1
|
An JP, Zhang XW, Li HL, Wang DR, You CX, Han Y. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2023. [PMID: 37235698 DOI: 10.1111/nph.18997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Min X, Zhang X, Wang S, Kim KM. Activation of PKCβII through nuclear trafficking guided by βγ subunits of trimeric G protein and 14-3-3ε. Life Sci 2022; 312:121245. [PMID: 36503900 DOI: 10.1016/j.lfs.2022.121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
AIMS Conventional members of protein kinase C (PKC) family, including PKCβII, are constitutively phosphorylated on three major motifs and located in the cytosol in a primed state. In response to cellular stimuli, PKCβII is activated through inducible phosphorylation and Mdm2-mediated ubiquitination. In this study, we aimed to identify the activation mechanism of PKCβII, focusing on the signaling cascade that regulate the phosphorylation and ubiquitination. MATERIALS AND METHODS Loss-of-function approaches and mutants of PDK1/PKCβII that display different regulatory properties were used to identify the cellular components and processes responsible for endocytosis. KEY FINDINGS Phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation and ubiquitination of PKCβII, which are needed for its translocation to the plasma membrane, required the presence of both Gβγ and 14-3-3ε. Gβγ and 14-3-3ε mediated the constitutive phosphorylation of PKCβII by scaffolding PI3K and PDK1 in the cytosol, which is an inactive but required state for the activation of PKCβII by subsequent signals. In response to PMA treatment, the signaling complex translocated to the nucleus with dissociation of PI3K from it. Thereafter, PDK1 stably interacted with 14-3-3ε and was dephosphorylated; PKCβII interacted with Mdm2 along with Gβγ, leading to its ubiquitination at two lysine residues on its C-tail. Finally, PDK1/14-3-3ε and ubiquitinated PKCβII translocated to the plasma membrane. SIGNIFICANCE As PKCβII mediates a wide range of cellular functions and plays important roles in the pathogenesis of various diseases, our results will provide clues to understand the pathogenesis of PKCβII-related disorders and facilitate their treatment.
Collapse
Affiliation(s)
- Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea.
| |
Collapse
|
3
|
Pilo CA, Baffi TR, Kornev AP, Kunkel MT, Malfavon M, Chen DH, Rossitto LA, Chen DX, Huang LC, Longman C, Kannan N, Raskind WH, Gonzalez DJ, Taylor SS, Gorrie G, Newton AC. Mutations in protein kinase Cγ promote spinocerebellar ataxia type 14 by impairing kinase autoinhibition. Sci Signal 2022; 15:eabk1147. [PMID: 36166510 PMCID: PMC9810342 DOI: 10.1126/scisignal.abk1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.
Collapse
Affiliation(s)
- Caila A. Pilo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Timothy R. Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Maya T. Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mario Malfavon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dong-Hui Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Daniel X. Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Cheryl Longman
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wendy H. Raskind
- Department of Medicine/Medical Genetics, University of Washington Seattle, WA 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA 98195, USA
- Mental Illness Research, Education and Clinical Center, Department of Veterans Affairs, Seattle, WA 98108, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - George Gorrie
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
5
|
PHLPPing the balance: restoration of protein kinase C in cancer. Biochem J 2021; 478:341-355. [PMID: 33502516 DOI: 10.1042/bcj20190765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Protein kinase signalling, which transduces external messages to mediate cellular growth and metabolism, is frequently deregulated in human disease, and specifically in cancer. As such, there are 77 kinase inhibitors currently approved for the treatment of human disease by the FDA. Due to their historical association as the receptors for the tumour-promoting phorbol esters, PKC isozymes were initially targeted as oncogenes in cancer. However, a meta-analysis of clinical trials with PKC inhibitors in combination with chemotherapy revealed that these treatments were not advantageous, and instead resulted in poorer outcomes and greater adverse effects. More recent studies suggest that instead of inhibiting PKC, therapies should aim to restore PKC function in cancer: cancer-associated PKC mutations are generally loss-of-function and high PKC protein is protective in many cancers, including most notably KRAS-driven cancers. These recent findings have reframed PKC as having a tumour suppressive function. This review focusses on a potential new mechanism of restoring PKC function in cancer - through targeting of its negative regulator, the Ser/Thr protein phosphatase PHLPP. This phosphatase regulates PKC steady-state levels by regulating the phosphorylation of a key site, the hydrophobic motif, whose phosphorylation is necessary for the stability of the enzyme. We also consider whether the phosphorylation of the potent oncogene KRAS provides a mechanism by which high PKC expression may be protective in KRAS-driven human cancers.
Collapse
|
6
|
TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct Target Ther 2021; 6:90. [PMID: 33640899 PMCID: PMC7914255 DOI: 10.1038/s41392-021-00477-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sensing of pathogenic nucleic acids by pattern recognition receptors (PRR) not only initiates anti-microbe defense but causes inflammatory and autoimmune diseases. E3 ubiquitin ligase(s) critical in innate response need to be further identified. Here we report that the tripartite motif-containing E3 ubiquitin ligase TRIM41 is required to innate antiviral response through facilitating pathogenic nucleic acids-triggered signaling pathway. TRIM41 deficiency impairs the production of inflammatory cytokines and type I interferons in macrophages after transfection with nucleic acid-mimics and infection with both DNA and RNA viruses. In vivo, TRIM41 deficiency leads to impaired innate response against viruses. Mechanistically, TRIM41 directly interacts with BCL10 (B cell lymphoma 10), a core component of CARD proteins−BCL10 − MALT1 (CBM) complex, and modifies the Lys63-linked polyubiquitylation of BCL10, which, in turn, hubs NEMO for activation of NF-κB and TANK-binding kinase 1 (TBK1) − interferon regulatory factor 3 (IRF3) pathways. Our study suggests that TRIM41 is the potential universal E3 ubiquitin ligase responsible for Lys63 linkage of BCL10 during innate antiviral response, adding new insight into the molecular mechanism for the control of innate antiviral response.
Collapse
|
7
|
Van AAN, Kunkel MT, Baffi TR, Lordén G, Antal CE, Banerjee S, Newton AC. Protein kinase C fusion proteins are paradoxically loss of function in cancer. J Biol Chem 2021; 296:100445. [PMID: 33617877 PMCID: PMC8008189 DOI: 10.1016/j.jbc.2021.100445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
Within the AGC kinase superfamily, gene fusions resulting from chromosomal rearrangements have been most frequently described for protein kinase C (PKC), with gene fragments encoding either the C-terminal catalytic domain or the N-terminal regulatory moiety fused to other genes. Kinase fusions that eliminate regulatory domains are typically gain of function and often oncogenic. However, several quality control pathways prevent accumulation of aberrant PKC, suggesting that PKC fusions may paradoxically be loss of function. To explore this topic, we used biochemical, cellular, and genome editing approaches to investigate the function of fusions that retain the portion of the gene encoding either the catalytic domain or regulatory domain of PKC. Overexpression studies revealed that PKC catalytic domain fusions were constitutively active but vulnerable to degradation. Genome editing of endogenous genes to generate a cancer-associated PKC fusion resulted in cells with detectable levels of fusion transcript but no detectable protein. Hence, PKC catalytic domain fusions are paradoxically loss of function as a result of their instability, preventing appreciable accumulation of protein in cells. Overexpression of a PKC regulatory domain fusion suppressed both basal and agonist-induced endogenous PKC activity, acting in a dominant-negative manner by competing for diacylglycerol. For both catalytic and regulatory domain fusions, the PKC component of the fusion proteins mediated the effects of the full-length fusions on the parameters examined, suggesting that the partner protein is dispensable in these contexts. Taken together, our findings reveal that PKC gene fusions are distinct from oncogenic fusions and present a mechanism by which loss of PKC function occurs in cancer.
Collapse
Affiliation(s)
- An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Maya T Kunkel
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Sourav Banerjee
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA.
| |
Collapse
|
8
|
Parker PJ, Brown SJ, Calleja V, Chakravarty P, Cobbaut M, Linch M, Marshall JJT, Martini S, McDonald NQ, Soliman T, Watson L. Equivocal, explicit and emergent actions of PKC isoforms in cancer. Nat Rev Cancer 2021; 21:51-63. [PMID: 33177705 DOI: 10.1038/s41568-020-00310-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 01/02/2023]
Abstract
The maturing mutational landscape of cancer genomes, the development and application of clinical interventions and evolving insights into tumour-associated functions reveal unexpected features of the protein kinase C (PKC) family of serine/threonine protein kinases. These advances include recent work showing gain or loss-of-function mutations relating to driver or bystander roles, how conformational constraints and plasticity impact this class of proteins and how emergent cancer-associated properties may offer opportunities for intervention. The profound impact of the tumour microenvironment, reflected in the efficacy of immune checkpoint interventions, further prompts to incorporate PKC family actions and interventions in this ecosystem, informed by insights into the control of stromal and immune cell functions. Drugging PKC isoforms has offered much promise, but when and how is not obvious.
Collapse
Affiliation(s)
- Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, UK.
| | - Sophie J Brown
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | - Veronique Calleja
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | | | - Mathias Cobbaut
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | - Mark Linch
- UCL Cancer Institute, University College London, London, UK
| | | | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK
| | - Tanya Soliman
- Centre for Cancer Genomics and Computational Biology, Bart's Cancer Institute, London, UK
| | - Lisa Watson
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
9
|
Saha S, Sun Y, Huang SYN, Baechler SA, Pongor LS, Agama K, Jo U, Zhang H, Tse-Dinh YC, Pommier Y. DNA and RNA Cleavage Complexes and Repair Pathway for TOP3B RNA- and DNA-Protein Crosslinks. Cell Rep 2020; 33:108569. [PMID: 33378676 PMCID: PMC7859927 DOI: 10.1016/j.celrep.2020.108569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The present study demonstrates that topoisomerase 3B (TOP3B) forms both RNA and DNA cleavage complexes (TOP3Bccs) in vivo and reveals a pathway for repairing TOP3Bccs. For inducing and detecting cellular TOP3Bccs, we engineer a “self-trapping” mutant of TOP3B (R338W-TOP3B). Transfection with R338W-TOP3B induces R-loops, genomic damage, and growth defect, which highlights the importance of TOP3Bcc repair mechanisms. To determine how cells repair TOP3Bccs, we deplete tyrosyl-DNA phosphodiesterases (TDP1 and TDP2). TDP2-deficient cells show elevated TOP3Bccs both in DNA and RNA. Conversely, overexpression of TDP2 lowers cellular TOP3Bccs. Using recombinant human TDP2, we demonstrate that TDP2 can process both denatured and proteolyzed TOP3Bccs. We also show that cellular TOP3Bccs are ubiquitinated by the E3 ligase TRIM41 before undergoing proteasomal processing and excision by TDP2. Saha et al. introduce an approach to generate and detect the catalytic intermediates of TOP3B in DNA and RNA by engineering a self-poisoning enzyme, R338W-TOP3B. They reveal the cellular consequences of abortive TOP3Bcc formation and a repair pathway involving TRIM41, the proteasome, and TDP2 for processing of TOP3Bcc.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Sandor Pongor
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Shin WH, Park JH, Chung KC. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease. BMB Rep 2020. [PMID: 31818366 PMCID: PMC6999829 DOI: 10.5483/bmbrep.2020.53.1.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are two major degradative pathways of proteins in eukaryotic cells. As about 30% of newly synthesized proteins are known to be misfolded under normal cell conditions, the precise and timely operation of the UPS and autophagy to remove them as well as their tightly controlled regulation, is so important for proper cell function and survival. In the UPS, target proteins are labeled by small proteins called ubiquitin, which are then transported to the proteasome complex for degradation. Alternatively, many greatly damaged proteins are believed to be delivered to the lysosome for autophagic degradation. Although these autophagy and UPS pathways have not been considered to be directly related, many recent studies proposed their close link and dynamic interconversion. In this review, we’ll focus on the several regulatory molecules that function in both UPS and autophagy and their crosstalk. Among the proposed multiple modulators, we will take a closer look at the so-called main connector of UPS-autophagy regulation, p62. Last, the functional role of p62 in the mitophagy and its implication for the pathogenesis of Parkinson’s disease, one of the major neurodegenerative diseases, will be briefly reviewed.
Collapse
Affiliation(s)
- Woo Hyun Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
Lassot I, Mora S, Lesage S, Zieba BA, Coque E, Condroyer C, Bossowski JP, Mojsa B, Marelli C, Soulet C, Tesson C, Carballo-Carbajal I, Laguna A, Mangone G, Vila M, Brice A, Desagher S. The E3 Ubiquitin Ligases TRIM17 and TRIM41 Modulate α-Synuclein Expression by Regulating ZSCAN21. Cell Rep 2019; 25:2484-2496.e9. [PMID: 30485814 DOI: 10.1016/j.celrep.2018.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Stéphan Mora
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Suzanne Lesage
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Barbara A Zieba
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Emmanuelle Coque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christel Condroyer
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Jozef Piotr Bossowski
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Barbara Mojsa
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Cecilia Marelli
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Caroline Soulet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christelle Tesson
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Graziella Mangone
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Alexis Brice
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
12
|
Systematic analysis of alterations in the ubiquitin proteolysis system reveals its contribution to driver mutations in cancer. ACTA ACUST UNITED AC 2019; 1:122-135. [DOI: 10.1038/s43018-019-0001-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
|
13
|
Min X, Zhang X, Sun N, Acharya S, Kim KM. Mdm2-mediated ubiquitination of PKCβII in the nucleus mediates clathrin-mediated endocytic activity. Biochem Pharmacol 2019; 170:113675. [DOI: 10.1016/j.bcp.2019.113675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
|
14
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
15
|
Jama A, Huang D, Alshudukhi AA, Chrast R, Ren H. Lipin1 is required for skeletal muscle development by regulating MEF2c and MyoD expression. J Physiol 2018; 597:889-901. [PMID: 30511745 DOI: 10.1113/jp276919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Lipin1 is critical for skeletal muscle development. Lipin1 regulates MyoD and myocyte-specific enhancer factor 2C (MEF2c) expression via the protein kinase C (PKC)/histone deacetylase 5-mediated pathway. Inhibition of PKCμ activity suppresses myoblast differentiation by inhibiting MyoD and MEF2c expression. ABSTRACT Our previous characterization of global lipin1-deficient (fld) mice demonstrated that lipin1 played a novel role in skeletal muscle (SM) regeneration. The present study using cell type-specific Myf5-cre;Lipin1fl/fl conditional knockout mice (Lipin1Myf5cKO ) shows that lipin1 is a major determinant of SM development. Lipin1 deficiency induced reduced muscle mass and myopathy. Our results from lipin1-deficient myoblasts suggested that lipin1 regulates myoblast differentiation via the protein kinase Cμ (PKCμ)/histone deacetylase 5 (HDAC5)/myocyte-specific enhancer factor 2C (MEF2c):MyoD-mediated pathway. Lipin1 deficiency leads to the suppression of PKC isoform activities, as well as inhibition of the downstream target of PKCμ, class II deacetylase HDAC5 nuclear export, and, consequently, inhibition of MEF2c and MyoD expression in the SM of lipin1Myf5cKO mice. Restoration of diacylglycerol-mediated signalling in lipin1 deficient myoblasts by phorbol 12-myristate 13-acetate transiently activated PKC and HDAC5, and upregulated MEF2c expression. Our findings provide insights into the signalling circuitry that regulates SM development, and have important implications for developing intervention aimed at treating muscular dystrophy.
Collapse
Affiliation(s)
- Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Dengtong Huang
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Abdullah A Alshudukhi
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Roman Chrast
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
16
|
TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection. J Virol 2018; 92:JVI.00905-18. [PMID: 29899090 DOI: 10.1128/jvi.00905-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus (IAV) is a highly transmissible respiratory pathogen and a major cause of morbidity and mortality around the world. Nucleoprotein (NP) is an abundant IAV protein essential for multiple steps of the viral life cycle. Our recent proteomic study of the IAV-host interaction network found that TRIM41 (tripartite motif-containing 41), a ubiquitin E3 ligase, interacted with NP. However, the role of TRIM41 in IAV infection is unknown. Here, we report that TRIM41 interacts with NP through its SPRY domain. Furthermore, TRIM41 is constitutively expressed in lung epithelial cells, and overexpression of TRIM41 inhibits IAV infection. Conversely, RNA interference (RNAi) and knockout of TRIM41 increase host susceptibility to IAV infection. As a ubiquitin E3 ligase, TRIM41 ubiquitinates NP in vitro and in cells. The TRIM41 mutant lacking E3 ligase activity fails to inhibit IAV infection, suggesting that the E3 ligase activity is indispensable for TRIM41 antiviral function. Mechanistic analysis further revealed that the polyubiquitination leads to NP protein degradation and viral inhibition. Taking these observations together, TRIM41 is a constitutively expressed intrinsic IAV restriction factor that targets NP for ubiquitination and protein degradation.IMPORTANCE Influenza control strategies rely on annual immunization and require frequent updates of the vaccine, which is not always a foolproof process. Furthermore, the current antivirals are also losing effectiveness as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new antiviral mechanisms and develop therapeutic drugs based on these mechanisms. Targeting the virus-host interface is an emerging new strategy because host factors controlling viral replication activity will be ideal candidates, and cellular proteins are less likely to mutate under drug-mediated selective pressure. Here, we show that the ubiquitin E3 ligase TRIM41 is an intrinsic host restriction factor to IAV. TRIM41 directly binds the viral nucleoprotein and targets it for ubiquitination and proteasomal degradation, thereby limiting viral infection. Exploitation of this natural defense pathway may open new avenues to develop antiviral drugs targeting the influenza virus.
Collapse
|
17
|
Singh RK, Kumar S, Tomar MS, Verma PK, Singh SP, Gautam PK, Acharya A. Classical Protein Kinase C: a novel kinase target in breast cancer. Clin Transl Oncol 2018; 21:259-267. [DOI: 10.1007/s12094-018-1929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/21/2018] [Indexed: 11/28/2022]
|
18
|
Liu ZS, Zhang ZY, Cai H, Zhao M, Mao J, Dai J, Xia T, Zhang XM, Li T. RINCK-mediated monoubiquitination of cGAS promotes antiviral innate immune responses. Cell Biosci 2018; 8:35. [PMID: 29760876 PMCID: PMC5944131 DOI: 10.1186/s13578-018-0233-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Background As an important danger signal, the presence of DNA in cytoplasm triggers potent immune responses. Cyclic GMP-AMP synthase (cGAS) is a recently characterized key sensor for cytoplasmic DNA. The engagement of cGAS with DNA leads to the synthesis of a second messenger, cyclic GMP-AMP (cGAMP), which binds and activates the downstream adaptor protein STING to promote type I interferon production. Although cGAS has been shown to play a pivotal role in innate immunity, the exact regulation of cGAS activation is not fully understood. Results We report that an E3 ubiquitin ligase, RING finger protein that interacts with C kinase (RINCK, also known as tripartite motif protein 41, TRIM41), is critical for cGAS activation by mediating the monoubiquitination of cGAS. Using CRISPR/Cas9, we generated RINCK-deletion cells and showed that the deficiency of RINCK resulted in dampened interferon production in response to cytosolic DNA. Consistently, the RINCK-deletion cells also exhibited insufficient interferon production upon herpes simplex virus 1, a DNA virus, infection. As a result, the viral load in RINCK-deficient cells was significantly higher than that in wild-type cells. We also found that RINCK deficiency inhibited the up-stream signaling of DNA-triggered interferon production pathway, which was reflected by the phosphorylation of the TANK-binding kinase 1 and the interferon regulatory factor 3. Interestingly, we found that RINCK binds to cGAS and promotes the monoubiquitination of cGAS, thereby positively regulating the cGAS-mediated cGAMP synthesis. Conclusions Our study reveals that monoubiquitination is an important regulation for cGAS activation and uncovers a critical role of RINCK in the cGAS-mediated innate immunity.
Collapse
Affiliation(s)
- Zhao-Shan Liu
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China
| | - Zi-Yu Zhang
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China
| | - Hong Cai
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China
| | - Ming Zhao
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China
| | - Jie Mao
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China
| | - Jiang Dai
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China.,2State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing, 100850 China
| | - Tian Xia
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China
| | - Xue-Min Zhang
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China.,2State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing, 100850 China
| | - Tao Li
- 1State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing, 100850 China
| |
Collapse
|
19
|
Benke S, Agerer B, Haas L, Stöger M, Lercher A, Gabler L, Kiss I, Scinicariello S, Berger W, Bergthaler A, Obenauf AC, Versteeg GA. Human tripartite motif protein 52 is required for cell context-dependent proliferation. Oncotarget 2018; 9:13565-13581. [PMID: 29568378 PMCID: PMC5862599 DOI: 10.18632/oncotarget.24422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Tripartite motif (TRIM) proteins have been shown to play important roles in cancer development and progression by modulating cell proliferation or resistance from cell death during non-homeostatic stress conditions found in tumor micro-environments. In this study, we set out to investigate the importance for cellular fitness of the virtually uncharacterized family member TRIM52. The human TRIM52 gene has arisen recently in evolution, making it unlikely that TRIM52 is required for basic cellular functions in normal cells. However, a recent genome-wide ablation screening study has suggested that TRIM52 may be essential for optimal proliferation or survival in certain genetic cancer backgrounds. Identifying genes which fit this concept of genetic context-dependent fitness in cancer cells is of interest as they are promising targets for tumor-specific therapy. We report here that TRIM52 ablation significantly diminished the proliferation of specific glioblastoma cell lines in cell culture and mouse xenografts by compromising their cell cycle progression in a p53-dependent manner. Together, our findings point to a non-redundant TRIM52 function that is required for optimal proliferation.
Collapse
Affiliation(s)
- Stefan Benke
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Benedikt Agerer
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Lisa Haas
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna 1030, Austria
| | - Martin Stöger
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna A-1090, Austria
| | - Izabella Kiss
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Sara Scinicariello
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna A-1090, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna C. Obenauf
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna 1030, Austria
| | - Gijs A. Versteeg
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| |
Collapse
|
20
|
Singh RK, Kumar S, Gautam PK, Tomar MS, Verma PK, Singh SP, Kumar S, Acharya A. Protein kinase C-α and the regulation of diverse cell responses. Biomol Concepts 2018; 8:143-153. [PMID: 28841566 DOI: 10.1515/bmc-2017-0005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022] Open
Abstract
Protein kinase C (PKC) comprises a family of lipid-sensitive enzymes that have been involved in a broad range of cellular functions. PKC-α is a member of classical PKC with ubiquitous expression and different cellular localization. This unique PKC isoform is activated by various signals which evoke lipid hydrolysis, after activation it interacts with various adapter proteins and is localized to specific cellular compartments where it is devised to work. The universal expression and activation by various stimuli make it a perfect player in uncountable cellular functions including differentiation, proliferation, apoptosis, cellular transformation, motility, adhesion and so on. However, these functions are not intrinsic properties of PKC-α, but depend on cell types and conditions. The activities of PKC-α are managed by the various pharmacological activators/inhibitors and antisense oligonucleotides. The aim of this review is to elaborate the structural feature, and provide an insight into the mechanism of PKC-α activation and regulation of its key biological functions in different cellular compartments to develop an effective pharmacological approach to regulate the PKC-α signal array.
Collapse
|
21
|
Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond) 2017; 130:1499-510. [PMID: 27433023 DOI: 10.1042/cs20160036] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure.
Collapse
|
22
|
Tan Z, Liu X, Yu E, Wang H, Tang L, Wang H, Fu C. Lentivirus-mediated RNA interference of tripartite motif 68 inhibits the proliferation of colorectal cancer cell lines SW1116 and HCT116 in vitro. Oncol Lett 2017; 13:2649-2655. [PMID: 28454446 PMCID: PMC5403482 DOI: 10.3892/ol.2017.5787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common types of cancer worldwide. Previous studies have revealed that certain members of tripartite motif (TRIM) proteins are involved in carcin ogenesis regulation, but little is known about the function of TRIM68 in human colorectal cancer. To investigate the role of TRIM68 in colorectal cancer SW1116 and HCT116 cell lines, the present study conducted lentivirus-mediated knockdown against TRIM68 and demonstrated that depletion of TRIM68 notably inhibits colorectal cancer cell proliferation and colony formation ability. Cell cycle arrest in the G0/G1 phase and cycle accumulation in sub-G1 phase provided evidence that TRIM68 may participate in the regulation of colorectal cancer tumorigenesis. The results revealed the significant role of TRIM68 in regulating colorectal cancer cell mitosis and indicated that TRIM68 may be a promising therapeutic target.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China.,PLA Center of General Surgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoshuang Liu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Lijun Tang
- PLA Center of General Surgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chuangang Fu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
23
|
Thiébaut R, Esmiol S, Lecine P, Mahfouz B, Hermant A, Nicoletti C, Parnis S, Perroy J, Borg JP, Pascoe L, Hugot JP, Ollendorff V. Characterization and Genetic Analyses of New Genes Coding for NOD2 Interacting Proteins. PLoS One 2016; 11:e0165420. [PMID: 27812135 PMCID: PMC5094585 DOI: 10.1371/journal.pone.0165420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/11/2016] [Indexed: 01/26/2023] Open
Abstract
NOD2 contributes to the innate immune response and to the homeostasis of the intestinal mucosa. In response to its bacterial ligand, NOD2 interacts with RICK and activates the NF-κB and MAPK pathways, inducing gene transcription and synthesis of proteins required to initiate a balanced immune response. Mutations in NOD2 have been associated with an increased risk of Crohn’s Disease (CD), a disabling inflammatory bowel disease (IBD). Because NOD2 signaling plays a key role in CD, it is important to further characterize the network of protein interacting with NOD2. Using yeast two hybrid (Y2H) screens, we identified new NOD2 interacting proteins (NIP). The primary interaction was confirmed by coimmunoprecipitation and/or bioluminescence resonance energy transfer (BRET) experiments for 11 of these proteins (ANKHD1, CHMP5, SDCCAG3, TRIM41, LDOC1, PPP1R12C, DOCK7, VIM, KRT15, PPP2R3B, and C10Orf67). These proteins are involved in diverse functions, including endosomal sorting complexes required for transport (ESCRT), cytoskeletal architecture and signaling regulation. Additionally, we show that the interaction of 8 NIPs is compromised with the 3 main CD associated NOD2 mutants (R702W, G908R and 1007fs). Furthermore, to determine whether these NOD2 protein partners could be encoded by IBD susceptibility genes, a transmission disequilibrium test (TDT) was performed on 101 single nucleotide polymorphisms (SNPs) and the main corresponding haplotypes in genes coding for 15 NIPs using a set of 343 IBD families with 556 patients. Overall this work did not increase the number of IBD susceptibility genes but extends the NOD2 protein interaction network and suggests that NOD2 interactome and signaling depend upon the NOD2 mutation profile in CD.
Collapse
Affiliation(s)
- Raphaële Thiébaut
- UMR1149, INSERM et Université Paris Diderot-Sorbonne Paris-Cité, 75018, Paris, France
| | - Sophie Esmiol
- INRA, UMR866, DMEM, Université de Montpellier, Montpellier, France
| | - Patrick Lecine
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, "Cell Polarity, Cell signaling and Cancer - Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Batoul Mahfouz
- UMR1149, INSERM et Université Paris Diderot-Sorbonne Paris-Cité, 75018, Paris, France
| | - Aurelie Hermant
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, "Cell Polarity, Cell signaling and Cancer - Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Université, Centrale Marseille, CNRS, ISM2 UMR7313, 13397, Marseille, France
| | - Stephane Parnis
- Aix Marseille Université, Centrale Marseille, CNRS, ISM2 UMR7313, 13397, Marseille, France
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France
- INSERM, U1191, Montpellier, F-34094, France
- Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, "Cell Polarity, Cell signaling and Cancer - Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | | | - Jean-Pierre Hugot
- UMR1149, INSERM et Université Paris Diderot-Sorbonne Paris-Cité, 75018, Paris, France
- Assistance Publique Hôpitaux de Paris, service de gastroentérologie pédiatrique, Hôpital Robert Debré, 75019, Paris, France
| | - Vincent Ollendorff
- INRA, UMR866, DMEM, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
24
|
Devkota S, Jeong H, Kim Y, Ali M, Roh JI, Hwang D, Lee HW. Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases. Autophagy 2016; 12:2038-2053. [PMID: 27541728 PMCID: PMC5103340 DOI: 10.1080/15548627.2016.1217371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Historically, the ubiquitin-proteasome system (UPS) and autophagy pathways were believed to be independent; however, recent data indicate that these pathways engage in crosstalk. To date, the players mediating this crosstalk have been elusive. Here, we show experimentally that EI24 (EI24, autophagy associated transmembrane protein), a key component of basal macroautophagy/autophagy, degrades 14 physiologically important E3 ligases with a RING (really interesting new gene) domain, whereas 5 other ligases were not degraded. Based on the degradation results, we built a statistical model that predicts the RING E3 ligases targeted by EI24 using partial least squares discriminant analysis. Of 381 RING E3 ligases examined computationally, our model predicted 161 EI24 targets. Those targets are primarily involved in transcription, proteolysis, cellular bioenergetics, and apoptosis and regulated by TP53 and MTOR signaling. Collectively, our work demonstrates that EI24 is an essential player in UPS-autophagy crosstalk via degradation of RING E3 ligases. These results indicate a paradigm shift regarding the fate of E3 ligases.
Collapse
Affiliation(s)
- Sushil Devkota
- a Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center , Yonsei University , Seoul , Republic of Korea
| | - Hyobin Jeong
- b Department of New Biology and Center for Plant Aging Research , Institute for Basic Science, DGIST , Daegu , Republic of Korea
| | - Yunmi Kim
- a Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center , Yonsei University , Seoul , Republic of Korea
| | - Muhammad Ali
- a Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center , Yonsei University , Seoul , Republic of Korea
| | - Jae-Il Roh
- a Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center , Yonsei University , Seoul , Republic of Korea
| | - Daehee Hwang
- b Department of New Biology and Center for Plant Aging Research , Institute for Basic Science, DGIST , Daegu , Republic of Korea
| | - Han-Woong Lee
- a Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center , Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
25
|
Abstract
Precise control of the amplitude of protein kinase C (PKC) signalling is essential for cellular homoeostasis, and disruption of this control leads to pathophysiological states such as cancer, neurodegeneration and diabetes. For conventional and novel PKC, this amplitude is meticulously tuned by multiple inputs that regulate the amount of enzyme in the cell, its ability to sense its allosteric activator diacylglycerol, and protein scaffolds that co-ordinate access to substrates. Key to regulation of the signalling output of most PKC isoenzymes is the ability of cytosolic enzyme to respond to the membrane-embedded lipid second messenger, diacylglycerol, in a dynamic range that prevents signalling in the absence of agonists but allows efficient activation in response to small changes in diacylglycerol levels. The present review discusses the regulatory inputs that control the spatiotemporal dynamics of PKC signalling, with a focus on conventional and novel PKC isoenzymes.
Collapse
|
26
|
Mehta NK, Mehta KD. Protein kinase C-beta: An emerging connection between nutrient excess and obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1491-1497. [DOI: 10.1016/j.bbalip.2014.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/16/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023]
|
27
|
Mehta KD. Emerging role of protein kinase C in energy homeostasis: A brief overview. World J Diabetes 2014; 5:385-392. [PMID: 24936260 PMCID: PMC4058743 DOI: 10.4239/wjd.v5.i3.385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/16/2014] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C-β (PKCβ), a member of the lipid-activated serine/threonine PKC family, has been implicated in a wide range of important cellular processes. Very recently, the novel role of PKCβ in the regulation of triglyceride homeostasis via regulating mitochondrial function has been explored. In this review, I aim to provide an overview of PKCβ regarding regulation by lipids and recently gained knowledge on its role in energy homeostasis. Alterations in adipose PKCβ expression have been shown to be crucial for diet-induced obesity and related metabolic abnormalities. High-fat diet is shown to induce PKCβ expression in white adipose tissue in an isoform- and tissue-specific manner. Genetically manipulated mice devoid of PKCβ are lean with increased oxygen consumption and are resistant to high-fat diet-induced obesity and hepatic steatosis with improved insulin sensitivity. Available data support the model in which PKCβ functions as a “diet-sensitive” metabolic sensor whose induction in adipose tissue by high-fat diet is among the initiating event disrupting mitochondrial homeostasis via intersecting with p66Shc signaling to amplify adipose dysfunction and have systemic consequences. Alterations in PKCβ expression and/or function may have important implications in health and disease and warrants a detailed investigation into the downstream target genes and the underlying mechanisms involved. Development of drugs that target the PKCβ pathway and identification of miRs specifically controlling PKCβ expression may lead to novel therapeutic options for treating age-related metabolic disease including fatty liver, obesity and type 2 diabetes.
Collapse
|
28
|
Warfel NA, Dolloff NG, Dicker DT, Malysz J, El-Deiry WS. CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle 2013; 12:3689-701. [PMID: 24189531 DOI: 10.4161/cc.26930] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a major mediator of tumor physiology, and its activation is correlated with tumor progression, metastasis, and therapeutic resistance. HIF-1 is activated in a broad range of solid tumors due to intratumoral hypoxia or genetic alterations that enhance its expression or inhibit its degradation. As a result, decreasing HIF-1α expression represents an attractive strategy to sensitize hypoxic tumors to anticancer therapies. Here, we show that cyclin-dependent kinase 1 (CDK1) regulates the expression of HIF-1α, independent of its known regulators. Overexpression of CDK1 and/or cyclin B1 is sufficient to stabilize HIF-1α under normoxic conditions, whereas inhibition of CDK1 enhances the proteasomal degradation of HIF-1α, reducing its half-life and steady-state levels. In vitro kinase assays reveal that CDK1 directly phosphorylates HIF-1α at a previously unidentified regulatory site, Ser668. HIF-1α is stabilized under normoxic conditions during G 2/M phase via CDK1-mediated phosphorylation of Ser668. A phospho-mimetic construct of HIF-1α at Ser668 (S668E) is significantly more stable under both normoxic and hypoxic conditions, resulting in enhanced transcription of HIF-1 target genes and increased tumor cell invasion and migration. Importantly, HIF-1α (S668E) displays increased tumor angiogenesis, proliferation, and tumor growth in vivo compared with wild-type HIF-1α. Thus, we have identified a novel link between CDK1 and HIF-1α that provides a potential molecular explanation for the elevated HIF-1 activity observed in primary and metastatic tumors, independent of hypoxia, and offers a molecular rationale for the clinical translation of CDK inhibitors for use in tumors with constitutively active HIF-1.
Collapse
Affiliation(s)
- Noel A Warfel
- Department of Medicine (Hematology/Oncology); Penn State Hershey Cancer Institute; Penn State College of Medicine; Hershey, PA USA
| | | | | | | | | |
Collapse
|
29
|
Identification and characterization of multiple TRIM proteins that inhibit hepatitis B virus transcription. PLoS One 2013; 8:e70001. [PMID: 23936368 PMCID: PMC3731306 DOI: 10.1371/journal.pone.0070001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/18/2013] [Indexed: 01/05/2023] Open
Abstract
Tripartite motif (TRIM) proteins constitute a family of over 100 members that share conserved tripartite motifs and exhibit diverse biological functions. Several TRIM proteins have been shown to restrict viral infections and regulate host cellular innate immune responses. In order to identify TRIM proteins that modulate the infection of hepatitis B virus (HBV), we tested 38 human TRIMs for their effects on HBV gene expression, capsid assembly and DNA synthesis in human hepatoma cells (HepG2). The study revealed that ectopic expression of 8 TRIM proteins in HepG2 cells potently reduced the amounts of secreted HBV surface and e antigens as well as intracellular capsid and capsid DNA. Mechanistic analyses further demonstrated that the 8 TRIMs not only reduced the expression of HBV mRNAs, but also inhibited HBV enhancer I and enhancer II activities. Studies focused on TRIM41 revealed that a HBV DNA segment spanning nucleotide 1638 to nucleotide 1763 was essential for TRIM41-mediated inhibition of HBV enhancer II activity and the inhibitory effect depended on the E3 ubiquitin ligase activity of TRIM41 as well as the integrity of TRIM41 C-terminal domain. Moreover, knockdown of endogenous TRIM41 in a HepG2-derived stable cell line significantly increased the level of HBV preC/C RNA, leading to an increase in viral core protein, capsid and capsid DNA. Our studies have thus identified eight TRIM proteins that are able to inhibit HBV transcription and provided strong evidences suggesting the endogenous role of TRIM41 in regulating HBV transcription in human hepatoma cells.
Collapse
|
30
|
Streich FC, Ronchi VP, Connick JP, Haas AL. Tripartite motif ligases catalyze polyubiquitin chain formation through a cooperative allosteric mechanism. J Biol Chem 2013; 288:8209-8221. [PMID: 23408431 DOI: 10.1074/jbc.m113.451567] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ligation of polyubiquitin chains to proteins is a fundamental post-translational modification, often resulting in targeted degradation of conjugated proteins. Attachment of polyubiquitin chains requires the activities of an E1 activating enzyme, an E2 carrier protein, and an E3 ligase. The mechanism by which polyubiquitin chains are formed remains largely speculative, especially for RING-based ligases. The tripartite motif (TRIM) superfamily of ligases functions in many cellular processes including innate immunity, cellular localization, development and differentiation, signaling, and cancer progression. The present results show that TRIM ligases catalyze polyubiquitin chain formation in the absence of substrate, the rates of which can be used as a functional readout of enzyme function. Initial rate studies under biochemically defined conditions show that TRIM32 and TRIM25 are specific for the Ubc5 family of E2-conjugating proteins and, along with TRIM5α, exhibit cooperative kinetics with respect to Ubc5 concentration, with submicromolar [S]0.5 and Hill coefficients of 3-5, suggesting they possess multiple binding sites for their cognate E2-ubiquitin thioester. Mutation studies reveal a second, non-canonical binding site encompassing the C-terminal Ubc5α-helix. Polyubiquitin chain formation requires TRIM subunit oligomerization through the conserved coiled-coil domain, but can be partially replaced by fusing the catalytic domain to GST to promote dimerization. Other results suggest that TRIM32 assembles polyubiquitin chains as a Ubc5-linked thioester intermediate. These results represent the first detailed mechanistic study of TRIM ligase activity and provide a functional context for oligomerization observed in the superfamily.
Collapse
Affiliation(s)
- Frederick C Streich
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Virginia P Ronchi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - J Patrick Connick
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Arthur L Haas
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112; Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112.
| |
Collapse
|
31
|
Duszka K, Bogner-Strauss JG, Hackl H, Rieder D, Neuhold C, Prokesch A, Trajanoski Z, Krogsdam AM. Nr4a1 is required for fasting-induced down-regulation of Pparγ2 in white adipose tissue. Mol Endocrinol 2012; 27:135-49. [PMID: 23250487 DOI: 10.1210/me.2012-1248] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the nuclear receptor gene, Nur77 (Nr4a1), is induced in white adipose tissue (WAT) in response to β-adrenergic stimulation and fasting. Recently, Nur77 has been shown to play a gene regulatory role in the fasting response of several other major metabolic tissues. Here we investigated the effects of Nur77 on the WAT transcriptome after fasting. For this purpose, we performed gene expression profiling of WAT from wild-type and Nur77(-/-) mice submitted to prolonged fasting. Results revealed Nur77-dependent changes in expression profiles of 135 transcripts, many involved in insulin signaling, lipid and fatty acid metabolism, and glucose metabolism. Network analysis identified the deregulated genes Pparγ2 and Nur77 as central hubs and closely connected in the network, indicating overlapping biological function. We further assayed the expression level of Pparγ2 in a bigger cohort of fasted mice and found a significant Nur77-dependent down-regulation of Pparγ2 in the wild-type mice (P = 0.021, n = 10). Consistently, the expression of several known Pparγ2 targets, found among the Nur77-regulated genes (i.e. G0s2, Grp81, Fabp4, and Adipoq), were up-regulated in WAT of fasted Nur77(-/-) mice. Finally, we show with chromatin immunoprecipitation and luciferase assays that the Pparγ2 promoter is a direct target of Nurr-related 77-kDa protein (Nur77)-dependent repressive regulation and that the N-terminal domain of Nur77 is required for this regulation. In conclusion, we present data implicating Nur77 as a mediator of fasting-induced Pparγ2 regulation in WAT.
Collapse
Affiliation(s)
- Kalina Duszka
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K, Li Y, Verma IM, Chiao PJ, Lu Z. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell 2012; 48:771-84. [PMID: 23123196 PMCID: PMC3526114 DOI: 10.1016/j.molcel.2012.09.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/05/2012] [Accepted: 09/19/2012] [Indexed: 01/28/2023]
Abstract
Many types of human tumor cells have overexpressed pyruvate kinase M2 (PKM2). However, the mechanism underlying this increased PKM2 expression remains to be defined. We demonstrate here that EGFR activation induces PLCγ1-dependent PKCε monoubiquitylation at Lys321 mediated by RINCK1 ubiquitin ligase. Monoubiquitylated PKCε interacts with a ubiquitin-binding domain in NEMO zinc finger and recruits the cytosolic IKK complex to the plasma membrane, where PKCε phosphorylates IKKβ at Ser177 and activates IKKβ. Activated RelA interacts with HIF1α, which is required for RelA to bind the PKM promoter. PKCε- and NF-κB-dependent PKM2 upregulation is required for EGFR-promoted glycolysis and tumorigenesis. In addition, PKM2 expression correlates with EGFR and IKKβ activity in human glioblastoma specimens and with grade of glioma malignancy. These findings highlight the distinct regulation of NF-κB by EGF, in contrast to TNF-α, and the importance of the metabolic cooperation between the EGFR and NF-κB pathways in PKM2 upregulation and tumorigenesis.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/enzymology
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Enzyme Activation
- Epidermal Growth Factor/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Glioblastoma/enzymology
- Glioblastoma/genetics
- Glioblastoma/pathology
- Glucose/metabolism
- Glycolysis
- HEK293 Cells
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- I-kappa B Kinase/metabolism
- Lactic Acid/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Nude
- Mutagenesis, Site-Directed
- Mutation
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Neoplasm Grading
- Neoplasm Transplantation
- Phospholipase C gamma/metabolism
- Phosphorylation
- Polypyrimidine Tract-Binding Protein/metabolism
- Prognosis
- Promoter Regions, Genetic
- Protein Kinase C-epsilon/genetics
- Protein Kinase C-epsilon/metabolism
- RNA Interference
- Serine
- Signal Transduction
- Thyroid Hormones/genetics
- Thyroid Hormones/metabolism
- Transcription Factor RelA/metabolism
- Transfection
- Ubiquitination
- Up-Regulation
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Weiwei Yang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yu Cao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wen Bu
- Lester and Sue Smith Breast Center & Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mei Yee Koh
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gilbert Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kenneth Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yi Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Inder M. Verma
- Laboratory of Genetics and Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Ei24-deficiency attenuates protein kinase Cα signaling and skin carcinogenesis in mice. Int J Biochem Cell Biol 2012; 44:1887-96. [PMID: 22771957 DOI: 10.1016/j.biocel.2012.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 12/12/2022]
Abstract
Etoposide-induced gene 24 (Ei24) is a p53 target gene that inhibits growth, induces apoptosis and autophagy, as well as suppresses breast cancer. To evaluate the role of Ei24 in in vivo tumorigenesis, we generated an Ei24-deficient mouse model. Here, we report that, although Ei24 homozygous knockout mice are embryonic lethal, Ei24 heterozygous null mice are attenuated to DMBA/TPA-induced carcinogenesis with regard to the number and size of tumors but not the incidence. Ei24 contains a functional consensus motif, named as an R motif that is highly analogous to amino acids 105-110 of RINCK1, an E3 ligase for protein kinase C (PKC) proteins. We found that Ei24 stabilizes PKCαvia RINCK degradation and competition with RINCK for binding with the C1a domain of PKCα. We also found that Ei24 contributes to PKCα-mediated transactivation of EGFR by promoting PKCα membrane localization and interaction with EGFR. Finally, using Oncomine database we show that Ei24 and EGFR are upregulated in some subsets of human HNSCC. These results suggest that Ei24 is a regulator of the RINCK1-PKCα-EGFR signaling pathway in the development of skin-cancer.
Collapse
|
34
|
Ryu YS, Lee Y, Lee KW, Hwang CY, Maeng JS, Kim JH, Seo YS, You KH, Song B, Kwon KS. TRIM32 protein sensitizes cells to tumor necrosis factor (TNFα)-induced apoptosis via its RING domain-dependent E3 ligase activity against X-linked inhibitor of apoptosis (XIAP). J Biol Chem 2011; 286:25729-38. [PMID: 21628460 DOI: 10.1074/jbc.m111.241893] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.
Collapse
Affiliation(s)
- Yeung Sook Ryu
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang H, Xiao L, Kazanietz MG. p23/Tmp21 associates with protein kinase Cdelta (PKCdelta) and modulates its apoptotic function. J Biol Chem 2011; 286:15821-15831. [PMID: 21454541 PMCID: PMC3091192 DOI: 10.1074/jbc.m111.227991] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/14/2011] [Indexed: 02/05/2023] Open
Abstract
There is emerging evidence that C1 domains, motifs originally identified in PKC isozymes and responsible for binding of phorbol esters and diacylglycerol, interact with the Golgi/endoplasmic reticulum protein p23 (Tmp21). In this study, we investigated whether PKCδ, a kinase widely implicated in apoptosis and inhibition of cell cycle progression, associates with p23 and determined the potential functional implications of this interaction. Using a yeast two-hybrid approach, we found that the PKCδ C1b domain associates with p23 and identified two key residues (Asp(245) and Met(266)) implicated in this interaction. Interestingly, silencing p23 from LNCaP prostate cancer cells using RNAi markedly enhanced PKCδ-dependent apoptosis and activation of PKCδ downstream effectors ROCK and JNK by phorbol 12-myristate 13-acetate. Moreover, translocation of PKCδ to the plasma membrane by phorbol 12-myristate 13-acetate was enhanced in p23-depleted LNCaP cells. Notably, a PKCδ mutant that failed to interact with p23 triggered a strong apoptotic response when expressed in LNCaP cells. In summary, our data compellingly support the concept that C1 domains have dual roles both in lipid and protein associations and provide strong evidence that p23 acts as an anchoring protein that retains PKCδ at the perinuclear region, thus limiting the availability of this kinase for activation in response to stimuli.
Collapse
Affiliation(s)
- HongBin Wang
- From the Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Liqing Xiao
- From the Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Marcelo G. Kazanietz
- From the Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| |
Collapse
|
36
|
Halwachs S, Schaefer I, Seibel P, Honscha W. Antiepileptic Drugs Reduce the Efficacy of Methotrexate Chemotherapy through Accelerated Degradation of the Reduced Folate Carrier by the Ubiquitin-Proteasome Pathway. Chemotherapy 2011; 57:345-56. [DOI: 10.1159/000330461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
|
37
|
Regulation of the tumour suppressor Fbw7α by PKC-dependent phosphorylation and cancer-associated mutations. Biochem J 2010; 432:77-87. [DOI: 10.1042/bj20100799] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fbw7 (F-box WD40 protein 7) is a major tumour suppressor, which mediates the degradation of several potent oncogenes. PKC (protein kinase C) comprises a serine/threonine kinase family that can promote transformation when dysregulated. In the present study, we investigated the relationship between Fbw7 and PKC. Multiple members of the PKC superfamily interact with the substrate-binding domain of Fbw7. However, we find no evidence for Fbw7-mediated degradation of PKC. Instead, we demonstrate that Fbw7 is a novel substrate for PKC. Two residues within the isoform-specific N-terminus of Fbw7α are phosphorylated in a PKC-dependent manner, both in vitro and in mammalian cells (Ser10 and Ser18). Mutational analyses reveal that phosphorylation of Fbw7α at Ser10 can regulate its nuclear localization. Cancer-associated mutations in nearby residues (K11R and the addition of a proline residue at position 16) influence Fbw7α localization in a comparable manner, suggesting that mislocalization of this protein may be of pathological significance. Together these results provide evidence for both physical and functional interactions between the PKC and Fbw7 families, and yield insights into the isoform-specific regulation of Fbw7α.
Collapse
|
38
|
Aziz MH, Hafeez BB, Sand JM, Pierce DB, Aziz SW, Dreckschmidt NE, Verma AK. Protein kinase Cvarepsilon mediates Stat3Ser727 phosphorylation, Stat3-regulated gene expression, and cell invasion in various human cancer cell lines through integration with MAPK cascade (RAF-1, MEK1/2, and ERK1/2). Oncogene 2010; 29:3100-9. [PMID: 20228845 PMCID: PMC2947343 DOI: 10.1038/onc.2010.63] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/06/2010] [Accepted: 02/01/2010] [Indexed: 12/22/2022]
Abstract
Protein kinase C epsilon (PKCvarepsilon), a novel calcium-independent PKC isoform, has been shown to be a transforming oncogene. PKCvarepsilon-mediated oncogenic activity is linked to its ability to promote cell survival. However, the mechanisms by which PKCvarepsilon signals cell survival remain elusive. We found that signal transducers and activators of transcription 3 (Stat3), which is constitutively activated in a wide variety of human cancers, is a protein partner of PKCvarepsilon. Stat3 has two conserved amino-acid (Tyr705 and Ser727) residues, which are phosphorylated during Stat3 activation. PKCvarepsilon interacts with Stat3alpha isoform, which has Ser727, and not with Stat3beta isoform, which lacks Ser727. PKCvarepsilon-Stat3 interaction and Stat3Ser727 phosphorylation was initially observed during induction of squamous cell carcinomas and in prostate cancer. Now we present that (1) PKCvarepsilon physically interacts with Stat3alpha isoform in various human cancer cells: skin melanomas (MeWo and WM266-4), gliomas (T98G and MO59K), bladder (RT-4 and UM-UC-3), colon (Caco-2), lung (H1650), pancreatic (PANC-1), and breast (MCF-7 and MDA:MB-231); (2) inhibition of PKCvarepsilon expression using specific siRNA inhibits Stat3Ser727 phosphorylation, Stat3-DNA binding, Stat3-regulated gene expression as well as cell invasion; and (3) PKCvarepsilon mediates Stat3Ser727 phosphorylation through integration with the MAPK cascade (RAF-1, MEK1/2, and ERK1/2). The results indicate that PKCvarepsilon-mediated Stat3Ser727 phosphorylation is essential for constitutive activation of Stat3 and cell invasion in various human cancers.
Collapse
Affiliation(s)
- Moammir H. Aziz
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Paul P. Carbone Comprehensive Cancer, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792
| | - Bilal B. Hafeez
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Paul P. Carbone Comprehensive Cancer, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792
| | - Jordan M. Sand
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Paul P. Carbone Comprehensive Cancer, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792
- Molecular and Environmental Toxicology Center, Wisconsin Insititutes of Medical Research, Madison, Wisconsin 53705 USA
| | - David B. Pierce
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Paul P. Carbone Comprehensive Cancer, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792
| | - Saba W. Aziz
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Paul P. Carbone Comprehensive Cancer, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792
| | - Nancy E. Dreckschmidt
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Paul P. Carbone Comprehensive Cancer, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792
| | - Ajit K. Verma
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Paul P. Carbone Comprehensive Cancer, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792
| |
Collapse
|
39
|
Wang H, Kazanietz MG. p23/Tmp21 differentially targets the Rac-GAP beta2-chimaerin and protein kinase C via their C1 domains. Mol Biol Cell 2010; 21:1398-1408. [PMID: 20164256 PMCID: PMC2854097 DOI: 10.1091/mbc.e09-08-0735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/06/2010] [Accepted: 02/09/2010] [Indexed: 02/05/2023] Open
Abstract
The C1 domains in protein kinase C (PKC) isozymes and other signaling molecules are responsible for binding the lipid second messenger diacylglycerol and phorbol esters, and for mediating translocation to membranes. Previous studies revealed that the C1 domain in alpha- and beta-chimaerins, diacylglycerol-regulated Rac-GAPs, interacts with the endoplasmic reticulum/Golgi protein p23/Tmp21. Here, we found that p23/Tmp21 acts as a C1 domain-docking protein that mediates perinuclear translocation of beta2-chimaerin. Glu227 and Leu248 in the beta2-chimaerin C1 domain are crucial for binding p23/Tmp21 and perinuclear targeting. Interestingly, isolated C1 domains from individual PKC isozymes differentially interact with p23/Tmp21. For PKCepsilon, it interacts with p23/Tmp21 specifically via its C1b domain; however, this association is lost in response to phorbol esters. These results demonstrate that p23/Tmp21 acts as an anchor that distinctively modulates compartmentalization of C1 domain-containing proteins, and it plays an essential role in beta2-chimaerin relocalization. Our study also highlights the relevance of C1 domains in protein-protein interactions in addition to their well-established lipid-binding properties.
Collapse
Affiliation(s)
- HongBin Wang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Marcelo G. Kazanietz
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| |
Collapse
|
40
|
Colosimo PF, Liu X, Kaplan NA, Tolwinski NS. GSK3beta affects apical-basal polarity and cell-cell adhesion by regulating aPKC levels. Dev Dyn 2010; 239:115-25. [PMID: 19422025 DOI: 10.1002/dvdy.21963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The dynamic rearrangement of cell-cell contacts is required for the establishment of functional epithelial cell sheets. However, the signaling pathways and cellular mechanisms that initiate and maintain this polarity are not well understood. We show that loss of the Wnt signaling component GSK3 beta results in increased levels of aPKC and leads to defects in apical-basal polarity. We find that GSK3 beta directly phosphorylates aPKC, which likely promotes its ubiquitin-mediated proteosomal degradation. aPKC increases the levels of Armadillo and stabilizes adherens junctions. These results suggest that the Wnt pathway component GSK3 beta regulates the polarity determinant aPKC, which in turn affects cell-cell contacts during the development of polarized tissues.
Collapse
Affiliation(s)
- Pamela F Colosimo
- Program in Developmental Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
41
|
TRIM72 negatively regulates myogenesis via targeting insulin receptor substrate-1. Cell Death Differ 2010; 17:1254-65. [PMID: 20139895 DOI: 10.1038/cdd.2010.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipid rafts have been known to be platforms to initiate cellular signal transduction of insulin-like growth factor (IGF) inducing skeletal muscle differentiation and hypertrophy. Here, tripartite motif 72 (TRIM72), with a really interesting new gene (RING)-finger domain, a B-box, two coiled-coil domains, and a SPRY (SPla and RYanodine receptor) domain, was revealed to be predominantly expressed in the sarcolemma lipid rafts of skeletal and cardiac muscles. Adenoviral TRIM72 overexpression prevented but RNAi-mediated TRIM72 silencing enhanced C2C12 myogenesis by modulating the IGF-induced insulin receptor substrate-1 (IRS-1) activation through the molecular association of TRIM72 with IRS-1. Furthermore, myogenic activity was highly enhanced with increased IGF-induced Akt activation in the satellite cells of TRIM72(-/-) mice, compared to those of TRIM72+/+ mice. Because TRIM72 promoter analysis shows that two proximal E-boxes in TRIM72 promoter were essential for MyoD- and Akt-dependent TRIM72 transcription, we can conclude that TRIM72 is a novel antagonist of IRS-1, and is essential as a negative regulator of IGF-induced muscle differentiation.
Collapse
|
42
|
Tanji K, Kamitani T, Mori F, Kakita A, Takahashi H, Wakabayashi K. TRIM9, a novel brain-specific E3 ubiquitin ligase, is repressed in the brain of Parkinson's disease and dementia with Lewy bodies. Neurobiol Dis 2010; 38:210-8. [PMID: 20085810 DOI: 10.1016/j.nbd.2010.01.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/18/2009] [Accepted: 01/11/2010] [Indexed: 12/24/2022] Open
Abstract
TRIM family proteins are involved in a broad range of biological processes, and their alteration results in many diverse pathological conditions found in genetic diseases, viral infections, and cancers. However, the spatial and temporal expression and function of TRIM9, one of TRIM family proteins, remain obscure. Our results here showed that TRIM9 protein is mainly expressed in the cerebral cortex, and functions as an E3 ubiquitin ligase collaborating with an E2 ubiquitin conjugating enzyme UbcH5b. Immunohistochemical examination revealed that TRIM9 is localized to the neurons in the normal mouse and human brain and that TRIM9 immunoreactivity is severely decreased in the affected brain areas in Parkinson's disease and dementia with Lewy bodies. This repressed level of TRIM9 protein was supported by immunoblotting analysis. Intriguingly, cortical and brainstem-type Lewy bodies were immunopositive for TRIM9. These results suggest that TRIM9 plays an important role in the regulation of neuronal functions and participates in pathological process of Lewy body disease through its ligase activity.
Collapse
Affiliation(s)
- Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Lee SLO, Hong SW, Shin JS, Kim JS, Ko SG, Hong NJ, Kim DJ, Lee WJ, Jin DH, Lee MS. p34SEI-1 inhibits doxorubicin-induced senescence through a pathway mediated by protein kinase C-delta and c-Jun-NH2-kinase 1 activation in human breast cancer MCF7 cells. Mol Cancer Res 2009; 7:1845-53. [PMID: 19903772 DOI: 10.1158/1541-7786.mcr-09-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we describe a novel function of the p34(SEI-1) protein, which is both an oncogenic protein and a positive regulator of the cell cycle. The p34(SEI-1) protein was found to inhibit doxorubicin-induced senescence. We investigated the molecular mechanisms of the inhibitory effect of p34(SEI-1) on senescence. First, we found that the activation of protein kinase C-delta (PKC-delta), which is cleaved into a 38 kDa active form from a 78 kDa pro-form, induced after doxorubicin treatment, was inhibited by p34(SEI-1). Furthermore, p34(SEI-1) induced the ubiquitination of PKC-delta. Yet, there is no interaction between p34(SEI-1) and PKC-delta. We also found that the phosphorylation of c-Jun-NH(2)-kinase 1 (JNK1) induced after doxorubicin treatment was suppressed by p34(SEI-1), but not in JNK2. Consistently, pharmacologic or genetic inactivation of either PKC-delta or JNK1 was found to inhibit doxorubicin-induced senescence. In addition, the genetic inactivation of PKC-delta by PKC-delta small interfering RNA resulted in an inhibition of JNK1 activation, but PKC-delta expression was not inactivated by JNK1 small interfering RNA, implying that the activation of JNK1 could be dependently induced by PKC-delta. Therefore, p34(SEI-1) inhibits senescence by inducing PKC-delta ubiquitination and preventing PKC-delta-dependent phosphorylation of JNK1.
Collapse
Affiliation(s)
- Sae Lo Oom Lee
- Research Center for Women's Diseases, Division of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mashukova A, Oriolo AS, Wald FA, Casanova ML, Kröger C, Magin TM, Omary MB, Salas PJI. Rescue of atypical protein kinase C in epithelia by the cytoskeleton and Hsp70 family chaperones. J Cell Sci 2009; 122:2491-503. [PMID: 19549684 DOI: 10.1242/jcs.046979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical PKC (PKC iota) is a key organizer of cellular asymmetry. Sequential extractions of intestinal cells showed a pool of enzymatically active PKC iota and the chaperone Hsp70.1 attached to the apical cytoskeleton. Pull-down experiments using purified and recombinant proteins showed a complex of Hsp70 and atypical PKC on filamentous keratins. Transgenic animals overexpressing keratin 8 displayed delocalization of Hsp70 and atypical PKC. Two different keratin-null mouse models, as well as keratin-8 knockdown cells in tissue culture, also showed redistribution of Hsp70 and a sharp decrease in the active form of atypical PKC, which was also reduced by Hsp70 knockdown. An in-vitro turn motif rephosphorylation assay indicated that PKC iota is dephosphorylated by prolonged activity. The Triton-soluble fraction could rephosphorylate PKC iota only when supplemented with the cytoskeletal pellet or filamentous highly purified keratins, a function abolished by immunodepletion of Hsp70 but rescued by recombinant Hsp70. We conclude that both filamentous keratins and Hsp70 are required for the rescue rephosphorylation of mature atypical PKC, regulating the subcellular distribution and steady-state levels of active PKC iota.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chow SY, Yu CY, Guy GR. Sprouty2 interacts with protein kinase C delta and disrupts phosphorylation of protein kinase D1. J Biol Chem 2009; 284:19623-36. [PMID: 19458088 DOI: 10.1074/jbc.m109.021600] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sprouty (Spry) proteins act as inhibitors of the Ras/ERK pathway downstream of receptor tyrosine kinases. In this study, we report a novel interaction between protein kinase C delta (PKCdelta) and Spry2. Endogenous PKCdelta and Spry2 interact in cells upon basic fibroblast growth factor stimulation, indicating a physiological relevance for the interaction. This interaction appeared to require the full-length Spry2 protein and was conformation-dependent. Conformational constraints were released upon FGFR1 activation, allowing the interaction to occur. Although this interaction did not affect the phosphorylation of PKCdelta by another kinase, it reduced the phosphorylation of a PKCdelta substrate, protein kinase D1 (PKD1). Spry2 was found to interact more strongly with PKCdelta with increasing amounts of PKD1, which indicated that instead of competing with PKD1 for binding with PKCdelta, it was more likely to form a trimeric complex with both PKCdelta and PKD1. Formation of the complex was found to be dependent on an existing PKCdelta-PKD1 interaction. By disrupting the interaction between PKCdelta and PKD1, Spry2 was unable to associate with PKCdelta to form the trimeric complex. As a consequence of this trimeric complex, the existing interaction between PKCdelta and PKD1 was increased, and the transfer of phosphate groups from PKCdelta to PKD1 was at least partly blocked by Spry2. The action of Spry2 on PKCdelta resulted in the inhibition of both ERK phosphorylation and invasion of PC-3 cells via PKCdelta signaling. By disrupting the capacity of PKCdelta to phosphorylate its cognate substrates, Spry2 may serve to modulate PKCdelta signaling downstream of receptor tyrosine kinases and to regulate the physiological outcome.
Collapse
Affiliation(s)
- Soah Yee Chow
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, National University of Singapore, Singapore 117597, Singapore
| | | | | |
Collapse
|
46
|
Hellberg C, Schmees C, Karlsson S, Ahgren A, Heldin CH. Activation of protein kinase C alpha is necessary for sorting the PDGF beta-receptor to Rab4a-dependent recycling. Mol Biol Cell 2009; 20:2856-63. [PMID: 19369415 DOI: 10.1091/mbc.e08-12-1228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies showed that loss of the T-cell protein tyrosine phosphatase (TC-PTP) induces Rab4a-dependent recycling of the platelet-derived growth factor (PDGF) beta-receptor in mouse embryonic fibroblasts (MEFs). Here we identify protein kinase C (PKC) alpha as the critical signaling component that regulates the sorting of the PDGF beta-receptor at the early endosomes. Down-regulation of PKC abrogated receptor recycling by preventing the sorting of the activated receptor into EGFP-Rab4a positive domains on the early endosomes. This effect was mimicked by inhibition of PKCalpha, using myristoylated inhibitory peptides or by knockdown of PKCalpha with shRNAi. In wt MEFs, short-term preactivation of PKC by PMA caused a ligand-induced PDGF beta-receptor recycling that was dependent on Rab4a function. Together, these observations demonstrate that PKC activity is necessary for recycling of ligand-stimulated PDGF beta-receptor to occur. The sorting also required Rab4a function as it was prevented by expression of EGFP-Rab4aS22N. Preventing receptor sorting into recycling endosomes increased the rate of receptor degradation, indicating that the sorting of activated receptors at early endosomes directly regulates the duration of receptor signaling. Activation of PKC through the LPA receptor also induced PDGF beta-receptor recycling and potentiated the chemotactic response to PDGF-BB. Taken together, our present findings indicate that sorting of PDGF beta-receptors on early endosomes is regulated by sequential activation of PKCalpha and Rab4a and that this sorting step could constitute a point of cross-talk with other receptors.
Collapse
Affiliation(s)
- Carina Hellberg
- Ludwig Institute for Cancer Research, Uppsala University, Biomedical Center, S-75124 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Shatos MA, Hodges RR, Oshi Y, Bair JA, Zoukhri D, Kublin C, Lashkari K, Dartt DA. Role of cPKCalpha and nPKCepsilon in EGF-stimulated goblet cell proliferation. Invest Ophthalmol Vis Sci 2009; 50:614-20. [PMID: 18824739 PMCID: PMC2692670 DOI: 10.1167/iovs.08-2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors determined the role of the protein kinase C (PKC) isoforms cPKCalpha and nPKCepsilon in EGF-stimulated proliferation of cultured rat and human conjunctival goblet cells. METHODS Rat and human conjunctivas were minced, and goblet cells were allowed to grow. Passage 1 cells were serum starved for 24 to 48 hours and were incubated with the PKC inhibitors calphostin C and Gö 6983 (10(-10)-10(-7) M) for 20 minutes before stimulation with EGF (10(-7) M) for 24 hours. The presence and localization of PKC isoforms in cultured rat goblet cells were determined by Western blot analysis and immunofluorescence microscopy, respectively. Cultured rat goblet cells were serum starved and incubated with adenoviruses containing genes for dominant-negative cPKCalpha (Ad DNPKCalpha, 10(4) pfu), dominant-negative nPKCepsilon (Ad DNPKCepsilon, 10(4) pfu), and wild-type cPKCalpha (Ad WTPKCalpha, 10(7) pfu), and proliferation was measured. RESULTS In rat goblet cells, EGF-stimulated proliferation was completely inhibited by calphostin C, whereas Gö 6983 inhibited proliferation by 53%+/-15%. In human goblet cells, EGF-stimulated proliferation was completely inhibited by calphostin C. PKCalpha, -betaI, -betaII, -delta, -epsilon, -iota/lambda, -theta, -gamma, and -zeta were found in cultured rat goblet cells. Ad DNPKCalpha and Ad DNPKCepsilon inhibited EGF-stimulated proliferation in rat goblet cells by 78%+/-6% and 92%+/-8%, respectively. Incubation with Ad WTPKCalpha alone significantly increased proliferation. CONCLUSIONS cPKCalpha and nPKCepsilon play key roles in conjunctival goblet cell proliferation.
Collapse
Affiliation(s)
- Marie A. Shatos
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R. Hodges
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Yoshia Oshi
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A. Bair
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Claire Kublin
- Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Kameran Lashkari
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Darlene A. Dartt
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Abstract
Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Neuro-Oncology and Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer, Houston, Texas 77030;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037;
| |
Collapse
|
49
|
Park EY, Kwon OB, Jeong BC, Yi JS, Lee CS, Ko YG, Song HK. Crystal structure of PRY-SPRY domain of human TRIM72. Proteins 2009; 78:790-5. [DOI: 10.1002/prot.22647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process. Exp Cell Res 2008; 315:1313-25. [PMID: 19100260 DOI: 10.1016/j.yexcr.2008.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/26/2022]
Abstract
Bax, a multi-domain pro-apoptotic Bcl-2 family member, is a key regulator for the release of apoptogenic factors from mitochondria. MOAP-1, which was first isolated from a screen for Bax-associating proteins, interacts with Bax upon apoptotic induction. MOAP-1 is a short-lived protein that is constitutively degraded by the ubiquitin-proteasome system. Apoptotic stimuli upregulate MOAP-1 rapidly through inhibition of its poly-ubiquitination process. However, cellular factors that regulate the stability of MOAP-1 have not yet been identified. In this study, we report the identification of TRIM39 as a MOAP-1-binding protein. TRIM39 belongs to a family of proteins characterized by a Tripartite Motif (TRIM), consisting of RING domain, B-box and coiled-coil domain. Several TRIM family members are known to demonstrate E3 ubiquitin ligase activity. Surprisingly, TRIM39 significantly extends the half-life of MOAP-1 by inhibiting its poly-ubiquitination process. In agreement with its effect on enhancing MOAP-1 stability, TRIM39 sensitizes cells to etoposide-induced apoptosis. Conversely, knockdown of TRIM39 reduces the sensitivity of cells to etoposide-stimulated apoptosis. Furthermore, TRIM39 elevates the level of MOAP-1 in mitochondria and promotes cytochrome c release from isolated mitochondria stimulated by recombinant Bax. Together, these data suggest that TRIM39 can promote apoptosis signalling through stabilization of MOAP-1.
Collapse
|