1
|
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer 2021; 3:zcab046. [PMID: 35692378 PMCID: PMC8693576 DOI: 10.1093/narcan/zcab046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 08/08/2023] Open
Abstract
Radiation-induced foci (RIF) are nuclear puncta visualized by immunostaining of proteins that regulate DNA double-strand break (DSB) repair after exposure to ionizing radiation. RIF are a standard metric for measuring DSB formation and repair in clinical, environmental and space radiobiology. The time course and dose dependence of their formation has great potential to predict in vivo responses to ionizing radiation, predisposition to cancer and probability of adverse reactions to radiotherapy. However, increasing complexity of experimentally and therapeutically setups (charged particle, FLASH …) is associated with several confounding factors that must be taken into account when interpreting RIF values. In this review, we discuss the spatiotemporal characteristics of RIF development after irradiation, addressing the common confounding factors, including cell proliferation and foci merging. We also describe the relevant endpoints and mathematical models that enable accurate biological interpretation of RIF formation and resolution. Finally, we discuss the use of RIF as a biomarker for quantification and prediction of in vivo radiation responses, including important caveats relating to the choice of the biological endpoint and the detection method. This review intends to help scientific community design radiobiology experiments using RIF as a key metric and to provide suggestions for their biological interpretation.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1 Rue Héger-Bordet, 1000 Brussels, Belgium
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- To whom correspondence should be addressed. Tel: +1 650 604 5343;
| |
Collapse
|
2
|
Tomkinson AE, Naila T, Khattri Bhandari S. Altered DNA ligase activity in human disease. Mutagenesis 2021; 35:51-60. [PMID: 31630206 DOI: 10.1093/mutage/gez026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The joining of interruptions in the phosphodiester backbone of DNA is critical to maintain genome stability. These breaks, which are generated as part of normal DNA transactions, such as DNA replication, V(D)J recombination and meiotic recombination as well as directly by DNA damage or due to DNA damage removal, are ultimately sealed by one of three human DNA ligases. DNA ligases I, III and IV each function in the nucleus whereas DNA ligase III is the sole enzyme in mitochondria. While the identification of specific protein partners and the phenotypes caused either by genetic or chemical inactivation have provided insights into the cellular functions of the DNA ligases and evidence for significant functional overlap in nuclear DNA replication and repair, different results have been obtained with mouse and human cells, indicating species-specific differences in the relative contributions of the DNA ligases. Inherited mutations in the human LIG1 and LIG4 genes that result in the generation of polypeptides with partial activity have been identified as the causative factors in rare DNA ligase deficiency syndromes that share a common clinical symptom, immunodeficiency. In the case of DNA ligase IV, the immunodeficiency is due to a defect in V(D)J recombination whereas the cause of the immunodeficiency due to DNA ligase I deficiency is not known. Overexpression of each of the DNA ligases has been observed in cancers. For DNA ligase I, this reflects increased proliferation. Elevated levels of DNA ligase III indicate an increased dependence on an alternative non-homologous end-joining pathway for the repair of DNA double-strand breaks whereas elevated level of DNA ligase IV confer radioresistance due to increased repair of DNA double-strand breaks by the major non-homologous end-joining pathway. Efforts to determine the potential of DNA ligase inhibitors as cancer therapeutics are on-going in preclinical cancer models.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Tasmin Naila
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Seema Khattri Bhandari
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
3
|
Zeid IELDMELAA, Jaghthmi OHAA. Hypoglycemic and hypolipidemic effects of two mangrove plants in a streptozotocin-induced animal model of diabetes. J Adv Vet Anim Res 2020; 7:421-428. [PMID: 33005667 PMCID: PMC7521803 DOI: 10.5455/javar.2020.g437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 11/19/2022] Open
Abstract
Objective: This study aims at evaluating the anti-diabetic, hypolipidemic, and pancreatic histopathological changes of Rhizophora mucronata and Avicennia marina. Materials and Methods: The experimental rats were divided into eight groups (n = 15 each). Streptozotocin was used to induce diabetes. Daily oral administration of an aqueous extract from the leaves of R. mucronata and A. marina at 400 mg/kg BW, and a mixture of the two extracts for 6 weeks was assessed. The measurements of serum glucose, insulin, and lipid profile were carried out. Pancreatic specimens were collected from all groups and processed for pathological studies. Results: The study revealed that the plant extracts restored the levels of diabetic markers and lipid profiles of diabetic rats, with no significant changes in non-diabetic ones. The extract of R. mucronata exhibited more promising anti-diabetic and hypolipidemic effects than A. marina singly or combined. Conclusion: Leaf extracts from R. mucronata, singly or combined, and A. marina, induced a potent anti-diabetic and hypolipidemic potential in diabetic rats.
Collapse
|
4
|
A trifunctional Pt(II) complex alleviates the NHEJ/HR-related DSBs repairs to evade cisplatin-resistance in NSCLC. Bioorg Chem 2020; 104:104210. [PMID: 32920356 DOI: 10.1016/j.bioorg.2020.104210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023]
Abstract
Cisplatin, a representative of platinum-based drug, is clinically and widely used in the treatment of various types of malignant cancer. However, its non-selectivity to almost all the cell lines and resistance in long-term use severely limit its scope of use. As biotin-specific uptake systems are overexpressed in many types of tumors but rarely occur in normal tissues, making biotin a promising target for cancer treatment. In the study, we synthesized the Pt(II) complex C2 and determined its biological activities. The existence of biotin enhanced the ability of the complex to target tumors, while the introduction of a naphthalimide compound makes it possible to diagnose tumors and monitor their progress. We have also introduced a known Pt(II) complex DN604, which not only retains the excellent cytotoxicity of platinum drugs, but also inhibits the expression of DNA double-strand breaks (DSBs) repair-related NHEJ protein Ku70 and HR protein Rad51. In summary, we report a novel trifunctional Pt(II) complex that could target tumor cells, monitor tumor progression, and reverse DSBs repair-induced cisplatin-resistance.
Collapse
|
5
|
Sallmyr A, Matsumoto Y, Roginskaya V, Van Houten B, Tomkinson AE. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells. Cancer Res 2016; 76:5431-41. [PMID: 27503931 PMCID: PMC5036517 DOI: 10.1158/0008-5472.can-15-3243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Yoshihiro Matsumoto
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Vera Roginskaya
- Department of Pharmacology and Cell Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Bennett Van Houten
- Department of Pharmacology and Cell Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
6
|
Li N, An L, Hang H. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions. PLoS One 2015; 10:e0125236. [PMID: 25915950 PMCID: PMC4411073 DOI: 10.1371/journal.pone.0125236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/22/2015] [Indexed: 12/02/2022] Open
Abstract
Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HYH); (LLA)
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HYH); (LLA)
| |
Collapse
|
7
|
Peng Z, Liao Z, Dziegielewska B, Matsumoto Y, Thomas S, Wan Y, Yang A, Tomkinson AE. Phosphorylation of serine 51 regulates the interaction of human DNA ligase I with replication factor C and its participation in DNA replication and repair. J Biol Chem 2012; 287:36711-9. [PMID: 22952233 DOI: 10.1074/jbc.m112.383570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA ligase I (hLigI) joins Okazaki fragments during DNA replication and completes excision repair via interactions with proliferating cell nuclear antigen and replication factor C (RFC). Unlike proliferating cell nuclear antigen, the interaction with RFC is regulated by hLigI phosphorylation. To identity of the site(s) involved in this regulation, we analyzed phosphorylated hLigI purified from insect cells by mass spectrometry. These results suggested that serine 51 phosphorylation negatively regulates the interaction with RFC. Therefore, we constructed versions of hLigI in which serine 51 was replaced with either alanine (hLigI51A) to prevent phosphorylation or aspartic acid (hLigI51D) to mimic phosphorylation. hLigI51D but not hLigI51A was defective in binding to purified RFC and in associating with RFC in cell extracts. Although DNA synthesis and proliferation of hLigI-deficient cells expressing either hLig51A or hLig51 was reduced compared with cells expressing wild-type hLigI, cellular senescence was only observed in the cells expressing hLigI51D. Notably, these cells had increased levels of spontaneous DNA damage and phosphorylated CHK2. In addition, although expression of hLigI51A complemented the sensitivity of hLigI-deficient cells to a poly (ADP-ribose polymerase (PARP) inhibitor, expression of hLig151D did not, presumably because these cells are more dependent upon PARP-dependent repair pathways to repair the damage resulting from the abnormal DNA replication. Finally, neither expression of hLigI51D nor hLigI51A fully complemented the sensitivity of hLigI-deficient cells to DNA alkylation. Thus, phosphorylation of serine 51 on hLigI plays a critical role in regulating the interaction between hLigI and RFC, which is required for efficient DNA replication and repair.
Collapse
Affiliation(s)
- Zhimin Peng
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tan Z, Wortman M, Dillehay KL, Seibel WL, Evelyn CR, Smith SJ, Malkas LH, Zheng Y, Lu S, Dong Z. Small-molecule targeting of proliferating cell nuclear antigen chromatin association inhibits tumor cell growth. Mol Pharmacol 2012; 81:811-9. [PMID: 22399488 PMCID: PMC3362894 DOI: 10.1124/mol.112.077735] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/07/2012] [Indexed: 01/30/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA), a potential anticancer target, forms a homotrimer and is required for DNA replication and numerous other cellular processes. The purpose of this study was to identify novel small molecules that modulate PCNA activity to affect tumor cell proliferation. An in silico screen of a compound library against a crystal structure of PCNA and a subsequent structural similarity search of the ZINC chemical database were carried out to derive relevant docking partners. Nine compounds, termed PCNA inhibitors (PCNA-Is), were selected for further characterization. PCNA-I1 selectively bound to PCNA trimers with a dissociation constant (K(d)) of ~0.2 to 0.4 μM. PCNA-Is promoted the formation of SDS-refractory PCNA trimers. PCNA-I1 dose- and time-dependently reduced the chromatin-associated PCNA in cells. Consistent with its effects on PCNA trimer stabilization, PCNA-I1 inhibited the growth of tumor cells of various tissue types with an IC(50) of ~0.2 μM, whereas it affected the growth of nontransformed cells at significantly higher concentrations (IC(50), ~1.6 μM). Moreover, uptake of BrdU was dose-dependently reduced in cells treated with PCNA-I1. Mechanistically the PCNA-Is mimicked the effect of PCNA knockdown by siRNA, inducing cancer cell arrest at both the S and G(2)/M phases. Thus, we have identified a class of compounds that can directly bind to PCNA, stabilize PCNA trimers, reduce PCNA association with chromatin, and inhibit tumor cell growth by inducing a cell cycle arrest. They are valuable tools in studying PCNA function and may be useful for future PCNA-targeted cancer therapy.
Collapse
Affiliation(s)
- Zongqing Tan
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.
Collapse
Affiliation(s)
- Timothy R L Howes
- Biomedical Sciences Graduate Program, University of New Mexico, Cancer Research Facility MSC08 4640, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA,
| | | |
Collapse
|
10
|
Ström CE, Mortusewicz O, Finch D, Parsons JL, Lagerqvist A, Johansson F, Schultz N, Erixon K, Dianov GL, Helleday T. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair (Amst) 2011; 10:961-9. [PMID: 21840775 DOI: 10.1016/j.dnarep.2011.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/05/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
Abstract
CK2 phosphorylates the scaffold protein XRCC1, which is required for efficient DNA single-strand break (SSB) repair. Here, we express an XRCC1 protein (XRCC1(ckm)) that cannot be phosphorylated by CK2 in XRCC1 mutated EM9 cells and show that the role of this post-translational modification gives distinct phenotypes in SSB repair and base excision repair (BER). Interestingly, we find that fewer SSBs are formed during BER after treatment with the alkylating agent dimethyl sulfate (DMS) in EM9 cells expressing XRCC1(ckm) (CKM cells) or following inhibition with the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). We also show that XRCC1(ckm) protein has a higher affinity for DNA than wild type XRCC1 protein and resides in an immobile fraction on DNA, in particular after damage. We propose a model whereby the increased affinity for DNA sequesters XRCC1(ckm) and the repair enzymes associated with it, at the repair site, which retards kinetics of BER. In conclusion, our results indicate that phosphorylation of XRCC1 by CK2 facilitates the BER incision step, likely by promoting dissociation from DNA.
Collapse
Affiliation(s)
- Cecilia E Ström
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Young JL, Koon EC, Kwong J, Welch WR, Muto MG, Berkowitz RS, Mok SC. Differential hRad17 expression by histologic subtype of ovarian cancer. J Ovarian Res 2011; 4:6. [PMID: 21450056 PMCID: PMC3077316 DOI: 10.1186/1757-2215-4-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the search for unique ovarian cancer biomarkers, ovarian specific cDNA microarray analysis identified hRad17, a cell cycle checkpoint protein, as over-expressed in ovarian cancer. The aim of this study was to validate this expression. METHODS Immunohistochemistry was performed on 72 serous, 19 endometrioid, 10 clear cell, and 6 mucinous ovarian cancers, 9 benign ovarian tumors, and 6 normal ovarian tissue sections using an anti-hRad17 antibody. Western blot analysis and quantitative PCR were performed using cell lysates and total RNA prepared from 17 ovarian cancer cell lines and 6 normal ovarian epithelial cell cultures (HOSE). RESULTS Antibody staining confirmed upregulation of hRad17 in 49.5% of ovarian cancer cases. Immunohistochemistry demonstrated that only 42% of serous and 47% of endometrioid subtypes showed overexpression compared to 80% of clear cell and 100% of mucinous cancers. Western blot confirmed overexpression of hRad17 in cancer cell lines compared to HOSE. Quantitative PCR demonstrated an upregulation of hRad17 RNA by 1.5-7 fold. hRad17 RNA expression differed by subtype. CONCLUSIONS hRad17 is over-expressed in ovarian cancer. This over-expression varies by subtype suggesting a role in the pathogenesis of these types. Functional studies are needed to determine the potential role of this protein in ovarian cancer.
Collapse
Affiliation(s)
- Jennifer L Young
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen P, O'Neal JF, Ebelt ND, Cantrell MA, Mitra S, Nasrazadani A, Vandenbroek TL, Heasley LE, Van Den Berg CL. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model. PLoS One 2010; 5:e10443. [PMID: 20454618 PMCID: PMC2862739 DOI: 10.1371/journal.pone.0010443] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 04/08/2010] [Indexed: 02/08/2023] Open
Abstract
Oncogenes induce cell proliferation leading to replicative stress, DNA damage and genomic instability. A wide variety of cellular stresses activate c-Jun N-terminal kinase (JNK) proteins, but few studies have directly addressed the roles of JNK isoforms in tumor development. Herein, we show that jnk2 knockout mice expressing the Polyoma Middle T Antigen transgene developed mammary tumors earlier and experienced higher tumor multiplicity compared to jnk2 wildtype mice. Lack of jnk2 expression was associated with higher tumor aneuploidy and reduced DNA damage response, as marked by fewer pH2AX and 53BP1 nuclear foci. Comparative genomic hybridization further confirmed increased genomic instability in PyV MT/jnk2−/− tumors. In vitro, PyV MT/jnk2−/− cells underwent replicative stress and cell death as evidenced by lower BrdU incorporation, and sustained chromatin licensing and DNA replication factor 1 (CDT1) and p21Waf1 protein expression, and phosphorylation of Chk1 after serum stimulation, but this response was not associated with phosphorylation of p53 Ser15. Adenoviral overexpression of CDT1 led to similar differences between jnk2 wildtype and knockout cells. In normal mammary cells undergoing UV induced single stranded DNA breaks, JNK2 localized to RPA (Replication Protein A) coated strands indicating that JNK2 responds early to single stranded DNA damage and is critical for subsequent recruitment of DNA repair proteins. Together, these data support that JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Peila Chen
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jamye F. O'Neal
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Nancy D. Ebelt
- Institute of Cellular and Molecular Biology, School of Biological Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Michael A. Cantrell
- Institute of Cellular and Molecular Biology, School of Biological Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Shreya Mitra
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Azadeh Nasrazadani
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Tracy L. Vandenbroek
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Denver Anshutz Medical Campus, Aurora, Colorado, United States of America
| | - Carla L. Van Den Berg
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
López Castel A, Tomkinson AE, Pearson CE. CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair. J Biol Chem 2009; 284:26631-45. [PMID: 19628465 PMCID: PMC2785351 DOI: 10.1074/jbc.m109.034405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/21/2009] [Indexed: 11/06/2022] Open
Abstract
Mechanisms contributing to disease-associated trinucleotide repeat instability are poorly understood. DNA ligation is an essential step common to replication and repair, both potential sources of repeat instability. Using derivatives of DNA ligase I (hLigI)-deficient human cells (46BR.1G1), we assessed the effect of hLigI activity, overexpression, and its interaction with proliferating cell nuclear antigen (PCNA) upon the ability to replicate and repair trinucleotide repeats. Compared with LigI(+/+), replication progression through repeats was poor, and repair tracts were broadened beyond the slipped-repeat for all mutant extracts. Increased repeat instability was linked only to hLigI overexpression and expression of a mutant hLigI incapable of interacting with PCNA. The endogenous mutant version of hLigI with reduced ligation activity did not alter instability. We distinguished the DNA processes through which hLigI contributes to trinucleotide instability. The highest levels of repeat instability were observed under the hLigI overexpression and were linked to reduced slipped-DNAs repair efficiencies. Therefore, the replication-mediated instability can partly be attributed to errors during replication but also to the poor repair of slipped-DNAs formed during this process. However, repair efficiencies were unaffected by expression of a PCNA interaction mutant of hLigI, limiting this instability to the replication process. The addition of purified proteins suggests that disruption of LigI and PCNA interactions influences trinucleotide repeat instability. The variable levels of age- and tissue-specific trinucleotide repeat instability observed in myotonic dystrophy patients and transgenic mice may be influenced by varying steady state levels of DNA ligase I in these tissues and during different developmental windows.
Collapse
Affiliation(s)
- Arturo López Castel
- From the Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Alan E. Tomkinson
- the Radiation Oncology Research Laboratory, Department of Radiation Oncology, and Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Christopher E. Pearson
- From the Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- the Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| |
Collapse
|
14
|
The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1. DNA Repair (Amst) 2009; 8:912-9. [PMID: 19523882 DOI: 10.1016/j.dnarep.2009.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/20/2022]
Abstract
The participation of the DNA ligase (hLigI) encoded by the human LIG1 gene in DNA replication and repair is mediated by an interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp. Interestingly, the catalytic fragment of hLigI encircles a DNA nick forming a ring that is similar in size and shape to the PCNA ring. Here we show that the DNA binding domain (DBD) within the hLigI catalytic fragment interacts with both PCNA and the heterotrimeric cell-cycle checkpoint clamp, hRad9-hRad1-hHus1 (9-1-1). The DBD preferentially binds to trimeric PCNA and the hRad1 subunit of 9-1-1. Unlike the majority of PCNA interacting proteins, the DBD does not interact with the interdomain connector loop region of PCNA but instead appears to interact with regions adjacent to the intersubunit interfaces within the PCNA trimer. Notably, the DBD not only binds specifically to DNA nicks but also mediates the formation of DNA protein complexes with PCNA. Based on these results, we suggest that the interface between the DBD and PCNA acts as a pivot facilitating the transition of the hLigI catalytic region fragment from an extended conformation to a ring structure when it engages a DNA nick.
Collapse
|
15
|
Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair. Mol Cell Biol 2009; 29:2042-52. [PMID: 19223468 DOI: 10.1128/mcb.01732-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human DNA ligase I (hLigI) participates in DNA replication and excision repair via an interaction with proliferating cell nuclear antigen (PCNA), a DNA sliding clamp. In addition, hLigI interacts with and is inhibited by replication factor C (RFC), the clamp loader complex that loads PCNA onto DNA. Here we show that a mutant version of hLigI, which mimics the hyperphosphorylated M-phase form of hLigI, does not interact with and is not inhibited by RFC, demonstrating that inhibition of ligation is dependent upon the interaction between hLigI and RFC. To examine the biological relevance of hLigI phosphorylation, we isolated derivatives of the hLigI-deficient cell line 46BR.1G1 that stably express mutant versions of hLigI in which four serine residues phosphorylated in vivo were replaced with either alanine or aspartic acid. The cell lines expressing the phosphorylation site mutants of hLigI exhibited a dramatic reduction in proliferation and DNA synthesis and were also hypersensitive to DNA damage. The dominant-negative effects of the hLigI phosphomutants on replication and repair are due to the activation of cellular senescence, presumably because of DNA damage arising from replication abnormalities. Thus, appropriate phosphorylation of hLigI is critical for its participation in DNA replication and repair.
Collapse
|
16
|
Abstract
DNA replication is a complex mechanism that functions due to the co-ordinated interplay of several dozen protein factors. In the last few years, numerous studies suggested a tight implication of DNA replication factors in several DNA transaction events that maintain the integrity of the genome. Therefore, DNA replication fork proteins have also to be considered as part of a general process aiming at replicating and protecting the genome in order to allow the correct function of a cell and of its eventual daughter cells. This is illustrated by several DNA repair pathways such as base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair. Furthermore, several of the replication proteins have also been shown to be essential in sensing and transducing DNA damages through the checkpoint cascade pathways. This review will summarize the properties of DNA replication proteins that function exclusively at the replication fork.
Collapse
|
17
|
Abstract
DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encircles nicked DNA with each of the domains contacting the DNA duplex. The unique segments adjacent to the catalytic region of eukaryotic DNA ligases are involved in specific protein-protein interactions with a growing number of DNA replication and repair proteins. These interactions determine the specific cellular functions of the DNA ligase isozymes. In mammals, defects in DNA ligation have been linked with an increased incidence of cancer and neurodegeneration.
Collapse
Affiliation(s)
- Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
18
|
Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks. DNA Repair (Amst) 2008; 7:932-40. [PMID: 18472309 DOI: 10.1016/j.dnarep.2008.03.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 12/16/2022]
Abstract
Although poly(ADP-ribose) polymerase-1 (PARP-1) has no enzymatic activity involved in DNA damage processing by the base excision repair (BER) pathway, PARP-1 deficient cells are genetically unstable and sensitive to DNA-damaging agents. To explain this paradox, we investigated the impact of PARP-1 on BER in mammalian cells. We reduced cellular PARP-1 protein levels using siRNA, then introduced DNA damage by hydrogen peroxide treatment and examined the repair response. We find that PARP-1 is not involved in recruitment of the major BER proteins to sites of DNA damage. However, we find that PARP-1 protects excessive DNA single strand breaks (SSBs) from converting into DNA double strand breaks (DSBs) thus preserving them for subsequent repair by BER enzymes. This suggests that PARP-1 plays an important role in BER by extending the ability of BER enzymes to process DNA single strand breaks arising directly after mutagen stress or during processing of DNA lesions following extensive DNA damage.
Collapse
|
19
|
The human homolog of fission yeast Rad17 is implicated in tumor growth. Cancer Lett 2008; 266:194-202. [PMID: 18378394 DOI: 10.1016/j.canlet.2008.02.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 11/21/2022]
Abstract
The Schizosaccharomyces pombe rad17 is a checkpoint protein critical for maintenance of genomic stability. Since the loss of checkpoint control is a common feature of tumor cells, we investigated the biological function of the human homolog hRAD17. Expression of hRAD17 in a fission yeast rad17 deleted strain reduced growth of yeast colonies and caused slower progression through cell cycle. Immunoprecipitated hRad17 exhibited exonuclease activity. hRAD17 delayed growth of NIH3T3 fibroblasts transformed by the H-ras oncogene in nude mice. Our results support that hRAD17, similarly to other human genes involved in checkpoint mechanisms, plays a role in control of tumor growth.
Collapse
|