1
|
Sakai T, Haga K, Kimura T, Kawaura K. Protein phosphatase PP2C19 controls hypocotyl phototropism through the phosphorylation modification of NONPHOTOTROPIC HYPOCOTYL3 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2025; 66:23-35. [PMID: 39604288 PMCID: PMC11775391 DOI: 10.1093/pcp/pcae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Plants exhibit shoot growth in the direction of the light source to facilitate photosynthesis, known as positive phototropism. In Arabidopsis hypocotyl phototropism, it is thought that a gradient of the signal intensity of the blue light (BL) photoreceptor phototropin1 (phot1) between the light-irradiated and shaded sides leads to the differential growth of hypocotyls. The intensity of phot1 signal is regulated not only by the protein kinase activity of phot1 but also by the phosphorylation status of the NONPHOTOTROPIC HYPOCOTYL3 (NPH3) protein, which has a dark form and a BL form of the phosphorylation modification. Previous studies have shown that phot1 drives the forward reaction from the dark form to the BL form of NPH3. However, the molecular mechanism underlying the reverse reaction remains unknown. Here, we show that protein phosphatase PP2C19 controls the reverse reaction that converts the BL form of NPH3 to the dark form of NPH3. The PP2C19 protein possesses the protein phosphatase type 2C (PP2C) domain, two cyclic nucleoside monophosphate (cNMP)-binding domains, and the protein kinase domain. Similar to phot1 and NPH3, PP2C19 localizes to the plasma membrane, and its PP2C domain is necessary and sufficient for PP2C19 function in hypocotyl phototropism. The pp2c19 mutants show abnormalities in second positive hypocotyl phototropism with a delay in the reverse reaction of NPH3 phosphorylation modification. The present study suggests that continuous BL irradiation induces an equilibrium state of the reversible reaction of NPH3 phosphorylation, which acts as a phot1 signaling gradient with phot1 kinase activity to induce the second positive phototropism.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Ken Haga
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, Saitama 345-8501, Japan
| | - Taro Kimura
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Keita Kawaura
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
3
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Zeng W, Wang X, Li M. PINOID-centered genetic interactions mediate auxin action in cotyledon formation. PLANT DIRECT 2024; 8:e587. [PMID: 38766507 PMCID: PMC11099747 DOI: 10.1002/pld3.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Auxin plays a key role in plant growth and development through auxin local synthesis, polar transport, and auxin signaling. Many previous reports on Arabidopsis have found that various types of auxin-related genes are involved in the development of the cotyledon, including the number, symmetry, and morphology of the cotyledon. However, the molecular mechanism by which auxin is involved in cotyledon formation remains to be elucidated. PID, which encodes a serine/threonine kinase localized to the plasma membrane, has been found to phosphorylate the PIN1 protein and regulate its polar distribution in the cell. The loss of function of pid resulted in an abnormal number of cotyledons and defects in inflorescence. It was interesting that the pid mutant interacted synergistically with various types of mutant to generate the severe developmental defect without cotyledon. PID and these genes were indicated to be strongly correlated with cotyledon formation. In this review, PID-centered genetic interactions, related gene functions, and corresponding possible pathways are discussed, providing a perspective that PID and its co-regulators control cotyledon formation through multiple pathways.
Collapse
Affiliation(s)
- Wei Zeng
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Xiutao Wang
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Mengyuan Li
- College of Life ScienceXinyang Normal UniversityXinyangChina
| |
Collapse
|
5
|
Aarabi F, Ghigi A, Ahchige MW, Bulut M, Geigenberger P, Neuhaus HE, Sampathkumar A, Alseekh S, Fernie AR. Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. PLANT PHYSIOLOGY 2023; 193:2037-2054. [PMID: 37265123 PMCID: PMC10602610 DOI: 10.1093/plphys/kiad323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Varying light conditions elicit metabolic responses as part of acclimation with changes in ascorbate levels being an important component. Here, we adopted a genome-wide association-based approach to characterize the response in ascorbate levels on high light (HL) acclimation in a panel of 315 Arabidopsis (Arabidopsis thaliana) accessions. These studies revealed statistically significant SNPs for total and reduced ascorbate under HL conditions at a locus in chromosome 2. Ascorbate levels under HL and the region upstream and within PAS/LOV PROTEIN (PLP) were strongly associated. Intriguingly, subcellular localization analyses revealed that the PLPA and PLPB splice variants co-localized with VITAMIN C DEFECTIVE2 (VTC2) and VTC5 in both the cytosol and nucleus. Yeast 2-hybrid and bimolecular fluorescence complementation analyses revealed that PLPA and PLPB interact with VTC2 and that blue light diminishes this interaction. Furthermore, PLPB knockout mutants were characterized by 1.5- to 1.7-fold elevations in their ascorbate levels, whereas knockout mutants of the cry2 cryptochromes displayed 1.2- to 1.3-fold elevations compared to WT. Our results collectively indicate that PLP plays a critical role in the elevation of ascorbate levels, which is a signature response of HL acclimation. The results strongly suggest that this is achieved via the release of the inhibitory effect of PLP on VTC2 upon blue light illumination, as the VTC2-PLPB interaction is stronger under darkness. The conditional importance of the cryptochrome receptors under different environmental conditions suggests a complex hierarchy underpinning the environmental control of ascorbate levels. However, the data we present here clearly demonstrate that PLP dominates during HL acclimation.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Andrea Ghigi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Micha Wijesingha Ahchige
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Mustafa Bulut
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Arun Sampathkumar
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| |
Collapse
|
6
|
Wu Q, Yin J, Jiang M, Zhang J, Sui Z. Identification, characterization and expression profiles of E2 and E3 gene superfamilies during the development of tetrasporophytes in Gracilariopsis lemaneiformis (Rhodophyta). BMC Genomics 2023; 24:549. [PMID: 37723489 PMCID: PMC10506303 DOI: 10.1186/s12864-023-09639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
E2 ubiquitin conjugating enzymes and E3 ubiquitin ligases play important roles in the growth and development of plants and animals. To date, the systematic analysis of E2 and E3 genes in Rhodophyta is limited. In this study, 14 E2 genes and 51 E3 genes were identified in Gracilariopsis lemaneiformis, an economically important red alga. E2 genes were classified into four classes according to the structure of the conserved domain, UBC. E3 genes were classified into 12 subfamilies according to individual conserved domains. A phylogenetic tree of seven algae species showed that functional differentiation of RING-type E3s was the highest, and the similarity between orthologous genes was high except in Chlamydomonas reinhardtii and Chara braunii. RNA-seq data analysis showed significant differential expression levels of E2 and E3 genes under the life stages of tetraspore formation and release, especially GlUBCN and GlAPC3. According to GO and KEGG analysis of two transcriptomes, GlUBCN and GlAPC3 were involved in ubiquitin-mediated proteolysis, and other subunits of the anaphase promoting complex or cyclosome (APC/C) and its activators GlCDC20 and GlCDH1 were also enriched into this process. The CDH1 and CDC20 in 981 were down-regulated during tetraspores formation and release, with the down-regulation of CDH1 being particularly significant; CDH1 and CDC20 in WLP-1, ZC, and WT were up-regulated during tetraspores formation and release, with CDC20 being more significantly up-regulated. Therefore, GlCDH1, rather than GlCDC20, in '981' might play the leading role in the activation of the APC/C, and GlCDC20 might play the leading role rather than GlCDH1 in strains WLP-1, ZC and wild type. The low fertility of cultivar 981 might be highly correlated with the inactivity of activators CDH1 and CDC20. This study provided a basic and comprehensive understanding of characteristic of E2 and E3 genes in Gp. lemaneiformis and set a foundation for further understanding of E2 ubiquitin conjugating enzymes and E3 ubiquitin ligase in regulating tetrasporophytes development of Gp. lemaneiformis.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Jingru Yin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Min Jiang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Jingyu Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China.
| |
Collapse
|
7
|
Zhang Y, Wang J, Li Y, Zhang Z, Yang L, Wang M, Zhang Y, Zhang J, Li C, Li L, Reynolds MP, Jing R, Wang C, Mao X. Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice. PLANT PHYSIOLOGY 2023; 191:1344-1364. [PMID: 36417260 PMCID: PMC9922405 DOI: 10.1093/plphys/kiac523] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Wheat (Triticum aestivum) is particularly susceptible to water deficit at the jointing stage of its development. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) acts as a signaling hub in the response to drought stress, but whether SnRK2 helps plants cope with water deficit via other mechanisms is largely unknown. Here, we cloned and characterized TaSnRK2.10, which was induced by multiple abiotic stresses and phytohormones. Ectopic expression of TaSnRK2.10 in rice (Oryza sativa) conferred drought tolerance, manifested by multiple improved physiological indices, including increased water content, cell membrane stability, and survival rates, as well as decreased water loss and accumulation of H2O2 and malonaldehyde. TaSnRK2.10 interacted with and phosphorylated early responsive to dehydration 15 (TaERD15) and enolase 1 (TaENO1) in vivo and in vitro. TaERD15 phosphorylated by TaSnRK2.10 was prone to degradation by the 26S proteasome, thereby mitigating its negative effects on drought tolerance. Phosphorylation of TaENO1 by TaSnRK2.10 may account for the substantially increased levels of phosphoenolpyruvate (PEP), a key metabolite of primary and secondary metabolism, in TaSnRK2.10-overexpressing rice, thereby enhancing its viability under drought stress. Our results demonstrate that TaSnRK2.10 not only regulated stomatal aperture and the expression of drought-responsive genes, but also enhanced PEP supply and promoted the degradation of TaERD15, all of which enhanced drought tolerance.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuying Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihui Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Lili Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yining Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Jie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyang Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| |
Collapse
|
8
|
Kimura T, Haga K, Sakai T. The phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 affects phot2-dependent phototropism in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2027138. [PMID: 35068333 PMCID: PMC9176221 DOI: 10.1080/15592324.2022.2027138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The blue light photoreceptors, phototropin 1 (phot1) and phot2, and their signal transducer, NONPHOTOTROPIC HYPOCOTYL3 (NPH3), are activators of the phototropic responses of Arabidopsis hypocotyls. In a recent study, we reported that the control of NPH3 phosphorylation at serine 7 (S7: or S5), S213, S223, S237, S467, S474 (or S476), and S722 (or S723) contributes to the photosensory adaptation of phot1 signaling during the phototropic response. Phosphomimetic NPH3SE mutant and unphosphorylatable NPH3SA mutant on those serine residues function efficiently under blue light conditions at fluence rates of 10-5 µmol m-2 s-1 and 10-3 µmol m-2 s-1 or more, respectively. We here demonstrate that phosphomimetic NPH3SE, but not unphosphorylatable NPH3SA, promotes phot2-dependent phototropism under blue light condition at 100 µmol m-2 s-1. This result suggests that phot1 negatively controls phot2 signaling through the dephosphorylation of NPH3 at those residues and that the hyperactivation of phot1- and phot2-NPH3 complexes does not occur at the same time under high intensity blue light. We hypothesize that the dephosphorylation of NPH3 on those serine residues suppresses both phot1 and phot2 signaling, which results in different impacts on phot1- and phot2-dependent hypocotyl phototropism due to the differences in the photosensitivity and activation levels of phot1 and phot2.
Collapse
Affiliation(s)
- Taro Kimura
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Ken Haga
- Department of Applied Chemistry, Nippon Institute of Technology, Saitama, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Xin GY, Li LP, Wang PT, Li XY, Han YJ, Zhao X. The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. STRESS BIOLOGY 2022; 2:50. [PMID: 37676522 PMCID: PMC10441985 DOI: 10.1007/s44154-022-00066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 09/08/2023]
Abstract
To cope with fluctuating light conditions, terrestrial plants have evolved precise regulation mechanisms to help optimize light capture and increase photosynthetic efficiency. Upon blue light-triggered autophosphorylation, activated phototropin (PHOT1 and PHOT2) photoreceptors function solely or redundantly to regulate diverse responses, including phototropism, chloroplast movement, stomatal opening, and leaf positioning and flattening in plants. These responses enhance light capture under low-light conditions and avoid photodamage under high-light conditions. NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2) are signal transducers that function in the PHOT1- and PHOT2-mediated response. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation as well as NPH3-mediated responses. NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) was recently identified as a PHOT1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation. The PHYTOCHROME KINASE SUBSTRATE (PKS) proteins (PKS1, PKS2, and PKS4) interact with PHOT1 and NPH3 and mediate hypocotyl phototropic bending. This review summarizes advances in phototropic growth and chloroplast movement induced by light. We also focus on how crosstalk in signaling between phototropism and chloroplast movement enhances weak light capture, providing a basis for future studies aiming to delineate the mechanism of light-trapping plants to improve light-use efficiency.
Collapse
Affiliation(s)
- Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu-Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Peng-Tao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yue Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan-Ji Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
10
|
Lindbäck LN, Hu Y, Ackermann A, Artz O, Pedmale UV. UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth. Curr Biol 2022; 32:3221-3231.e6. [PMID: 35700731 PMCID: PMC9378456 DOI: 10.1016/j.cub.2022.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Light is a crucial exogenous signal sensed by cryptochrome (CRY) blue light receptors to modulate growth and the circadian clock in plants and animals. However, how CRYs interpret light quantity to regulate growth in plants remains poorly understood. Furthermore, CRY2 protein levels and activity are tightly regulated in light to fine-tune hypocotyl growth; however, details of the mechanisms that explain precise control of CRY2 levels are not fully understood. We show that in Arabidopsis, UBP12 and UBP13 deubiquitinases physically interact with CRY2 in light. UBP12/13 negatively regulates CRY2 by promoting its ubiquitination and turnover to modulate hypocotyl growth. Growth and development were explicitly affected in blue light when UBP12/13 were disrupted or overexpressed, indicating their role alongside CRY2. UBP12/13 also interacted with and stabilized COP1, which is partially required for CRY2 turnover. Our combined genetic and molecular data support a mechanistic model in which UBP12/13 interact with CRY2 and COP1, leading to the stabilization of COP1. Stabilized COP1 then promotes the ubiquitination and degradation of CRY2 under blue light. Despite decades of studies on deubiquitinases, the knowledge of how their activity is regulated is limited. Our study provides insight into how exogenous signals and ligands, along with their receptors, regulate deubiquitinase activity by protein-protein interaction. Collectively, our results provide a framework of cryptochromes and deubiquitinases to detect and interpret light signals to control plant growth at the most appropriate time.
Collapse
Affiliation(s)
- Louise N Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Amanda Ackermann
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Oliver Artz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
11
|
Zhang L, He G, Li Y, Yang Z, Liu T, Xie X, Kong X, Sun J. PIL transcription factors directly interact with SPLs and repress tillering/branching in plants. THE NEW PHYTOLOGIST 2022; 233:1414-1425. [PMID: 34800046 DOI: 10.1111/nph.17872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/14/2021] [Indexed: 05/27/2023]
Abstract
Tillering is an important parameter of plant architecture in cereal crops. In this study, we identified the PHYTOCHROME-INTERACTING FACTOR-LIKE (PIL) family transcription factors as new repressors of tillering in cereal crops. Using biochemical and genetic approaches, we explore the roles of TaPIL1 in regulating wheat plant architecture. We found that the PIL protein TaPIL1 controls tiller number in wheat. Overexpression of TaPIL1 reduces wheat tiller number; additionally, overexpression of TaPIL1-SUPERMAN repression domain increases wheat tiller number. Furthermore, we show that TaPIL1 activates the transcriptional expression of wheat TEOSINTE BRANCHED1 (TaTB1); moreover, TaPIL1 physically interacts with wheat SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (TaSPL)3/17, which are activators of TaTB1 transcription. In rice, overexpression and loss-of-function mutations of OsPIL11 reduce or increase tiller number by regulating the expression of OsTB1. In Arabidopsis, we demonstrate that PHYTOCHROME-INTERACTING FACTOR 4 interacts with SPL9 to inhibit shoot branching. This study reveals that PIL family transcription factors directly interact with SPLs and play an important role in repressing tillering/branching in plants.
Collapse
Affiliation(s)
- Lichao Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanhua He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaping Li
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ziyi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianqi Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuying Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
12
|
Yan B, Yang Z, He G, Jing Y, Dong H, Ju L, Zhang Y, Zhu Y, Zhou Y, Sun J. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth. PLANT COMMUNICATIONS 2021; 2:100245. [PMID: 34778751 PMCID: PMC8577155 DOI: 10.1016/j.xplc.2021.100245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/25/2021] [Accepted: 09/18/2021] [Indexed: 05/09/2023]
Abstract
Improvements in plant architecture, such as reduced plant height under high-density planting, are important for agricultural production. Light and gibberellin (GA) are essential external and internal cues that affect plant architecture. In this study, we characterize the direct interaction of distinct receptors that link light and GA signaling in Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum L.). We show that the light receptor CRY1 represses GA signaling through interaction with all five DELLA proteins and promotion of RGA protein accumulation in Arabidopsis. Genetic analysis shows that CRY1-mediated growth repression is achieved by means of the DELLA proteins. Interestingly, we find that CRY1 also directly interacts with the GA receptor GID1 to competitively inhibit the GID1-GAI interaction. We also show that overexpression of TaCRY1a reduces plant height and coleoptile growth in wheat and that TaCRY1a interacts with both TaGID1 and Rht1 to competitively attenuate the TaGID1-Rht1 interaction. Based on these findings, we propose that the photoreceptor CRY1 competitively inhibits the GID1-DELLA interaction, thereby stabilizing DELLA proteins and enhancing their repression of plant growth.
Collapse
Affiliation(s)
- Baiqiang Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zongju Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanhua He
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lan Ju
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Zhai S, Cai W, Xiang ZX, Chen CY, Lu YT, Yuan TT. PIN3-mediated auxin transport contributes to blue light-induced adventitious root formation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111044. [PMID: 34620442 DOI: 10.1016/j.plantsci.2021.111044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Adventitious rooting is a heritable quantitative trait that is influenced by multiple endogenous and exogenous factors in plants, and one important environmental factor required for efficient adventitious root formation is light signaling. However, the physiological significance and molecular mechanism of light underlying adventitious root formation are still largely unexplored. Here, we report that blue light-induced adventitious root formation is regulated by PIN-FORMED3 (PIN3)-mediated auxin transport in Arabidopsis. Adventitious root formation is significantly impaired in the loss-of-function mutants of the blue light receptors, PHOTOROPIN1 (PHOT1) and PHOTOROPIN2 (PHOT2), as well as the phototropic transducer, NON-PHOTOTROPIC HYPOCOTYL3 (NPH3). In addition, blue light enhanced the auxin content in the adventitious root, and the pin3 loss-of-function mutant had a reduced adventitious rooting response under blue light compared to the wild type. The PIN3 protein level was higher in plants treated with blue light than in those in darkness, especially in the hypocotyl pericycle, while PIN3-GFP failed to accumulate in nph3 PIN3::PIN3-GFP. Furthermore, the results showed that PIN3 physically interacted with NPH3, a key transducer in phototropic signaling. Taken together, our study demonstrates that blue light induces adventitious root formation through the phototropic signal transducer, NPH3, which regulates adventitious root formation by affecting PIN3-mediated auxin transport.
Collapse
Affiliation(s)
- Shuang Zhai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Cai-Yan Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
14
|
Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nat Commun 2021; 12:6128. [PMID: 34675219 PMCID: PMC8531446 DOI: 10.1038/s41467-021-26332-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key component of the auxin-dependent plant phototropic growth response. We report that NPH3 directly binds polyacidic phospholipids, required for plasma membrane association in darkness. We further demonstrate that blue light induces an immediate phosphorylation of a C-terminal 14-3-3 binding motif in NPH3. Subsequent association of 14-3-3 proteins is causal for the light-induced release of NPH3 from the membrane and accompanied by NPH3 dephosphorylation. In the cytosol, NPH3 dynamically transitions into membraneless condensate-like structures. The dephosphorylated state of the 14-3-3 binding site and NPH3 membrane recruitment are recoverable in darkness. NPH3 variants that constitutively localize either to the membrane or to condensates are non-functional, revealing a fundamental role of the 14-3-3 mediated dynamic change in NPH3 localization for auxin-dependent phototropism. This regulatory mechanism might be of general nature, given that several members of the NPH3-like family interact with 14-3-3 via a C-terminal motif. NPH3 is required for auxin-dependent plant phototropism. Here Reuter et al. show that NPH3 is a plasma membrane-bound phospholipid-binding protein and that in response to blue light, NPH3 is phosphorylated and associates with 14-3-3 proteins which leads to dissociation from the plasma membrane.
Collapse
|
15
|
Sullivan S, Waksman T, Paliogianni D, Henderson L, Lütkemeyer M, Suetsugu N, Christie JM. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding. Nat Commun 2021; 12:6129. [PMID: 34675214 PMCID: PMC8531357 DOI: 10.1038/s41467-021-26333-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Thomas Waksman
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dimitra Paliogianni
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Louise Henderson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melanie Lütkemeyer
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Noriyuki Suetsugu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
16
|
Campos ML, Moreno JE. Moving around in a phototropic response: the phosphorylation of NPH3. PLANT PHYSIOLOGY 2021; 187:678-680. [PMID: 34608977 PMCID: PMC8491030 DOI: 10.1093/plphys/kiab358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Javier Edgardo Moreno
- Instituto de Agrobiotecnología del Litoral (UNL-Conicet), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
17
|
Kimura T, Haga K, Nomura Y, Higaki T, Nakagami H, Sakai T. Phosphorylation of NONPHOTOTROPIC HYPOCOTYL3 affects photosensory adaptation during the phototropic response. PLANT PHYSIOLOGY 2021; 187:981-995. [PMID: 34608954 PMCID: PMC8491083 DOI: 10.1093/plphys/kiab281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/14/2021] [Indexed: 05/25/2023]
Abstract
Photosensory adaptation, which can be classified as sensor or effector adaptation, optimizes the light sensing of living organisms by tuning their sensitivity to changing light conditions. During the phototropic response in Arabidopsis (Arabidopsis thaliana), the light-dependent expression controls of blue-light (BL) photoreceptor phototropin 1 (phot1) and its modulator ROOT PHOTOTROPISM2 (RPT2) are known as the molecular mechanisms underlying sensor adaptation. However, little is known about effector adaption in plant phototropism. Here, we show that control of the phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) leads to effector adaptation in hypocotyl phototropism. We generated unphosphorable and phosphomimetic NPH3 proteins on seven phosphorylation sites in the etiolated seedlings of Arabidopsis. Unphosphorable NPH3 showed a shortening of its retention time in the cytosol and caused an inability to adapt to very low fluence rates of BL (∼10-5 µmol m-2 s-1) during the phototropic response. In contrast, the phosphomimetic NPH3 proteins had a lengthened retention time in the cytosol and could not enable the adaptation to BL at fluence rates of 10-3 µmol m-2 s-1 or more. Our results indicate that the activation level of phot1 and the corresponding phosphorylation level of NPH3 determine the dissociation rate and the reassociation rate of NPH3 on the plasma membrane, respectively. These mechanisms may moderately maintain the active state of phot1 signaling across a broad range of BL intensities and contribute to the photosensory adaptation of phot1 signaling during the phototropic response in hypocotyls.
Collapse
Affiliation(s)
- Taro Kimura
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Ken Haga
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-cho, Minamisaitama-gun, Saitama 345-8501, Japan
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
18
|
Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. THE NEW PHYTOLOGIST 2021; 232:510-522. [PMID: 34254313 DOI: 10.1111/nph.17617] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 05/27/2023]
Abstract
Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underlie differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, as well as the crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.
Collapse
Affiliation(s)
- Huibin Han
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
- Research Center for Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Maciek Adamowski
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Linlin Qi
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Saqer S Alotaibi
- Department of Biotechnology, Taif University, PO Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
19
|
Dümmer M, Spasić SZ, Feil M, Michalski C, Forreiter C, Galland P. Tangent algorithm for photogravitropic balance in plants and Phycomyces blakesleeanus: Roles for EHB1 and NPH3 of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153396. [PMID: 33713940 DOI: 10.1016/j.jplph.2021.153396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Plant organs that are exposed to continuous unilateral light reach in the steady-state a photogravitropic bending angle that results from the mutual antagonism between the photo- and gravitropic responses. To characterize the interaction between the two tropisms and their quantitative relationship we irradiated seedlings of Arabidopsis thaliana that were inclined at various angles and determined the fluence rates of unilateral blue light required to compensate the gravitropism of the inclined hypocotyls. We found the compensating fluence rates to increase with the tangent of the inclination angles (0° < γ < 90° or max. 120°) and decrease with the cotangent (90°< γ < 180° or max. 120°of the inclination angles. The tangent dependence became also evident from analysis of previous data obtained with Avena sativa and the phycomycete fungus, Phycomyces blakesleeanus. By using loss-of function mutant lines of Arabidopsis, we identified EHB1 (enhanced bending 1) as an essential element for the generation of the tangent and cotangent relationships. Because EHB1 possesses a C2-domain with two putative calcium binding sites, we propose that the ubiquitous calcium dependence of gravi- and phototropism is in part mediated by Ca2+-bound EHB1. Based on a yeast-two-hybrid analysis we found evidence that EHB1 does physically interact with the ARF-GAP protein AGD12. Both proteins were reported to affect gravi- and phototropism antagonistically. We further showed that only AGD12, but not EHB1, interacts with its corresponding ARF-protein. Evidence is provided that AGD12 is able to form homodimers as well as heterodimers with EHB1. On the basis of these data we present a model for a mechanism of early tropism events, in which Ca2+-activated EHB1 emerges as the central processor-like element that links the gravi- and phototropic transduction chains and that generates in coordination with NPH3 and AGD12 the tangent / cotangent algorithm governing photogravitropic equilibrium.
Collapse
Affiliation(s)
- Michaela Dümmer
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia; Singidunum University, Danijelova 32, Belgrade, Serbia.
| | - Martin Feil
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Christian Michalski
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Christoph Forreiter
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany; Institut für Biologie, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Adolf-Reichwein Str. 2, D-57068, Siegen, Germany.
| | - Paul Galland
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| |
Collapse
|
20
|
He G, Zhang Y, Liu P, Jing Y, Zhang L, Zhu Y, Kong X, Zhao H, Zhou Y, Sun J. The transcription factor TaLAX1 interacts with Q to antagonistically regulate grain threshability and spike morphogenesis in bread wheat. THE NEW PHYTOLOGIST 2021; 230:988-1002. [PMID: 33521967 DOI: 10.1111/nph.17235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The domestication gene Q is largely responsible for the widespread cultivation of wheat because it confers multiple domestication traits. However, the underlying molecular mechanisms of how Q regulates these domestication traits remain unclear. In this study, we identify a Q-interacting protein TaLAX1, a basic helix-loop-helix transcription factor, through yeast two-hybrid assays. Using biochemical and genetic approaches, we explore the roles of TaLAX1 in regulating wheat domestication traits. Overexpression of TaLAX1 produces phenotypes, reminiscent of the q allele; loss-of-function Talax1 mutations confer compact spikes, largely similar to the Q-overexpression wheat lines. The two transcription factors TaLAX1 and Q disturb each other's activity to antagonistically regulate the expression of the lignin biosynthesis-related gene TaKNAT7-4D. More interestingly, a natural variation (InDel, +/- TATA), which occurs in the promoter of TaLAX1, is associated with the promoter activity difference between the D subgenome of bread wheat and its ancestor Aegilops tauschii accession T093. This study reveals that the transcription factor TaLAX1 physically interacts with Q to antagonistically regulate wheat domestication traits and a natural variation (InDel, +/- TATA) is associated with the diversification of TaLAX1 promoter activity.
Collapse
Affiliation(s)
- Guanhua He
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huixian Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
21
|
Ban Z, Estelle M. CUL3 E3 ligases in plant development and environmental response. NATURE PLANTS 2021; 7:6-16. [PMID: 33452490 PMCID: PMC8932378 DOI: 10.1038/s41477-020-00833-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Thirty years of research have revealed the fundamental role of the ubiquitin-proteasome system in diverse aspects of cellular regulation in eukaryotes. The ubiquitin-protein ligases or E3s are central to the ubiquitin-proteasome system since they determine the specificity of ubiquitylation. The cullin-RING ligases (CRLs) constitute one large class of E3s that can be subdivided based on the cullin isoform and the substrate adapter. SCF complexes, composed of CUL1 and the SKP1/F-box protein substrate adapter, are perhaps the best characterized in plants. More recently, accumulating evidence has demonstrated the essential roles of CRL3 E3s, consisting of a CUL3 protein and a BTB/POZ substrate adaptor. In this Review, we describe the variety of CRL3s functioning in plants and the wide range of processes that they regulate. Furthermore, we illustrate how different classes of E3s may cooperate to regulate specific pathways or processes.
Collapse
Affiliation(s)
- Zhaonan Ban
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Gao ZF, Shen Z, Chao Q, Yan Z, Ge XL, Lu T, Zheng H, Qian CR, Wang BC. Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:397-414. [PMID: 33385613 PMCID: PMC8242269 DOI: 10.1016/j.gpb.2020.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhen Yan
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Liang Ge
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Tiancong Lu
- Beijing ProteinWorld Biotech, Beijing 100012, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ 08855, USA
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
[D-Leu 1]MC-LR and MC-LR: A Small-Large Difference: Significantly Different Effects on Phaseolus vulgaris L. (Fabaceae) Growth and Phototropic Response after Single Contact during Imbibition with Each of These Microcystin Variants. Toxins (Basel) 2020; 12:toxins12090585. [PMID: 32932764 PMCID: PMC7551030 DOI: 10.3390/toxins12090585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
[D-Leu1]MC-LR and MC-LR, two microcystins differing in one amino acid, constitute a sanitary and environmental problem owing to their frequent and concomitant presence in water bodies of the Americas and their association with human intoxication during recreational exposure to cyanobacterial bloom. Present in reservoirs used for irrigation as well, they can generate problems in the development of crops such as Phaseolus vulgaris, of nutritional and economic interest to the region. Although numerous works address the toxic effects of MC-LR, information on the toxicity of [D-Leu1]MC-LR is limited. Our objective was to study the toxic effects of [D-Leu1]MC-LR and MC-LR (3.5 µg/ml) on P. vulgaris after a single contact at the imbibition stage. Our findings indicate that 10 days post treatment, [D-Leu1]MC-LR generates morphological and physiological alterations more pronounced than those caused by MC-LR. In addition to the alterations produced by [D-Leu1]MC-LR in the development of seedlings and the structure of the leaves, roots and stems, we also found alterations in leaf stomatal density and conductivity, a longer delay in the phototropic response and a decrease in the maximum curvature angles achieved with respect to that observed for MC-LR. Our findings indicate that these alterations are linked to the greater inhibition of phosphatase activity generated by [D-Leu1]MC-LR, rather than to oxidative damage. We observed that 30 days after treatment with MC-LR, plants presented better development and recovery than those treated with [D-Leu1]MC-LR. Further studies are required on [D-Leu1]MC-LR and MC-LR toxicity and their underlying mechanisms of action.
Collapse
|
24
|
The HD-ZIP II Transcription Factors Regulate Plant Architecture through the Auxin Pathway. Int J Mol Sci 2020; 21:ijms21093250. [PMID: 32375344 PMCID: PMC7246542 DOI: 10.3390/ijms21093250] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
The homeodomain-leucine zipper (HD-ZIP) family transcription factors play important roles in plant growth and development. However, the underlying mechanisms remain largely unclear. Here we found that ATHB2, encoding a HD-ZIP transcription factor, is an early auxin responsive gene. Phenotypic analyses show that overexpression of ATHB2 impairs plant architecture, including reduced plant height and small leaves, and also reduces auxin response in leaves when grown in soil. Simultaneously, the seedlings with chemical induction of ATHB2 exhibit abnormal root gravitropism, a typical auxin-related phenotype. We further show that the auxin response pattern is altered in roots of the inducible ATHB2 seedlings. Consistently, the transcript levels of some auxin biosynthetic and transport genes are significantly decreased in these transgenic seedlings. Further, protein and promoter sequence analyses in common wheat showed that the HD-ZIP II subfamily transcription factors have highly conserved motifs and most of these encoding gene promoters contain the canonical auxin-responsive elements. Expression analyses confirm that some of these HD-ZIP II genes are indeed regulated by auxin in wheat. Together, our results suggest that the HD-ZIP II subfamily transcription factors regulate plant development possibly through the auxin pathway in plants.
Collapse
|
25
|
Zhao Q, Zhu J, Li N, Wang X, Zhao X, Zhang X. Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:614-630. [PMID: 30941890 PMCID: PMC7318699 DOI: 10.1111/jipb.12813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 05/03/2023]
Abstract
Both phototropins (phot1 and phot2) and cryptochromes (cry1 and cry2) were proven as the Arabidopsis thaliana blue light receptors. Phototropins predominately function in photomovement, and cryptochromes play a role in photomorphogenesis. Although cryptochromes have been proposed to serve as positive modulators of phototropic responses, the underlying mechanism remains unknown. Here, we report that depleting sucrose from the medium or adding gibberellic acids (GAs) can partially restore the defects in phototropic curvature of the phot1 phot2 double mutants under high-intensity blue light; this restoration does not occur in phot1 phot2 cry1 cry2 quadruple mutants and nph3 (nonphototropic hypocotyl 3) mutants which were impaired phototropic response in sucrose-containing medium. These results indicate that GAs and sucrose antagonistically regulate hypocotyl phototropism in a cryptochromes dependent manner, but it showed a crosstalk with phototropin signaling on NPH3. Furthermore, cryptochromes activation by blue light inhibit GAs synthesis, thus stabilizing DELLAs to block hypocotyl growth, which result in the higher GAs content in the shade side than the lit side of hypocotyl to support the asymmetric growth of hypocotyl. Through modulation of the abundance of DELLAs by sucrose depletion or added GAs, it revealed that cryptochromes have a function in mediating phototropic curvature.
Collapse
Affiliation(s)
- Qing‐Ping Zhao
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Jin‐Dong Zhu
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Nan‐Nan Li
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiao‐Nan Wang
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiang Zhao
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiao Zhang
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| |
Collapse
|
26
|
Liscum E, Nittler P, Koskie K. The continuing arc toward phototropic enlightenment. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1652-1658. [PMID: 31907539 PMCID: PMC7242014 DOI: 10.1093/jxb/eraa005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/05/2020] [Indexed: 05/20/2023]
Abstract
Phototropism represents a simple physiological mechanism-differential growth across the growing organ of a plant-to respond to gradients of light and maximize photosynthetic light capture (in aerial tissues) and water/nutrient acquisition (in roots). The phototropin blue light receptors, phot1 and phot2, have been identified as the essential sensors for phototropism. Additionally, several downstream signal/response components have been identified, including the phot-interacting proteins NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and PHYTOCHROME SUBSTRATE 4 (PKS4). While the structural and photochemical properties of the phots are quite well understood, much less is known about how the phots signal through downstream regulators. Recent advances have, however, provided some intriguing clues. It appears that inactive receptor phot1 is found dispersed in a monomeric form at the plasma membrane in darkness. Upon light absorption dimerizes and clusters in sterol-rich microdomains where it is signal active. Additional studies showed that the phot-regulated phosphorylation status of both NPH3 and PKS4 is linked to phototropic responsiveness. While PKS4 can function as both a positive (in low light) and a negative (in high light) regulator of phototropism, NPH3 appears to function solely as a key positive regulator. Ultimately, it is the subcellular localization of NPH3 that appears crucial, an aspect regulated by its phosphorylation status. While phot1 activation promotes dephosphorylation of NPH3 and its movement from the plasma membrane to cytoplasmic foci, phot2 appears to modulate relocalization back to the plasma membrane. Together these findings are beginning to illuminate the complex biochemical and cellular events, involved in adaptively modifying phototropic responsiveness under a wide varying range of light conditions.
Collapse
Affiliation(s)
- Emmanuel Liscum
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Correspondence:
| | - Patrick Nittler
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Katelynn Koskie
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
27
|
Al-Hijab L, Gregg A, Davies R, Macdonald H, Ladomery M, Wilson I. Abscisic acid induced a negative geotropic response in dark-incubated Chlamydomonas reinhardtii. Sci Rep 2019; 9:12063. [PMID: 31427663 PMCID: PMC6700132 DOI: 10.1038/s41598-019-48632-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays a role in stresses that alter plant water status and may also regulate root gravitropism and hydrotropism. ABA also exists in the aquatic algal progenitors of land plants, but other than its involvement in stress responses, its physiological role in these microorganisms remains elusive. We show that exogenous ABA significantly altered the HCO3- uptake of Chamydomonas reinhardtii in a light-intensity-dependent manner. In high light ABA enhanced HCO3- uptake, while under low light uptake was diminished. In the dark, ABA induced a negative geotropic movement of the algae to an extent dependent on the time of sampling during the light/dark cycle. The algae also showed a differential, light-dependent directional taxis response to a fixed ABA source, moving horizontally towards the source in the light and away in the dark. We conclude that light and ABA signal competitively in order for algae to position themselves in the water column to minimise photo-oxidative stress and optimise photosynthetic efficiency. We suggest that the development of this response mechanism in motile algae may have been an important step in the evolution of terrestrial plants and that its retention therein strongly implicates ABA in the regulation of their relevant tropisms.
Collapse
Affiliation(s)
- Layla Al-Hijab
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Adam Gregg
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Rhiannon Davies
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Heather Macdonald
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Michael Ladomery
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Ian Wilson
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom.
| |
Collapse
|
28
|
Sebastiani F, Torre S, Gori A, Brunetti C, Centritto M, Ferrini F, Tattini M. Dissecting Adaptation Mechanisms to Contrasting Solar Irradiance in the Mediterranean Shrub Cistus incanus. Int J Mol Sci 2019; 20:E3599. [PMID: 31340536 PMCID: PMC6678608 DOI: 10.3390/ijms20143599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 01/25/2023] Open
Abstract
Molecular mechanisms that are the base of the strategies adopted by Mediterranean plants to cope with the challenges imposed by limited or excessive solar radiation during the summer season have received limited attention. In our study, conducted on C. incanus plants growing in the shade or in full sunlight, we performed measurements of relevant physiological traits, such as leaf water potential, gas exchange and PSII photochemistry, RNA-Seq with de-novo assembly, and the analysis of differentially expressed genes. We also identified and quantified photosynthetic pigments, abscisic acid, and flavonoids. Here, we show major mechanisms regulating light perception and signaling which, in turn, sustain the shade avoidance syndrome displayed by the 'sun loving' C. incanus. We offer clear evidence of the detrimental effects of excessive light on both the assembly and the stability of PSII, and the activation of a suite of both repair and effective antioxidant mechanisms in sun-adapted leaves. For instance, our study supports the view of major antioxidant functions of zeaxanthin in sunny plants concomitantly challenged by severe drought stress. Finally, our study confirms the multiple functions served by flavonoids, both flavonols and flavanols, in the adaptive mechanisms of plants to the environmental pressures associated to Mediterranean climate.
Collapse
Affiliation(s)
- Federico Sebastiani
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), 50019 Sesto Fiorentino (Florence), Italy
| | - Sara Torre
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), 50019 Sesto Fiorentino (Florence), Italy
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Cecilia Brunetti
- Institute of BioEconomy, The National Research Council of Italy (CNR), 50019 Sesto Fiorentino (Florence), Italy
| | - Mauro Centritto
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), 50019 Sesto Fiorentino (Florence), Italy
| | - Francesco Ferrini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
29
|
Chu Y, Jang J, Huang Z, van der Knaap E. Tomato locule number and fruit size controlled by natural alleles of lc and fas. PLANT DIRECT 2019; 3:e00142. [PMID: 31312784 PMCID: PMC6607973 DOI: 10.1002/pld3.142] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/27/2019] [Indexed: 05/22/2023]
Abstract
Improving yield by increasing the size of produce is an important selection criterion during the domestication of fruit and vegetable crops. Genes controlling meristem organization and organ formation work in concert to regulate the size of reproductive organs. In tomato, lc and fas control locule number, which often leads to enlarged fruits compared to the wild progenitors. LC is encoded by the tomato ortholog of WUSCHEL (WUS), whereas FAS is encoded by the tomato ortholog of CLAVATA3 (CLV3). The critical role of the WUS-CLV3 feedback loop in meristem organization has been demonstrated in several plant species. We show that mutant alleles for both loci in tomato led to an expansion of the SlWUS expression domain in young floral buds 2-3 days after initiation. Single and double mutant alleles of lc and fas maintain higher SlWUS expression during the development of the carpel primordia in the floral bud. This augmentation and altered spatial expression of SlWUS provided a mechanistic basis for the formation of multilocular and large fruits. Our results indicated that lc and fas are gain-of-function and partially loss-of-function alleles, respectively, while both mutations positively affect the size of tomato floral meristems. In addition, expression profiling showed that lc and fas affected the expression of several genes in biological processes including those involved in meristem/flower development, patterning, microtubule binding activity, and sterol biosynthesis. Several differentially expressed genes co-expressed with SlWUS have been identified, and they are enriched for functions in meristem regulation. Our results provide new insights into the transcriptional regulation of genes that modulate meristem maintenance and floral organ determinacy in tomato.
Collapse
Affiliation(s)
- Yi‐Hsuan Chu
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOhio
| | - Jyan‐Chyun Jang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOhio
| | - Zejun Huang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
| | - Esther van der Knaap
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
- Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgia
- Department of HorticultureUniversity of GeorgiaAthensGeorgia
| |
Collapse
|
30
|
Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A 2019; 116:12550-12557. [PMID: 31160455 PMCID: PMC6589663 DOI: 10.1073/pnas.1902915116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A key challenge for plant molecular biologists is to increase plant yield by altering photosynthetic productivity to secure food, energy, and environmental sustainability. In the model plant Arabidopsis thaliana, the plasma-membrane–associated phototropin kinases, phot1 and phot2, are activated by blue light and play important roles in regulating several responses that optimize photosynthetic efficiency. However, little effort has been made to target these pathways to increase plant growth. Here, we demonstrate that modifying the photocycle of phot1 and phot2 increases their sensitivity to light. Plants with these engineered phototropins exhibit more rapid and robust chloroplast movement responses and improved leaf positioning and expansion, leading to improved biomass accumulation under light-limiting conditions. The ability to enhance photosynthetic capacity remains a recognized bottleneck to improving plant productivity. Phototropin blue light receptors (phot1 and phot2) optimize photosynthetic efficiency in Arabidopsis thaliana by coordinating multiple light-capturing processes. In this study, we explore the potential of using protein engineering to improve photoreceptor performance and thereby plant growth. We demonstrate that targeted mutagenesis can decrease or increase the photocycle lifetime of Arabidopsis phototropins in vitro and show that these variants can be used to reduce or extend the duration of photoreceptor activation in planta. Our findings show that slowing the phototropin photocycle enhanced several light-capturing responses, while accelerating it reduced phototropin’s sensitivity for chloroplast accumulation movement. Moreover, plants engineered to have a slow-photocycling variant of phot1 or phot2 displayed increased biomass production under low-light conditions as a consequence of their improved sensitivity. Together, these findings demonstrate the feasibility of engineering photoreceptors to manipulate plant growth and offer additional opportunities to enhance photosynthetic competence, particularly under suboptimal light regimes.
Collapse
|
31
|
He G, Liu J, Dong H, Sun J. The Blue-Light Receptor CRY1 Interacts with BZR1 and BIN2 to Modulate the Phosphorylation and Nuclear Function of BZR1 in Repressing BR Signaling in Arabidopsis. MOLECULAR PLANT 2019; 12:689-703. [PMID: 30763615 DOI: 10.1016/j.molp.2019.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/22/2019] [Accepted: 02/03/2019] [Indexed: 05/27/2023]
Abstract
The blue-light receptor cryptochrome 1 (CRY1) primarily mediates blue-light inhibition of hypocotyl elongation in Arabidopsis. However, the underlying mechanisms remain largely elusive. We report here that CRY1 inhibits hypocotyl elongation by repressing brassinosteroid (BR) signaling. A genetic interaction assay reveals the negative regulatory effect of CRY1 on the function of BZR1, a core transcription factor in the BR signaling pathway. We demonstrated that CRY1 interacts with the DNA-binding domain of BZR1 to interfere with the DNA-binding ability of BZR1, and represses its transcriptional activity. Furthermore, we found that CRY1 promotes the phosphorylation of BZR1 and inhibits the nuclear accumulation of BZR1. Interestingly, we discovered that CRY1 interacts with the GSK3-like kinase BIN2 and enhances the interaction of BIN2 and BZR1 in a light-dependent manner. Our findings revealed that CRY1 negatively regulates the function of BZR1 through at least two mechanisms: interfering with the DNA-binding ability of BZR1 and promoting the phosphorylation of BZR1. Therefore, we uncover a novel CRY1-BIN2-BZR1 regulatory module that mediates crosstalk between blue light and BR signaling to coordinate plant growth in Arabidopsis.
Collapse
Affiliation(s)
- Guanhua He
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
32
|
Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin Cell Dev Biol 2019; 92:114-121. [PMID: 30946988 DOI: 10.1016/j.semcdb.2019.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Light is a crucial environmental cue not only for photosynthetic energy production but also for plant growth and development. Plants employ sophisticated methods to detect and interpret information from incoming light. Five classes of photoreceptors have been discovered in the model plant Arabidopsis thaliana. These photoreceptors act either distinctly and/or redundantly in fine-tuning many aspects of plant life cycle. Unlike mobile animals, sessile plants have developed an enormous plasticity to adapt and survive in changing environment. By monitoring different information arising from ambient light, plants precisely regulate downstream signaling pathways to adapt accordingly. Given that changes in the light environment is typically synchronized with other environmental cues such as temperature, abiotic stresses, and seasonal changes, it is not surprising that light signaling pathways are interconnected with multiple pathways to regulate plant physiology and development. Indeed, recent advances in plant photobiology revealed a large network of co-regulation among different photoreceptor signaling pathways as well as other internal signaling pathways (e.g., hormone signaling). In addition, some photoreceptors are directly involved in perception of non-light stimuli (e.g., temperature). Therefore, understanding highly inter-connected signaling networks is essential to explore the photoreceptor functions in plants. Here, we summarize how plants co-ordinate multiple photoreceptors and their internal signaling pathways to regulate a myriad of downstream responses at molecular and physiological levels.
Collapse
|
33
|
Muthert LWF, Izzo LG, van Zanten M, Aronne G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. FRONTIERS IN PLANT SCIENCE 2019; 10:1807. [PMID: 32153599 PMCID: PMC7047216 DOI: 10.3389/fpls.2019.01807] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.
Collapse
Affiliation(s)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
34
|
Küpers JJ, van Gelderen K, Pierik R. Location Matters: Canopy Light Responses over Spatial Scales. TRENDS IN PLANT SCIENCE 2018; 23:865-873. [PMID: 30037654 DOI: 10.1016/j.tplants.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Plants use light as a signal to determine neighbour proximity in dense vegetation. Far-red (FR) light reflected from neighbour plants elicits an array of growth responses throughout the plant. Recently, various light quality-induced signals have been discovered that travel between organs and tissue layers. These signals share upstream and downstream components, but can have opposing effects on cell growth. The question is how plants can coordinate these spatial signals into various growth responses in remote tissues. This coordination allows plants to adapt to the environment, and understanding the underlying mechanisms could allow precision engineering of crops. To achieve this understanding, plant photobiology research will need to focus increasingly on spatial signalling at the whole-plant level.
Collapse
Affiliation(s)
- Jesse J Küpers
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
35
|
Zhao X, Zhao Q, Xu C, Wang J, Zhu J, Shang B, Zhang X. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:562-577. [PMID: 29393576 DOI: 10.1111/jipb.12639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 05/25/2023]
Abstract
Two redundant blue-light receptors, known as phototropins (phot1 and phot2), influence a variety of physiological responses, including phototropism, chloroplast positioning, and stomatal opening in Arabidopsis thaliana. Whereas phot1 functions in both low- and high-intensity blue light (HBL), phot2 functions primarily in HBL. Here, we aimed to elucidate phot2-specific functions by screening for HBL-insensitive mutants among mutagenized Arabidopsis phot1 mutants. One of the resulting phot2 signaling associated (p2sa) double mutants, phot1 p2sa2, exhibited phototropic defects that could be restored by constitutively expressing NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), indicating that P2SA2 was allelic to NPH3. It was observed that NPH3-GFP signal mainly localized to and clustered on the plasma membrane in darkness. This NPH3 clustering on the plasma membrane was not affected by mutations in genes encoding proteins that interact with NPH3, including PHOT1, PHOT2 and ROOT PHOTOTROPISM 2 (RPT2). However, the HBL irradiation-mediated release of NPH3 proteins into the cytoplasm was inhibited in phot1 mutants and enhanced in phot2 and rpt2-2 mutants. Furthermore, HBL-induced hypocotyl phototropism was enhanced in phot1 mutants and inhibited in the phot2 and rpt2-2 mutants. Our findings indicate that phot1 regulates the dissociation of NPH3 from the plasma membrane, whereas phot2 mediates the stabilization and relocation of NPH3 to the plasma membrane to acclimate to HBL.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qingping Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chunye Xu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jindong Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Baoshuan Shang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
36
|
Schumacher P, Demarsy E, Waridel P, Petrolati LA, Trevisan M, Fankhauser C. A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process. Nat Commun 2018; 9:2403. [PMID: 29921904 PMCID: PMC6008296 DOI: 10.1038/s41467-018-04752-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Phototropins are light-activated protein kinases, which contribute to photosynthesis optimization both through enhancement of photon absorption when light is limiting and avoidance responses in high light. This duality is in part endowed by the presence of phototropins with different photosensitivity (phot1 and phot2). Here we show that phot1, which senses low light to promote positive phototropism (growth towards the light), also limits the response in high light. This response depends in part on phot1-mediated phosphorylation of Phytochrome Kinase Substrate 4 (PKS4). This light-regulated phosphorylation switch changes PKS4 from a phototropism enhancer in low light to a factor limiting the process in high light. In such conditions phot1 and PKS4 phosphorylation prevent phototropic responses to shallow light gradients and limit phototropism in a natural high light environment. Hence, by modifying PKS4 activity in high light the phot1-PKS4 regulon enables appropriate physiological adaptations over a range of light intensities. Light conditions modify plant growth and development via photoreceptors such as phototropins. Here the authors show that while phot1 promotes phototropism under low light, it can act to suppress phototropism in high-light environments through phosphorylation of PKS4.
Collapse
Affiliation(s)
- Paolo Schumacher
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Emilie Demarsy
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland.,Department of Botany and Plant Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Martine Trevisan
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
37
|
Xue Y, Xing J, Wan Y, Lv X, Fan L, Zhang Y, Song K, Wang L, Wang X, Deng X, Baluška F, Christie JM, Lin J. Arabidopsis Blue Light Receptor Phototropin 1 Undergoes Blue Light-Induced Activation in Membrane Microdomains. MOLECULAR PLANT 2018; 11:846-859. [PMID: 29689384 DOI: 10.1016/j.molp.2018.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/26/2018] [Accepted: 04/02/2018] [Indexed: 05/06/2023]
Abstract
Phototropin (phot)-mediated signaling initiated by blue light (BL) plays a critical role in optimizing photosynthetic light capture at the plasma membrane (PM) in plants. However, the mechanisms underlying the regulation of phot activity at the PM in response to BL remain largely unclear. In this study, by single-particle tracking and stepwise photobleaching analysis of phot1-GFP proteins we demonstrated that in the dark phot1 proteins remain in an inactive state and mostly exist as monomers. Dimerization and the diffusion rate of phot1-GFP increased in a dose-dependent manner in response to BL. In contrast, BL did not affect the lateral diffusion of kinase-inactive phot1D806N-GFP but did enhance its dimerization, suggesting that phot1 dimerization is independent of phosphorylation. Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis revealed that the interaction between phot1-GFP and a marker of sterol-rich lipid environments, AtRem1.3-mCherry, was enhanced with increased time of BL treatment. However, this BL-dependent interaction was not obvious in plants co-expressing phot1D806N-GFP and AtRem1.3-mCherry, indicating that BL facilitates the translocation of functional phot1-GFP into AtRem1.3-labeled microdomains to activate phot-mediated signaling. Conversely, sterol depletion attenuated phot1-GFP dynamics, dimerization, and phosphorylation. Taken together, these results indicate that membrane microdomains act as organizing platforms essential for the proper function of activated phot1 at the PM.
Collapse
Affiliation(s)
- Yiqun Xue
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xing
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglang Wan
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xueqin Lv
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lusheng Fan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kai Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaohua Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Deng
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Jinxing Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Davey PA, Pernice M, Ashworth J, Kuzhiumparambil U, Szabó M, Dolferus R, Ralph PJ. A new mechanistic understanding of light-limitation in the seagrass Zostera muelleri. MARINE ENVIRONMENTAL RESEARCH 2018; 134:55-67. [PMID: 29307464 DOI: 10.1016/j.marenvres.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 05/28/2023]
Abstract
In this study we investigated the effect of light-limitation (∼20 μmol photons m-2 s-1) on the southern hemisphere seagrass, Zostera muelleri. RNA sequencing, chlorophyll fluorometry and HPLC techniques were used to investigate how the leaf-specific transcriptome drives changes in photosynthesis and photo-pigments in Z. muelleri over 6 days. 1593 (7.51%) genes were differentially expressed on day 2 and 1481 (6.98%) genes were differentially expressed on day 6 of the experiment. Differential gene expression correlated with significant decreases in rETRMax, Ik, an increase in Yi (initial photosynthetic quantum yield of photosystem II), and significant changes in pigment composition. Regulation of carbohydrate metabolism was observed along with evidence that abscisic acid may serve a role in the low-light response of this seagrass. This study provides a novel understanding of how Z. muelleri responds to light-limitation in the marine water column and provides potential molecular markers for future conservation monitoring efforts.
Collapse
Affiliation(s)
- Peter A Davey
- Climate Change Cluster, University of Technology Sydney, NSW, Australia; Centre for Tropical Water and Aquatic Ecosystem Research (TropWater), James Cook University, Cairns, QLD, Australia.
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Justin Ashworth
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | | | - Milán Szabó
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Rudy Dolferus
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| |
Collapse
|
39
|
Cortés AJ, Blair MW. Genotyping by Sequencing and Genome-Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. FRONTIERS IN PLANT SCIENCE 2018; 9:128. [PMID: 29515597 PMCID: PMC5826387 DOI: 10.3389/fpls.2018.00128] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Drought will reduce global crop production by >10% in 2050 substantially worsening global malnutrition. Breeding for resistance to drought will require accessing crop genetic diversity found in the wild accessions from the driest high stress ecosystems. Genome-environment associations (GEA) in crop wild relatives reveal natural adaptation, and therefore can be used to identify adaptive variation. We explored this approach in the food crop Phaseolus vulgaris L., characterizing 86 geo-referenced wild accessions using genotyping by sequencing (GBS) to discover single nucleotide polymorphisms (SNPs). The wild beans represented Mesoamerica, Guatemala, Colombia, Ecuador/Northern Peru and Andean groupings. We found high polymorphism with a total of 22,845 SNPs across the 86 accessions that confirmed genetic relationships for the groups. As a second objective, we quantified allelic associations with a bioclimatic-based drought index using 10 different statistical models that accounted for population structure. Based on the optimum model, 115 SNPs in 90 regions, widespread in all 11 common bean chromosomes, were associated with the bioclimatic-based drought index. A gene coding for an ankyrin repeat-containing protein and a phototropic-responsive NPH3 gene were identified as potential candidates. Genomic windows of 1 Mb containing associated SNPs had more positive Tajima's D scores than windows without associated markers. This indicates that adaptation to drought, as estimated by bioclimatic variables, has been under natural divergent selection, suggesting that drought tolerance may be favorable under dry conditions but harmful in humid conditions. Our work exemplifies that genomic signatures of adaptation are useful for germplasm characterization, potentially enhancing future marker-assisted selection and crop improvement.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Matthew W. Blair
- Department of Agricultural and Environmental Science, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
40
|
Zhao QP, Zhao X, Zhu ZY, Guo XN, Li NN, Zhang X. Isolation and characterization of regulators involved in PHOT1-mediated inhibition of hypocotyl phototropism in Arabidopsis. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Cheng ML, Lo SF, Hsiao AS, Hong YF, Yu SM, Ho THD. Ectopic Expression of WINDING 1 Leads to Asymmetrical Distribution of Auxin and a Spiral Phenotype in Rice. PLANT & CELL PHYSIOLOGY 2017; 58:1494-1506. [PMID: 28922746 DOI: 10.1093/pcp/pcx088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Ectopic expression of the rice WINDING 1 (WIN1) gene leads to a spiral phenotype only in shoots but not in roots. Rice WIN1 belongs to a specific class of proteins in cereal plants containing a Bric-a-Brac/Tramtrack/Broad (BTB) complex, a non-phototropic hypocotyl 3 (NPH3) domain and a coiled-coil motif. The WIN1 protein is predominantly localized to the plasma membrane, but is also co-localized to plasmodesmata, where it exhibits a punctate pattern. It is observed that WIN1 is normally expressed in roots and the shoot-root junction, but not in the rest of shoots. In roots, WIN1 is largely localized to the apical and basal sides of cells. However, upon ectopic expression, WIN1 appears on the longitudinal sides of leaf sheath cells, correlated with the appearance of a spiral phenotype in shoots. Despite the spiral phenotype, WIN1-overexpressing plants exhibit a normal phototropic response. Although treatments with exogenous auxins or a polar auxin transport inhibitor do not alter the spiral phenotype, the excurvature side has a higher auxin concentration than the incurvature side. Furthermore, actin filaments are more prominent in the excurvature side than in the incurvature side, which correlates with cell size differences between these two sides. Interestingly, ectopic expression of WIN1 does not cause either unequal auxin distribution or actin filament differences in roots, so a spiral phenotype is not observed in roots. The action of WIN1 appears to be different from that of other proteins causing a spiral phenotype, and it is likely that WIN1 is involved in 1-N-naphthylphthalamic acid-insensitive plasmodesmata-mediated auxin transport.
Collapse
Affiliation(s)
- Ming-Lung Cheng
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - An-Shan Hsiao
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Ya-Fang Hong
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Su-May Yu
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Tuan-Hua David Ho
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, ROC
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
42
|
Petersen J, Inoue SI, Kelly SM, Sullivan S, Kinoshita T, Christie JM. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1. J Biol Chem 2017; 292:13843-13852. [PMID: 28663371 PMCID: PMC5566536 DOI: 10.1074/jbc.m117.799643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/21/2017] [Indexed: 01/14/2023] Open
Abstract
Phototropins (phots) are plasma membrane–associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light–absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A′α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A′α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation.
Collapse
Affiliation(s)
- Jan Petersen
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | | | - Sharon M Kelly
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | - Stuart Sullivan
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | - Toshinori Kinoshita
- the Division of Biological Science, Graduate School of Science and.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - John M Christie
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom,
| |
Collapse
|
43
|
Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production. Curr Biol 2016; 26:3280-3287. [DOI: 10.1016/j.cub.2016.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
|
44
|
Sullivan S, Takemiya A, Kharshiing E, Cloix C, Shimazaki K, Christie JM. Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:907-920. [PMID: 27545835 PMCID: PMC5215551 DOI: 10.1111/tpj.13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 05/10/2023]
Abstract
Phototropin (phot1) is a blue light-activated plasma membrane-associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non-Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localized the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non-invasive approach where PHOT1-GFP (P1-GFP) expression was targeted to the hypocotyl apex of the phot-deficient mutant using the promoters of CUP-SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1-GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1-GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 μmol m-2 sec-1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1-GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de-phosphorylation showed that CUC3::P1-GFP and ANT::P1-GFP mis-express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1-mediated NPH3 de-phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Atsushi Takemiya
- Department of BiologyFaculty of ScienceKyushu University744 Motooka, Nishi‐kuFukuoka819‐395Japan
- Present address: Graduate School of Sciences and Technology for InnovationYamaguchi University1677‐1 YoshidaYamaguchi753‐8512Japan
| | - Eros Kharshiing
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
- Department of BotanySt. Edmund's CollegeShillong793003MeghalayaIndia
| | - Catherine Cloix
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
- Present address: Beatson Institute for Cancer ResearchGarscube Estate, Switchback RoadBearsden, GlasgowG61 1BDUK
| | - Ken‐ichiro Shimazaki
- Department of BiologyFaculty of ScienceKyushu University744 Motooka, Nishi‐kuFukuoka819‐395Japan
| | - John M. Christie
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
| |
Collapse
|
45
|
Vanhaelewyn L, Schumacher P, Poelman D, Fankhauser C, Van Der Straeten D, Vandenbussche F. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:215-221. [PMID: 27717456 DOI: 10.1016/j.plantsci.2016.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 05/04/2023]
Abstract
Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Paolo Schumacher
- Center for Integrative Genomics, Faculty of Biology and Medicine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dirk Poelman
- Lumilab, Department of Solid State Sciences, Faculty of Sciences, Ghent University, Krijgslaan 181, B-9000 Gent, Belgium
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium.
| |
Collapse
|
46
|
RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc Natl Acad Sci U S A 2016; 113:10424-9. [PMID: 27578868 DOI: 10.1073/pnas.1602151113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.
Collapse
|
47
|
Ding Z, Zhang Y, Xiao Y, Liu F, Wang M, Zhu X, Liu P, Sun Q, Wang W, Peng M, Brutnell T, Li P. Transcriptome response of cassava leaves under natural shade. Sci Rep 2016; 6:31673. [PMID: 27539510 PMCID: PMC4990974 DOI: 10.1038/srep31673] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/21/2016] [Indexed: 11/19/2022] Open
Abstract
Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement.
Collapse
Affiliation(s)
- Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan 571101, China
| | - Yang Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | - Yi Xiao
- CAS-Key laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Fangfang Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Minghui Wang
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York 14850, USA
| | - Xinguang Zhu
- CAS-Key laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York 14850, USA
| | - Wenquan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan 571101, China
| | - Tom Brutnell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
48
|
Armengot L, Marquès-Bueno MM, Jaillais Y. Regulation of polar auxin transport by protein and lipid kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4015-4037. [PMID: 27242371 PMCID: PMC4968656 DOI: 10.1093/jxb/erw216] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The directional transport of auxin, known as polar auxin transport (PAT), allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima, and gradients that are instrumental in both organ initiation and shape determination. As such, PAT is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell to cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the 'non-genomic' regulation of auxin transport, placing an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability, and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK, and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some receptor-like kinases (RLKs) and two-component histidine kinase receptors in PAT, noting that there are probably RLKs involved in co-ordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition, as well as root gravitropism and shoot phototropism.
Collapse
Affiliation(s)
- Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Maria Mar Marquès-Bueno
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
- Correspondence to:
| |
Collapse
|
49
|
Sullivan S, Petersen J, Blackwood L, Papanatsiou M, Christie JM. Functional characterization of Ostreococcus tauri phototropin. THE NEW PHYTOLOGIST 2016; 209:612-23. [PMID: 26414490 DOI: 10.1111/nph.13640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/09/2015] [Indexed: 05/05/2023]
Abstract
Phototropins (phots) regulate a range of adaptive processes in plants that serve to optimize photosynthetic efficiency and promote growth. Light sensing by Arabidopsis thaliana phots is predominantly mediated by the Light, Oxygen and Voltage sensing 2 (LOV2) flavin-binding motif located within the N-terminus of the photoreceptor. Here we characterize the photochemical and biochemical properties of phot from the marine picoalga Ostreococcus tauri phototropin (Otphot) and examine its ability to replace phot-mediated function in Arabidopsis. Photochemical properties of Otphot rely on both LOV1 and LOV2. Yet, biochemical analysis indicates that light-dependent receptor autophosphorylation is primarily dependent on LOV2. As found for Arabidopsis phots, Otphot associates with the plasma membrane and partially internalizes, albeit to a limited extent, in response to blue-light irradiation. Otphot is able to elicit a number of phot-regulated processes in Arabidopsis, including petiole positioning, leaf expansion, stomatal opening and chloroplast accumulation movement. However, Otphot is unable to restore phototropism and chloroplast avoidance movement. Consistent with its lack of phototropic function in Arabidopsis, Otphot does not associate with or trigger dephosphorylation of the phototropic signalling component Non-Phototropic Hypocotyl 3 (NPH3). Taken together, these findings indicate that the mechanism of action of plant and evolutionarily distant algal phots is less well conserved than previously thought.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Jan Petersen
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Lisa Blackwood
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Maria Papanatsiou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
50
|
Sullivan S, Hart JE, Rasch P, Walker CH, Christie JM. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:290. [PMID: 27014313 PMCID: PMC4786545 DOI: 10.3389/fpls.2016.00290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/23/2016] [Indexed: 05/05/2023]
Abstract
Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m(-2) s(-1)) is enhanced by overhead pre-treatment with red light (20 μmol m(-2) s(-1) for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m(-2) s(-1)). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m(-2) s(-1) unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis.
Collapse
|