1
|
Zhao S, Cheng CK, Zhang CL, Huang Y. Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:784-799. [PMID: 32323554 DOI: 10.1089/ars.2020.8105] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Recent Advances: Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Critical Issues: Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Future Directions: Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. Antioxid. Redox Signal. 34, 784-799.
Collapse
Affiliation(s)
- Sha Zhao
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Shimizu K, Egusa Y, Nishimuta S, Fukumura Y, Yoshimura M, Inomoto T, Terada T, Tomita K, Nishinaka T. Dietary calamondin supplementation slows the progression of non-alcoholic fatty liver disease in C57BL/6 mice fed a high-fat diet. Int J Food Sci Nutr 2020; 72:335-347. [PMID: 32862731 DOI: 10.1080/09637486.2020.1813262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is associated with an increased risk of metabolic abnormalities. The citrus fruit calamondin contains nobiletin and hesperidin, which are involved in lipid metabolism, and vitamin C, which is an antioxidant. We investigated the metabolic profiles of C57BL/6 mice fed a normal diet, high-fat diet (HFD), HFD + 1% (w/w) calamondin puree (HFD + CL1), or HFD + 5% (w/w) calamondin puree (HFD + CL5). Glucose tolerance was significantly higher in HFD + CL than in HFD-fed mice. Histological analysis revealed less lipid accumulation in the livers of HFD + CL-fed mice than in those of HFD-fed control mice. Hepatocyte ballooning and large lipid droplets - key non-alcoholic fatty liver disease characteristics - were observed in HFD-fed mice after 4 weeks; however, they were nearly absent in HFD + CL-fed mice. The serum expression level of inflammation-associated Ccl2 was lower in HFD + CL-fed mice than in HFD-fed mice. Thus, calamondin may ameliorate HFD-induced metabolic disturbances, including the progression of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Yuka Egusa
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Syogo Nishimuta
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Yuri Fukumura
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Misato Yoshimura
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Tomoya Inomoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| |
Collapse
|
3
|
Ide M, Yoshida I, Kumagai M, Mishima T, Takahashi Y, Fujita K, Igarashi T, Matsuura E. Tithonia diversifolia-derived orizabin suppresses cell adhesion, differentiation, and oxidized LDL accumulation by Akt signaling suppression via PTEN promotion in THP-1 cells. J Food Biochem 2020; 44:e13268. [PMID: 32412116 DOI: 10.1111/jfbc.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/19/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022]
Abstract
As a Japanese folk medicine, Tithonia diversifolia is used for cardiovascular disease prevention and health maintenance. We isolated T. diversifolia-derived orizabin based on the nitric oxide production inhibitory effect. This study aimed to consider orizabin as a novel functional compound with anti-atherosclerotic activity. Orizabin significantly inhibited the adhesion of THP-1 cells to human umbilical vein endothelial cells (HUVECs) and suppressed the mRNA expression of adhesion molecules in HUVECs. In Phorbol 12-myristate 13-acetate stimulated THP-1 cells, orizabin suppressed macrophage differentiation, CD36 expression (1% at 10 μM), and NFκB transcriptional activity. Furthermore, orizabin suppressed oxidized low-density lipoprotein (oxLDL) uptake in macrophages and the Akt phosphorylation. On the contrary, we revealed that phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN) mRNA and protein expression were promoted significantly by orizabin (mRNA, 270-fold at 10 μM). Our study presented the possibility that T. diversifolia-derived orizabin is novel anti-atherosclerotic compound via the suppression of Akt phosphorylation, and T. diversifolia may be effective as a new crop for vascular health maintenance. PRACTICAL APPLICATIONS: In this study, the differentiation of monocytes was suppressed without any toxicity, it was obvious in the image, and the oxLDL uptake in monocytes was clearly suppressed by orizabin. Our findings presented that T. diversifolia-derived compound orizabin specifically contributes to the promotion of PTEN expression and suppression of Akt signal in cells, and acts to suppress inflammation by suppression of NFκB transcriptional activity. As a component derived from food, it has a strong function and can be used to maintain the health for blood vessels. It is also a finding that deserves to expand production currently being carried out on a small scale. Furthermore, the promoting effect of PTEN known as a cancer suppressor in orizabin may result in further use for pharmaceuticals research. Orizabin can be safely used as a food-derived compound for maintaining human health.
Collapse
Affiliation(s)
- Masahiro Ide
- Japan Food Research Laboratories, Osaka, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | - Eiji Matsuura
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Abstract
Cyclooxygenase-2 (COX-2), an inducible isoform responsible for high levels of prostaglandin (PG) production during inflammation and immune responses, mediate a variety of biological actions involved in vascular pathophysiology. COX-2 is induced by various stimuli, including proinflammatory cytokines, to result in PG synthesis associated with inflammation and carcinogenesis. 4-Hydroxy-2-nonenal (HNE) is one of a group of small molecules that can induce COX-2 expression. The mechanistic studies have revealed that the HNE-induced COX-2 expression results from the stabilization of COX-2 mRNA mediated by the p38 mitogen-activated protein kinase signaling pathway and uniquely requires a serum component, which is eventually identified to be modified low-density lipoproteins (LDLs), such as the oxidized form of LDLs. It has also been shown that HNE-induced COX-2 expression is mechanistically linked to the expression of transcription factor p53 and that the overexpression of COX-2 is associated with down-regulation of a proteasome subunit, leading to the enhanced accumulation of p53 and ubiquitinated proteins and to the enhanced sensitivity toward HNE. Thus, the overall mechanism and pathophysiological role of the COX-2 induction by HNE have become increasingly evident.
Collapse
Affiliation(s)
- Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
5
|
ApoE deficiency promotes colon inflammation and enhances inflammatory potential oxidized-LDL and TNF-α in colon epithelial cells. Biosci Rep 2016; 36:BSR20160195. [PMID: 27538678 PMCID: PMC5052706 DOI: 10.1042/bsr20160195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Although deficiency in Apolipoprotein E (ApoE) is linked to many diseases, its effect on colon homoeostasis remains unknown. ApoE appears to control inflammation by regulating nuclear factor-κB (NF-κB). The present study was designed to examine whether ApoE deficiency affects factors of colon integrity in vivo and given the likelihood that ApoE deficiency increases oxidized lipids and TNF-α, the present study also examined whether such deficiency enhances the inflammatory potential of oxidized-LDL (oxLDL) and TNF-α in colon epithelial cells (CECs), in vitro. Here we show that ApoE deficiency is associated with chronic inflammation systemically and in colonic tissues as assessed by TNF-α levels. Increased colon TNF-α mRNA coincided with a substantial increase in cyclooxygenase (COX)-2. ApoE deficiency enhanced the potential of oxLDL and TNF-α to induce COX-2 expression as well as several other inflammatory factors in primary CECs. Interestingly, oxLDL enhanced TGF-β expression only in ApoE−/−, but not in wild-type, epithelial cells. ApoE deficiency appears to promote COX-2 expression enhancement through a mechanism that involves persistent NF-κB nuclear localization and PI3 and p38 MAP kinases but independently of Src. In mice, ApoE deficiency promoted a moderate increase in crypt length, which was associated with opposing effects of an increase in cell proliferation and apoptosis at the bottom and top of the crypt respectively. Our results support the notion that ApoE plays a central role in colon homoeostasis and that ApoE deficiency may constitute a risk factor for colon pathologies.
Collapse
|
6
|
Profiling of volatile compounds in APCMin/+ mice blood by dynamic headspace extraction and gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1003:35-40. [DOI: 10.1016/j.jchromb.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 01/25/2023]
|
7
|
Hatcher HC, Tesfay L, Torti SV, Torti FM. Cytoprotective Effect of Ferritin H in Renal Ischemia Reperfusion Injury. PLoS One 2015; 10:e0138505. [PMID: 26379029 PMCID: PMC4574775 DOI: 10.1371/journal.pone.0138505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is composed of two subunit types, ferritin H and ferritin L. Using an in vivo model that enables conditional tissue-specific doxycycline-inducible expression of ferritin H in the mouse kidney, we tested the hypothesis that an increased level of H-rich ferritin is renoprotective in ischemic acute renal failure. Prior to induction of ischemia, doxycycline increased ferritin H in the kidneys of the transgenic mice nearly 6.5-fold. Following reperfusion for 24 hours, induction of neutrophil gelatinous-associated lipocalin (NGAL, a urine marker of renal dysfunction) was reduced in the ferritin H overexpressers compared to controls. Histopathologic examination following ischemia reperfusion revealed that ferritin H overexpression increased intact nuclei in renal tubules, reduced the frequency of tubular profiles with luminal cast materials, and reduced activated caspase-3 in the kidney. In addition, generation of 4-hydroxy 2-nonenal protein adducts, a measurement of oxidant stress, was decreased in ischemia-reperfused kidneys of ferritin H overexpressers. These studies demonstrate that ferritin H can inhibit apoptotic cell death, enhance tubular epithelial viability, and preserve renal function by limiting oxidative stress following ischemia reperfusion injury.
Collapse
Affiliation(s)
- Heather C. Hatcher
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Lia Tesfay
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Suzy V. Torti
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Frank M. Torti
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Park JB. Synthesis and characterization of norbelladine, a precursor of Amaryllidaceae alkaloid, as an anti-inflammatory/anti-COX compound. Bioorg Med Chem Lett 2014; 24:5381-4. [DOI: 10.1016/j.bmcl.2014.10.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
9
|
Increased levels of the oxidative stress marker, nitrotyrosine in patients with provocation test-induced coronary vasospasm. J Cardiol 2014; 64:86-90. [DOI: 10.1016/j.jjcc.2013.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/27/2013] [Accepted: 11/30/2013] [Indexed: 11/24/2022]
|
10
|
Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A, Weigert A. Redox control of inflammation in macrophages. Antioxid Redox Signal 2013; 19:595-637. [PMID: 23311665 PMCID: PMC3718318 DOI: 10.1089/ars.2012.4785] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/14/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022]
Abstract
Macrophages are present throughout the human body, constitute important immune effector cells, and have variable roles in a great number of pathological, but also physiological, settings. It is apparent that macrophages need to adjust their activation profile toward a steadily changing environment that requires altering their phenotype, a process known as macrophage polarization. Formation of reactive oxygen species (ROS), derived from NADPH-oxidases, mitochondria, or NO-producing enzymes, are not necessarily toxic, but rather compose a network signaling system, known as redox regulation. Formation of redox signals in classically versus alternatively activated macrophages, their action and interaction at the level of key targets, and the resulting physiology still are insufficiently understood. We review the identity, source, and biological activities of ROS produced during macrophage activation, and discuss how they shape the key transcriptional responses evoked by hypoxia-inducible transcription factors, nuclear-erythroid 2-p45-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ. We summarize the mechanisms how redox signals add to the process of macrophage polarization and reprogramming, how this is controlled by the interaction of macrophages with their environment, and addresses the outcome of the polarization process in health and disease. Future studies need to tackle the option whether we can use the knowledge of redox biology in macrophages to shape their mediator profile in pathophysiology, to accelerate healing in injured tissue, to fight the invading pathogens, or to eliminate settings of altered self in tumors.
Collapse
Affiliation(s)
- Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I-Pathobiochemistry, Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Amelioration of cisplatin-induced mouse renal lesions by a cyclooxygenase (COX)-2 selective inhibitor. Eur J Pharmacol 2013; 715:181-8. [PMID: 23747596 DOI: 10.1016/j.ejphar.2013.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 05/01/2013] [Accepted: 05/20/2013] [Indexed: 12/21/2022]
Abstract
In this study, we investigated the effects of the cyclooxygenase (COX)-2 selective inhibitor, meloxicam, on cisplatin-induced inflammation, oxidative stress and renal lesions in BALB/c mice. A single cisplatin injection (13 mg/kg, i.p.) significantly increased plasma creatinine, blood urea nitrogen and urinary glucose accompanied by a concomitant increase in COX-2 mRNA and COX-2 protein levels. These changes in renal lesion parameters were diminished by simultaneous treatment of meloxicam (0.7 mg/kg/day in drinking water). The expression of oxidative stress markers, p47(phox), p67(phox), hemoxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and 4-hydroxy-2-nonenal (4-HNE)-modified protein were increased with cisplatin injection. Simultaneous treatment of meloxicam with cisplatin significantly inhibited the increase in p47(phox), HO-1 and 4-HNE-modified protein. The phosphorylation of extracellular regulated kinase (ERK) and c-jun-N-terminal kinase (JNK) were increased with cisplatin injection, but these changes were inhibited by meloxicam. Moreover, concomitant meloxicam treatment also prevented the cisplatin-induced infiltration of macrophages to the tubulointerstitial area. These results suggest that meloxicam can ameliorate cisplatin-induced mouse renal lesions, potentially through the inhibition of inflammatory and oxidative stress responses.
Collapse
|
12
|
Kakuta S, Bando Y, Nishiumi S, Yoshida M, Fukusaki E, Bamba T. Metabolic profiling of oxidized lipid-derived volatiles in blood by gas chromatography/mass spectrometry with in-tube extraction. Mass Spectrom (Tokyo) 2013; 2:A0018. [PMID: 24860708 DOI: 10.5702/massspectrometry.a0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/21/2013] [Indexed: 12/19/2022] Open
Abstract
Once lipids are oxidized, various volatiles are produced by cleavage of the fatty acid side chain. Considering the variety of lipids present in the body, a large number of possible volatiles might originate from oxidized lipids. However, only specific volatiles such as aldehydes are exclusively examined in current studies, and there is no reported method for the exhaustive analysis of all volatiles. We developed a sensitive analytical method for the detection of all possible volatiles for multimarker profiling, applying a new extraction method called in-tube extraction. Oxidized phosphatidyl choline standards were prepared in vitro and analyzed in order to determine the potential variety of volatiles. Over 40 compounds, including alcohols, ketones, and furanones, were identified in addition to the aldehydes reported previously. Based on this result, we applied our analytical method to mouse plasma and identified 12 volatiles, including 1-octen-3-ol, which is correlated to disease states. To determine the volatile profile after oxidation, we oxidized plasma in vitro under various conditions and identified 27 volatiles, including 1-octen-3-ol and benzaldehyde. The generation capacity of each volatile was different. This method allows sensitive and exhaustive analysis of various volatiles in addition to aldehydes.
Collapse
Affiliation(s)
- Shoji Kakuta
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | | | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine ; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine ; Division of Metabolomics Research, Kobe University Graduate School of Medicine
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
13
|
Nagahama Y, Obama T, Usui M, Kanazawa Y, Iwamoto S, Suzuki K, Miyazaki A, Yamaguchi T, Yamamoto M, Itabe H. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells. Biochem Biophys Res Commun 2011; 413:566-71. [PMID: 21925143 DOI: 10.1016/j.bbrc.2011.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 09/01/2011] [Indexed: 11/28/2022]
Abstract
Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E(2) (PGE(2)) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE(2)-producing enzymes, cyclooxygenase-2 and microsomal PGE(2) synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-κB) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-κB pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.
Collapse
Affiliation(s)
- Yu Nagahama
- Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schumann J, Leichtle A, Thiery J, Fuhrmann H. Fatty acid and peptide profiles in plasma membrane and membrane rafts of PUFA supplemented RAW264.7 macrophages. PLoS One 2011; 6:e24066. [PMID: 21887374 PMCID: PMC3161109 DOI: 10.1371/journal.pone.0024066] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/03/2011] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Collapse
Affiliation(s)
- Julia Schumann
- Faculty of Veterinary Medicine; Institute of Physiological Chemistry, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
15
|
Mitazaki S, Honma S, Suto M, Kato N, Hiraiwa K, Yoshida M, Abe S. Interleukin-6 plays a protective role in development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors. Life Sci 2011; 88:1142-8. [PMID: 21570986 DOI: 10.1016/j.lfs.2011.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
Abstract
AIMS Cisplatin, a major chemotherapeutic agent, accumulates in proximal tubules of the kidneys and causes acute renal failure dose-dependently. We previously reported that cisplatin induced more severe renal dysfunction in interleukin-6 (IL-6) knockout (IL-6(-/-)) mice than in wild-type (WT) mice. Expression of a pro-apoptotic protein was significantly increased with cisplatin in IL-6(-/-) mice compared to that in WT mice. IL-6, locally expressed in renal tubular cells after cisplatin administration, prevents the development of renal dysfunction at an early stage. In the present study, we focused on downstream signals of IL-6 and oxidative stress induced by cisplatin in order to evaluate the protective role of IL-6 in the development of acute renal failure. MAIN METHODS WT and IL-6(-/-) mice were given either cisplatin (30 mg/kg) or saline intraperitoneally. Blood and kidney samples were collected at 24h and 72 h after cisplatin administration. The changes in expression of 4-hydroxy-2-nonenal protein (4-HNE, oxidative stress marker) and cyclooxygenase-2 (cox-2), activities of superoxide dismutases and caspase-3, and phosphorylation of extracellular signal-regulated kinase (ERK) were examined. KEY FINDINGS Cisplatin increased the expression of 4-HNE and cox-2, and phosphorylation of ERK in IL-6(-/-) mice than in WT mice. On the other hand, activity of superoxide dismutase, an anti-oxidative enzyme, was significantly decreased in the kidney obtained from IL-6(-/-) mice after cisplatin administration. SIGNIFICANCE Our findings suggest that IL-6 plays a protective role in the development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors.
Collapse
Affiliation(s)
- Satoru Mitazaki
- Laboratory of Forensic Toxicology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki 370-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Park JB. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. Int J Food Sci Nutr 2011; 62:577-84. [DOI: 10.3109/09637486.2011.562882] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 2010; 13:39-75. [PMID: 19888833 PMCID: PMC2877120 DOI: 10.1089/ars.2009.2733] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/09/2009] [Accepted: 11/02/2009] [Indexed: 02/06/2023]
Abstract
Oxidative modification of LDL is known to elicit an array of pro-atherogenic responses, but it is generally underappreciated that oxidized LDL (OxLDL) exists in multiple forms, characterized by different degrees of oxidation and different mixtures of bioactive components. The variable effects of OxLDL reported in the literature can be attributed in large part to the heterogeneous nature of the preparations employed. In this review, we first describe the various subclasses and molecular composition of OxLDL, including the variety of minimally modified LDL preparations. We then describe multiple receptors that recognize various species of OxLDL and discuss the mechanisms responsible for the recognition by specific receptors. Furthermore, we discuss the contentious issues such as the nature of OxLDL in vivo and the physiological oxidizing agents, whether oxidation of LDL is a prerequisite for atherogenesis, whether OxLDL is the major source of lipids in foam cells, whether in some cases it actually induces cholesterol depletion, and finally the Janus-like nature of OxLDL in having both pro- and anti-inflammatory effects. Lastly, we extend our review to discuss the role of LDL oxidation in diseases other than atherosclerosis, including diabetes mellitus, and several autoimmune diseases, such as lupus erythematosus, anti-phospholipid syndrome, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irena Levitan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
18
|
Shanmugam N, Figarola JL, Li Y, Swiderski PM, Rahbar S, Natarajan R. Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 2008; 57:879-88. [PMID: 18003754 PMCID: PMC2695452 DOI: 10.2337/db07-1204] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The reactions of carbohydrate- or lipid-derived intermediates with proteins lead to the formation of Maillard reaction products, which subsequently leads to the formation of advanced glycation/lipoxidation end products (AGE/ALEs). Levels of AGE/ALEs are increased in diseases like diabetes. Unlike AGEs, very little is known about ALE effects in vitro. We hypothesized that ALEs can have proinflammatory effects in monocytes. RESEARCH DESIGN AND METHODS In a profiling approach, conditioned media from THP-1 cells either cultured in normal glucose (5.5 mmol/l) or treated with MDA-Lys or MDA alone were hybridized to arrays containing antibodies to 120 known human cytokines/chemokines. Pathway analyses with bioinformatics software were used to identify signalling networks. RESULTS Synthetic ALE (malondialdehyde-lysine [MDA-Lys]) (50 micromol/l) could induce oxidant stress and also activate the transcriptional factor nuclear factor-kappaB (NF-kappaB) in THP-1 monocytes. MDA-Lys also significantly increased the expression of key candidate proinflammatory genes, interferon-gamma-inducible protein-10, beta1- and beta2-integrins, cyclooxygenase-2 (COX-2), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 and -8, and inducible nitric-oxide synthase, which are also associated with monocyte dysfunction. Several key target proinflammatory proteins were significantly induced by MDA-Lys relative to normal glucose or MDA alone, including MCP-1; tumor necrosis factor ligand superfamily member-14; chemokine CC motif ligand-11 (CCL11); growth-related oncogene-alpha, -beta, and -gamma; and chemokine CXC motif ligand-13. Bioinformatics analyses identified a network of chemokine signaling among MDA-Lys-regulated genes. MDA-Lys also increased monocyte binding to vascular smooth muscle and endothelial cells. Furthermore, plasma from diabetic rats showed significantly higher levels of MDA-Lys and CCL11. CONCLUSIONS These new results suggest that ALEs can promote monocyte activation and vascular complications via induction of inflammatory pathways and networks.
Collapse
Affiliation(s)
| | - James L. Figarola
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Yan Li
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Piotr M. Swiderski
- DNA, RNA, and Peptide Synthesis Laboratory, Beckman Research Institute of City of Hope, Duarte, California
| | - Samual Rahbar
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
19
|
Houssier M, Raoul W, Lavalette S, Keller N, Guillonneau X, Baragatti B, Jonet L, Jeanny JC, Behar-Cohen F, Coceani F, Scherman D, Lachapelle P, Ong H, Chemtob S, Sennlaub F. CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med 2008; 5:e39. [PMID: 18288886 PMCID: PMC2245984 DOI: 10.1371/journal.pmed.0050039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 12/14/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In the Western world, a major cause of blindness is age-related macular degeneration (AMD). Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the "wet" form of AMD. In contrast, very little is known about the mechanisms of the predominant, "dry" form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD. METHODS AND FINDINGS We here show that deficiency of CD36, which participates in outer segment (OS) phagocytosis by the retinal pigment epithelium (RPE) in vitro, leads to significant progressive age-related photoreceptor degeneration evaluated histologically at different ages in two rodent models of CD36 invalidation in vivo (Spontaneous hypertensive rats (SHR) and CD36-/- mice). Furthermore, these animals developed significant age related choroidal involution reflected in a 100%-300% increase in the avascular area of the choriocapillaries measured on vascular corrosion casts of aged animals. We also show that proangiogenic COX2 expression in RPE is stimulated by CD36 activating antibody and that CD36-deficient RPE cells from SHR rats fail to induce COX2 and subsequent vascular endothelial growth factor (VEGF) expression upon OS or antibody stimulation in vitro. CD36-/- mice express reduced levels of COX2 and VEGF in vivo, and COX2-/- mice develop progressive choroidal degeneration similar to what is seen in CD36 deficiency. CONCLUSIONS CD36 deficiency leads to choroidal involution via COX2 down-regulation in the RPE. These results show a novel molecular mechanism of choroidal degeneration, a key feature of dry AMD. These findings unveil a pathogenic process, to our knowledge previously undescribed, with important implications for the development of new therapies.
Collapse
Affiliation(s)
- Marianne Houssier
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - William Raoul
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Sophie Lavalette
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Nicole Keller
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Xavier Guillonneau
- Institut National de la Santé et de la Recherche Médicale U592, Paris, France
- Université Pierre et Marie Curie, UMR S 592, Paris, France
| | - Barbara Baragatti
- Scuola Superiore Sant'Anna and Institute of Clinical Physiology CNR, Pisa, Italy
| | - Laurent Jonet
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Jean-Claude Jeanny
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Francine Behar-Cohen
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
- Institut National de la Santé et de la Recherche Médicale U640/UMR 8151, Centre National de la Recherche Scientifique, Université René Descartes, Paris, France
| | - Flavio Coceani
- Scuola Superiore Sant'Anna and Institute of Clinical Physiology CNR, Pisa, Italy
| | - Daniel Scherman
- Institut National de la Santé et de la Recherche Médicale U640/UMR 8151, Centre National de la Recherche Scientifique, Université René Descartes, Paris, France
| | - Pierre Lachapelle
- Department of Pediatrics, Ophthalmology and Pharmacology, Research Center, Hôpital Ste Justine, Montréal, Québec, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology, Research Center, Hôpital Ste Justine, Montréal, Québec, Canada
| | - Florian Sennlaub
- Institut National de la Santé et de la Recherche Médicale U872, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|