1
|
Zhuang L, Song C, Wei Y, Han J, Ni L, Ruan C, Zhang W. Transcriptome Analysis Reveals the Molecular Mechanism of Pseudomonas with Different Adhesion Abilities on Tilapia Decay. Foods 2025; 14:795. [PMID: 40077498 PMCID: PMC11898514 DOI: 10.3390/foods14050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to investigate the molecular mechanism of Pseudomonas with varying adhesion capabilities to Tilapia's intestinal mucus influence the spoilage potential of Tilapia. Sodium chloride(NaCl) was used as an environmental factor to regulate Pseudomonas' adhesion ability. After being exposed to 3.5% NaCl stress, the PS01 strain with low adhesion showed an enhancement in adhesion ability, while the LP-3 strain with high adhesion exhibited a decrease. Correspondingly, the expression of critical adhesion genes, such as flgC, fliC, and cheB, was found to be altered. LP-3, with high adhesion ability, was observed to promote a relative increase in Nocardioides and Cloacibacterium in fish intestines. This led to the production of more volatile compounds, including 2-octen-1-ol Z, 2,3-Octanedione, and Eicosane, thus deepening the spoilage of tilapia. LP-3, with reduced adhesion ability after NaCl regulation, showed a diminished capacity to cause fish spoilage. Transcriptomics analysis was used to examine two Pseudomonas strains that exhibited different adhesion abilities, leading to the identification of an adhesion regulatory network involving flagellar assembly regulation, bacterial chemotaxis, quorum sensing, two-component systems, biofilm formation, and bacterial secretion systems. This study identified the Pseudomonas adhesion regulatory pathway and determined 10 key adhesion-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengxu Ruan
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (L.Z.); (C.S.); (Y.W.); (J.H.); (L.N.)
| | - Wen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (L.Z.); (C.S.); (Y.W.); (J.H.); (L.N.)
| |
Collapse
|
2
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, DeWolf S, Brand M, Rosas V, Lorenzi H, Wannemuehler M, Phillips G, Hinton D. A single rare σ70 variant establishes a unique gene expression pattern in the E. coli pathobiont LF82. Nucleic Acids Res 2024; 52:11552-11570. [PMID: 39258538 PMCID: PMC11514462 DOI: 10.1093/nar/gkae773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
LF82, an adherent-invasive Escherichia coli (AIEC) pathobiont, is associated with Crohn's disease, an inflammatory bowel disease of unknown etiology. Although AIEC phenotypes differ from those of 'commensal' or pathogenic E. coli, work has failed to identify genetic features accounting for these differences. We have investigated a natural, but rare, single nucleotide polymorphism (SNP) in LF82 present within the highly conserved rpoD gene, encoding σ70 [primary sigma factor, RNA polymerase (RNAP)]. We demonstrate that σ70 D445V results in transcriptomic and phenotypic changes consistent with LF82 phenotypes, including increased antibiotic resistance and biofilm formation and increased capacity for methionine biosynthesis. RNA-seq analyses comparing σ70 V445 versus σ70 D445 identified 24 genes upregulated by σ70 V445 in both LF82 and the laboratory E. coli K-12 strain MG1655. Using in vitro transcription, we demonstrate that σ70 D445V directly increases transcription from promoters for several of the up-regulated genes and that the presence of a 16 bp spacer and -14 G:C is associated with this increase. The position of D445V within RNAP suggests that it could affect RNAP/spacer interaction. Our work represents the first identification of a distinguishing SNP for this pathobiont and suggests an underrecognized mechanism by which pathobionts and strain variants can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Sarah DeWolf
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Hernan Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| |
Collapse
|
3
|
Aleksandrowicz A, Kjærup RB, Grzymajło K, Martinez FG, Muñoz J, Borowska D, Sives S, Vervelde L, Dalgaard TS, Kingsley RA, Kolenda R. FdeC expression regulates motility and adhesion of the avian pathogenic Escherichia coli strain IMT5155. Vet Res 2024; 55:70. [PMID: 38822378 PMCID: PMC11143625 DOI: 10.1186/s13567-024-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/04/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.
Collapse
Affiliation(s)
- Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Present Address: Cell Signaling and Clinical Proteomics Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Present Address: Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Dominika Borowska
- Division of Immunology, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Samantha Sives
- Present Address: Cell Signaling and Clinical Proteomics Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Robert A Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK.
| |
Collapse
|
4
|
Frizzell JK, Taylor RL, Ryno LM. Constitutive Activation of RpoH and the Addition of L-arabinose Influence Antibiotic Sensitivity of PHL628 E. coli. Antibiotics (Basel) 2024; 13:143. [PMID: 38391529 PMCID: PMC10886279 DOI: 10.3390/antibiotics13020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotics are used to combat the ever-present threat of infectious diseases, but bacteria are continually evolving an assortment of defenses that enable their survival against even the most potent treatments. While the demand for novel antibiotic agents is high, the discovery of a new agent is exceedingly rare. We chose to focus on understanding how different signal transduction pathways in the gram-negative bacterium Escherichia coli (E. coli) influence the sensitivity of the organism to antibiotics from three different classes: tetracycline, chloramphenicol, and levofloxacin. Using the PHL628 strain of E. coli, we exogenously overexpressed two transcription factors, FliA and RpoH.I54N (a constitutively active mutant), to determine their influence on the minimum inhibitory concentration (MIC) and minimum duration of killing (MDK) concentration for each of the studied antibiotics. We hypothesized that activating these pathways, which upregulate genes that respond to specific stressors, could mitigate bacterial response to antibiotic treatment. We also compared the exogenous overexpression of the constitutively active RpoH mutant to thermal heat shock that has feedback loops maintained. While FliA overexpression had no impact on MIC or antibiotic tolerance, RpoH.I54N overexpression reduced the MIC for tetracycline and chloramphenicol but had no independent impact on antibiotic tolerance. Thermal heat shock alone also did not affect MIC or antibiotic tolerance. L-arabinose, the small molecule used to induce expression in our system, unexpectedly independently increased the MICs for tetracycline (>2-fold) and levofloxacin (3-fold). Additionally, the combination of thermal heat shock and arabinose provided a synergistic, 5-fold increase in MIC for chloramphenicol. Arabinose increased the tolerance, as assessed by MDK99, for chloramphenicol (2-fold) and levofloxacin (4-fold). These experiments highlight the potential of the RpoH pathway to modulate antibiotic sensitivity and the emerging implication of arabinose in enhanced MIC and antibiotic tolerance.
Collapse
Affiliation(s)
- Jenna K Frizzell
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| | - Ryan L Taylor
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| | - Lisa M Ryno
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| |
Collapse
|
5
|
Zangara MT, Darwish L, Coombes BK. Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. EcoSal Plus 2023; 11:eesp00182022. [PMID: 37220071 PMCID: PMC10729932 DOI: 10.1128/ecosalplus.esp-0018-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 01/28/2024]
Abstract
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lena Darwish
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Jia XM, Wu BX, Chen BD, Li KT, Liu YD, Xu Y, Wang J, Zhang X. Compositional and functional aberrance of the gut microbiota in treatment-naïve patients with primary Sjögren's syndrome. J Autoimmun 2023; 141:103050. [PMID: 37120327 DOI: 10.1016/j.jaut.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
OBJECTIVES To investigate the compositional and functional characteristics of the gut microbiota in primary Sjögren's syndrome (pSS) and compare them with those in systemic lupus erythematosus (SLE). METHODS Stool samples from 78 treatment-naïve pSS patients and 78 matched healthy controls were detected by shotgun metagenomic sequencing and compared with those from 49 treatment-naïve SLE patients. The virulence loads and mimotopes of the gut microbiota were also assessed by sequence alignment. RESULTS The gut microbiota of treatment-naïve pSS patients had lower richness and evenness and showed a different community distribution than that of healthy controls. The microbial species enriched in the pSS-associated gut microbiota included Lactobacillus salivarius, Bacteroides fragilis, Ruminococcus gnavus, Clostridium bartlettii, Clostridium bolteae, Veillonella parvula, and Streptococcus parasanguinis. Lactobacillus salivarius was the most discriminating species in the pSS patients, especially in those with interstitial lung disease (ILD). Among the differentiating microbial pathways, the superpathway of l-phenylalanine biosynthesis was also further enriched in pSS complicated with ILD. There were more virulence genes carried by the gut microbiota in pSS patients, most of which encoded peritrichous flagella, fimbriae, or curli fimbriae, three types of bacterial surface organelles involved in bacterial colonization and invasion. Five microbial peptides with the potential to mimic pSS-related autoepitopes were also enriched in the pSS gut. SLE and pSS shared significant gut microbial traits, including community distribution, altered microbial taxonomy and pathways, and enriched virulence genes. However, Ruminococcus torques was depleted in pSS patients but enriched in SLE patients compared to healthy controls. CONCLUSIONS The gut microbiota in treatment-naïve pSS patients was disturbed and shared significant similarity with that in SLE patients.
Collapse
Affiliation(s)
- Xin-Miao Jia
- Medical Research Center, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing-Xuan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Department of Rheumatology and Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bei-di Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Ke-Tian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yu-Dong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
7
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
8
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
9
|
Jia XM, Wu BX, Chen BD, Li KT, Liu YD, Xu Y, Wang J, Zhang X. Compositional and functional aberrance of the gut microbiota in treatment naïve patients with primary Sjögren's syndrome. J Autoimmun 2022; 134:102958. [PMID: 36455385 DOI: 10.1016/j.jaut.2022.102958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the compositional and functional characteristics of the gut microbiota in primary Sjögren's syndrome (pSS) and compare them with those in systemic lupus erythematosus (SLE). METHODS Stool samples from 78 treatment naïve pSS patients and 78 matched healthy controls were detected by shotgun metagenomic sequencing and compared with those from 49 treatment naïve SLE patients. The virulence loads and mimotopes of the gut microbiota were also assessed by sequence alignment. RESULTS The gut microbiota of treatment naïve pSS patients had lower richness and evenness and showed a different community distribution than that of healthy controls. The microbial species enriched in the pSS-associated gut microbiota included Lactobacillus salivarius, Bacteroides fragilis, Ruminococcus gnavus, Clostridium bartlettii, Clostridium bolteae, Veillonella parvula, and Streptococcus parasanguinis. Lactobacillus salivarius was the most discriminating species in the pSS patients, especially in those with interstitial lung disease (ILD). Among the differentiating microbial pathways, the superpathway of l-phenylalanine biosynthesis was also further enriched in pSS complicated with ILD. There were more virulence genes carried by the gut microbiota in pSS patients, most of which encoded peritrichous flagella, fimbriae, or curli fimbriae, three types of bacterial surface organelles involved in bacterial colonization and invasion. Five microbial peptides with the potential to mimic pSS-related autoepitopes were also enriched in the pSS gut. SLE and pSS shared significant gut microbial traits, including the community distribution, altered microbial taxonomy and pathways, and enriched virulence genes. However, Ruminococcus torques was depleted in pSS patients but enriched in SLE patients compared to that in healthy controls. CONCLUSIONS The gut microbiota in treatment naïve pSS patients was disturbed and shared significant similarity with that in SLE patients.
Collapse
Affiliation(s)
- Xin-Miao Jia
- Medical Research Center, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing-Xuan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Department of Rheumatology and Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bei-di Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Ke-Tian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yu-Dong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
10
|
Transcriptome sequencing reveals the difference in the expression of biofilm and planktonic cells between two strains of Salmonella Typhimurium. Biofilm 2022; 4:100086. [PMID: 36254114 PMCID: PMC9568869 DOI: 10.1016/j.bioflm.2022.100086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Salmonela enterica serovar Typhimurium (S. Typhimurium) is a food-borne pathogen that can form biofilms to increase its resistance to the external environment. Through the detection of biofilm of several S. Typhimurium strains in this study, strain CDC3 with strong biofilm forming capacity and strain CVCC3384 with weak biofilm forming capacity were identified. The genes expressed in planktonic and biofilm cells of two S. Typhimurium strains were analysed by transcriptome sequencing. Results showed that the genes related to the signal transduction pathway were upregulated and genes related to motility were downregulated in strain CDC3. By comparing biofilms and planktonic cells of the two strains, we found that CDC3 regulates biofilm formation mainly through the two-component system kdpABC, while strain CVCC3384 does so mainly through motility and quorum sensing. This study revealed regulation mechanism of biofilms formation between different biofilm forming capacity strains, and provided a theoretical basis for subsequent research.
Collapse
|
11
|
Identification and Characterization of the Alternative σ 28 Factor in Treponema denticola. J Bacteriol 2022; 204:e0024822. [PMID: 36043861 PMCID: PMC9487585 DOI: 10.1128/jb.00248-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FliA (also known as σ28), a member of the bacterial σ70 family of transcription factors, directs RNA polymerase to flagellar late (class 3) promoters and initiates transcription. FliA has been studied in several bacteria, yet its role in spirochetes has not been established. In this report, we identify and functionally characterize a FliA homolog (TDE2683) in the oral spirochete Treponema denticola. Computational, genetic, and biochemical analyses demonstrated that TDE2683 has a structure similar to that of the σ28 of Escherichia coli, binds to σ28-dependent promoters, and can functionally replace the σ28 of E. coli. However, unlike its counterparts from other bacteria, TDE2683 cannot be deleted, suggesting its essential role in the survival of T. denticola. In vitro site-directed mutagenesis revealed that E221 and V231, two conserved residues in the σ4 region of σ28, are indispensable for the binding activity of TDE2683 to the σ28-dependent promoter. We then mutated these two residues in T. denticola and found that the mutations impair the expression of flagellin and chemotaxis genes and bacterial motility as well. Cryo-electron tomography analysis further revealed that the mutations disrupt the flagellar symmetry (i.e., number and placement) of T. denticola. Collectively, these results indicate that TDE2683 is a σ28 transcription factor that regulates the class 3 gene expression and controls the flagellar symmetry of T. denticola. To the best of our knowledge, this is the first report establishing the functionality of FliA in spirochetes. IMPORTANCE Spirochetes are a group of medically important but understudied bacteria. One of the unique aspects of spirochetes is that they have periplasmic flagella (PF, also known as endoflagella) which give rise to their unique spiral shape and distinct swimming behaviors and play a critical role in the pathophysiology of spirochetes. PF are structurally similar to external flagella, but the underpinning mechanism that regulates PF biosynthesis and assembly remains largely unknown. By using the oral spirochete Treponema denticola as a model, this report provides several lines of evidence that FliA, a σ28 transcriptional factor, regulates the late flagellin gene (class 3) expression, PF assembly, and flagellar symmetry as well, which provides insights into flagellar regulation and opens an avenue to investigate the role of σ28 in spirochetes.
Collapse
|
12
|
Choe Y, Lee D, Seong M, Yoon JB, Yang JH, Yang JY, Moon KH, Kang HY. Characterization of Edwardsiella piscicida CK108 flagellin genes and evaluation of their potential as vaccine targets in the zebrafish model. JOURNAL OF FISH DISEASES 2022; 45:249-259. [PMID: 34843109 DOI: 10.1111/jfd.13550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The control of bacterial pathogens, including Edwardsiella piscicida, in the aquaculture industry has high economic importance. This study aimed to identify a potential live vaccine candidate against E. piscicida infection to minimize the side effects and elicit immunity in the host. This study evaluated the virulence factors of E. piscicida CK108, with a special focus on the flagella. E. piscicida has two important homologous flagellin genes, namely flagellin-associated protein (fap) and flagellin domain-containing protein (fdp). CK226 (Δfap), CK247 (Δfdp) and CK248 (Δfap, fdp) mutant strains were constructed. Both CK226 and CK247 displayed decreased length and thickness of flagellar filaments, resulting in reduced bacterial swimming motility, while CK248 was non-motile as it lacked flagella. The loss of flagella and decreased motility was expected to decrease the pathogenicity of CK248. However, the median lethal dose (LD50 ) of CK248 against zebrafish was lower than those of the wild-type, CK226 and CK247 strains. The protective immunity and cytokine gene expression levels in the CK248-infected zebrafish were lower than those in the wild type-infected zebrafish. In conclusion, Fap and Fdp are essential for flagella formation and motility, and for stimulating fish immune response, which can be utilized as a potential adjuvants for E. piscicida vaccination.
Collapse
Affiliation(s)
- Yunjeong Choe
- Department of Microbiology, Pusan National University, Busan, Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Donghee Lee
- Department of Microbiology, Pusan National University, Busan, Korea
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, USA
| | - Minji Seong
- Department of Microbiology, Pusan National University, Busan, Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
- Mucosal Immunology Lab., Department of Biological Sciences, Pusan National University, Busan, Korea
| | - Ju Bin Yoon
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime & Ocean University, Busan, Korea
- Lab. of Marine Microbiology, Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, Korea
| | - Jun Hyeok Yang
- Lab. of Marine Microbiology, Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, Korea
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan, Korea
| | - Jin-Young Yang
- Mucosal Immunology Lab., Department of Biological Sciences, Pusan National University, Busan, Korea
| | - Ki Hwan Moon
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime & Ocean University, Busan, Korea
- Lab. of Marine Microbiology, Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, Korea
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan, Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, Korea
| |
Collapse
|
13
|
Buck LD, Paladino MM, Nagashima K, Brezel ER, Holtzman JS, Urso SJ, Ryno LM. Temperature-Dependent Influence of FliA Overexpression on PHL628 E. coli Biofilm Growth and Composition. Front Cell Infect Microbiol 2022; 11:775270. [PMID: 34976858 PMCID: PMC8718923 DOI: 10.3389/fcimb.2021.775270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilm growth and survival pose a problem in both medical and industrial fields. Bacteria in biofilms are more tolerant to antibiotic treatment due to the inability of antibiotics to permeate to the bottom layers of cells in a biofilm and the creation of altered microenvironments of bacteria deep within the biofilm. Despite the abundance of information we have about E. coli biofilm growth and maturation, we are still learning how manipulating different signaling pathways influences the formation and fitness of biofilm. Understanding the impact of signaling pathways on biofilm formation may narrow the search for novel small molecule inhibitors or activators that affect biofilm production and stability. Here, we study the influence of the minor sigma transcription factor FliA (RpoF, sigma-28), which controls late-stage flagellar assembly and chemotaxis, on biofilm production and composition at various temperatures in the E. coli strain PHL628, which abundantly produces the extracellular structural protein curli. We examined FliA's influence on external cellular structures like curli and flagella and the biomolecular composition of the biofilm's extracellular polymeric substance (EPS) using biochemical assays, immunoblotting, and confocal laser scanning microscopy (CLSM). At 37°C, FliA overexpression results in the dramatic growth of biofilm in polystyrene plates and more modest yet significant biofilm growth on silica slides. We observed no significant differences in curli concentration and carbohydrate concentration in the EPS with FliA overexpression. Still, we did see significant changes in the abundance of EPS protein using CLSM at higher growth temperatures. We also noticed increased flagellin concentration, a major structural protein in flagella, occurred with FliA overexpression, specifically in planktonic cultures. These experiments have aided in narrowing our focus to FliA's role in changing the protein composition of the EPS, which we will examine in future endeavors.
Collapse
Affiliation(s)
- Luke D Buck
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Maddison M Paladino
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Emma R Brezel
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Joshua S Holtzman
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Sarel J Urso
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Lisa M Ryno
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| |
Collapse
|
14
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Lucchini V, Sivignon A, Pieren M, Gitzinger M, Lociuro S, Barnich N, Kemmer C, Trebosc V. The Role of OmpR in Bile Tolerance and Pathogenesis of Adherent-Invasive Escherichia coli. Front Microbiol 2021; 12:684473. [PMID: 34262546 PMCID: PMC8273539 DOI: 10.3389/fmicb.2021.684473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota dysbiosis toward adherent-invasive Escherichia coli (AIEC) plays an important role in Crohn's disease (CD). The OmpR transcriptional regulator is required for the AIEC LF82 prototype strain to adhere and invade intestinal epithelial cells. In this study, we explored the role of OmpR in AIEC pathogenesis using a panel of eight Escherichia coli strains isolated from CD patients and identified as AIEC. The deletion of ompR together with the implementation of two cell-based assays revealed that the role of OmpR in adhesion in vitro was not conserved in AIEC clinical strains. Nevertheless, we showed that OmpR was required for robust gut colonization of transgenic mice expressing human CEACAM receptors, suggesting that OmpR is involved in alternative virulence mechanisms in AIEC strains. We found that deletion of ompR compromised the ability of AIEC strains to cope with the stress induced by bile salts, which may be key for AIEC pathogenesis. More specifically, we demonstrated that OmpR was involved in a tolerance mechanism toward sodium deoxycholate (DOC), one of bile salts main component. We showed that the misregulation of OmpF or the loss of outer membrane integrity are not the drivers of OmpR-mediated DOC tolerance, suggesting that OmpR regulates a specific mechanism enhancing AIEC survival in the presence of DOC. In conclusion, the newly discovered role of OmpR in AIEC bile tolerance suggests that OmpR inhibition would interfere with different aspects of AIEC virulence arsenal and could be an alternative strategy for CD-treatment.
Collapse
Affiliation(s)
- Valentina Lucchini
- BioVersys AG, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Adeline Sivignon
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | | | | | | | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | | | | |
Collapse
|
16
|
Shawki A, Ramirez R, Spalinger MR, Ruegger PM, Sayoc-Becerra A, Santos AN, Chatterjee P, Canale V, Mitchell JD, Macbeth JC, Gries CM, Tremblay ML, Hsiao A, Borneman J, McCole DF. The autoimmune susceptibility gene, PTPN2, restricts expansion of a novel mouse adherent-invasive E. coli. Gut Microbes 2020; 11:1547-1566. [PMID: 32586195 PMCID: PMC7524159 DOI: 10.1080/19490976.2020.1775538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves significant contributions from genetic and environmental factors. Loss-of-function single-nucleotide polymorphisms (SNPs) in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene increase IBD risk and are associated with altered microbiome population dynamics in IBD. Expansion of intestinal pathobionts, such as adherent-invasive E. coli (AIEC), is strongly implicated in IBD pathogenesis as AIEC increases pro-inflammatory cytokine production and alters tight junction protein regulation - suggesting a potential mechanism of pathogen-induced barrier dysfunction and inflammation. We aimed to determine if PTPN2 deficiency alters intestinal microbiome composition to promote expansion of specific bacteria with pathogenic properties. In mice constitutively lacking Ptpn2, we identified increased abundance of a novel mouse AIEC (mAIEC) that showed similar adherence and invasion of intestinal epithelial cells, but greater survival in macrophages, to the IBD-associated AIEC, LF82. Furthermore, mAIEC caused disease when administered to mice lacking segmented-filamentous bacteria (SFB), and in germ-free mice but only when reconstituted with a microbiome, thus supporting its classification as a pathobiont, not a pathogen. Moreover, mAIEC infection increased the severity of, and prevented recovery from, induced colitis. Although mAIEC genome sequence analysis showed >90% similarity to LF82, mAIEC contained putative virulence genes with >50% difference in gene/protein identities from LF82 indicating potentially distinct genetic features of mAIEC. We show for the first time that an IBD susceptibility gene, PTPN2, modulates the gut microbiome to protect against a novel pathobiont. This study generates new insights into gene-environment-microbiome interactions in IBD and identifies a new model to study AIEC-host interactions.
Collapse
Affiliation(s)
- Ali Shawki
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Rocio Ramirez
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Marianne R. Spalinger
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Paul M. Ruegger
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Alina N. Santos
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Jonathan D. Mitchell
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Casey M. Gries
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | | | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
17
|
Kimkes TEP, Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol Rev 2020; 44:106-122. [PMID: 31769807 PMCID: PMC7053574 DOI: 10.1093/femsre/fuz029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilms can cause medical problems and issues in technical systems. While a large body of knowledge exists on the phenotypes of planktonic and of sessile cells in mature biofilms, our understanding of what happens when bacteria change from the planktonic to the sessile state is still very incomplete. Fundamental questions are unanswered: for instance, how do bacteria sense that they are in contact with a surface, and what are the very initial cellular responses to surface contact. Here, we review the current knowledge on the signals that bacteria could perceive once they attach to a surface, the signal transduction systems that could be involved in sensing the surface contact and the cellular responses that are triggered as a consequence to surface contact ultimately leading to biofilm formation. Finally, as the main obstacle in investigating the initial responses to surface contact has been the difficulty to experimentally study the dynamic response of single cells upon surface attachment, we also review recent experimental approaches that could be employed to study bacterial surface sensing, which ultimately could lead to an improved understanding of how biofilm formation could be prevented.
Collapse
Affiliation(s)
- Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
18
|
Sevrin G, Massier S, Chassaing B, Agus A, Delmas J, Denizot J, Billard E, Barnich N. Adaptation of adherent-invasive E. coli to gut environment: Impact on flagellum expression and bacterial colonization ability. Gut Microbes 2020; 11:364-380. [PMID: 29494278 PMCID: PMC7524368 DOI: 10.1080/19490976.2017.1421886] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pathogenesis of Crohn's disease (CD) is multifactorial and involves genetic susceptibility, environmental triggers and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are flagellated bacteria more prevalent in CD patients than in healthy subjects and promote chronic intestinal inflammation. We aim at deciphering the role of flagella and flagellin modulation by intestinal conditions. AIEC flagellum expression is required for optimal adhesion to and invasion of intestinal epithelial cells. Interestingly, differential flagellin regulation was observed between commensal E. coli (HS) and AIEC (LF82) strains: flagellum expression by AIEC bacteria, in contrast to that of commensal E. coli, is enhanced under intestinal conditions (the presence of bile acids and mucins). Flagella are involved in the ability of the AIEC LF82 strain to cross a mucus layer in vitro and in vivo, conferring a selective advantage in penetrating the mucus layer and reaching the epithelial surface. In a CEABAC10 mouse model, a non-motile mutant (LF82-ΔfliC) exhibits reduced colonization that is restored by a dextran sodium sulfate treatment that alters mucus layer integrity. Moreover, a mutant that continuously secretes flagellin (LF82-ΔflgM) triggers a stronger inflammatory response than the wild-type strain, and the mutant's ability to colonize the CEABAC10 mouse model is decreased. Overexpression of flagellin in bacteria in contact with epithelial cells can be detrimental to their virulence by inducing acute inflammation that enhances AIEC clearance. AIEC pathobionts must finely modulate flagellum expression during the infection process, taking advantage of their specific virulence gene regulation to improve their adaptability and flexibility within the gut environment.
Collapse
Affiliation(s)
- Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Sébastien Massier
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute & Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Allison Agus
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Service de Bactériologie, Parasitologie Mycologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Elisabeth Billard
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France,CONTACT Nicolas Barnich M2iSH, Inserm, Université Clermont Auvergne, USC-INRA 2018, 28 place Henri Dunant, 63001Clermont-Ferrand, France
| |
Collapse
|
19
|
Hashiguchi Y, Tezuka T, Ohnishi Y. Involvement of three FliA-family sigma factors in the sporangium formation, spore dormancy and sporangium dehiscence in Actinoplanes missouriensis. Mol Microbiol 2020; 113:1170-1188. [PMID: 32052506 DOI: 10.1111/mmi.14485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
The rare actinomycete Actinoplanes missouriensis forms sporangia, which open up and release zoospores in response to water. Here, we report a genetic and functional analysis of four FliA-family sigma factors, FliA1, FliA2, FliA3 and FliA4. Transcription of fliA1, fliA2 and fliA3 was directly activated by the global transcriptional activator TcrA during sporangium formation and dehiscence, while fliA4 was almost always transcribed at low levels. Gene disruption analysis showed that (a) deletion of fliA2 reduced the zoospore swimming speed by half, (b) the fliA1-fliA2 double-deletion mutant formed abnormal sporangia in which mutant spores ectopically germinated and (c) deletion of fliA3 induced no phenotypic changes in the wild-type and mutant strains of fliA1 and/or fliA2. Comparative RNA-Seq analyses among the wild-type and gene deletion mutant strains showed probable targets of each FliA-family sigma factor, indicating that FliA1- and FliA2-dependent promoters are quite similar to each other, while the FliA3-dependent promoter is somewhat different. Gene complementation experiments also indicated that the FliA1 regulon overlaps with the FliA2 regulon. These results demonstrate that A. missouriensis has developed a complex transcriptional regulatory network involving multiple FliA-family sigma factors for the accomplishment of its characteristic reproduction process, including sporangium formation, spore dormancy and sporangium dehiscence.
Collapse
Affiliation(s)
- Yuichiro Hashiguchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
The role of major virulence factors and pathogenicity of adherent-invasive Escherichia coli in patients with Crohn's disease. GASTROENTEROLOGY REVIEW 2020; 15:279-288. [PMID: 33777266 PMCID: PMC7988836 DOI: 10.5114/pg.2020.93235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a term that describes Crohn's disease (CD) and ulcerative colitis (UC), and these two conditions are characterised by chronic inflammation of the gastrointestinal tract. Dysbiosis of intestinal microbiota has been consistently linked to patients with IBD. In the last two decades, the progressive implication of adherent-invasive Escherichia coli (AIEC) pathogenesis in patients with CD has been increasing. Here we discuss recent findings that indicate the role and mechanisms of AIEC in IBD. We also highlight AIEC virulence factor genes and mechanisms that suggest an important role in the severity of inflammation in CD patients. Finally, we emphasise data on the prevalence of AIEC in CD patients.
Collapse
|
21
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
22
|
Parrino B, Schillaci D, Carnevale I, Giovannetti E, Diana P, Cirrincione G, Cascioferro S. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2019; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
Affiliation(s)
- Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ilaria Carnevale
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, via Paradisa, 56100, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, via Paradisa, 56100, Pisa, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
23
|
Flores C, Santos M, Pereira SB, Mota R, Rossi F, De Philippis R, Couto N, Karunakaran E, Wright PC, Oliveira P, Tamagnini P. The alternative sigma factor SigF is a key player in the control of secretion mechanisms inSynechocystissp. PCC 6803. Environ Microbiol 2018; 21:343-359. [DOI: 10.1111/1462-2920.14465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos Flores
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; ICBAS - Instituto de Ciências Biomédicas Abel Salazar; Porto Portugal
| | - Marina Santos
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; ICBAS - Instituto de Ciências Biomédicas Abel Salazar; Porto Portugal
| | - Sara B. Pereira
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Rita Mota
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Federico Rossi
- Department of Agrifood Production and Environmental Sciences; University of Florence; Florence Italy
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental Sciences; University of Florence; Florence Italy
| | - Narciso Couto
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Paulo Oliveira
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Paula Tamagnini
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Faculdade de Ciências, Departamento de Biologia; Universidade do Porto; Porto Portugal
| |
Collapse
|
24
|
Andrea A, Molchanova N, Jenssen H. Antibiofilm Peptides and Peptidomimetics with Focus on Surface Immobilization. Biomolecules 2018; 8:E27. [PMID: 29772735 PMCID: PMC6022873 DOI: 10.3390/biom8020027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
Bacterial biofilms pose a major threat to public health, as they are associated with at least two thirds of all infections. They are highly resilient and render conventional antibiotics inefficient. As a part of the innate immune system, antimicrobial peptides have drawn attention within the last decades, as some of them are able to eradicate biofilms at sub-minimum inhibitory concentration (MIC) levels. However, peptides possess a number of disadvantages, such as susceptibility to proteolytic degradation, pH and/or salinity-dependent activity and loss of activity due to binding to serum proteins. Hence, proteolytically stable peptidomimetics were designed to overcome these drawbacks. This paper summarizes the current peptide and peptidomimetic strategies for combating bacteria-associated biofilm infections, both in respect to soluble and surface-functionalized solutions.
Collapse
Affiliation(s)
- Athina Andrea
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Natalia Molchanova
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
25
|
Migliore F, Macchi R, Landini P, Paroni M. Phagocytosis and Epithelial Cell Invasion by Crohn's Disease-Associated Adherent-Invasive Escherichia coli Are Inhibited by the Anti-inflammatory Drug 6-Mercaptopurine. Front Microbiol 2018; 9:964. [PMID: 29867868 PMCID: PMC5961443 DOI: 10.3389/fmicb.2018.00964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are overrepresented in the dysbiotic microbiota of Crohn’s disease (CD) patients, and contribute to the onset of the chronic inflammation typical of the disease. However, the effects of anti-inflammatory drugs used for CD treatment on AIEC virulence have not yet been investigated. In this report, we show that exposure of AIEC LF82 strain to amino-6-mercaptopurine (6-MP) riboside, one of the most widely used anti-inflammatory drugs in CD, impairs its ability to adhere to, and consequently to invade, human epithelial cells. Notably, phagocytosis of LF82 treated with 6-MP by human macrophages is also reduced, suggesting that 6-MP affects AIEC cell surface determinants involved both in interaction with epithelial cells and in uptake by macrophages. Since a main target of 6-MP in bacterial cells is the inhibition of the important signal molecule c-di-GMP, we also tested whether perturbations in cAMP, another major signaling pathway in E. coli, might have similar effects on interactions with human cells. To this aim, we grew LF82 in the presence of glucose, which leads to inhibition of cAMP synthesis. Growth in glucose-supplemented medium resulted in a reduction in AIEC adhesion to epithelial cells and uptake by macrophages. Consistent with these results, both 6-MP and glucose can affect expression of cell adhesion-related genes, such as the csg genes, encoding thin aggregative fimbriae (curli). In addition, glucose strongly inhibits expression of the fim operon, encoding type 1 pili, a known AIEC determinant for adhesion to human cells. To further investigate whether 6-MP can indeed inhibit c-di-GMP signaling in AIEC, we performed biofilm and motility assays and determination of extracellular polysaccharides. 6-MP clearly affected biofilm formation and cellulose production, but also, unexpectedly, reduced cell motility, itself an important virulence factor for AIEC. Our results provide strong evidence that 6-MP can affect AIEC-host cell interaction by acting on the bacterial cell, thus strengthening the hypothesis that mercaptopurines might promote CD remission also by affecting gut microbiota composition and/or physiology, and suggesting that novel drugs targeting bacterial virulence and signaling might be effective in preventing chronic inflammation in CD.
Collapse
Affiliation(s)
- Federica Migliore
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Raffaella Macchi
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Paolo Landini
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Moira Paroni
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Chen XP, Ali L, Wu LY, Liu C, Gang CX, Huang QF, Ruan JH, Bao SY, Rao YP, Yu D. Biofilm Formation Plays a Role in the Formation of Multidrug-Resistant Escherichia coli Toward Nutrients in Microcosm Experiments. Front Microbiol 2018; 9:367. [PMID: 29552003 PMCID: PMC5840168 DOI: 10.3389/fmicb.2018.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023] Open
Abstract
In this study, microcosms were established to determine the effect of nitrogen (N) and phosphorus (P) on the multidrug resistance and biofilm-forming abilities of Escherichia coli. The expression of biofilm-formation-related genes was detected to establish correlations between genotype and phenotype. Different concentrations of N and P were added to make one control group and four treatment groups. The glass tube method was used to determine biofilm-forming capabilities. Real-time PCR was used to detect the mRNA abundance of six biofilm-formation-related genes in E. coli. No resistant strains were isolated from the control group; meanwhile, multidrug resistance rates were high in the treatment groups. Expression of the biofilm-associated genes luxS, flhD, fliA, motA, and fimH was detected in all treatment groups; however, there was no expression of mqsR. The expression of luxS, flhD, fliA, motA, and fimH significantly correlated with the concentration of N and P, as well as with the appearance and duration of multidrug resistance in different groups. Overall, the results of this study suggest that biofilm-forming ability plays a key role in the formation of multidrug resistance in E. coli after the addition of N and P to a microcosm.
Collapse
Affiliation(s)
- Xiu P Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liaqat Ali
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Li-Yun Wu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen X Gang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi F Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing H Ruan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Y Bao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun P Rao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - DaoJin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018; 67:574-587. [PMID: 29141957 DOI: 10.1136/gutjnl-2017-314903] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Carolina Palmela
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Caroline Chevarin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Robert Hirten
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
28
|
Lo YL, Chen CL, Shen L, Chen YC, Wang YH, Lee CC, Wang LC, Chuang CH, Janapatla RP, Chiu CH, Chang HY. Characterization of the role of global regulator FliA in the pathophysiology of Pseudomonas aeruginosa infection. Res Microbiol 2018; 169:135-144. [PMID: 29432810 DOI: 10.1016/j.resmic.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
FliA is known to be a sigma factor that regulates bacterial flagella gene expression. Accumulating evidence suggests that FliA is involved in bacterial behavior other than motility. To elucidate the contribution of FliA to Pseudomonas aeruginosa pathophysiology, we analyzed the biological properties and gene expression profiles of a ΔfliA mutant. Transcriptome analysis results demonstrated that the expression levels of flagella biogenesis genes decreased dramatically in the mutant; consequently, the ΔfliA mutant failed to synthesize flagella and exhibited reduced motility. The ΔfliA mutant displayed stronger hemolytic and caseinolytic activities, as well as pyocyanin production. The expression of type 6 secretion system-II genes and interbacterial competition activity was decreased in the ΔfliA mutant. Direct evidence of fliA participation in virulence was obtained from analysis of hypervirulent strain B136-33. Adhesion to and cytotoxicity toward mammalian cells and penetration through cell layers were noted; furthermore, the colonization ability of the fliA::Tn5 mutant in the intestines of laboratory mice was compromised. Notably, the fliA-overexpressing strain displayed phenotypes similar to that of the fliA-defective strain, indicating that optimal FliA levels are critical to bacterial physiology. Our findings indicate that FliA plays diverse roles in P. aeruginosa, not only in flagella biosynthesis, but also in pathophysiology.
Collapse
Affiliation(s)
- Yi-Ling Lo
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lunda Shen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Ching Chen
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Wang
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Chan Lee
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Division of Parasitology, Chang Gung University, Taoyuan, Taiwan
| | | | - Rajendra Prasad Janapatla
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
29
|
Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, Giske CG, Naas T, Carattoli A, Martínez-Medina M, Bosch J, Retamar P, Rodríguez-Baño J, Baquero F, Soto SM. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 2018; 40:437-463. [PMID: 28201713 DOI: 10.1093/femsre/fuw005] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is one of the most-studied microorganisms worldwide but its characteristics are continually changing. Extraintestinal E. coli infections, such as urinary tract infections and neonatal sepsis, represent a huge public health problem. They are caused mainly by specialized extraintestinal pathogenic E. coli (ExPEC) strains that can innocuously colonize human hosts but can also cause disease upon entering a normally sterile body site. The virulence capability of such strains is determined by a combination of distinctive accessory traits, called virulence factors, in conjunction with their distinctive phylogenetic background. It is conceivable that by developing interventions against the most successful ExPEC lineages or their key virulence/colonization factors the associated burden of disease and health care costs could foreseeably be reduced in the future. On the other hand, one important problem worldwide is the increase of antimicrobial resistance shown by bacteria. As underscored in the last WHO global report, within a wide range of infectious agents including E. coli, antimicrobial resistance has reached an extremely worrisome situation that ‘threatens the achievements of modern medicine’. In the present review, an update of the knowledge about the pathogenicity, antimicrobial resistance and clinical aspects of this ‘old friend’ was presented.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - E Sáez-López
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - J R Johnson
- VA Medical Center, Minneapolis, MN, USA, and University of Minnesota, Minneapolis, MN, USA
| | - U Römling
- Karolinska Institute, Stockholm, Sweden
| | - U Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - C G Giske
- Karolinska Institute, Stockholm, Sweden
| | - T Naas
- Hôpital de Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - A Carattoli
- Department of infectious, parasitic and immune-mediated diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M Martínez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona, Spain
| | - J Bosch
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - P Retamar
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
| | - J Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - F Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - S M Soto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073. J Bacteriol 2017; 199:JB.00168-17. [PMID: 28924030 DOI: 10.1128/jb.00168-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC (adrA in Salmonella) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA, affecting at the same time the inversion of the fim promoter switch (fimS). In the pst mutant, inactivation of yaiC restored fim-dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC, which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model.IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the expression of type 1 fimbriae and attenuates UPEC virulence. Herein, we identified that alteration of the phosphate metabolism increases production of the signaling molecule c-di-GMP, which in turn decreases the expression of type 1 fimbriae. We also determine the regulatory cascade leading to the accumulation of c-di-GMP and identify the Pho regulon as new players in c-di-GMP-mediated cell signaling. By understanding the molecular mechanisms leading to the expression of virulence factors, we will be in a better position to develop new therapeutics.
Collapse
|
31
|
Reddy S, Turaga G, Abdelhamed H, Banes MM, Wills RW, Lawrence ML. Listeria monocytogenes PdeE, a phosphodiesterase that contributes to virulence and has hydrolytic activity against cyclic mononucleotides and cyclic dinucleotides. Microb Pathog 2017; 110:399-408. [PMID: 28711509 DOI: 10.1016/j.micpath.2017.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/27/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
We have identified and partially characterized a putative HD domain hydrolase, LMOf2365_2464, which is highly expressed during listerial intracellular replication. LMOf2365_2464 is annotated as a putative HD domain-containing hydrolase. The ability of an isogenic mutant strain, F2365Δ2464, to adhere, invade and replicate in intestinal epithelial cells (Caco-2) was significantly lower than parent strain F2365. Colonization of mouse liver and spleen by L. monocytogenes F2365 was significantly higher than it was for the mutant. The recombinant protein showed phosphodiesterase activity in the presence of divalent metal ions, indicating its role in nucleotide metabolism. It has activity against several cyclic nucleotides and cyclic dinucleotides, but its strongest activity is against cyclic di-AMP and cyclic AMP. Based on this enzymatic activity, we designated LMOf2365_2464 phosphodiesterase E (PdeE).
Collapse
Affiliation(s)
- Swetha Reddy
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Gokul Turaga
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Michelle M Banes
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Robert W Wills
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
32
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
33
|
Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators. Sci Rep 2017; 7:1013. [PMID: 28432347 PMCID: PMC5430801 DOI: 10.1038/s41598-017-00951-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/17/2017] [Indexed: 11/08/2022] Open
Abstract
Bdellovibrio bacteriovorus is an obligate predator of bacteria that grows and divides within the periplasm of its prey. Functions involved in the early steps of predation have been identified and characterized, but mediators of prey invasion are still poorly detailed. By combining omics data available for Bdellovibrio and like organisms (BALO’s), we identified 43 genes expressed in B. bacteriovorus during the early interaction with prey. These included genes in a tight adherence (TAD) operon encoding for two type IVb fimbriae-like pilin proteins (flp1 and flp2), and their processing and export machinery. Two additional flp genes (flp3 and flp4) were computationally identified at other locations along the chromosome, defining the largest and most diverse type IVb complement known in bacteria to date. Only flp1, flp2 and flp4 were expressed; their respective gene knock-outs resulted in a complete loss of the predatory ability without losing the ability to adhere to prey cells. Additionally, we further demonstrate differential regulation of the flp genes as the TAD operon of BALOs with different predatory strategies is controlled by a flagellar sigma factor FliA, while flp4 is not. Finally, we show that FliA, a known flagellar transcriptional regulator in other bacteria, is an essential Bdellovibrio gene.
Collapse
|
34
|
Yi X, Dean AM. Phenotypic plasticity as an adaptation to a functional trade-off. eLife 2016; 5. [PMID: 27692064 PMCID: PMC5072838 DOI: 10.7554/elife.19307] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
We report the evolution of a phenotypically plastic behavior that circumvents the hardwired trade-off that exists when resources are partitioned between growth and motility in Escherichia coli. We propagated cultures in a cyclical environment, alternating between growth up to carrying capacity and selection for chemotaxis. Initial adaptations boosted overall swimming speed at the expense of growth. The effect of the trade-off was subsequently eased through a change in behavior; while individual cells reduced motility during exponential growth, the faction of the population that was motile increased as the carrying capacity was approached. This plastic behavior was produced by a single amino acid replacement in FliA, a regulatory protein central to the chemotaxis network. Our results illustrate how phenotypic plasticity potentiates evolvability by opening up new regions of the adaptive landscape. DOI:http://dx.doi.org/10.7554/eLife.19307.001
Collapse
Affiliation(s)
- Xiao Yi
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, United States
| | - Antony M Dean
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, United States.,Laboratory of Microbial Evolution, College of Ecology and Evolution, Guangzhou, Peoples Republic of China
| |
Collapse
|
35
|
Xiao Y, Liu H, Nie H, Xie S, Luo X, Chen W, Huang Q. Expression of the phosphodiesterase BifA facilitating swimming motility is partly controlled by FliA in Pseudomonas putida KT2440. Microbiologyopen 2016; 6. [PMID: 27663176 PMCID: PMC5300878 DOI: 10.1002/mbo3.402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 12/30/2022] Open
Abstract
Flagella‐mediated motility is an important capability of many bacteria to survive in nutrient‐depleted and harsh environments. Decreasing the intracellular cyclic di‐GMP (c‐di‐GMP) level by overexpression of phosphodiesterase BifA promotes flagellar‐mediated motility and induces planktonic lifestyle in Pseudomonas. The mechanism that regulates expression of bifA gene was poorly studied. Here we showed that expression of BifA was partly controlled by flagellar sigma factor FliA (σ28) in Pseudomonas putidaKT2440. FliA deletion led to an approximately twofold decrease in transcription of bifA. 5′ race assay revealed two transcription start points in bifA promoter region, with the putative σ70 and σ28 promoter sequences upstream, respectively. Point mutation in σ28 promoter region reduced transcriptional activity of the promoter in wild‐type KT2440, but showed no influence on that in fliA deletion mutant. FliA overexpression decreased the intracellular c‐di‐GMP level in a BifA‐dependent way, suggesting that FliA was able to modulate the intracellular c‐di‐GMP level and BifA function was required for the modulation. Besides, FliA overexpression enhanced swimming ability of wild‐type strain, while made no difference to the bifA mutant. Our results suggest that FliA acts as a negative regulator to modulate the c‐di‐GMP level via controlling transcription of bifA to facilitate swimming motility.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Shan Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Malek I, Schaber CF, Heinlein T, Schneider JJ, Gorb SN, Schmitz RA. Vertically aligned multi walled carbon nanotubes prevent biofilm formation of medically relevant bacteria. J Mater Chem B 2016; 4:5228-5235. [PMID: 32263603 DOI: 10.1039/c6tb00942e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A significant part of human infections is frequently associated with the establishment of biofilms by (opportunistic) pathogens. Due to the increasing number of untreatable biofilms, there is a rising need to develop novel and effective strategies to prevent biofilm formation on surfaces in medical as well as in technical areas. Bacterial initial attachment and adhesion to surfaces followed by biofilm formation is highly influenced by the physical properties of the surfaces. Consequently, changing these properties or applying different nanostructures is an attractive approach to prevent biofilm formation. Here we report on the effect(s) of surface grown and anchored vertically aligned multi walled carbon nanotubes (MWCNT), which have been made wettable by immersion through a graded ethanol series, on biofilm formation of Klebsiella oxytoca, Pseudomonas aeruginosa, and Staphylococcus epidermidis. We evaluated the biofilm formation under continuous flow conditions by confocal laser scanning microscopy and scanning electron microscopy, and demonstrated significant inhibition of biofilm formation of all the different pathogens by MWCNT of different lengths. Furthermore, the anti-adhesive effects of the MWCNT increased with their overall length. The application potential of our findings on surface grown and anchored vertically aligned MWCNT may represent a suitable contact mechanics based approach to prevent biofilm formation on medical devices or technical sensors operating in fluid environments.
Collapse
Affiliation(s)
- I Malek
- University of Kiel, Institute for General Microbiology, Kiel 24118, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Lo YL, Shen L, Chang CH, Bhuwan M, Chiu CH, Chang HY. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1. PLoS One 2016; 11:e0155397. [PMID: 27175902 PMCID: PMC4866697 DOI: 10.1371/journal.pone.0155397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c)-di-GMP, this study revealed a higher c-di-GMP concentration in the fliA deletion mutant of Pseudomonas aeruginosa than in its wild-type strain PAO1. A comparative analysis of transcriptome profiles of P. aeruginosa PAO1 and its fliA deletion mutant revealed an altered expression of several c-di-GMP-modulating enzyme-encoding genes in the fliA deletion mutant. Moreover, the downregulation of PA4367 (bifA), a Glu-Ala-Leu motif-containing phosphodiesterase, in the fliA deletion mutant was confirmed using the β-glucuronidase reporter gene assay. FliA also altered pyocyanin and pyorubin production by modulating the c-di-GMP concentration. Complementing the fliA mutant strain with bifA restored the motility defect and pigment overproduction of the fliA mutant. Our results indicate that in addition to regulating flagellar gene transcription, FliA can modulate the c-di-GMP concentration to regulate the swarming motility and phenazine pigment production in P. aeruginosa.
Collapse
Affiliation(s)
- Yi-Ling Lo
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Lunda Shen
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Chih-Hsuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Manish Bhuwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Miquel S, Lagrafeuille R, Souweine B, Forestier C. Anti-biofilm Activity as a Health Issue. Front Microbiol 2016; 7:592. [PMID: 27199924 PMCID: PMC4845594 DOI: 10.3389/fmicb.2016.00592] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients’ organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.
Collapse
Affiliation(s)
- Sylvie Miquel
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| | - Rosyne Lagrafeuille
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| | - Bertrand Souweine
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont AuvergneClermont-Ferrand, France; Service de Réanimation Médicale Polyvalente, CHU de Clermont-Ferrand, Clermont-FerrandFrance
| | - Christiane Forestier
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|
39
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Tay ST, Vadivelu J. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells. PLoS One 2015; 10:e0127398. [PMID: 25996927 PMCID: PMC4440636 DOI: 10.1371/journal.pone.0127398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Affiliation(s)
- Ye Yang
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
McCarthy H, Rudkin JK, Black NS, Gallagher L, O'Neill E, O'Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 2015; 5:1. [PMID: 25674541 PMCID: PMC4309206 DOI: 10.3389/fcimb.2015.00001] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance and biofilm-forming capacity contribute to the success of Staphylococcus aureus as a human pathogen in both healthcare and community settings. These virulence factors do not function independently of each other and the biofilm phenotype expressed by clinical isolates of S. aureus is influenced by acquisition of the methicillin resistance gene mecA. Methicillin-sensitive S. aureus (MSSA) strains commonly produce an icaADBC operon-encoded polysaccharide intercellular adhesin (PIA)-dependent biofilm. In contrast, the release of extracellular DNA (eDNA) and cell surface expression of a number of sortase-anchored proteins, and the major autolysin have been implicated in the biofilm phenotype of methicillin-resistant S. aureus (MRSA) isolates. Expression of high level methicillin resistance in a laboratory MSSA strain resulted in (i) repression of PIA-mediated biofilm production, (ii) down-regulation of the accessory gene regulator (Agr) system, and (iii) attenuation of virulence in murine sepsis and device infection models. Here we review the mechanisms of MSSA and MRSA biofilm production and the relationships between antibiotic resistance, biofilm and virulence gene regulation in S. aureus.
Collapse
Affiliation(s)
- Hannah McCarthy
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Justine K Rudkin
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Nikki S Black
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Laura Gallagher
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Eoghan O'Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Dublin, Ireland
| | - James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| |
Collapse
|
42
|
Ribonucleotide reductase NrdR as a novel regulator for motility and chemotaxis during adherent-invasive Escherichia coli infection. Infect Immun 2015; 83:1305-17. [PMID: 25605769 DOI: 10.1128/iai.02772-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A critical step in the life cycle of all organisms is the duplication of the genetic material during cell division. Ribonucleotide reductases (RNRs) are essential enzymes for this step because they control the de novo production of the deoxyribonucleotides required for DNA synthesis and repair. Enterobacteriaceae have three functional classes of RNRs (Ia, Ib, and III), which are transcribed from separate operons and encoded by the genes nrdAB, nrdHIEF, and nrdDG, respectively. Here, we investigated the role of RNRs in the virulence of adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease (CD) patients. Interestingly, the LF82 strain of AIEC harbors four different RNRs (two class Ia, one class Ib, and one class III). Although the E. coli RNR enzymes have been extensively characterized both biochemically and enzymatically, little is known about their roles during bacterial infection. We found that RNR expression was modified in AIEC LF82 bacteria during cell infection, suggesting that RNRs play an important role in AIEC virulence. Knockout of the nrdR and nrdD genes, which encode a transcriptional regulator of RNRs and class III anaerobic RNR, respectively, decreased AIEC LF82's ability to colonize the gut mucosa of transgenic mice that express human CEACAM6 (carcinoembryonic antigen-related cell adhesion molecule 6). Microarray experiments demonstrated that NrdR plays an indirect role in AIEC virulence by interfering with bacterial motility and chemotaxis. Thus, the development of drugs targeting RNR classes, in particular NrdR and NrdD, could be a promising new strategy to control gut colonization by AIEC bacteria in CD patients.
Collapse
|
43
|
Yaryura PM, Conforte VP, Malamud F, Roeschlin R, de Pino V, Castagnaro AP, McCarthy Y, Dow JM, Marano MR, Vojnov AA. XbmR, a new transcription factor involved in the regulation of chemotaxis, biofilm formation and virulence in Xanthomonas citri subsp. citri. Environ Microbiol 2014; 17:4164-76. [PMID: 25346091 DOI: 10.1111/1462-2920.12684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 10/19/2014] [Indexed: 12/22/2022]
Abstract
Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus canker. Biofilm formation on citrus leaves plays an important role in epiphytic survival of Xcc. Biofilm formation is affected by transposon insertion in XAC3733, which encodes a transcriptional activator of the NtrC family, not linked to a gene encoding a sensor protein, thus could be considered as an 'orphan' regulator whose function is poorly understood in Xanthomonas spp. Here we show that mutation of XAC3733 (named xbmR) resulted in impaired structural development of the Xcc biofilm, loss of chemotaxis and reduced virulence in grapefruit plants. All defective phenotypes were restored to wild-type levels by the introduction of PA2567 from Pseudomonas aeruginosa, which encodes a phosphodiesterase active in the degradation of cyclic diguanosine monophosphate (c-di-GMP). A knockout of xbmR led to a substantial downregulation of fliA that encodes a σ(28) transcription factor, as well as fliC and XAC0350 which are potential member of the σ(28) regulon. XAC0350 encodes an HD-GYP domain c-di-GMP phosphodiesterase. These findings suggest that XbmR is a key regulator of flagellar-dependent motility and chemotaxis exerting its action through a regulatory pathway that involves FliA and c-di-GMP.
Collapse
Affiliation(s)
- Pablo M Yaryura
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Valeria P Conforte
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Florencia Malamud
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Roxana Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2000FHN, Rosario, Argentina
| | - Verónica de Pino
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Atilio P Castagnaro
- Estación Experimental Agroindustrial Obispo Colombres, Av. William Cross, 3150, Las Talitas, Tucumán, Argentina
| | - Yvonne McCarthy
- School of Microbiology, University College Cork, Cork, Ireland
| | - J Maxwell Dow
- School of Microbiology, University College Cork, Cork, Ireland
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2000FHN, Rosario, Argentina
| | - Adrián A Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
44
|
Cleynen I, Vazeille E, Artieda M, Verspaget HW, Szczypiorska M, Bringer MA, Lakatos PL, Seibold F, Parnell K, Weersma RK, Mahachie John JM, Morgan-Walsh R, Staelens D, Arijs I, De Hertogh G, Müller S, Tordai A, Hommes DW, Ahmad T, Wijmenga C, Pender S, Rutgeerts P, Van Steen K, Lottaz D, Vermeire S, Darfeuille-Michaud A. Genetic and microbial factors modulating the ubiquitin proteasome system in inflammatory bowel disease. Gut 2014; 63:1265-1274. [PMID: 24092863 DOI: 10.1136/gutjnl-2012-303205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Altered microbiota composition, changes in immune responses and impaired intestinal barrier functions are observed in IBD. Most of these features are controlled by proteases and their inhibitors to maintain gut homeostasis. Unrestrained or excessive proteolysis can lead to pathological gastrointestinal conditions. The aim was to validate the identified protease IBD candidates from a previously performed systematic review through a genetic association study and functional follow-up. DESIGN We performed a genetic association study in a large multicentre cohort of patients with Crohn's disease (CD) and UC from five European IBD referral centres in a total of 2320 CD patients, 2112 UC patients and 1796 healthy controls. Subsequently, we did an extensive functional assessment of the candidate genes to explore their causality in IBD pathogenesis. RESULTS Ten single nucleotide polymorphisms (SNPs) in four genes were significantly associated with CD: CYLD, USP40, APEH and USP3. CYLD was the most significant gene with the intronically located rs12324931 the strongest associated SNP (p(FDR)=1.74e-17, OR=2.24 (1.83 to 2.74)). Five SNPs in four genes were significantly associated with UC: USP40, APEH, DAG1 and USP3. CYLD, as well as some of the other associated genes, is part of the ubiquitin proteasome system (UPS). We therefore determined if the IBD-associated adherent-invasive Escherichia coli (AIEC) can modulate the UPS functioning. Infection of intestinal epithelial cells with the AIEC LF82 reference strain modulated the UPS turnover by reducing poly-ubiquitin conjugate accumulation, increasing 26S proteasome activities and decreasing protein levels of the NF-κB regulator CYLD. This resulted in IκB-α degradation and NF-κB activation. This activity was very important for the pathogenicity of AIEC since decreased CYLD resulted in increased ability of AIEC LF82 to replicate intracellularly. CONCLUSIONS Our results reveal the UPS, and CYLD specifically, as an important contributor to IBD pathogenesis, which is favoured by both genetic and microbial factors.
Collapse
Affiliation(s)
- Isabelle Cleynen
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Emilie Vazeille
- Clermont Université, Inserm U1071, Université d'Auvergne, INRA USC 2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | | | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands Dutch Initiative on Crohn and Colitis (ICC)
| | | | - Marie-Agnès Bringer
- Clermont Université, Inserm U1071, Université d'Auvergne, INRA USC 2018, Clermont-Ferrand, France
| | - Peter L Lakatos
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Frank Seibold
- Department of Gastroenterology, Spitalnetz Bern, Switzerland
| | - Kirstie Parnell
- Peninsula Medical School, University of Exeter & Plymouth, Exeter, UK
| | - Rinse K Weersma
- Dutch Initiative on Crohn and Colitis (ICC) Department of Gastroenterology and Hepatology, University Medical Center Groningen and the University of Groningen, Groningen, The Netherlands
| | - Jestinah M Mahachie John
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Liège, Belgium Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium
| | - Rebecca Morgan-Walsh
- Clinical and Experimental Sciences, Faculty of medicine, University of Southampton, Southampton, UK
| | - Dominiek Staelens
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Morphology and Molecular Pathology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Stefan Müller
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Atilla Tordai
- Hungarian National Blood Transfusion Service, Molecular Diagnostics, Budapest, Hungary
| | - Daniel W Hommes
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands Dutch Initiative on Crohn and Colitis (ICC) Division of Digestive Diseases, Inflammatory Bowel Diseases Center, UCLA, Los Angeles, USA
| | - Tariq Ahmad
- Peninsula Medical School, University of Exeter & Plymouth, Exeter, UK
| | - Cisca Wijmenga
- Dutch Initiative on Crohn and Colitis (ICC) Department of Genetics, University Medical Center Groningen and the University of Groningen, Groningen, The Netherlands
| | - Sylvia Pender
- Clinical and Experimental Sciences, Faculty of medicine, University of Southampton, Southampton, UK
| | - Paul Rutgeerts
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Kristel Van Steen
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Liège, Belgium Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium
| | - Daniel Lottaz
- Department of Rheumatology, Clinical Immunology and Allergology, University Hospital of Bern, Inselspital, Switzerland
| | - Severine Vermeire
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Arlette Darfeuille-Michaud
- Clermont Université, Inserm U1071, Université d'Auvergne, INRA USC 2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
45
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
46
|
Sundriyal A, Massa C, Samoray D, Zehender F, Sharpe T, Jenal U, Schirmer T. Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP. J Biol Chem 2014; 289:6978-6990. [PMID: 24451384 DOI: 10.1074/jbc.m113.516195] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The universal second messenger cyclic di-GMP (cdG) is involved in the regulation of a diverse range of cellular processes in bacteria. The intracellular concentration of the dinucleotide is determined by the opposing actions of diguanylate cyclases and cdG-specific phosphodiesterases (PDEs). Whereas most PDEs have accessory domains that are involved in the regulation of their activity, the regulatory mechanism of this class of enzymes has remained unclear. Here, we use biophysical and functional analyses to show that the isolated EAL domain of a PDE from Escherichia coli (YahA) is in a fast thermodynamic monomer-dimer equilibrium, and that the domain is active only in its dimeric state. Furthermore, our data indicate thermodynamic coupling between substrate binding and EAL dimerization with the dimerization affinity being increased about 100-fold upon substrate binding. Crystal structures of the YahA-EAL domain determined under various conditions (apo, Mg(2+), cdG·Ca(2+) complex) confirm structural coupling between the dimer interface and the catalytic center. The built-in regulatory properties of the EAL domain probably facilitate its modular, functional combination with the diverse repertoire of accessory domains.
Collapse
Affiliation(s)
- Amit Sundriyal
- Focal Area of Structural Biology and Biophysics, University of Basel, CH-4056 Basel, Switzerland
| | - Claudia Massa
- Focal Area of Structural Biology and Biophysics, University of Basel, CH-4056 Basel, Switzerland
| | - Dietrich Samoray
- Focal Area of Structural Biology and Biophysics, University of Basel, CH-4056 Basel, Switzerland
| | - Fabian Zehender
- Focal Area of Structural Biology and Biophysics, University of Basel, CH-4056 Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Facility, University of Basel, CH-4056 Basel, Switzerland
| | - Urs Jenal
- Focal Area of Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Tilman Schirmer
- Focal Area of Structural Biology and Biophysics, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
47
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1255] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
48
|
The role of the bacterial flagellum in adhesion and virulence. BIOLOGY 2013; 2:1242-67. [PMID: 24833223 PMCID: PMC4009794 DOI: 10.3390/biology2041242] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
The bacterial flagellum is a complex apparatus assembled of more than 20 different proteins. The flagellar basal body traverses the cell wall, whereas the curved hook connects the basal body to the whip-like flagellar filament that protrudes several µm from the bacterial cell. The flagellum has traditionally been regarded only as a motility organelle, but more recently it has become evident that flagella have a number of other biological functions. The major subunit, flagellin or FliC, of the flagellum plays a well-documented role in innate immunity and as a dominant antigen of the adaptive immune response. Importantly, flagella have also been reported to function as adhesins. Whole flagella have been indicated as significant in bacterial adhesion to and invasion into host cells. In various pathogens, e.g., Escherichia coli, Pseudomonas aeruginosa and Clostridium difficile, flagellin and/or the distally located flagellar cap protein have been reported to function as adhesins. Recently, FliC of Shiga-toxigenic E. coli was shown to be involved in cellular invasion via lipid rafts. Here, we examine the latest or most important findings regarding flagellar adhesive and invasive properties, especially focusing on the flagellum as a potential virulence factor.
Collapse
|
49
|
Xu T, Su Y, Xu Y, He Y, Wang B, Dong X, Li Y, Zhang XH. Mutations of flagellar genes fliC12, fliA and flhDC of Edwardsiella tarda attenuated bacterial motility, biofilm formation and virulence to fish. J Appl Microbiol 2013; 116:236-44. [PMID: 24118854 DOI: 10.1111/jam.12357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to investigate functions of flagellar genes fliC2, fliC12, fliA and flhDC in a bacterial fish pathogen Edwardsiella tarda. METHODS AND RESULTS In this study, functions of flagellar genes, fliC2, fliC12 (fliC1 + fliC2), fliA and flhDC (flhD + flhC) of Edw. tarda H1 were analysed by constructing in-frame deletion mutants respectively and complementary strains fliC2(+) and fliA(+) . Electron microscopy revealed that in-frame deletion of fliC12, fliA and flhDC significantly impaired the number and length of flagellar filaments, resulting in loss of both swimming and swarming motilities of the bacteria. In addition, compared to the wild-type strain and complementary strains, the flagellum-impaired mutants exhibited reduced biofilm formation ability, showed decreased ability in adherence and internalization to Epithelioma papulosum cyprini (EPC) cells and reduced pathogenicity to zebrafish. CONCLUSIONS These results indicated that fliC12, fliA and flhDC of Edw. tarda played essential roles in flagellar filaments structure, bacteria motility, biofilm formation, adherence, internalization and pathogenicity of this bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed that flagella function in facilitating virulence and it may provide a new target for vaccines against Edw. tarda infection.
Collapse
Affiliation(s)
- T Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Y Su
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Y Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Y He
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - B Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - X Dong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Y Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - X-H Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
50
|
The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol 2013; 195:5174-85. [PMID: 24039264 DOI: 10.1128/jb.00501-13] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Gram-positive obligate anaerobe Clostridium difficile causes potentially fatal intestinal diseases. How this organism regulates virulence gene expression is poorly understood. In many bacterial species, the second messenger cyclic di-GMP (c-di-GMP) negatively regulates flagellar motility and, in some cases, virulence. c-di-GMP was previously shown to repress motility of C. difficile. Recent evidence indicates that flagellar gene expression is tightly linked with expression of the genes encoding the two C. difficile toxins TcdA and TcdB, which are key virulence factors for this pathogen. Here, the effect of c-di-GMP on expression of the toxin genes tcdA and tcdB was determined, and the mechanism connecting flagellar and toxin gene expressions was examined. In C. difficile, increasing c-di-GMP levels reduced the expression levels of tcdA and tcdB, as well as that of tcdR, which encodes an alternative sigma factor that activates tcdA and tcdB expression. We hypothesized that the C. difficile orthologue of the flagellar alternative sigma factor SigD (FliA; σ(28)) mediates regulation of toxin gene expression in response to c-di-GMP. Indeed, ectopic expression of sigD in C. difficile resulted in increased expression levels of tcdR, tcdA, and tcdB. Furthermore, sigD expression enhanced toxin production and increased the cytopathic effect of C. difficile on cultured fibroblasts. Finally, evidence is provided that SigD directly activates tcdR expression and that SigD cannot activate tcdA or tcdB expression independent of TcdR. Taken together, these data suggest that SigD positively regulates toxin genes in C. difficile and that c-di-GMP can inhibit both motility and toxin production via SigD, making this signaling molecule a key virulence gene regulator in C. difficile.
Collapse
|