1
|
Im SC, Peng HM, Waskell L, Auchus RJ. Similar Rates of Second Electron Transfer and Single-Turnover Dehydroepiandrosterone Formation for Oxyferrous Human Cytochrome P450 17A1 (Steroid 17-Hydroxylase/17,20-lyase)-17-hydroxypregnenolone Complex with Either Human Cytochrome P450-Oxidoreductase or Human Cytochrome b5. Biochemistry 2025; 64:2306-2317. [PMID: 40340376 DOI: 10.1021/acs.biochem.5c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The 17-hydroxylase and 17,20-lyase activities of cytochrome P450 17A1 are required for androgen biosynthesis, which is the target of the prostate-cancer drug abiraterone acetate. Cytochrome b5 (b5) stimulates the 17,20-lyase activity 8-fold in reconstituted systems containing P450-oxidoreductase (POR); however, the mechanism of the b5 effect and the rate-limiting step(s) of these catalytic cycles are not known. Using stopped flow spectroscopy and rapid chemical quench under single-turnover conditions, we determined the effects of b5 on rates of individual steps of the 17-hydroxylase and 17,20-lyase reactions. Steps prior to and including oxygen binding were rapid for both reactions (>9 s-1), and rates of dehydroepiandrosterone release (4-5 s-1) were also fast and not increased by b5. Starting with 17-hydroxypregnenolone-bound oxyferrous P450 17A1, the electron transfer rate was slower from b5 than from POR (2.9 ± 0.2 versus 7.4 ± 0.1 s-1), whereas return to ferric P450 17A1 was faster with b5 than from POR (1.7 ± 0.3 versus 1.3 ± 0.1 s-1). Using the same conditions as electron transfer experiments for rapid chemical quench, rates of dehydroepiandrosterone formation were equivalent with reduced POR or b5 (2.4 ± 0.4 versus 2.3 ± 0.3 s-1, respectively); b5 reduced hydrogen peroxide formation under multiple turnover conditions. We conclude that rates of electron transfer and product formation for the 17,20-lyase reaction starting with reduced oxyferrous P450 17A1 are similar and partially rate-limiting to either POR or b5. These data suggest that the b5 effect on the 17,20-lyase reaction manifests only during multiple turnover conditions rather than enhancing single-turnover kinetics.
Collapse
Affiliation(s)
- Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- LTC Charles S. Kettles Arbor Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| | - Hwei-Ming Peng
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lucy Waskell
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- LTC Charles S. Kettles Arbor Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- LTC Charles S. Kettles Arbor Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
2
|
Sun Y, Osawa Y, Zhang H. Bacterial expression, purification, and characterization of human cytochrome P450 3A4 without N-terminal modifications. Arch Biochem Biophys 2024; 762:110208. [PMID: 39522857 DOI: 10.1016/j.abb.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In this communication we reported a bacterial system that over-expressed full-length wild-type (WT) human CYP3A4 in Escherichia coli (E. coli) at a level of 495 nmol/L culture. This level of expression was achieved by cloning the cDNA sequence of CYP3A4 WT to a pLW01-P450 vector and co-expressing it with chaperones GroEL/ES in bacterial C41(DE3) cells. Aided with a C-terminal His5-tag, the expressed CYP3A4 WT was purified to homogeneity with a specific content of 14.3 ± 2.0 nmole P450/mg protein using a single Ni-Penta agarose column. Like the N-terminal modified form (CYP3A4-NF14), CYP3A4 WT binds substrate testosterone with a typical sigmoidal feature at slightly higher affinity. Functional characterization revealed that CYP3A4 WT exhibited lower testosterone 6β-hydroxylase activities than CYP3A4-NF14 in reconstituted phospholipid systems. In addition, it was found that the 6β-hydroxylase activity of CYP3A4 WT was less dependent on excess cytochrome P450 oxidoreductase (POR), compared with CYP3A4-NF14. These results suggest that the N-terminal membrane anchor of CYP3A4 WT enhances its interactions with POR and marginally increases testosterone binding.
Collapse
Affiliation(s)
- Yudong Sun
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Bureau JA, Oliva ME, Dong Y, Ignea C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Nat Prod Rep 2023; 40:1822-1848. [PMID: 37523210 DOI: 10.1039/d3np00005b] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Covering: 2011-2022The low amounts of terpenoids produced in plants and the difficulty in synthesizing these complex structures have stimulated the production of terpenoid compounds in microbial hosts by metabolic engineering and synthetic biology approaches. Advances in engineering yeast for terpenoid production will be covered in this review focusing on four directions: (1) manipulation of host metabolism, (2) rewiring and reconstructing metabolic pathways, (3) engineering the catalytic activity, substrate selectivity and product specificity of biosynthetic enzymes, and (4) localizing terpenoid production via enzymatic fusions and scaffolds, or subcellular compartmentalization.
Collapse
Affiliation(s)
| | | | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
4
|
Sahoo BR, Ramamoorthy A. Direct interaction between the transmembrane helices stabilize cytochrome P450 2B4 and cytochrome b5 redox complex. Biophys Chem 2023; 301:107092. [PMID: 37586236 PMCID: PMC10838600 DOI: 10.1016/j.bpc.2023.107092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The catalytic activity of cytochrome P450 2B4 (CYP2B4) is moderated by its cognate redox partner cytochrome b5 (Cyt-b5). The endoplasmic reticulum (ER) membrane and intermolecular transmembrane (TM) interaction between CYP2B4 and Cyt-b5 regulate the substrate catalysis and the reaction rate. This emphasizes the significance of elucidating the molecular basis of CYP2B4 and Cyt-b5 complexation in a membrane environment to better understand the enzymatic activity of CYP2B4. Our previous solid-state NMR studies revealed the membrane topology of the transmembrane domains of these proteins in the free and complex forms. Here, we show the cross-angle complex formation by the single-pass TM domains of CYP2B4 and Cyt-b5, which is mainly driven by several salt-bridges (E2-R128, R21-D104 and K25-D104), using a multi-microsecond molecular dynamic simulation. Additionally, the leucine-zipper residues (L8, L12, L15, L18 and L19 from CYP2B4) and π-stacking between H23 and F20 residues of CYP2B4 and W110 of Cyt-b5 are identified to stabilize the TM-TM complex in the ER membrane. The simulated tilts of the helices in the free and in the complex are in excellent agreement with solid-state NMR results. The TM-TM packing influences a higher order structural stability when compared to the complex formed by the truncated soluble domains of these two proteins. MM/PBSA based binding free energy estimates nearly 100-fold higher binding affinity (ΔG = -2810.68 ± 696.44 kJ/mol) between the soluble domains of the full-length CYP2B4 and Cyt-b5 when embedded in lipid membrane as compared to the TM-domain-truncated soluble domains (ΔG = -27.406 ± 10.32 kJ/mol). The high-resolution full-length CYP2B4-Cyt-b5 complex structure and its dynamics in a native ER membrane environment reported here could aid in the development of approaches to effectively modulate the drug-metabolism activity of CYP2B4.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
5
|
Koroleva PI, Bulko TV, Agafonova LE, Shumyantseva VV. Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1645-1657. [PMID: 38105030 DOI: 10.1134/s0006297923100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 12/19/2023]
Abstract
Cytochromes P450 are a unique family of enzymes found in all Kingdoms of living organisms (animals, bacteria, plants, fungi, and archaea), whose main function is biotransformation of exogenous and endogenous compounds. The review discusses approaches to enhancing the efficiency of electrocatalysis by cytochromes P450 for their use in biotechnology and design of biosensors and describes main methods in the development of reconstituted and electrochemical catalytic systems based on the biochemical mechanism of cytochromes P450, as well as and modern trends for their practical application.
Collapse
Affiliation(s)
| | | | | | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
6
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Guengerich FP. On 'Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions' by Alfred Hildebrandt and Ronald W. Estabrook. Arch Biochem Biophys 2022; 726:109177. [PMID: 35305998 PMCID: PMC9893037 DOI: 10.1016/j.abb.2022.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
This paper by Alfred G. Hildebrandt and Ronald W. Estabrook at the University of Texas (Southwestern) Medical School, led to the concept of cytochrome b5 (b5) as an auxiliary protein facilitating some cytochrome P450 (P450) reactions in the liver and other tissues. The gist of the paper is that DPNH (now known as NADH) enhanced rates of TPNH (now NADPH)-supported N-demethylation of O-ethylmorphine in rat liver microsomes. The conclusion was that b5 was providing an electron to the ferrous-oxy form of P450 (Fe2+O2), which was supported by some spectral observations on the oxidation state of b5 in the microsomes in the steady state. This observation led to a flurry of activity, which is still in progress. This paper has been cited 678 times in Google (558 in Clarivate), and I have often cited it myself. A PubMed search for the terms P450 andb5 yielded 2244 results.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Bldg, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA.
| |
Collapse
|
8
|
Xie H, Song L, Katz S, Zhu J, Liu Y, Tang J, Cai L, Hildebrandt P, Han XX. Electron transfer between cytochrome c and microsomal monooxygenase generates reactive oxygen species that accelerates apoptosis. Redox Biol 2022; 53:102340. [PMID: 35609401 PMCID: PMC9130584 DOI: 10.1016/j.redox.2022.102340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Generation of reactive oxygen species (ROS) are possibly induced by the crosstalk between mitochondria and endoplasmic reticula, which is physiologically important in apoptosis. Cytochrome c (Cyt c) is believed to play a crucial role in such signaling pathway by interrupting the coupling within microsomal monooxygenase (MMO). In this study, the correlation of ROS production with the electron transfer between Cyt c and the MMO system is investigated by resonance Raman (RR) spectroscopy. Binding of Cyt c to MMO is found to induce the production of ROS, which is quantitatively determined by the in-situ RR spectroscopy reflecting the interactions of Cyt c with generated ROS. The amount of ROS that is produced from isolated endoplasmic reticulum depends on the redox state of the Cyt c, indicating the important role of oxidized Cyt c in accelerating apoptosis. The role of electron transfer from MMO to Cyt c in the apoptotic mitochondria-endoplasmic reticulum pathway is accordingly proposed. This study is of significance for a deeper understanding of how Cyt c regulates apoptotic pathways through the endoplasmic reticulum, and thus may provide a rational basis for the design of antitumor drugs for cancer therapy.
Collapse
Affiliation(s)
- Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Li Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, 10623, Berlin, Germany
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, 10623, Berlin, Germany.
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
9
|
Wei P, Zhang C, Bian X, Lu W. Metabolic Engineering of Saccharomyces cerevisiae for Heterologous Carnosic Acid Production. Front Bioeng Biotechnol 2022; 10:916605. [PMID: 35721856 PMCID: PMC9201568 DOI: 10.3389/fbioe.2022.916605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carnosic acid (CA), a phenolic tricyclic diterpene, has many biological effects, including anti-inflammatory, anticancer, antiobesity, and antidiabetic activities. In this study, an efficient biosynthetic pathway was constructed to produce CA in Saccharomyces cerevisiae. First, the CA precursor miltiradiene was synthesized, after which the CA production strain was constructed by integrating the genes encoding cytochrome P450 enzymes (P450s) and cytochrome P450 reductase (CPR) SmCPR. The CA titer was further increased by the coexpression of CYP76AH1 and SmCPR ∼t28SpCytb5 fusion proteins and the overexpression of different catalases to detoxify the hydrogen peroxide (H2O2). Finally, engineering of the endoplasmic reticulum and cofactor supply increased the CA titer to 24.65 mg/L in shake flasks and 75.18 mg/L in 5 L fed-batch fermentation. This study demonstrates that the ability of engineered yeast cells to synthesize CA can be improved through metabolic engineering and synthetic biology strategies, providing a theoretical basis for microbial synthesis of other diterpenoids.
Collapse
Affiliation(s)
- Panpan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueke Bian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
- *Correspondence: Wenyu Lu,
| |
Collapse
|
10
|
Ju H, Zhang C, He S, Nan W, Lu W. Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin. Appl Microbiol Biotechnol 2022; 106:1933-1944. [PMID: 35235006 DOI: 10.1007/s00253-022-11819-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/27/2022]
Abstract
Forskolin, one of the primary active metabolites of labdane-type diterpenoids, exhibits significant medicinal value, such as anticancer, antiasthmatic, and antihypertensive activities. In this study, we constructed a Saccharomyces cerevisiae cell factory that efficiently produced forskolin. First, a chassis strain that can accumulate 145.8 mg/L 13R-manoyl oxide (13R-MO), the critical precursor of forskolin, was constructed. Then, forskolin was produced by integrating CfCYP76AH15, CfCYP76AH11, CfCYP76AH16, ATR1, and CfACT1-8 into the 13R-MO chassis with a titer of 76.25 μg/L. We confirmed that cytochrome P450 enzymes (P450s) are the rate-limiting step by detecting intermediate metabolite accumulation. Forskolin production reached 759.42 μg/L by optimizing the adaptations between CfCYP76AHs, t66CfCPR, and t30AaCYB5. Moreover, multiple metabolic engineering strategies, including regulation of the target genes' copy numbers, amplification of the endoplasmic reticulum (ER) area, and cofactor metabolism enhancement, were implemented to enhance the metabolic flow to forskolin from 13R-MO, resulting in a final forskolin yield of 21.47 mg/L in shake flasks and 79.33 mg/L in a 5 L bioreactor. These promising results provide guidance for the synthesis of other natural terpenoids in S. cerevisiae, especially for those containing multiple P450s in their synthetic pathways. KEY POINTS: • The forskolin biosynthesis pathway was optimized from the perspective of system metabolism for the first time in S. cerevisiae. • The adaptation and optimization of CYP76AHs, t66CfCPR, and t30AaCYB5 promote forskolin accumulation, which can provide a reference for diterpenoids containing complex pathways, especially multiple P450s pathways. • The forskolin titer of 79.33 mg/L is the highest production currently reported and was achieved by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shifan He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Weihua Nan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| |
Collapse
|
11
|
Rwere F, Im S, Waskell L. The FMN "140s Loop" of Cytochrome P450 Reductase Controls Electron Transfer to Cytochrome P450. Int J Mol Sci 2021; 22:ijms221910625. [PMID: 34638963 PMCID: PMC8508823 DOI: 10.3390/ijms221910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022] Open
Abstract
Cytochrome P450 reductase (CYPOR) provides electrons to all human microsomal cytochrome P450s (cyt P450s). The length and sequence of the “140s” FMN binding loop of CYPOR has been shown to be a key determinant of its redox potential and activity with cyt P450s. Shortening the “140s loop” by deleting glycine-141(ΔGly141) and by engineering a second mutant that mimics flavo-cytochrome P450 BM3 (ΔGly141/Glu142Asn) resulted in mutants that formed an unstable anionic semiquinone. In an attempt to understand the molecular basis of the inability of these mutants to support activity with cyt P450, we expressed, purified, and determined their ability to reduce ferric P450. Our results showed that the ΔGly141 mutant with a very mobile loop only reduced ~7% of cyt P450 with a rate similar to that of the wild type. On the other hand, the more stable loop in the ΔGly141/Glu142Asn mutant allowed for ~55% of the cyt P450 to be reduced ~60% faster than the wild type. Our results reveal that the poor activity of the ΔGly141 mutant is primarily accounted for by its markedly diminished ability to reduce ferric cyt P450. In contrast, the poor activity of the ΔGly141/Glu142Asn mutant is presumably a consequence of the altered structure and mobility of the “140s loop”.
Collapse
Affiliation(s)
- Freeborn Rwere
- Department of Anesthesiology, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI 48105, USA; (S.I.); (L.W.)
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
- Correspondence:
| | - Sangchoul Im
- Department of Anesthesiology, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI 48105, USA; (S.I.); (L.W.)
- Department of Internal Medicine, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI 48105, USA; (S.I.); (L.W.)
| |
Collapse
|
12
|
Pereira R, Ishchuk OP, Li X, Liu Q, Liu Y, Otto M, Chen Y, Siewers V, Nielsen J. Metabolic Engineering of Yeast. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Gideon DA, Nirusimhan V, E JC, Sudarsha K, Manoj KM. Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: classical and murburn perspectives. J Biomol Struct Dyn 2021; 40:9235-9252. [PMID: 33998974 DOI: 10.1080/07391102.2021.1925154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We explore the mechanism of electron transfers mediated by cytochrome c, a soluble protein involved in mitochondrial oxidative phosphorylation and cytochrome b5, a microsomal membrane protein acting as a redox aide in xenobiotic metabolism. We found minimal conservation in the sequence and surface amino acid residues of cytochrome c/b5 proteins among divergent species. Therefore, we question the evolutionary logic for electron transfer (ET) occurring through affinity binding via recognition of specific surface residues/topography. Also, analysis of putative protein-protein interactions in the crystal structures of these proteins and their redox partners did not point to any specific interaction logic. A comparison of the kinetic and thermodynamic constants of wildtype vs. mutants did not provide strong evidence to support the binding-based ET paradigm, but indicated support for diffusible reactive species (DRS)-mediated process. Topographically divergent cytochromes from one species have been substituted for reaction with proteins from other species, implying the involvement of non-specific interactions. We provide a viable alternative (murburn concept) to classical protein-protein binding-based long range ET mechanism. To account for the promiscuity of interactions and solvent-accessible hemes, we propose that the two proteins act as non- specific redox capacitors, mediating one-electron redox equilibriums involving DRS and unbound ions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Jesu Castin E
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Karthik Sudarsha
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India
| |
Collapse
|
14
|
Ju H, Zhang C, Lu W. Progress in heterologous biosynthesis of forskolin. J Ind Microbiol Biotechnol 2021; 48:kuab009. [PMID: 33928347 PMCID: PMC9113163 DOI: 10.1093/jimb/kuab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022]
Abstract
Forskolin, a class of labdane-type diterpenoid, has significant medicinal value in anticancer, antiasthmatic, antihypertensive, and heart-strengthening treatments. The main source of natural forskolin is its extraction from the cork tissue of the root of Coleus forskohlii. However, conventional modes of extraction pose several challenges. In recent years, the construction of microbial cell factories to produce medicinal natural products via synthetic biological methods has effectively solved the current problems and is a research hotspot in this field. This review summarizes the recent progress in the heterologous synthesis of forskolin via synthetic biological technology, analyzes the current challenges, and proposes corresponding strategies.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
- Key Laboratory of System Bioengineering (Tianjin University),
Ministry of Education, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of
Chemical Science and Engineering (Tianjin), Tianjin
300350, P. R. China
| |
Collapse
|
15
|
Cheng S, Bo Z, Hollenberg P, Osawa Y, Zhang H. Amphipol-facilitated elucidation of the functional tetrameric complex of full-length cytochrome P450 CYP2B4 and NADPH-cytochrome P450 oxidoreductase. J Biol Chem 2021; 296:100645. [PMID: 33839156 PMCID: PMC8113742 DOI: 10.1016/j.jbc.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/27/2022] Open
Abstract
Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear because of the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein, we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7 ± 2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338 ± 22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiyuan Bo
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul Hollenberg
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
16
|
Kim D, Kim V, McCarty KD, Guengerich FP. Tight binding of cytochrome b 5 to cytochrome P450 17A1 is a critical feature of stimulation of C21 steroid lyase activity and androgen synthesis. J Biol Chem 2021; 296:100571. [PMID: 33753170 PMCID: PMC8080067 DOI: 10.1016/j.jbc.2021.100571] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
It has been recognized for >50 years that cytochrome b5 (b5) stimulates some cytochrome P450 (P450)–catalyzed oxidations, but the basis of this function is still not understood well. The strongest stimulation of catalytic activity by b5 is in the P450 17A1 lyase reaction, an essential step in androgen synthesis from 21-carbon (C21) steroids, making this an excellent model system to interrogate b5 function. One of the issues in studying b5–P450 interactions has been the limited solution assay methods. We constructed a fluorescently labeled variant of human b5 that can be used in titrations. The labeled b5 bound to WT P450 17A1 with a Kd of 2.5 nM and rapid kinetics, on the order of 1 s−1. Only weak binding was observed with the clinical P450 17A1 variants E305G, R347H, and R358Q; these mutants are deficient in lyase activity, which has been hypothesized to be due to attenuated b5 binding. Kd values were not affected by the presence of P450 17A1 substrates. A peptide containing the P450 17A1 Arg-347/Arg-358 region attenuated Alexa 488-T70C-b5 fluorescence at higher concentrations. The addition of NADPH–P450 reductase (POR) to an Alexa 488-T70C-b5:P450 17A1 complex resulted in a concentration-dependent partial restoration of b5 fluorescence, indicative of a ternary P450:b5:POR complex, which was also supported by gel filtration experiments. Overall, these results are interpreted in the context of a dynamic and tight P450 17A1:b5 complex that also binds POR to form a catalytically competent ternary complex, and variants that disrupt this interaction have low catalytic activity.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
17
|
Liu Y, Denisov IG, Sligar SG, Kincaid JR. Substrate-Specific Allosteric Effects on the Enhancement of CYP17A1 Lyase Efficiency by Cytochrome b5. J Am Chem Soc 2021; 143:3729-3733. [PMID: 33656879 DOI: 10.1021/jacs.1c00581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CYP17A1 is an essential human steroidogenic enzyme, which catalyzes two sequential reactions leading to the formation of androstenedione from progesterone and dehydroepiandrosterone from pregnenolone. The second reaction is the C17-C20 bond scission, which is strongly dependent on the presence of cytochrome b5 and displays a heretofore unexplained more pronounced acceleration when 17OH-progesteone (17OH-PROG) is a substrate. The origin of the stimulating effect of cytochrome b5 on C-C bond scission catalyzed by CYP17A1 is still debated as mostly due to either the acceleration of the electron transfer to the P450 oxy complex or allosteric effects of cytochrome b5 favoring active site conformations that promote lyase activity. Using resonance Raman spectroscopy, we compared the effect of Mn-substituted cytochrome b5 (Mn-Cytb5) on the oxy complex of CYP17A1 with both proteins co-incorporated in lipid nanodiscs. For CYP17A1 with 17OH-PROG, a characteristic shift of the Fe-O mode is observed in the presence of Mn-b5, indicating reorientation of a hydrogen bond between the 17OH group of the substrate from the terminal to the proximal oxygen atom of the Fe-O-O moiety, a configuration favorable for the lyase catalysis. For 17OH-pregnenolone, no such shift is observed, the favorable H-bonding orientation being present even without Mn-Cytb5. These new data provide a precise allosteric interpretation for the more pronounced acceleration seen for the 17OH-PROG substrate.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Chemistry, Marquette University, 1414W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | | | | | - James R Kincaid
- Department of Chemistry, Marquette University, 1414W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
18
|
Heintze T, Klein K, Hofmann U, Zanger UM. Differential effects on human cytochromes P450 by CRISPR/Cas9-induced genetic knockout of cytochrome P450 reductase and cytochrome b5 in HepaRG cells. Sci Rep 2021; 11:1000. [PMID: 33441761 PMCID: PMC7806635 DOI: 10.1038/s41598-020-79952-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
HepaRG cells are increasingly accepted as model for human drug metabolism and other hepatic functions. We used lentiviral transduction of undifferentiated HepaRG cells to deliver Cas9 and two alternative sgRNAs targeted at NADPH:cytochrome P450 oxidoreductase (POR), the obligate electron donor for microsomal cytochromes P450 (CYP). Cas9-expressing HepaRGVC (vector control) cells were phenotypically similar to wild type HepaRG cells and could be differentiated into hepatocyte-like cells by DMSO. Genetic POR-knockout resulted in phenotypic POR knockdown of up to 90% at mRNA, protein, and activity levels. LC–MS/MS measurement of seven CYP-activities showed differential effects of POR-knockdown with CYP2C8 being least and CYP2C9 being most affected. Further studies on cytochrome b5 (CYB5), an alternative NADH-dependent electron donor indicated particularly strong support of CYP2C8-dependent amodiaquine N-deethylation by CYB5 and this was confirmed by genetic CYB5 single- and POR/CYB5 double-knockout. POR-knockdown also affected CYP expression on mRNA and protein level, with CYP1A2 being induced severalfold, while CYP2C9 was strongly downregulated. In summary our results show that POR/NADPH- and CYB5/NADH-electron transport systems influence human drug metabolizing CYPs differentially and differently than mouse Cyps. Our Cas9-expressing HepaRGVC cells should be suitable to study the influence of diverse genes on drug metabolism and other hepatic functions.
Collapse
Affiliation(s)
- Tamara Heintze
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany. .,Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
19
|
Orr TJ, Kitanovic S, Schramm KM, Skopec MM, Wilderman PR, Halpert JR, Dearing MD. Strategies in herbivory by mammals revisited: The role of liver metabolism in a juniper specialist (Neotoma stephensi) and a generalist (Neotoma albigula). Mol Ecol 2020; 29:1674-1683. [PMID: 32246507 DOI: 10.1111/mec.15431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Although herbivory is widespread among mammals, few species have adopted a strategy of dietary specialization. Feeding on a single plant species often exposes herbivores to high doses of plant secondary metabolites (PSMs), which may exceed the animal's detoxification capacities. Theory predicts that specialists will have unique detoxification mechanisms to process high levels of dietary toxins. To evaluate this hypothesis, we compared liver microsomal metabolism of a juniper specialist, Neotoma stephensi (diet >85% juniper), to a generalist, N. albigula (diet ≤30% juniper). Specifically, we quantified the concentration of a key detoxification enzyme, cytochrome P450 2B (CYP2B) in liver microsomes, and the metabolism of α-pinene, the most abundant terpene in the juniper species consumed by the specialist woodrat. In both species, a 30% juniper diet increased the total CYP2B concentration (2-3×) in microsomes and microsomal α-pinene metabolism rates (4-fold). In N. stephensi, higher levels of dietary juniper (60% and 100%) further induced CYP2B and increased metabolism rates of α-pinene. Although no species-specific differences in metabolism rates were observed at 30% dietary juniper, total microsomal CYP2B concentration was 1.7× higher in N. stephensi than in N. albigula (p < .01), suggesting N. stephensi produces one or more variant of CYP2B that is less efficient at processing α-pinene. In N. stephensi, the rates of α-pinene metabolism increased with dietary juniper and were positively correlated with CYP2B concentration. The ability of N. stephensi to elevate CYP2B concentration and rate of α-pinene metabolism with increasing levels of juniper in the diet may facilitate juniper specialization in this species.
Collapse
Affiliation(s)
- Teri J Orr
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Smiljka Kitanovic
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Katharina M Schramm
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.,Department of Botany, Weber State University, Ogden, UT, USA
| | | | | | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Esteves F, Campelo D, Gomes BC, Urban P, Bozonnet S, Lautier T, Rueff J, Truan G, Kranendonk M. The Role of the FMN-Domain of Human Cytochrome P450 Oxidoreductase in Its Promiscuous Interactions With Structurally Diverse Redox Partners. Front Pharmacol 2020; 11:299. [PMID: 32256365 PMCID: PMC7094780 DOI: 10.3389/fphar.2020.00299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
NADPH cytochrome P450 oxidoreductase (CPR) is the obligatory electron supplier that sustains the activity of microsomal cytochrome P450 (CYP) enzymes. The variant nature of the isoform-specific proximal interface of microsomal CYPs indicates that CPR is capable of multiple degenerated interactions with CYPs for electron transfer, through different binding mechanisms, and which are still not well-understood. Recently, we showed that CPR dynamics allows formation of open conformations that can be sampled by its structurally diverse redox partners in a CYP-isoform dependent manner. To further investigate the role of the CPR FMN-domain in effective binding of CPR to its diverse acceptors and to clarify the underlying molecular mechanisms, five different CPR-FMN-domain random mutant libraries were created. These libraries were screened for mutants with increased activity when combined with specific CYP-isoforms. Seven CPR-FMN-domain mutants were identified, supporting a gain in activity for CYP1A2 (P117H, G144C, A229T), 2A6 (P117L/L125V, G175D, H183Y), or 3A4 (N151D). Effects were evaluated using extended enzyme kinetic analysis, cytochrome b 5 competition, ionic strength effect on CYP activity, and structural analysis. Mutated residues were located either in or adjacent to several acidic amino acid stretches - formerly indicated to be involved in CPR:CYP interactions - or close to two tyrosine residues suggested to be involved in FMN binding. Several of the identified positions co-localize with mutations found in naturally occurring CPR variants that were previously shown to cause CYP-isoform-dependent effects. The mutations do not seem to significantly alter the geometry of the FMN-domain but are likely to cause very subtle alterations leading to improved interaction with a specific CYP. Overall, these data suggest that CYPs interact with CPR using an isoform specific combination of several binding motifs of the FMN-domain.
Collapse
Affiliation(s)
- Francisco Esteves
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diana Campelo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Philippe Urban
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Sophie Bozonnet
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Thomas Lautier
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gilles Truan
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Michel Kranendonk
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
22
|
Wang C, Su X, Sun M, Zhang M, Wu J, Xing J, Wang Y, Xue J, Liu X, Sun W, Chen S. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Microb Cell Fact 2019; 18:95. [PMID: 31138208 PMCID: PMC6540369 DOI: 10.1186/s12934-019-1138-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
Background Glycyrrhetinic acid (GA) is the most important ingredient in licorice due to its outstanding anti-inflammatory activity and wide application in the medicine and cosmetics industries. Contemporary industrial production of GA by acid hydrolysis of glycyrrhizin which was extracted from Glycyrrhiza plants, is not environment-friendly and devastates farmland since the Glycyrrhiza rhizomes grow up to 10 m underground. Results In this study, GA was produced through metabolically engineering Saccharomyces cerevisiae by introducing the entire heterogeneous biosynthetic pathway of GA. Codon optimized CYP88D6 and CYP72A154, combined with β-AS (β-amyrin synthase encoding gene) and the NADPH-cytochrome P450 reductase gene of Arabidopsis thaliana were introduced into S. cerevisiae. The resulting strain (Y1) produced 2.5 mg/L of β-amyrin and 14 μg/L of GA. The cytochrome b5 from G. uralensis (GuCYB5) was identified and the introduction of this novel GuCYB5 increased the efficiency of GA production by eightfold. The joint utilization of the GuCYB5 gene along with 10 known MVA pathway genes from S. cerevisiae were overexpressed in a stable chromosome integration to achieve higher GA production. Using the combined strategy, GA concentration improved by 40-fold during batch fermentation. The production was further improved to 8.78 mg/L in fed-batch fermentation, which was increased by a factor of nearly 630. Conclusions This study first investigated the influence of carbon flux in the upstream module and the introduction of a newly identified GuCYB5 on GA production. The newly identified GuCYB5 was highly effective in improving GA production. An integrated strategy including enzyme discovery, pathway optimization, and fusion protein construction was provided in improving GA production, achieving a 630 fold increase in GA production. The metabolically engineered yeast cell factories provide an alternative approach to glycyrrhetinic acid production, replacing the traditional method of plant extraction. Electronic supplementary material The online version of this article (10.1186/s12934-019-1138-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, People's Republic of China
| | - Xinyao Su
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, People's Republic of China.,School of Life Science, Huai Bei Normal University, Huaibei, 23500, People's Republic of China
| | - Mengchu Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, People's Republic of China.,School of Life Science, Huai Bei Normal University, Huaibei, 23500, People's Republic of China
| | - Mengting Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, People's Republic of China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jiajia Wu
- Agilent Technologies (China) Co., Ltd., Wangjingbei Road, Chaoyang District, Beijing, 100102, China
| | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Jianping Xue
- School of Life Science, Huai Bei Normal University, Huaibei, 23500, People's Republic of China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, People's Republic of China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, People's Republic of China.
| |
Collapse
|
23
|
Reed L, Indra R, Mrizova I, Moserova M, Schmeiser HH, Wolf CR, Henderson CJ, Stiborova M, Phillips DH, Arlt VM. Application of hepatic cytochrome b 5/P450 reductase null (HBRN) mice to study the role of cytochrome b 5 in the cytochrome P450-mediated bioactivation of the anticancer drug ellipticine. Toxicol Appl Pharmacol 2019; 366:64-74. [PMID: 30685480 PMCID: PMC6382462 DOI: 10.1016/j.taap.2019.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 01/30/2023]
Abstract
The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.
Collapse
Affiliation(s)
- Lindsay Reed
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Moserova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom.
| |
Collapse
|
24
|
Gentry KA, Zhang M, Im SC, Waskell L, Ramamoorthy A. Substrate mediated redox partner selectivity of cytochrome P450. Chem Commun (Camb) 2018; 54:5780-5783. [PMID: 29781479 DOI: 10.1039/c8cc02525h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Investigating the interplay between cytochrome-P450 and its redox partners (CPR and cytochrome-b5) is vital for understanding the metabolism of most hydrophobic drugs. Dynamic structural interactions with the ternary complex, with and without substrates, captured by NMR reveal a gating mechanism for redox partners to promote P450 function.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | |
Collapse
|
25
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
26
|
Duggal R, Denisov IG, Sligar SG. Cytochrome b 5 enhances androgen synthesis by rapidly reducing the CYP17A1 oxy-complex in the lyase step. FEBS Lett 2018; 592:2282-2288. [PMID: 29888793 DOI: 10.1002/1873-3468.13153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/16/2018] [Accepted: 06/05/2018] [Indexed: 11/05/2022]
Abstract
Cytochrome P450 17A1 (CYP17A1) catalyzes the synthesis of androgens from the steroid precursors pregnenolone and progesterone in a two-step reaction process: allylic hydroxylation and carbo-carbon bond scission. Cytochrome b5 (Cyt-b5 ) is a stimulator of the second lyase reaction, but the chemical mechanism is unclear. We have shown previously that this stimulatory effect requires redox active Cyt-b5 . To investigate the origin of the lyase reaction enhancement by electron transfer from Cyt-b5 , we measured the reduction rates of oxy-ferrous substrate-bound CYP17A1 by Cyt-b5 and by cytochrome P450 reductase (CPR) coincorporated in Nanodiscs using stopped flow spectroscopy. We observed that Cyt-b5 reduces oxy-ferrous CYP17A1 10-fold faster than CPR, with the rate similar to that observed in a ternary complex of all three proteins.
Collapse
Affiliation(s)
- Ruchia Duggal
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, USA.,Department of Chemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
27
|
Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem 2018; 183:117-136. [DOI: 10.1016/j.jinorgbio.2018.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
|
28
|
Xia C, Rwere F, Im S, Shen AL, Waskell L, Kim JJP. Structural and Kinetic Studies of Asp632 Mutants and Fully Reduced NADPH-Cytochrome P450 Oxidoreductase Define the Role of Asp632 Loop Dynamics in the Control of NADPH Binding and Hydride Transfer. Biochemistry 2018; 57:945-962. [PMID: 29308883 PMCID: PMC5967631 DOI: 10.1021/acs.biochem.7b01102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conformational changes in NADPH-cytochrome P450 oxidoreductase (CYPOR) associated with electron transfer from NADPH to electron acceptors via FAD and FMN have been investigated via structural studies of the four-electron-reduced NADP+-bound enzyme and kinetic and structural studies of mutants that affect the conformation of the mobile Gly631-Asn635 loop (Asp632 loop). The structure of four-electron-reduced, NADP+-bound wild type CYPOR shows the plane of the nicotinamide ring positioned perpendicular to the FAD isoalloxazine with its carboxamide group forming H-bonds with N1 of the flavin ring and the Thr535 hydroxyl group. In the reduced enzyme, the C8-C8 atoms of the two flavin rings are ∼1 Å closer than in the fully oxidized and one-electron-reduced structures, which suggests that flavin reduction facilitates interflavin electron transfer. Structural and kinetic studies of mutants Asp632Ala, Asp632Phe, Asp632Asn, and Asp632Glu demonstrate that the carboxyl group of Asp632 is important for stabilizing the Asp632 loop in a retracted position that is required for the binding of the NADPH ribityl-nicotinamide in a hydride-transfer-competent conformation. Structures of the mutants and reduced wild type CYPOR permit us to identify a possible pathway for NADP(H) binding to and release from CYPOR. Asp632 mutants unable to form stable H-bonds with the backbone amides of Arg634, Asn635, and Met636 exhibit decreased catalytic activity and severely impaired hydride transfer from NADPH to FAD, but leave interflavin electron transfer intact. Intriguingly, the Arg634Ala mutation slightly increases the cytochrome P450 2B4 activity. We propose that Asp632 loop movement, in addition to facilitating NADP(H) binding and release, participates in domain movements modulating interflavin electron transfer.
Collapse
Affiliation(s)
- Chuanwu Xia
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Freeborn Rwere
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Sangchoul Im
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Anna L. Shen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lucy Waskell
- University of Michigan Medical School, Ann Arbor, Michigan 48105,Corresponding Author: Correspondence should be addressed to Lucy Waskell, M.D., Ph.D., Department of Anesthesiology, University of Michigan, Mail Stop 151, 2215 Fuller Rd., Ann Arbor, MI 48109-0112. . OR Jung Ja Kim, Ph.D., Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226.
| | - Jung-Ja P. Kim
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226,Corresponding Author: Correspondence should be addressed to Lucy Waskell, M.D., Ph.D., Department of Anesthesiology, University of Michigan, Mail Stop 151, 2215 Fuller Rd., Ann Arbor, MI 48109-0112. . OR Jung Ja Kim, Ph.D., Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226.
| |
Collapse
|
29
|
Bart AG, Scott EE. Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. J Biol Chem 2017; 292:20818-20833. [PMID: 29079577 DOI: 10.1074/jbc.ra117.000220] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/22/2017] [Indexed: 02/04/2023] Open
Abstract
The small heme-containing protein cytochrome b5 can facilitate, inhibit, or have no effect on cytochrome P450 catalysis, often in a P450-dependent and substrate-dependent manner that is not well understood. Herein, solution NMR was used to identify b5 residues interacting with different human drug-metabolizing P450 enzymes. NMR results revealed that P450 enzymes bound to either b5 α4-5 (CYP2A6 and CYP2E1) or this region and α2-3 (CYP2D6 and CYP3A4) and suggested variation in the affinity for b5 Mutations of key b5 residues suggest not only that different b5 surfaces are responsible for binding different P450 enzymes, but that these different complexes are relevant to the observed effects on P450 catalysis.
Collapse
Affiliation(s)
| | - Emily E Scott
- From the Biophysics Program and .,the Departments of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
30
|
Overcoming the plasticity of plant specialized metabolism for selective diterpene production in yeast. Sci Rep 2017; 7:8855. [PMID: 28821847 PMCID: PMC5562805 DOI: 10.1038/s41598-017-09592-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/26/2017] [Indexed: 01/19/2023] Open
Abstract
Plants synthesize numerous specialized metabolites (also termed natural products) to mediate dynamic interactions with their surroundings. The complexity of plant specialized metabolism is the result of an inherent biosynthetic plasticity rooted in the substrate and product promiscuity of the enzymes involved. The pathway of carnosic acid-related diterpenes in rosemary and sage involves promiscuous cytochrome P450s whose combined activity results in a multitude of structurally related compounds. Some of these minor products, such as pisiferic acid and salviol, have established bioactivity, but their limited availability prevents further evaluation. Reconstructing carnosic acid biosynthesis in yeast achieved significant titers of the main compound but could not specifically yield the minor products. Specific production of pisiferic acid and salviol was achieved by restricting the promiscuity of a key enzyme, CYP76AH24, through a single-residue substitution (F112L). Coupled with additional metabolic engineering interventions, overall improvements of 24 and 14-fold for pisiferic acid and salviol, respectively, were obtained. These results provide an example of how synthetic biology can help navigating the complex landscape of plant natural product biosynthesis to achieve heterologous production of useful minor metabolites. In the context of plant adaptation, these findings also suggest a molecular basis for the rapid evolution of terpene biosynthetic pathways.
Collapse
|
31
|
Gentry KA, Prade E, Barnaba C, Zhang M, Mahajan M, Im SC, Anantharamaiah GM, Nagao S, Waskell L, Ramamoorthy A. Kinetic and Structural Characterization of the Effects of Membrane on the Complex of Cytochrome b 5 and Cytochrome c. Sci Rep 2017; 7:7793. [PMID: 28798301 PMCID: PMC5552742 DOI: 10.1038/s41598-017-08130-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cytochrome b5 (cytb5) is a membrane protein vital for the regulation of cytochrome P450 (cytP450) metabolism and is capable of electron transfer to many redox partners. Here, using cyt c as a surrogate for cytP450, we report the effect of membrane on the interaction between full-length cytb5 and cyt c for the first time. As shown through stopped-flow kinetic experiments, electron transfer capable cytb5 - cyt c complexes were formed in the presence of bicelles and nanodiscs. Experimentally measured NMR parameters were used to map the cytb5-cyt c binding interface. Our experimental results identify differences in the binding epitope of cytb5 in the presence and absence of membrane. Notably, in the presence of membrane, cytb5 only engaged cyt c at its lower and upper clefts while the membrane-free cytb5 also uses a distal region. Using restraints generated from both cytb5 and cyt c, a complex structure was generated and a potential electron transfer pathway was identified. These results demonstrate the importance of studying protein-protein complex formation in membrane mimetic systems. Our results also demonstrate the successful preparation of novel peptide-based lipid nanodiscs, which are detergent-free and possesses size flexibility, and their use for NMR structural studies of membrane proteins.
Collapse
Affiliation(s)
| | - Elke Prade
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlo Barnaba
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mukesh Mahajan
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan, and Veterans Affairs Medical Center, Ann Arbor, Michigan, 48105, USA
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama, 35294, USA
| | - Satoshi Nagao
- Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, and Veterans Affairs Medical Center, Ann Arbor, Michigan, 48105, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Córdova P, Gonzalez AM, Nelson DR, Gutiérrez MS, Baeza M, Cifuentes V, Alcaíno J. Characterization of the cytochrome P450 monooxygenase genes (P450ome) from the carotenogenic yeast Xanthophyllomyces dendrorhous. BMC Genomics 2017; 18:540. [PMID: 28724407 PMCID: PMC5516332 DOI: 10.1186/s12864-017-3942-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases involved in the oxidative metabolism of an enormous diversity of substrates. These enzymes require electrons for their activity, and the electrons are supplied by NAD(P)H through a P450 electron donor system, which is generally a cytochrome P450 reductase (CPR). The yeast Xanthophyllomyces dendrorhous has evolved an exclusive P450-CPR system that specializes in the synthesis of astaxanthin, a carotenoid with commercial potential. For this reason, the aim of this work was to identify and characterize other potential P450 genes in the genome of this yeast using a bioinformatic approach. RESULTS Thirteen potential P450-encoding genes were identified, and the analysis of their deduced proteins allowed them to be classified in ten different families: CYP51, CYP61, CYP5139 (with three members), CYP549A, CYP5491, CYP5492 (with two members), CYP5493, CYP53, CYP5494 and CYP5495. Structural analyses of the X. dendrorhous P450 proteins showed that all of them have a predicted transmembrane region at their N-terminus and have the conserved domains characteristic of the P450s, including the heme-binding region (FxxGxRxCxG); the PER domain, with the characteristic signature for fungi (PxRW); the ExxR motif in the K-helix region and the oxygen-binding domain (OBD) (AGxDTT); also, the characteristic secondary structure elements of all the P450 proteins were identified. The possible functions of these P450s include primary, secondary and xenobiotic metabolism reactions such as sterol biosynthesis, carotenoid synthesis and aromatic compound degradation. CONCLUSIONS The carotenogenic yeast X. dendrorhous has thirteen P450-encoding genes having potential functions in primary, secondary and xenobiotic metabolism reactions, including some genes of great interest for fatty acid hydroxylation and aromatic compound degradation. These findings established a basis for future studies about the role of P450s in the carotenogenic yeast X. dendrorhous and their potential biotechnological applications.
Collapse
Affiliation(s)
- Pamela Córdova
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Ana-María Gonzalez
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - María-Soledad Gutiérrez
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
33
|
Bhatt MR, Khatri Y, Rodgers RJ, Martin LL. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J Steroid Biochem Mol Biol 2017; 170:2-18. [PMID: 26976652 DOI: 10.1016/j.jsbmb.2016.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved.
Collapse
Affiliation(s)
- Megh Raj Bhatt
- Everest Biotech Pvt. Ltd., Khumaltar, Lalitpur, P.O. Box 21608, Kathmandu 44600, Nepal
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Raymond J Rodgers
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
34
|
Christensen U, Vazquez-Albacete D, Søgaard KM, Hobel T, Nielsen MT, Harrison SJ, Hansen AH, Møller BL, Seppälä S, Nørholm MHH. De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions. Appl Microbiol Biotechnol 2017; 101:4103-4113. [DOI: 10.1007/s00253-016-8076-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/17/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
|
35
|
Pearl NM, Wilcoxen J, Im S, Kunz R, Darty J, Britt RD, Ragsdale SW, Waskell L. Protonation of the Hydroperoxo Intermediate of Cytochrome P450 2B4 Is Slower in the Presence of Cytochrome P450 Reductase Than in the Presence of Cytochrome b5. Biochemistry 2016; 55:6558-6567. [PMID: 27797496 DOI: 10.1021/acs.biochem.6b00996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microsomal cytochromes P450 (P450) require two electrons and two protons for the oxidation of substrates. Although the two electrons can be provided by cytochrome P450 reductase, the second electron can also be donated by cytochrome b5 (b5). The steady-state activity of P450 2B4 is increased up to 10-fold by b5. To improve our understanding of the molecular basis of the stimulatory effect of b5 and to test the hypothesis that b5 stimulates catalysis by more rapid protonation of the anionic ferric hydroperoxo heme intermediate of P450 (Fe3+OOH)- and subsequent formation of the active oxidizing species (Fe+4═O POR•+), we have freeze-quenched the reaction mixture during a single turnover following reduction of oxyferrous P450 2B4 by each of its redox partners, b5 and P450 reductase. The electron paramagnetic resonance spectra of the freeze-quenched reaction mixtures lacked evidence of a hydroperoxo intermediate when b5 was the reductant presumably because hydroperoxo protonation and catalysis occurred within the dead time of the instrument. However, when P450 reductase was the reductant, a hydroperoxo P450 intermediate was observed. The effect of b5 on the enzymatic efficiency in D2O and the kinetic solvent isotope effect under steady-state conditions are both consistent with the ability of b5 to promote rapid protonation of the hydroperoxo species and more efficient catalysis. In summary, by binding to the proximal surface of P450, b5 stimulates the activity of P450 2B4 by enhancing the rate of protonation of the hydroperoxo intermediate and formation of Compound I, the active oxidizing species, which allows less time for side product formation.
Collapse
Affiliation(s)
- Naw May Pearl
- Department of Anesthesiology, University of Michigan Medical School , Ann Arbor, Michigan 48109-0112, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Sangchoul Im
- Department of Anesthesiology, University of Michigan Medical School , Ann Arbor, Michigan 48109-0112, United States
| | - Ryan Kunz
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - Joseph Darty
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan Medical School , Ann Arbor, Michigan 48109-0112, United States
| |
Collapse
|
36
|
Peng HM, Im SC, Pearl NM, Turcu AF, Rege J, Waskell L, Auchus RJ. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production. Biochemistry 2016; 55:4356-65. [PMID: 27426448 PMCID: PMC5287367 DOI: 10.1021/acs.biochem.6b00532] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known. We determined the influence of b5 on coupling efficiency-defined as the ratio of product formation to NADPH consumption-in a reconstituted system using these 3 pairs of substrates for the 2 reactions. Rates of NADPH consumption ranged from 4 to 13 nmol/min/nmol P450 with wild-type P450 17A1. For the 17-hydroxylase reaction, progesterone oxidation was the most tightly coupled (∼50%) and negligibly changed upon addition of b5. Rates of NADPH consumption were similar for the 17-hydroxylase and corresponding 17,20-lyase reactions for each steroid series, and b5 only slightly increased NADPH consumption. For the 17,20-lyase reactions, b5 markedly increased product formation and coupling in parallel with all substrates, from 6% to 44% with the major substrate 17-hydroxypregnenolone. For the naturally occurring P450 17A1 mutations E305G and R347H, which impair 17,20-lyase activity, b5 failed to rescue the poor coupling with 17-hydroxypregnenolone (2-4%). When the conserved active-site threonine was mutated to alanine (T306A), both the activity and coupling were markedly decreased with all substrates. We conclude that b5 stimulation of the 17,20-lyase reaction primarily derives from more efficient use of NADPH for product formation rather than side products.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Sang-Choul Im
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Naw May Pearl
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Adina F. Turcu
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Juilee Rege
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Lucy Waskell
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
37
|
Scott EE, Wolf CR, Otyepka M, Humphreys SC, Reed JR, Henderson CJ, McLaughlin LA, Paloncýová M, Navrátilová V, Berka K, Anzenbacher P, Dahal UP, Barnaba C, Brozik JA, Jones JP, Estrada DF, Laurence JS, Park JW, Backes WL. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function. Drug Metab Dispos 2016; 44:576-90. [PMID: 26851242 PMCID: PMC4810767 DOI: 10.1124/dmd.115.068569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 11/22/2022] Open
Abstract
This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function.
Collapse
Affiliation(s)
- Emily E Scott
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - C Roland Wolf
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Michal Otyepka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Sara C Humphreys
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James R Reed
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Colin J Henderson
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Lesley A McLaughlin
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Markéta Paloncýová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Veronika Navrátilová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Karel Berka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Pavel Anzenbacher
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Upendra P Dahal
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Carlo Barnaba
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James A Brozik
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jeffrey P Jones
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - D Fernando Estrada
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jennifer S Laurence
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Ji Won Park
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Wayne L Backes
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| |
Collapse
|
38
|
El-Sherbeni AA, El-Kadi AOS. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Mol Pharm 2016; 13:1278-88. [PMID: 26918316 DOI: 10.1021/acs.molpharmaceut.5b00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
39
|
Li C, Li J, Wang G, Li X. Heterologous biosynthesis of artemisinic acid in Saccharomyces cerevisiae. J Appl Microbiol 2016; 120:1466-78. [PMID: 26743771 DOI: 10.1111/jam.13044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/11/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Artemisinic acid is a precursor of antimalarial compound artemisinin. The titre of biosynthesis of artemisinic acid using Saccharomyces cerevisiae platform has been achieved up to 25 g l(-1) ; however, the performance of platform cells is still industrial unsatisfied. Many strategies have been proposed to improve the titre of artemisinic acid. The traditional strategies mainly focused on partial target sites, simple up-regulation key genes or repression competing pathways in the total synthesis route. However, this may result in unbalance of carbon fluxes and dysfunction of metabolism. In this review, the recent advances on the promising methods in silico and in vivo for biosynthesis of artemisinic acid have been discussed. The bioinformatics and omics techniques have brought a great prospect for improving production of artemisinin and other pharmacal compounds in heterologous platform.
Collapse
Affiliation(s)
- C Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - G Wang
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - X Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
40
|
Estrada DF, Laurence JS, Scott EE. Cytochrome P450 17A1 Interactions with the FMN Domain of Its Reductase as Characterized by NMR. J Biol Chem 2015; 291:3990-4003. [PMID: 26719338 DOI: 10.1074/jbc.m115.677294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
To accomplish key physiological processes ranging from drug metabolism to steroidogenesis, human microsomal cytochrome P450 enzymes require the sequential input of two electrons delivered by the FMN domain of NADPH-cytochrome P450 reductase. Although some human microsomal P450 enzymes can instead accept the second electron from cytochrome b5, for human steroidogenic CYP17A1, the cytochrome P450 reductase FMN domain delivers both electrons, and b5 is an allosteric modulator. The structural basis of these key but poorly understood protein interactions was probed by solution NMR using the catalytically competent soluble domains of each protein. Formation of the CYP17A1·FMN domain complex induced differential line broadening of the NMR signal for each protein. Alterations in the exchange dynamics generally occurred for residues near the surface of the flavin mononucleotide, including 87-90 (loop 1), and for key CYP17A1 active site residues. These interactions were modulated by the identity of the substrate in the buried CYP17A1 active site and by b5. The FMN domain outcompetes b5 for binding to CYP17A1 in the three-component system. These results and comparison with previous NMR studies of the CYP17A1·b5 complex suggest a model of CYP17A1 enzyme regulation.
Collapse
Affiliation(s)
- D Fernando Estrada
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Jennifer S Laurence
- the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
41
|
Jambunathan P, Zhang K. Combining biological and chemical approaches for green synthesis of chemicals. Curr Opin Chem Eng 2015. [DOI: 10.1016/j.coche.2015.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Gutiérrez MS, Rojas MC, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous. PLoS One 2015; 10:e0140424. [PMID: 26466337 PMCID: PMC4605618 DOI: 10.1371/journal.pone.0140424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous.
Collapse
Affiliation(s)
- María Soledad Gutiérrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Cecilia Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
43
|
Burkhardt T, Letzel T, Drewes JE, Grassmann J. Comprehensive assessment of Cytochrome P450 reactions: A multiplex approach using real-time ESI-MS. Biochim Biophys Acta Gen Subj 2015; 1850:2573-81. [PMID: 26409144 DOI: 10.1016/j.bbagen.2015.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND The detailed analysis of Cytochrome P450 (CYP) catalyzed reactions is of great interest, since those are of importance for biotechnical applications, drug interaction studies and environmental research. Often cocktail approaches are carried out in order to monitor several CYP activities in a single experiment. Commonly in these approaches product formation is detected and IC50 values are determined. METHODS In the present work, the reactions of two different CYP isoforms were monitored using real-time electrospray ionization mass spectrometry. Multiplex experiments using the highly specific CYP2A6 with its corresponding substrate coumarin as well as the highly promiscuous CYP3A4 with testosterone were conducted. Product formation and substrate depletion were simultaneously monitored and compared to the single CYP experiments. The diffusion-controlled rate of reaction and conversion rates that are used as parameters to assess the enzymatic activity were calculated for all measurements conducted. RESULTS Differences in conversion rates and the theoretical rate of reaction that were observed for single CYP and multiplex experiments, respectively, reveal the complexity of the underlying mechanisms. Findings of this study imply that there might be distinct deviations between product formation and substrate degradation when mixtures are used. CONCLUSIONS Detailed results indicate that for a comprehensive assessment of these enzymatic reactions both product and substrate should be considered. GENERAL SIGNIFICANCE The direct hyphenation of enzymatic reactions to mass spectrometry allows for a comprehensive assessment of enzymatic behavior. Due to the benefits of this technique, the entire system which includes substrate, product and intermediates can be investigated. Thus, besides IC50 values further information regarding the enzymatic behavior offers the opportunity for a more detailed insight.
Collapse
Affiliation(s)
- Therese Burkhardt
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | - Johanna Grassmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| |
Collapse
|
44
|
D'Agostino J, Zhang H, Kenaan C, Hollenberg PF. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos. Chem Res Toxicol 2015; 28:1484-95. [PMID: 26075493 DOI: 10.1021/acs.chemrestox.5b00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions.
Collapse
Affiliation(s)
- Jaime D'Agostino
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Cesar Kenaan
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| |
Collapse
|
45
|
Leiva K, Werner N, Sepúlveda D, Barahona S, Baeza M, Cifuentes V, Alcaíno J. Identification and functional characterization of the CYP51 gene from the yeast Xanthophyllomyces dendrorhous that is involved in ergosterol biosynthesis. BMC Microbiol 2015; 15:89. [PMID: 25906980 PMCID: PMC4415319 DOI: 10.1186/s12866-015-0428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, a carotenoid with great biotechnological impact. The ergosterol and carotenoid synthetic pathways derive from the mevalonate pathway and involve cytochrome P450 enzymes. Among these enzymes, the CYP51 family, which is involved in ergosterol biosynthesis, is one of the most remarkable that has C14-demethylase activity. RESULTS In this study, the CYP51 gene from X. dendrorhous was isolated and its function was analyzed. The gene is composed of ten exons and encodes a predicted 550 amino acid polypeptide that exhibits conserved cytochrome P450 structural characteristics and shares significant identity with the sterol C14-demethylase from other fungi. The functionality of this gene was confirmed by heterologous complementation in S. cerevisiae. Furthermore, a CYP51 gene mutation in X. dendrorhous reduced sterol production by approximately 40% and enhanced total carotenoid production by approximately 90% compared to the wild-type strain after 48 and 120 h of culture, respectively. Additionally, the CYP51 gene mutation in X. dendrorhous increased HMGR (hydroxy-methylglutaryl-CoA reductase, involved in the mevalonate pathway) and crtR (cytochrome P450 reductase) transcript levels, which could be associated with reduced ergosterol production. CONCLUSIONS These results suggest that the CYP51 gene identified in X. dendrorhous encodes a functional sterol C14-demethylase that is involved in ergosterol biosynthesis.
Collapse
Affiliation(s)
- Kritsye Leiva
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Nicole Werner
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| |
Collapse
|
46
|
Insights into the role of substrates on the interaction between cytochrome b5 and cytochrome P450 2B4 by NMR. Sci Rep 2015; 5:8392. [PMID: 25687717 PMCID: PMC4330534 DOI: 10.1038/srep08392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023] Open
Abstract
Mammalian cytochrome b5 (cyt b5) is a membrane-bound protein capable of donating an electron to cytochrome P450 (P450) in the P450 catalytic cycle. The interaction between cyt b5 and P450 has been reported to be affected by the substrates of P450; however, the mechanism of substrate modulation on the cyt b5-P450 complex formation is still unknown. In this study, the complexes between full-length rabbit cyt b5 and full-length substrate-free/substrate-bound cytochrome P450 2B4 (CYP2B4) are investigated using NMR techniques. Our findings reveal that the population of complexes is ionic strength dependent, implying the importance of electrostatic interactions in the complex formation process. The observation that the cyt b5-substrate-bound CYP2B4 complex shows a weaker dependence on ionic strength than the cyt b5-substrate-free CYP2B4 complex suggests the presence of a larger fraction of steoreospecific complexes when CYP2B4 is substrate-bound. These results suggest that a CYP2B4 substrate likely promotes specific interactions between cyt b5 and CYP2B4. Residues D65, V66, T70, D71 and A72 are found to be involved in specific interactions between the two proteins due to their weak response to ionic strength change. These findings provide insights into the mechanism underlying substrate modulation on the cyt b5-P450 complexation process.
Collapse
|
47
|
Arlt VM, Henderson CJ, Wolf CR, Stiborová M, Phillips DH. The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00116h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This review describes the applicability of the Hepatic Reductase Null (HRN) and Reductase Conditional Null (RCN) mouse models to study carcinogen metabolism.
Collapse
Affiliation(s)
- Volker M. Arlt
- Analytical and Environmental Sciences Division
- MRC-PHE Centre for Environment and Health
- King's College London
- London SE1 9NH
- UK
| | - Colin J. Henderson
- Division of Cancer Research
- Medical Research Institute
- Jacqui Wood Cancer Centre
- University of Dundee
- Dundee DD1 9SY
| | - C. Roland Wolf
- Division of Cancer Research
- Medical Research Institute
- Jacqui Wood Cancer Centre
- University of Dundee
- Dundee DD1 9SY
| | - Marie Stiborová
- Department of Biochemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - David H. Phillips
- Analytical and Environmental Sciences Division
- MRC-PHE Centre for Environment and Health
- King's College London
- London SE1 9NH
- UK
| |
Collapse
|
48
|
Stiborová M, Černá V, Moserová M, Mrízová I, Arlt VM, Frei E. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes. Int J Mol Sci 2014; 16:284-306. [PMID: 25547492 PMCID: PMC4307247 DOI: 10.3390/ijms16010284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/17/2014] [Indexed: 12/30/2022] Open
Abstract
Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Michaela Moserová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Iveta Mrízová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Jeřábek P, Florián J, Stiborová M, Martínek V. Flexible docking-based molecular dynamics/steered molecular dynamics calculations of protein-protein contacts in a complex of cytochrome P450 1A2 with cytochrome b5. Biochemistry 2014; 53:6695-705. [PMID: 25313797 DOI: 10.1021/bi500814t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formation of transient complexes of cytochrome P450 (P450) with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates the catalytic activities of several P450s. Therefore, we examined formation and binding modes of the complex of human P450 1A2 with cyt b5. Docking of soluble domains of these proteins was performed using an information-driven flexible docking approach implemented in HADDOCK. Stabilities of the five unique binding modes of the P450 1A2-cyt b5 complex yielded by HADDOCK were evaluated using explicit 10 ns molecular dynamics (MD) simulations in aqueous solution. Further, steered MD was used to compare the stability of the individual P450 1A2-cyt b5 binding modes. The best binding mode was characterized by a T-shaped mutual orientation of the porphyrin rings and a 10.7 Å distance between the two redox centers, thus satisfying the condition for a fast electron transfer. Mutagenesis studies and chemical cross-linking, which, in the absence of crystal structures, were previously used to deduce specific P450-cyt b5 interactions, indicated that the negatively charged convex surface of cyt b5 binds to the positively charged concave surface of P450. Our simulations further elaborate structural details of this interface, including nine ion pairs between R95, R100, R138, R362, K442, K455, and K465 side chains of P450 1A2 and E42, E43, E49, D65, D71, and heme propionates of cyt b5. The universal heme-centric system of internal coordinates was proposed to facilitate consistent classification of the orientation of the two porphyrins in any protein complex.
Collapse
Affiliation(s)
- Petr Jeřábek
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Albertov 2030, 128 43 Prague 2, Czech Republic
| | | | | | | |
Collapse
|
50
|
Burke RS, Somasuntharam I, Rearden P, Brown D, Deshmukh SV, DiPietro MA, DiMuzio J, Eisenhandler R, Fauty SE, Gibson C, Gindy ME, Hamilton KA, Knemeyer I, Koeplinger KA, Kwon HW, Lifsted TQ, Menzel K, Patel M, Pudvah N, Rudd DJ, Seitzer J, Strapps WR, Prueksaritanont T, Thompson CD, Hochman JH, Carr BA. siRNA-Mediated Knockdown of P450 Oxidoreductase in Rats: A Tool to Reduce Metabolism by CYPs and Increase Exposure of High Clearance Compounds. Pharm Res 2014; 31:3445-60. [DOI: 10.1007/s11095-014-1433-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/03/2014] [Indexed: 11/28/2022]
|