of NHE-1 showed significantly smaller infarct at 72 hours on T2 imaging (21.2 +/- 12.6 mm3 in NHE-1(+/-) mice vs. 64.6 +/- 2.5 mm3 in NHE-1(+/+) mice). Administration of HOE642 prior to reperfusion or during early reperfusion reduced ischemic damage. Thus, high resolution T2 images can be used for consistent and precise calculation of lesion volumes, while changes of DWI are a sensitive early marker of ischemic injury. The results of this study demonstrate the therapeutic potential for inhibition of NHE-1 in treating cerebral ischemia.
Collapse
Affiliation(s)
- Peter Ferrazzano
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
H(+) extrusion is important for sustained NADPH oxidase activation after "respiratory" burst in macrophage/microglia activation. In this study, we investigated the role of Na(+)/H(+) exchanger isoform 1 (NHE-1) in activation of microglia after lipopolysaccharide (LPS) or oxygen and glucose deprivation and reoxygenation (OGD/REOX) exposure. NHE-1 functioned in maintaining basal pH(i) of immortalized M4T.4 microglia or mouse primary microglia. Pharmacological inhibition of NHE-1 activity with the potent inhibitor cariporide [HOE 642 (4-isopropyl-3-methylsulfonyl-benzoyl-guanidine-methanesulfonate)] abolished pH(i) regulation in microglia under basal conditions. Activation of microglia either by LPS, phorbol myristate acetate, or OGD/REOX accelerated pH(i) regulation and caused pH(i) elevation, which was accompanied with an increase in [Na(+)](i) and [Ca(2+)](i) as well as production of superoxide anion and cytokines. Interestingly, inhibition of NHE-1 not only abolished pH(i) regulation but also reduced production of superoxide anion as well as expression of cytokines and inducible nitric oxide synthase. Together, these results reveal that there was a concurrent activation of NHE-1 in microglia in response to proinflammatory stimuli. The study suggests that NHE-1 functions to maintain microglial pH(i) homeostasis allowing for sustained NADPH oxidase function and "respiratory" burst.
Collapse
|
32
|
Bhuiyan MIH, Kim YJ. Mechanisms and prospects of ischemic tolerance induced by cerebral preconditioning. Int Neurourol J 2010; 14:203-12. [PMID: 21253330 PMCID: PMC3021810 DOI: 10.5213/inj.2010.14.4.203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
In the brain, brief episodes of ischemia induce tolerance against a subsequent severe episode of ischemia. This phenomenon of endogenous neuroprotection is known as preconditioning-induced ischemic tolerance. The purpose of this review is to summarize the current state of knowledge about mechanisms and potential applications of cerebral preconditioning and ischemic tolerance. Articles related to the terms ischemic preconditioning and ischemic tolerance were systematically searched via MEDLINE/PubMed, and articles published in English related to the nervous system were selected and analyzed. The past two decades have provided interesting insights into the molecular mechanisms of this neuroprotective phenomenon. Although both rapid and delayed types of tolerance have been documented in experimental settings, the delayed type has been found to be more prominent in the case of neuronal ischemic tolerance. Many intracellular signaling pathways have been implicated regarding ischemic preconditioning. Most of these are associated with membrane receptors, kinase cascades, and transcription factors. Moreover, ischemic tolerance can be induced by exposing animals or cells to diverse types of endogenous and exogenous stimuli that are not necessarily hypoxic or ischemic in nature. These cross-tolerances raise the hope that, in the future, it will be possible to pharmacologically activate or mimic ischemic tolerance in the human brain. Another promising approach is remote preconditioning in which preconditioning of one organ or system leads to the protection of a different (remote) organ that is difficult to target, such as the brain. The preconditioning strategy and related interventions can confer neuroprotection in experimental ischemia, and, thus, have promise for practical applications in cases of vascular neurosurgery and endo-vascular therapy.
Collapse
Affiliation(s)
| | - Youn Jung Kim
- Kyung Hee University College of Nursing Science, Seoul, Korea
| |
Collapse
|
33
|
Kintner DB, Chen X, Currie J, Chanana V, Ferrazzano P, Baba A, Matsuda T, Cohen M, Orlowski J, Chiu SY, Taunton J, Sun D. Excessive Na+/H+ exchange in disruption of dendritic Na+ and Ca2+ homeostasis and mitochondrial dysfunction following in vitro ischemia. J Biol Chem 2010; 285:35155-68. [PMID: 20817726 DOI: 10.1074/jbc.m110.101212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na(+) overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na(+)/H(+) exchanger isoform 1) in dendrites presents a major pathway for Na(+) overload. Neuronal dendrites exhibited higher pH(i) regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70-200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na(+)(i) accumulation, swelling, and a concurrent loss of Ca(2+)(i) homeostasis. The Ca(2+)(i) overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na(+)/Ca(2+) exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca(2+) homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na(+) entry and subsequent Na(+)/Ca(2+) exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.
Collapse
Affiliation(s)
- Douglas B Kintner
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Manhas N, Shi Y, Taunton J, Sun D. p90 activation contributes to cerebral ischemic damage via phosphorylation of Na+/H+ exchanger isoform 1. J Neurochem 2010; 114:1476-86. [PMID: 20557427 DOI: 10.1111/j.1471-4159.2010.06868.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Excessive activation of Na+/H+ exchanger isoform 1 (NHE-1) plays a role in cerebral ischemic injury. The current study investigated whether NHE-1 protein in ischemic brains is regulated by extracellular signal-regulated kinase (ERK)/90-kDa ribosomal S6 kinase (p90(RSK)) signaling pathways. A transient focal ischemia in mice was induced by a 60-min-occlusion of the middle cerebral artery followed by reperfusion for 3, 10, or 60 min (Rp). Expression of phosphorylated ERK 1/2 was significantly elevated in the ipsilateral hemispheres at 3-10 min Rp and reduced by 60 min Rp. An increase in phosphorylation of p90(RSK), a known NHE-1 kinase, was also detected at 3-10 min Rp, which was accompanied with a transient elevation of NHE-1 phosphorylation (p-NHE-1). Stimulation of p90(RSK) in ischemic neurons was downstream of ERK activation because inhibition of MEK1 (MAP kinase/ERK kinase) with its inhibitor U0126 blocked phosphorylation of p90(RSK). Moreover, direct inhibition of p90(RSK) by its selective inhibitor fluoromethyl ketone not only reduced p-NHE-1 expression but also ischemic infarct volume. Taken together, our study revealed that reperfusion triggers a transient stimulation of the ERK/p90(RSK) pathway. p90(RSK) activation contributes to cerebral ischemic damage in part via activation of NHE-1 protein.
Collapse
Affiliation(s)
- Namratta Manhas
- Department of Neurosurgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
35
|
Zhang JZ, Jing L, Ma Y, Guo FY, Chang Y, Li PA. Monosialotetrahexosy-1 ganglioside attenuates diabetes-enhanced brain damage after transient forebrain ischemia and suppresses phosphorylation of ERK1/2 in the rat brain. Brain Res 2010; 1344:200-8. [PMID: 20546707 DOI: 10.1016/j.brainres.2010.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 11/19/2022]
Abstract
Monosialotetrahexosy-1 ganglioside (GM1) has been shown to reduce brain damage induced by cerebral ischemia. The objective of this study is to determine whether GM1 is able to ameliorate hyperglycemia-exacerbated ischemic brain damage in hyperglycemia-recruited areas such as the hippocampal CA3 sub regions and the cingulated cortex. Histologic stainings of Haematoxylin and Eosin, Nissl body, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and phospho-ERK1/2 were performed on brain sections that have been subjected to 15 min of forebrain ischemia with reperfusion of 0, 1, 3, and 6h in normoglycemic, hyperglycemic and GM1-pretreated hyperglycemic groups. The results showed that GM1 ameliorated ischemic neuronal injuries in the CA3 area and cingulated cortex of the hyperglycemic animals after ischemia and reperfusion. Immunohistochemistry of phospho-ERK1/2 revealed that the neuroprotective effects of GM1 were associated with suppression of phospho-ERK1/2. The results suggest that GM1 attenuates diabetic-augmented ischemic neuronal injuries probably through suppression of ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Jian-Zhong Zhang
- Department of Pathology, Ningxia Medical University, Yinchuan 750004, PR China.
| | | | | | | | | | | |
Collapse
|
36
|
Vitzthum L, Chen X, Kintner DB, Huang Y, Chiu SY, Williams J, Sun D. Study of Na+/H+ exchange-mediated pHi regulations in neuronal soma and neurites in compartmentalized microfluidic devices. Integr Biol (Camb) 2009; 2:58-64. [PMID: 20473413 DOI: 10.1039/b918440f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of intracellular pH (pH(i)) in neurons is crucial to maintain their physiological function. In the current study, newly-developed polydimethylsiloxane (PDMS) microfluidic devices were used to independently investigate pH(i) regulation in neuronal soma and neurites. Embryonic cortical neurons were cultured in PDMS microfluidic devices with soma growing in one chamber (seeded) and neurites extending through a set of perpendicular microchannels into the opposite parallel chamber (non-seeded). Neurons in the microchambers were characterized by the vital dye calcein-red, polarized mitochondria, and expression of neuronal specific beta-tubulin (type-III), axonal Tau-1 protein, dendritic microtubule associated protein (MAP-2), and Na(+)/H(+) exchanger isoform 1 (NHE-1). Neurites exhibited higher resting pH(i) than soma (7.16 +/- 0.09 vs. 6.90 +/- 0.15). The neurites had a proton extrusion rate 3.7-fold faster than in soma following NH(4)Cl prepulse-mediated acidification (p < 0.05). The difference in the pH(i) regulation rates between neurites and soma can be accounted for by the larger surface area to volume ratio in the neurites. Interestingly, pharmacological inhibition of NHE-1 activity blocked the pH(i) regulation in soma and in neurites by approximately 70% (p < 0.05). Taken together, our study demonstrated that the microfluidic devices provide a useful tool to study neuronal pH(i) regulation in soma and their neurites. We conclude that NHE-1 plays an important role in regulation of pH(i) in both compartments.
Collapse
Affiliation(s)
- Lucas Vitzthum
- Dept of Neurological Surgery, University of Wisconsin Medical School, T513 Waisman Center, 1500 Highland Ave, Madison, WI 53705, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
He Q, Harding P, LaPointe MC. PKA, Rap1, ERK1/2, and p90RSK mediate PGE2 and EP4 signaling in neonatal ventricular myocytes. Am J Physiol Heart Circ Physiol 2009; 298:H136-43. [PMID: 19880670 DOI: 10.1152/ajpheart.00251.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that 1) inhibition of cyclooxygenase-2 and PGE(2) production reduces hypertrophy after myocardial infarction in mice and 2) PGE(2) acting through its EP4 receptor causes hypertrophy of neonatal ventricular myocytes (NVMs) via ERK1/2. It is known that EP4 couples to adenylate cyclase, cAMP, and PKA. The present study was designed to determine interactions between the cAMP-PKA pathway and ERK1/2 and to further characterize events downstream of ERK1/2. We hypothesized that PKA and the small GTPase Rap are upstream of ERK1/2 and that 90-kDa ribosomal S6 kinase (p90RSK) is activated downstream. Treatment of NVMs with PGE(2) activated Rap, and this activation was inhibited in part by an EP4 antagonist and PKA inhibition. Transfection of a dominant negative mutant of Rap reduced PGE(2) activation of ERK1/2. PGE(2) activation of p90RSK was also dependent on EP4, PKA, and Rap. We also tested the involvement of Rap, ERK1/2, and p90RSK in PGE(2) regulation of gene expression. PGE(2) stimulation of brain natriuretic peptide promoter activity was blocked by either ERK1/2 inhibition or a dominant negative mutation of p90RSK. PGE(2) stimulation of c-Fos was dependent on EP4, PKA, ERK1/2, and p90RSK, whereas only the latter two kinases were involved in PGE(2) regulation of early growth response-1. Finally, we tested the involvement of EP4-dependent signaling in the NVM growth response and found that the overexpression of EP4 increased NVM cell size. We conclude that EP4-dependent signaling in NVMs in part involves PKA, Rap, ERK1/2, and p90RSK and results in the increased expression of brain natriuretic peptide and c-Fos.
Collapse
Affiliation(s)
- Quan He
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
38
|
Differential regulation of NHE1 phosphorylation and glucose uptake by inhibitors of the ERK pathway and p90RSK in 3T3-L1 adipocytes. Cell Signal 2009; 21:1984-93. [PMID: 19765648 DOI: 10.1016/j.cellsig.2009.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 01/12/2023]
Abstract
Insulin stimulates trafficking of GLUT4 to the cell surface for glucose uptake into target cells, and phosphorylation of Ser703 of the Na+/H+ exchanger NHE1, which activates proton efflux. The latter has been proposed to facilitate optimal glucose uptake into cardiomyocytes. We found that the insulin-stimulated phosphorylation of Ser703 of NHE1 is mediated by p90RSK but not directly coupled to glucose uptake in 3T3-L1 adipocytes in the short-term. Inhibiting Erk1/2 activation prevented NHE1 phosphorylation but not glucose uptake in 3T3-L1 adipocytes. In contrast, both NHE1 phosphorylation and insulin-stimulated uptake of glucose into 3T3-L1 adipocytes were blocked by inhibitors of the N-terminal kinase domain of p90RSK, namely BI-D1870 and SL0101, but not the FMK inhibitor of the C-terminal kinase domain of p90RSK, though in our hands FMK did not inhibit p90RSK in 3T3-L1 adipocytes. Further experiments were consistent with phosphorylation of AS160 by PKB/Akt mediating insulin-stimulated trafficking of GLUT4 to the plasma membrane. BI-D1870 and SL0101 however, inhibited glucose uptake without blocking GLUT4 translocation. While BI-D1870 partially inhibited insulin-stimulated PKB activation in these cells, this only partially inhibited AS160 phosphorylation and did not block GLUT4 trafficking, suggesting that p90RSK might regulate glucose transport after GLUT4 translocation. Moreover, BI-D1870 also prevented PMA-induced glucose transport in 3T3-L1 adipocytes further suggesting a role for p90RSK in regulating uptake of glucose into the cells. Kinetic experiments are consistent with SL0101 being a direct competitor of 2-deoxyglucose entry into cells, and this compound might also inhibit uptake of glucose into cells via inhibiting p90RSK, as revealed by comparison with the inactive form of the inhibitor. Taken together, we propose that BI-D1870 and SL0101 might exert their inhibitory effects on glucose uptake in 3T3-L1 adipocytes at least partially through a p90RSK dependent step after GLUT4 becomes associated with the plasma membrane.
Collapse
|
39
|
Mandal A, Shahidullah M, Delamere NA, Terán MA. Elevated hydrostatic pressure activates sodium/hydrogen exchanger-1 in rat optic nerve head astrocytes. Am J Physiol Cell Physiol 2009; 297:C111-20. [PMID: 19419999 DOI: 10.1152/ajpcell.00539.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optic nerve head astrocytes become abnormal in eyes that have elevated intraocular pressure, and cultured astrocytes display altered protein expression after being subjected for > or = 1 days to elevated hydrostatic pressure. Here we show that 2-h elevated hydrostatic pressure (15 or 30 mmHg) causes phosphorylation of ERK1/2, ribosomal S6 protein kinase (p90(RSK)), and Na/H exchanger (NHE)1 in cultured rat optic nerve head astrocytes as judged by Western blot analysis. The MEK/ERK inhibitor U0126 abolished phosphorylation of NHE1 and p90(RSK) as well as ERK1/2. To examine NHE1 activity, cytoplasmic pH (pH(i)) was measured with BCECF and, in some experiments, cells were acidified by 5-min exposure to 20 mM ammonium chloride. Although baseline pH(i) was unaltered, the rate of pH(i) recovery from acidification was fourfold higher in pressure-treated astrocytes. In the presence of either U0126 or dimethylamiloride (DMA), an NHE inhibitor, hydrostatic pressure did not change the rate of pH(i) recovery. The findings are consistent with NHE1 activation due to phosphorylation of ERK1/2, p90(RSK), and NHE1 that occurs in response to hydrostatic pressure. These responses may precede long-term changes of protein expression known to occur in pressure-stressed astrocytes.
Collapse
Affiliation(s)
- Amritlal Mandal
- Dept. of Physiology, Univ. of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
40
|
Kilić A, Javadov S, Karmazyn M. Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 2009; 46:360-9. [DOI: 10.1016/j.yjmcc.2008.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
41
|
Wang Y, Luo J, Chen X, Chen H, Cramer SW, Sun D. Gene inactivation of Na+/H+ exchanger isoform 1 attenuates apoptosis and mitochondrial damage following transient focal cerebral ischemia. Eur J Neurosci 2008; 28:51-61. [PMID: 18662334 DOI: 10.1111/j.1460-9568.2008.06304.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated mechanisms underlying the Na+/H+ exchanger isoform 1 (NHE1)-mediated neuronal damage in transient focal ischemia. Physiological parameters, body and tympanic temperatures, and regional cerebral blood flow during 30 min of middle cerebral artery occlusion were similar in wild-type NHE1 (NHE1+/+) and NHE1 heterozygous (NHE1+/-) mice. NHE1+/+ mice developed infarct volume of 57.3 +/- 8.8 mm(3) at 24 h reperfusion (Rp), which progressed to 86.1 +/- 10.0 mm(3) at 72 h Rp. This delayed cell death was preceded by release of mitochondrial cytochrome c (Cyt. C), nuclear translocation of apoptosis-inducing factor (AIF), activation of caspase-3, and TUNEL-positive staining and chromatin condensation in the ipsilateral hemispheres of NHE1+/+ brains. In contrast, NHE1+/- mice had a significantly smaller infarct volume and improved neurological function. A similar neuroprotection was obtained with NHE1 inhibitor HOE 642. The number of apoptotic cells, release of AIF and Cyt. C or levels of active caspase-3 was significantly reduced in NHE1+/- brains. These data imply that NHE1 activity may contribute to ischemic apoptosis. Ischemic brains did not exhibit changes of NHE1 protein expression. In contrast, up-regulation of NHE1 expression was found in NHE1+/+ neurons after in vitro ischemia. These data suggest that NHE1 activation following cerebral ischemia contributes to mitochondrial damage and ischemic apoptosis.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | | | | | | | | | | |
Collapse
|
42
|
Samuel W, Kutty RK, Sekhar S, Vijayasarathy C, Wiggert B, Redmond TM. Mitogen-activated protein kinase pathway mediates N-(4-hydroxyphenyl)retinamide-induced neuronal differentiation in the ARPE-19 human retinal pigment epithelial cell line. J Neurochem 2008; 106:591-602. [PMID: 18410500 DOI: 10.1111/j.1471-4159.2008.05409.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have shown previously that N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid derivative, induces neuronal differentiation in cultured human retinal pigment epithelial (RPE) cells [Chen et al., J. Neurochem., 84 (2003), 972]. We asked the question whether the mitogen-activated protein kinase (MAPK) pathway is involved in the regulation of the 4HPR-induced neuronal differentiation of RPE (ARPE-19) cells. When we treated ARPE-19 cells with 4HPR, c-Raf and MEK1/2 kinase were activated resulting in activation of the downstream effector ERK1/2 and of SAPK/JNK. By blocking the upstream kinase MEK1/2 with specific inhibitor U0126 we abrogated the 4HPR-induced phosphorylation of ERK1/2 and SAPK/JNK, indicating that the neuronal differentiation occurs through a positive cross-talk between the ERK and the SAPK/JNK pathways. Both U0126 and the suppression of ERK1/2 expression with small interfering RNA effectively blocked the 4HPR-induced neuronal differentiation of RPE cells and the expression of calretinin. The activated ERK1/2 then induced a sequential activation of p90RSK, and increase in phosphorylation of transcription factors c-fos and c-jun leading to transcriptional activation of AP-1. Taken together, our results clearly demonstrate that c-Raf/MEK1/2 signaling cascade involving ERK1/2 plays a central role in mediating the 4HPR-induced neuronal differentiation and calretinin expression in the human ARPE-19 retinal pigment epithelial cell line.
Collapse
Affiliation(s)
- William Samuel
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|