1
|
Liu H, Acharya S, Sudan SK, Hu L, Wu C, Cao Y, Li H, Zhang X. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D 2 receptor. FEBS J 2023; 290:5204-5233. [PMID: 37531324 DOI: 10.1111/febs.16921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Dopamine D2 receptor (D2 R) has been shown to activate extracellular signal-regulated kinases (ERKs) via distinct pathways dependent on either G-protein or β-arrestin. However, there has not been a systematic study of the regulatory process of D2 R-mediated ERKs activation by G protein- versus β-arrestin-dependent signaling since D2 R stimulation of ERKs reflects the simultaneous action of both pathways. Here, we investigated that differential regulation of D2 R-mediated ERKs activation via these two pathways. Our results showed that G protein-dependent ERKs activation was transient, rapid, reached maximum level at around 2 min, and importantly, the activated ERKs were entirely confined to the cytoplasm. In contrast, β-arrestin-dependent ERKs activation was more sustained, slower, reached maximum level at around 10 min, and phosphorylated ERKs translocated into the nucleus. Src was found to be commonly involved in both the G protein- and β-arrestin-dependent pathway-mediated ERKs activation. Pertussis toxin Gi/o inhibitor, GRK2-CT, AG1478 epidermal growth factor receptor inhibitor, and wortmannin phosphoinositide 3-kinase inhibitor all blocked G protein-dependent ERKs activation. In contrast, GRK2 and β-Arr2 played a main role in β-arrestin-dependent ERKs activation. Receptor endocytosis showed minimal effect on the activation of ERKs mediated by both pathways. Furthermore, we found that the formation of a complex composed of phospho-ERKs, β-Arr2, and importinβ1 promoted the nuclear translocation of activated ERKs. The differential regulation of various cellular components, as well as temporal and spatial patterns of ERKs activation via these two pathways, suggest the existence of distinct physiological outcomes.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Zhang Y, Kong R, Yang W, Hu K, Zhao Z, Li L, Geng X, Liu L, Chen H, Xiao P, Liu D, Luo Y, Chen H, Hu J, Sun B. DUSP2 recruits CSNK2A1 to suppress AKT1-mediated apoptosis resistance under hypoxic microenvironment in pancreatic cancer. Cancer Lett 2023:216288. [PMID: 37390887 DOI: 10.1016/j.canlet.2023.216288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxic tumor microenvironment (TME), which aids tumor progression, drug resistance, and immune evasion. Dual-specificity phosphatase 2 (DUSP2), a member of the mitogen-activated protein kinase phosphatase family, regulates pancreatic cancer metastasis. However, its role in the hypoxic TME in PDAC remains unknown. We explored the role of DUSP2 by simulating the hypoxic TME. DUSP2 significantly promoted apoptosis in PDAC both in vitro and in vivo, mainly through AKT1 rather than ERK1/2. Mechanistically, DUSP2 competed with AKT1 to bind to casein kinase 2 alpha 1 (CSNK2A1) and inhibited the phosphorylation of AKT1, which plays a crucial role in apoptosis resistance. Interestingly, aberrant activation of AKT1 resulted in an increase in the ubiquitin E3 ligase tripartite motif-containing 21 (TRIM21), which binds to and mediates the ubiquitination-dependent proteasomal degradation of DUSP2. Overall, we identified CSNK2A1 as a novel binding partner of DUSP2 that promotes PDAC apoptosis through CSN2KA1/AKT1 in an ERK1/2-independent manner. Activation of AKT1 also mediated proteasomal degradation of DUSP2 via the AKT1/TRIM21 positive feedback loop. We propose increasing the level of DUSP2 as a potential therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Keyi Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Yan Luo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
3
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
4
|
Caratti B, Fidan M, Caratti G, Breitenecker K, Engler M, Kazemitash N, Traut R, Wittig R, Casanova E, Ahmadian MR, Tuckermann JP, Moll HP, Cirstea IC. The glucocorticoid receptor associates with RAS complexes to inhibit cell proliferation and tumor growth. Sci Signal 2022; 15:eabm4452. [PMID: 35316097 DOI: 10.1126/scisignal.abm4452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells. The DNA binding domain of GR was involved in the interaction with KRAS, but GR-dependent inhibition of RAS activation did not depend on the nuclear translocation of GR. The addition of ligand released GR-dependent inhibition of RAS, AKT, the MAPK p38, and the MAPKK MEK. CRISPR-Cas9-mediated deletion of GR in A549 cells enhanced tumor growth in xenografts in mice. Patient samples of non-small cell lung carcinomas showed lower expression of NR3C1, the gene encoding GR, compared to adjacent normal tissues and lower NR3C1 expression correlated with a worse disease outcome. These results suggest that glucocorticoids prevent the ability of GR to limit tumor growth by inhibiting RAS activation, which has potential implications for the use of glucocorticoids in patients with cancer.
Collapse
Affiliation(s)
- Bozhena Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kristina Breitenecker
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Naser Kazemitash
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rebecca Traut
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine and Metrology (ILM), University of Ulm, Helmholtzstrasse 12, 89081 Ulm, Germany
| | - Emilio Casanova
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstraße 1, Building 22.03.05, 40225 Düsseldorf, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Herwig P Moll
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
5
|
Ten Bosch GJA, Bolk J, 't Hart BA, Laman JD. Multiple sclerosis is linked to MAPK ERK overactivity in microglia. J Mol Med (Berl) 2021; 99:1033-1042. [PMID: 33948692 PMCID: PMC8313465 DOI: 10.1007/s00109-021-02080-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
Reassessment of published observations in patients with multiple sclerosis (MS) suggests a microglial malfunction due to inappropriate (over)activity of the mitogen-activated protein kinase pathway ERK (MAPKERK). These observations regard biochemistry as well as epigenetics, and all indicate involvement of this pathway. Recent preclinical research on neurodegeneration already pointed towards a role of MAPK pathways, in particular MAPKERK. This is important as microglia with overactive MAPK have been identified to disturb local oligodendrocytes which can lead to locoregional demyelination, hallmark of MS. This constitutes a new concept on pathophysiology of MS, besides the prevailing view, i.e., autoimmunity. Acknowledged risk factors for MS, such as EBV infection, hypovitaminosis D, and smoking, all downregulate MAPKERK negative feedback phosphatases that normally regulate MAPKERK activity. Consequently, these factors may contribute to inappropriate MAPKERK overactivity, and thereby to neurodegeneration. Also, MAPKERK overactivity in microglia, as a factor in the pathophysiology of MS, could explain ongoing neurodegeneration in MS patients despite optimized immunosuppressive or immunomodulatory treatment. Currently, for these patients with progressive disease, no effective treatment exists. In such refractory MS, targeting the cause of overactive MAPKERK in microglia merits further investigation as this phenomenon may imply a novel treatment approach.
Collapse
Affiliation(s)
- George J A Ten Bosch
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Jolande Bolk
- Department of Anesthesiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Bert A 't Hart
- Department Anatomy and Neuroscience, Amsterdam University Medical Center (VUmc), Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK Network as a Therapeutic Target in Human Cancer. Mol Cancer Res 2021; 19:361-374. [PMID: 33139506 PMCID: PMC7925338 DOI: 10.1158/1541-7786.mcr-20-0687] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The RAS-RAF-MEK-ERK pathway is the most well-studied of the MAPK cascades and is critical for cell proliferation, differentiation, and survival. Abnormalities in regulation resulting from mutations in components of this pathway, particularly in upstream proteins, RAS and RAF, are responsible for a significant fraction of human cancers and nearly all cutaneous melanomas. Activation of receptor tyrosine kinases by growth factors and various extracellular signals leads to the sequential activation of RAS, RAF, MEK, and finally ERK, which activates numerous transcription factors and facilitates oncogenesis in the case of aberrant pathway activation. While extensive studies have worked to elucidate the activation mechanisms and structural components of upstream MAPK components, comparatively less attention has been directed toward the kinases, MEK and ERK, due to the infrequency of oncogenic-activating mutations in these kinases. However, acquired drug resistance has become a major issue in the treatment of RAS- and RAF-mutated cancers. Targeting the terminal kinases in the MAPK cascade has shown promise for overcoming many of these resistance mechanisms and improving treatment options for patients with MAPK-aberrant cancers. Here, we will describe the role of MEK and ERK in MAPK signaling and summarize the current understanding of their interaction and activation mechanisms. We will also discuss existing approaches for targeting MEK and ERK, and the benefits of alternative strategies. Areas requiring further exploration will be highlighted to guide future research endeavors and aid in the development of alternative therapeutic strategies to combat surmounting drug resistance in treating MAPK-mediated cancers. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/3/361/F1.large.jpg.
Collapse
Affiliation(s)
- Renee Barbosa
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lucila A Acevedo
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronen Marmorstein
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Shreya S, Malavika D, Priya VR, Selvamurugan N. Regulation of Histone Deacetylases by MicroRNAs in Bone. Curr Protein Pept Sci 2019; 20:356-367. [PMID: 30381072 DOI: 10.2174/1389203720666181031143129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Formation of new bone by osteoblasts is mediated via the activation of signaling pathways, such as TGF-β, BMP, and Wnt. A number of transcription factors participate in the signaling cascades that are tightly regulated by other regulatory factors. Histone deacetylases (HDACs) are one such class of regulatory factors that play an essential role in influencing chromatin architecture and regulate the expression of the genes that play a role in osteoblast differentiation by the mechanism of deacetylation. Four classes of HDACs have been identified namely, class I, class II A, class II B, class III and class IV. MicroRNAs (miRNAs) are small fragments of non-coding RNAs typically 19-25 nucleotides long that target mRNAs to upregulate or downregulate gene expression at a post-transcriptional level. A number of miRNAs that target HDACs in bone have been recently reported. Hence, in this review, we elaborate on the various miRNAs that target the different classes of HDACs and impact of the same on osteogenesis.
Collapse
Affiliation(s)
- S Shreya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Malavika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Raj Priya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
8
|
Gao T, Zhao X, Liu C, Shao B, Zhang X, Li K, Cai J, Wang S, Huang X. Somatic Angiotensin I-Converting Enzyme Regulates Self-Renewal of Mouse Spermatogonial Stem Cells Through the Mitogen-Activated Protein Kinase Signaling Pathway. Stem Cells Dev 2018; 27:1021-1032. [DOI: 10.1089/scd.2017.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Tingting Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Center of Clinical Reproductive Medicine, Affiliated Changzhou Women's and Children's Healthcare Hospital of Nanjing Medical University, Changzhou, China
| | - Xin Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Binbin Shao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Kai Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jinyang Cai
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Su Wang
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Mugami S, Dobkin-Bekman M, Rahamim-Ben Navi L, Naor Z. Differential roles of PKC isoforms (PKCs) in GnRH stimulation of MAPK phosphorylation in gonadotrope derived cells. Mol Cell Endocrinol 2018; 463:97-105. [PMID: 28392410 DOI: 10.1016/j.mce.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022]
Abstract
The role of protein kinase C (PKC) isoforms (PKCs) in GnRH-stimulated MAPK [ERK1/2, JNK1/2 and p38) phosphorylation was examined in gonadotrope derived cells. GnRH induced a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2 and p38MAPK. Gonadotropes express conventional PKCα and PKCβII, novel PKCδ, PKCε and PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein (GFP)-PKCs constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs) has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in ERK1/2, JNK1/2 and p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in MAPKs phosphorylation may be explained by persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane. Thus, we have identified the PKCs involved in GnRH stimulated MAPKs phosphorylation in gonadotrope derived cells. Once activated, the MAPKs will mediate the transcription of the gonadotropin subunits and GnRH receptor genes.
Collapse
Affiliation(s)
- Shany Mugami
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Masha Dobkin-Bekman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
10
|
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. FSH and LH control steroidogenesis and gametogenesis in the gonads so GnRH mediates control of reproduction by the central nervous system. GnRH is secreted in short pulses and the effects of GnRH on its target cells are dependent on the dynamics of these pulses. Here we provide a brief overview of the signaling network activated by GnRH with emphasis on the use of high content imaging for their examination. We also describe computational approaches that we have used to simulate GnRH signaling in order to explore dynamics, noise, and information transfer in this system.
Collapse
|
11
|
Mohan ML, Chatterjee A, Ganapathy S, Mukherjee S, Srikanthan S, Jolly GP, Anand RS, Naga Prasad SV. Noncanonical regulation of insulin-mediated ERK activation by phosphoinositide 3-kinase γ. Mol Biol Cell 2017; 28:3112-3122. [PMID: 28877982 PMCID: PMC5662266 DOI: 10.1091/mbc.e16-12-0864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, Class IB phosphoinositide 3-kinase (PI3Kγ) plays a role in ERK activation following G-protein–coupled receptor (GPCR) activation. Here we show that PI3Kγ noncanonically regulates ERK phosphorylation in a kinase-independent mechanism, irrespective of the upstream signals. PI3Kγ sequesters PP2A, allowing sustained ERK function. Classically Class IB phosphoinositide 3-kinase (PI3Kγ) plays a role in extracellular signal–regulated kinase (ERK) activation following G-protein coupled receptor (GPCR) activation. Knock-down of PI3Kγ unexpectedly resulted in loss of ERK activation to receptor tyrosine kinase agonists such as epidermal growth factor or insulin. Mouse embryonic fibroblasts (MEFs) or primary adult cardiac fibroblasts isolated from PI3Kγ knock-out mice (PI3KγKO) showed decreased insulin-stimulated ERK activation. However, expression of kinase-dead PI3Kγ resulted in rescue of insulin-stimulated ERK activation. Mechanistically, PI3Kγ sequesters protein phosphatase 2A (PP2A), disrupting ERK–PP2A interaction, as evidenced by increased ERK–PP2A interaction and associated PP2A activity in PI3KγKO MEFs, resulting in decreased ERK activation. Furthermore, β-blocker carvedilol-mediated β-arrestin-dependent ERK activation is significantly reduced in PI3KγKO MEF, suggesting accelerated dephosphorylation. Thus, instead of classically mediating the kinase arm, PI3Kγ inhibits PP2A by scaffolding and sequestering, playing a key parallel synergistic step in sustaining the function of ERK, a nodal enzyme in multiple cellular processes.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Arunachal Chatterjee
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Swetha Ganapathy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sromona Mukherjee
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sowmya Srikanthan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - George P Jolly
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Rohit S Anand
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sathyamangla V Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
12
|
Zhang J, Yu X, Yu Y, Gong Y. MicroRNA expression analysis during FK506-induced osteogenic differentiation in rat bone marrow stromal cells. Mol Med Rep 2017; 16:581-590. [PMID: 28560399 PMCID: PMC5482066 DOI: 10.3892/mmr.2017.6655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
FK506 (also known as tacrolimus) is a potent immunosuppressive agent that is widely used in the treatment of graft-rejection and autoimmune diseases. FK506 has attracted additional attention owing to its potential role in osteogenic differentiation and bone formation. MicroRNAs (miRNAs) have been demonstrated to serve important roles in the regulation of osteogenic differentiation; however, identification of specific miRNAs and their roles in regulating FK506-induced osteogenic differentiation have been poorly examined. In the present study, osteodifferentiation of rat bone marrow stromal cells (BMSCs) was induced with varying concentrations of FK506 (5–5,000 nM) for 3, 7 and 14 days. Differentially expressed miRNAs were profiled using miRNA array, verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and subjected to gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results from the present study identified a subset of miRNAs that were differentially expressed, of which five upregulated miRNAs (miR-106b-5p, miR-101b-3p, miR-193a-3p, miR-485-3p and miR-142-3p) and four downregulated miRNAs (miR-27a-3p, miR-207, miR-218a-2-3p and let-7a-5p) were confirmed by RT-qPCR. GO and KEGG analysis revealed that the predicted target genes of these miRNAs are involved in multiple biological processes and signaling pathways, including cell differentiation and the mitogen-activated protein kinase (MAPK) signaling pathway. Verification of the miRNA-target genes revealed that Smad5, Jagged 1 and MAPK9 were significantly upregulated, whereas Smad7, BMP and activin membrane-bound inhibitor, and dual-specificity phosphatase 2 were significantly downregulated during FK506-induced osteodifferentiation. The present study may provide an experimental basis for further research on miRNA functions during FK506-induced osteogenic differentiation in rat BMSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoping Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yiming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Garner KL, Voliotis M, Alobaid H, Perrett RM, Pham T, Tsaneva-Atanasova K, McArdle CA. Information Transfer via Gonadotropin-Releasing Hormone Receptors to ERK and NFAT: Sensing GnRH and Sensing Dynamics. J Endocr Soc 2017; 1:260-277. [PMID: 29264483 PMCID: PMC5686700 DOI: 10.1210/js.2016-1096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/22/2017] [Indexed: 01/04/2023] Open
Abstract
Information theoretic approaches can be used to quantify information transfer via cell signaling networks. In this study, we do so for gonadotropin-releasing hormone (GnRH) activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells (NFAT) in large numbers of individual fixed LβT2 and HeLa cells. Information transfer, measured by mutual information between GnRH and ERK or NFAT, was <1 bit (despite 3-bit system inputs). It was increased by sensing both ERK and NFAT, but the increase was <50%. In live cells, information transfer via GnRH receptors to NFAT was also <1 bit and was increased by consideration of response trajectory, but the increase was <10%. GnRH secretion is pulsatile, so we explored information gained by sensing a second pulse, developing a model of GnRH signaling to NFAT with variability introduced by allowing effectors to fluctuate. Simulations revealed that when cell–cell variability reflects rapidly fluctuating effector levels, additional information is gained by sensing two GnRH pulses, but where it is due to slowly fluctuating effectors, responses in one pulse are predictive of those in another, so little information is gained from sensing both. Wet laboratory experiments revealed that the latter scenario holds true for GnRH signaling; within the timescale of our experiments (1 to 2 hours), cell–cell variability in the NFAT pathway remains relatively constant, so trajectories are reproducible from pulse to pulse. Accordingly, joint sensing, sensing of response trajectories, and sensing of repeated pulses can all increase information transfer via GnRH receptors, but in each case the increase is small.
Collapse
Affiliation(s)
- Kathryn L Garner
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Margaritis Voliotis
- EPSRC Centre for Predictive Modelling in Healthcare, and.,Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom; and
| | - Hussah Alobaid
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Rebecca M Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Thanh Pham
- Texas A&M University Corpus Christi, Corpus Christi, Texas 78412
| | - Krasimira Tsaneva-Atanasova
- EPSRC Centre for Predictive Modelling in Healthcare, and.,Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom; and
| | - Craig A McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| |
Collapse
|
14
|
Garner KL, Perrett RM, Voliotis M, Bowsher C, Pope GR, Pham T, Caunt CJ, Tsaneva-Atanasova K, McArdle CA. Information Transfer in Gonadotropin-releasing Hormone (GnRH) Signaling: EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK)-MEDIATED FEEDBACK LOOPS CONTROL HORMONE SENSING. J Biol Chem 2015; 291:2246-59. [PMID: 26644469 PMCID: PMC4732208 DOI: 10.1074/jbc.m115.686964] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 11/23/2022] Open
Abstract
Cell signaling pathways are noisy communication channels, and statistical measures derived from information theory can be used to quantify the information they transfer. Here we use single cell signaling measures to calculate mutual information as a measure of information transfer via gonadotropin-releasing hormone (GnRH) receptors (GnRHR) to extracellular signal-regulated kinase (ERK) or nuclear factor of activated T-cells (NFAT). This revealed mutual information values <1 bit, implying that individual GnRH-responsive cells cannot unambiguously differentiate even two equally probable input concentrations. Addressing possible mechanisms for mitigation of information loss, we focused on the ERK pathway and developed a stochastic activation model incorporating negative feedback and constitutive activity. Model simulations revealed interplay between fast (min) and slow (min-h) negative feedback loops with maximal information transfer at intermediate feedback levels. Consistent with this, experiments revealed that reducing negative feedback (by expressing catalytically inactive ERK2) and increasing negative feedback (by Egr1-driven expression of dual-specificity phosphatase 5 (DUSP5)) both reduced information transfer from GnRHR to ERK. It was also reduced by blocking protein synthesis (to prevent GnRH from increasing DUSP expression) but did not differ for different GnRHRs that do or do not undergo rapid homologous desensitization. Thus, the first statistical measures of information transfer via these receptors reveals that individual cells are unreliable sensors of GnRH concentration and that this reliability is maximal at intermediate levels of ERK-mediated negative feedback but is not influenced by receptor desensitization.
Collapse
Affiliation(s)
- Kathryn L Garner
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Rebecca M Perrett
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Margaritis Voliotis
- School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
| | - Clive Bowsher
- School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
| | - George R Pope
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Thanh Pham
- Texas A and M University Corpus Christi, Corpus Christi, Texas 78412
| | - Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, United Kingdom, and
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Craig A McArdle
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom,
| |
Collapse
|
15
|
You D, Mander S, Park CR, Koo O, Lee C, Oh S, Ahn C, Seong JY, Hwang J. NME1L Negatively Regulates IGF1‐Dependent Proliferation of Breast Cancer Cells. J Cell Biochem 2015; 117:1454-63. [DOI: 10.1002/jcb.25441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Dong‐Joo You
- Graduate School of MedicineKorea University, 73 Inchon‐ro, Seongbuk‐guSeoul136‐705Republic of Korea
| | - Sunam Mander
- Graduate School of MedicineKorea University, 73 Inchon‐ro, Seongbuk‐guSeoul136‐705Republic of Korea
| | - Cho Rong Park
- Graduate School of MedicineKorea University, 73 Inchon‐ro, Seongbuk‐guSeoul136‐705Republic of Korea
| | - Okjae Koo
- Samsung Biomedical Research Institute130 Samsung‐ro, Yeongtong‐gu, Suwon‐siGyeonggi‐do433‐803Republic of Korea
| | - Cheolju Lee
- Life Sciences DivisionKorea Institute of Science and Technology, Seongbuk‐guSeoul136‐791Republic of Korea
| | - Seong‐Hyun Oh
- College of PharmacyGachon UniversityIncheon406‐840Republic of Korea
| | - Curie Ahn
- Transplantation Research InstituteCancer Research Institute, Seoul National University, Yongun‐dong, Jongno‐guSeoul110‐799Republic of Korea
| | - Jae Young Seong
- Graduate School of MedicineKorea University, 73 Inchon‐ro, Seongbuk‐guSeoul136‐705Republic of Korea
| | - Jong‐Ik Hwang
- Graduate School of MedicineKorea University, 73 Inchon‐ro, Seongbuk‐guSeoul136‐705Republic of Korea
| |
Collapse
|
16
|
Wang X, Li G, Koul S, Ohki R, Maurer M, Borczuk A, Halmos B. PHLDA2 is a key oncogene-induced negative feedback inhibitor of EGFR/ErbB2 signaling via interference with AKT signaling. Oncotarget 2015; 9:24914-24926. [PMID: 29861842 PMCID: PMC5982771 DOI: 10.18632/oncotarget.3674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Pleckstrin homology-like domain family A member 2 (PHLDA2) is located within the tumor suppressor region of 11p15, and its expression is suppressed in several malignant tumor types. We recently identified PHLDA2 as a robustly induced, novel downstream target of oncogenic EGFR/ErbB2 signaling. In an immunohistochemical study, we find that PHLDA2 protein expression correlates positively with AKT activation in human lung cancers corroborating our data that PHLDA2 is induced upon oncogenic activation and might serve as a biomarker for AKT pathway activation. We show that PHLDA2 overexpression inhibits AKT phosphorylation while decreased PHLDA2 expression increases AKT activity. We further find that PHLDA2 competes with the PH domain of AKT for binding of membrane lipids, thereby directly inhibiting AKT translocation to the cellular membrane and subsequent activation. Indeed, PHLDA2 overexpression suppresses anchorage-independent cell growth and decreased PHLDA2 expression results in increased cell proliferation and reduced sensitivity to targeted agents of EGFR/ErbB2-driven cancers demonstrating functional relevance for this interaction. In summary, our studies demonstrate that PHLDA2 is strongly regulated by EGFR/ErbB2 signaling and inhibits cell proliferation via repressing AKT activation in lung cancers in a negative feedback loop. We highlight a novel action for PHLDA2 as a potential biomarker for AKT pathway activation.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Guangyuan Li
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Department of Pathology, University Hospitals of Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sanjay Koul
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Rieko Ohki
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Matthew Maurer
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Alain Borczuk
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Balazs Halmos
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Differential host cell gene expression and regulation of cell cycle progression by nonstructural protein 11 of porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:430508. [PMID: 24719865 PMCID: PMC3955671 DOI: 10.1155/2014/430508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/07/2014] [Indexed: 02/08/2023]
Abstract
Nonstructural protein 11 (nsp11) of porcine reproductive and respiratory syndrome virus (PRRSV) is a viral endoribonuclease with an unknown function. The regulation of cellular gene expression by nsp11 was examined by RNA microarrays using MARC-nsp11 cells constitutively expressing nsp11. In these cells, the interferon-β, interferon regulatory factor 3, and nuclear factor-κB activities were suppressed compared to those of parental cells, suggesting that nsp11 might serve as a viral interferon antagonist. Differential cellular transcriptome was examined using Affymetrix exon chips representing 28,536 transcripts, and after statistical analyses 66 cellular genes were shown to be upregulated and 104 genes were downregulated by nsp11. These genes were grouped into 5 major signaling pathways according to their functional relations: histone-related, cell cycle and DNA replication, mitogen activated protein kinase signaling, complement, and ubiquitin-proteasome pathways. Of these, the modulation of cell cycle by nsp11 was further investigated since many of the regulated genes fell in this particular pathway. Flow cytometry showed that nsp11 caused the delay of cell cycle progression at the S phase and the BrdU staining confirmed the cell cycle arrest in nsp11-expressing cells. The study provides insights into the understanding of specific cellular responses to nsp11 during PRRSV infection.
Collapse
|
18
|
Hirose J, Masuda H, Tokuyama N, Omata Y, Matsumoto T, Yasui T, Kadono Y, Hennighausen L, Tanaka S. Bone resorption is regulated by cell-autonomous negative feedback loop of Stat5-Dusp axis in the osteoclast. ACTA ACUST UNITED AC 2013; 211:153-63. [PMID: 24367002 PMCID: PMC3892975 DOI: 10.1084/jem.20130538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transcription factor Stat5 inhibits the bone-resorbing function of osteoclasts, in part by inducing the expression of the phosphatases Dusp1 and Dusp2. Signal transducer and activator of transcription 5 (Stat5) is essential for cytokine-regulated processes such as proliferation, differentiation, and survival in hematopoietic cells. To investigate the role of Stat5 in osteoclasts, we generated mice with an osteoclast-specific conditional deletion of Stat5 (Stat5 conditional knockout [cKO] mice) and analyzed their bone phenotype. Stat5 cKO mice exhibited osteoporosis caused by an increased bone-resorbing activity of osteoclasts. The activity of mitogen-activated protein kinases (MAPKs), in particular extracellular signal–related kinase, was increased in Stat5 cKO osteoclasts, whereas the expression of the MAPK phosphatases dual specificity phosphatase 1 (Dusp1) and Dusp2 was significantly decreased. Interleukin-3 (IL-3) stimulated the phosphorylation and nuclear translocation of Stat5 in osteoclasts, and Stat5 expression was up-regulated in response to receptor activator of nuclear factor κB ligand (RANKL). The results suggest that Stat5 negatively regulates the bone-resorbing function of osteoclasts by promoting Dusp1 and Dusp2 expression, and IL-3 promotes Stat5 activation in osteoclasts.
Collapse
Affiliation(s)
- Jun Hirose
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Oppong E, Flink N, Cato ACB. Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol 2013; 380:119-26. [PMID: 23707629 DOI: 10.1016/j.mce.2013.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
Abstract
Glucocorticoids are compounds that have successfully been used over the years in the treatment of inflammatory disorders. They are known to exhibit their effects through the glucocorticoid receptor (GR) that acts to downregulate the action of proinflammatory transcription factors such as AP-1 and NF-κB. The GR also exerts anti-inflammatory effects through activation of distinct genes. In addition to their anti-inflammatory actions, glucocorticoids are also potent antiallergic compounds that are widely used in conditions such as asthma and anaphylaxis. Nevertheless the mechanism of action of this hormone in these disorders is not known. In this article, we have reviewed reports on the effects of glucocorticoids in mast cells, one of the important immune cells in allergy. Building on the knowledge of the molecular action of glucocorticoids and the GR in the treatment of inflammation in other cell types, we have made suggestions as to the likely mechanisms of action of glucocorticoids in mast cells. We have further identified some important questions and research directions that need to be addressed in future studies to improve the treatment of allergic disorders.
Collapse
Affiliation(s)
- Emmanuel Oppong
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | |
Collapse
|
20
|
Koohestani F, Braundmeier AG, Mahdian A, Seo J, Bi J, Nowak RA. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells. PLoS One 2013; 8:e75844. [PMID: 24040420 PMCID: PMC3770620 DOI: 10.1371/journal.pone.0075844] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric) and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches for ULs that target ECM proteins and their signaling pathways in ULs.
Collapse
Affiliation(s)
- Faezeh Koohestani
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
22
|
Perrett RM, Fowkes RC, Caunt CJ, Tsaneva-Atanasova K, Bowsher CG, McArdle CA. Signaling to extracellular signal-regulated kinase from ErbB1 kinase and protein kinase C: feedback, heterogeneity, and gating. J Biol Chem 2013; 288:21001-21014. [PMID: 23754287 PMCID: PMC3774369 DOI: 10.1074/jbc.m113.455345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Many extracellular signals act via the Raf/MEK/ERK cascade in which kinetics, cell-cell variability, and sensitivity of the ERK response can all influence cell fate. Here we used automated microscopy to explore the effects of ERK-mediated negative feedback on these attributes in cells expressing endogenous ERK or ERK2-GFP reporters. We studied acute rather than chronic stimulation with either epidermal growth factor (ErbB1 activation) or phorbol 12,13-dibutyrate (PKC activation). In unstimulated cells, ERK-mediated negative feedback reduced the population-average and cell-cell variability of the level of activated ppERK and increased its robustness to changes in ERK expression. In stimulated cells, negative feedback (evident between 5 min and 4 h) also reduced average levels and variability of phosphorylated ERK (ppERK) without altering the “gradedness” or sensitivity of the response. Binning cells according to total ERK expression revealed, strikingly, that maximal ppERK responses initially occur at submaximal ERK levels and that this non-monotonic relationship changes to an increasing, monotonic one within 15 min. These phenomena occur in HeLa cells and MCF7 breast cancer cells and in the presence and absence of ERK-mediated negative feedback. They were best modeled assuming distributive (rather than processive) activation. Thus, we have uncovered a novel, time-dependent change in the relationship between total ERK and ppERK levels that persists without negative feedback. This change makes acute response kinetics dependent on ERK level and provides a “gating” or control mechanism in which the interplay between stimulus duration and the distribution of ERK expression across cells could modulate the proportion of cells that respond to stimulation.
Collapse
Affiliation(s)
- Rebecca M Perrett
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol BS13NY, United Kingdom
| | - Robert C Fowkes
- Endocrine Signaling Group, Royal Veterinary College, Royal College St., London NW10TU, United Kingdom
| | - Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA27AY, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol BS81TR, United Kingdom, and
| | - Clive G Bowsher
- School of Mathematics, University of Bristol, Bristol BS81TW, United Kingdom
| | - Craig A McArdle
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol BS13NY, United Kingdom,.
| |
Collapse
|
23
|
Chappell J, Sun Y, Singh A, Dalton S. MYC/MAX control ERK signaling and pluripotency by regulation of dual-specificity phosphatases 2 and 7. Genes Dev 2013; 27:725-33. [PMID: 23592794 DOI: 10.1101/gad.211300.112] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Suppression of extracellular signal-regulated kinase (ERK) signaling is an absolute requirement for the maintenance of murine pluripotent stem cells (mPSCs) and requires the MYC-binding partner MAX. In this study, we define a mechanism for this by showing that MYC/MAX complexes suppress ERK activity by transcriptionally regulating two members of the dual-specificity phosphatase (DUSP) family. DUSPs function by binding and then inactivating ERK1,2 by dephosphorylating residues required for catalytic activity. MYC/MAX complexes achieve this by binding the promoters of DUSP2 and DUSP7, leading to their transcriptional activation, resulting in the attenuation of ERK activity. In the absence of MYC, ectopic DUSP2,7 expression severely delays differentiation, while loss of DUSP2,7 ectopically activates ERK, resulting in loss of pluripotency. These findings elucidate a novel regulatory role for MYC in PSC maintenance involving the stimulation of phosphatases that directly inhibit the MAPK/ERK signaling pathway. Moreover, it provides a mechanism for how leukemia inhibitory factor (LIF)/STAT3 signaling reaches across to the MAPK/ERK pathway through MYC and MAX to sustain pluripotency.
Collapse
Affiliation(s)
- James Chappell
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
24
|
Transcriptional profiling and pathway analysis of CSF-1 and IL-34 effects on human monocyte differentiation. Cytokine 2013; 63:10-17. [PMID: 23684409 DOI: 10.1016/j.cyto.2013.04.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 10/29/2012] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
Abstract
CSF-1 is the well-known ligand for CSF-1R, which plays a vital role in monocyte-macrophage generation, survival, and function. IL-34 is a newly discovered cytokine that also signals through CSF-1R. Although there are limited data for downstream signaling and pathway activation for CSF-1, none are published, to date, for expression profiles of IL-34. The objective of this study was to characterize and compare the signaling pathways downstream of the CSF-1R receptor, based on these two ligands. This was accomplished through transcriptional profiling and pathway analysis of CD14(+) human monocytes differentiated with each ligand. Additionally, cells were treated with a CSF-1R inhibitor GW2580 to establish that observations associated with each ligand were CSF-1R mediated. Gene expression profiles were generated for each condition using Agilent 4x44K Whole Human Genome Microarrays. Overall profiles generated by each cytokine were similar (~75% of genes) with a dampened effect noted on some pathways (~25% of genes) with IL-34. One key difference observed, between the two cytokines was in the repression of CCR2 message. A similar divergence in protein level was established by FACS analysis. The differential effect on CCR2 expression has major implications for monocyte/macrophage biology including homeostasis and function. Further study of IL-34 effects on monocyte/macrophage biology will shed light on the specific role each ligand plays and the context in which these roles are important. To our knowledge, this study is the first to illustrate downstream transcriptional profiles and pathways of IL-34 in comparison with CSF-1 and identify notable differences in CCR2 expression.
Collapse
|
25
|
Trompeter HI, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 2013; 14:111. [PMID: 23418963 PMCID: PMC3637629 DOI: 10.1186/1471-2164-14-111] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs are a population of short non-coding RNAs with widespread negative regulatory impact on mRNA translation. Unrestricted somatic stem cells (USSC) are a rare population in human cord blood that can be induced into cells representative of all three germinal layers. Here we analyzed the functional impact of miRNAs on the osteogenic differentiation in USSC. RESULTS Gene expression profiling identified 20 microRNAs that were consistently upregulated during osteogenic differentiation of two different USSC cell lines (SA5/73 and SA8/25). Bioinformatic target gene prediction indicated that among these microRNAs, miR-10a, -22, -26a, -26b, and -29b recognize transcripts that encode a set of proteins inhibiting osteogenesis. We subsequently verified osteo-inhibitory CDK6, CTNNBIP1, HDAC4, and TOB1 and osteo-promoting SMAD1 as targets of these microRNAs. In Western blot analyses demonstrated that endogenous levels of CDK6 and HDAC4 were downregulated during osteogenic differentiation of USSC and reduced following ectopic expression of miR-26a/b and miR-29b. In contrast, endogenous expression of SMAD1, targeted by miR-26a/b, was unaltered during osteogenic differentiation of USSC or following ectopic expression of miR-26a/b. Functional overexpression analyses using microRNA mimics revealed that miR-26a/b, as well as miR-29b strongly accelerated osteogenic differentiation of USSC as assessed by Alizarin-Red staining and calcium-release assays. CONCLUSIONS miR-26a/b and miR-29b are upregulated during osteogenic differentiation of USSC and share target genes inhibiting osteogenesis. Furthermore, these microRNAs accelerate osteogenic differentiation, likely mediated by osteo-inhibitory proteins such as CDK6 and HDAC4.
Collapse
Affiliation(s)
- Hans-Ingo Trompeter
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics (ITZ), Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Satija NK, Sharma D, Afrin F, Tripathi RP, Gangenahalli G. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS One 2013; 8:e55769. [PMID: 23383279 PMCID: PMC3559497 DOI: 10.1371/journal.pone.0055769] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/04/2013] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP) activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1) and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20) were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1) were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.
Collapse
Affiliation(s)
- Neeraj Kumar Satija
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| | - Deepa Sharma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| | - Farhat Afrin
- Department of Biotechnology, Hamdard University, Hamdard Nagar, New Delhi, India
| | - Rajendra P. Tripathi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Brig. S K Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
27
|
Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases. Genes Immun 2012. [PMID: 23190643 DOI: 10.1038/gene.2012.54] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dual-specificity phosphatases (DUSPs) is an emerging subclass of the protein tyrosine phosphatase gene superfamily, a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. Recently, a series of investigations of DUSPs defined their essential roles in cell proliferation, cancer and the immune response. This review will focus on DUSP2, its involvement in different diseases and its potential as a therapeutic target.
Collapse
|
28
|
Abstract
Dual-specificity MAP kinase phosphatases (MKPs) provide a complex negative regulatory network that acts to shape the duration, magnitude and spatiotemporal profile of MAP kinase activities in response to both physiological and pathological stimuli. Individual MKPs may exhibit either exquisite specificity towards a single mitogen-activated protein kinase (MAPK) isoform or be able to regulate multiple MAPK pathways in a single cell or tissue. They can act as negative feedback regulators of MAPK activity, but can also provide mechanisms of crosstalk between distinct MAPK pathways and between MAPK signalling and other intracellular signalling modules. In this review, we explore the current state of knowledge with respect to the regulation of MKP expression levels and activities, the mechanisms by which individual MKPs recognize and interact with different MAPK isoforms and their role in the spatiotemporal regulation of MAPK signalling.
Collapse
|
29
|
Caunt CJ, Perett RM, Fowkes RC, McArdle CA. Mechanisms of GnRH-induced extracellular signal-regulated kinase nuclear localization. PLoS One 2012; 7:e40077. [PMID: 22808094 PMCID: PMC3395631 DOI: 10.1371/journal.pone.0040077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/05/2012] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin-releasing hormone receptors (GnRHR) mediate activation and nuclear translocation of the extracellular signal regulated kinases 1 and 2 (ERK) by phosphorylation on the TEY motif. This is necessary for GnRH to initiate transcriptional programmes controlling fertility, but mechanisms that govern ERK targeting are unclear. Using automated microscopy to explore ERK regulation in single cells, we find that GnRHR activation induces marked redistribution of ERK to the nucleus and that this effect can be uncoupled from the level of TEY phosphorylation of ERK. Thus, 5 min stimulation with 100 nM GnRH increased phospho-ERK levels (from 89 ± 34 to 555 ± 45 arbitrary fluorescence units) and increased the nuclear:cytoplasmic (N:C) ERK ratio (from 1.36 ± 0.06 to 2.16 ± 0.05) in the whole cell population, but it also significantly increased N:C ERK in cells binned according to phospho-ERK levels. This phosphorylation unattributable component of the ERK translocation response occurs at a broad range of GnRHR expression levels, in the presence of tyrosine phosphatase and protein synthesis inhibitors, and in ERK mutants unable to undergo catalytic activation. It also occurred in mutants incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK binding partners. It was however, reduced by MEK or PKC inhibition and by mutations preventing TEY phosphorylation or that abrogate ERK binding to D (docking) domain partners. We therefore show that TEY phosphorylation of ERK is necessary, but not sufficient for the full nuclear localization response. We further show that this "phosphorylation unattributable" component of GnRH-mediated ERK nuclear translocation requires both PKC activity and association with partner proteins via the D-domain.
Collapse
Affiliation(s)
- Christopher J. Caunt
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rebecca M. Perett
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert C. Fowkes
- Endocrine Signaling Group, Royal Veterinary College, London, United Kingdom
| | - Craig A. McArdle
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
Abstract
GnRH (gonadotropin-releasing hormone) mediates control of reproduction. It is secreted in pulses and acts via intracellular effectors to activate gene expression. Submaximal GnRH pulse frequency can elicit maximal responses, yielding bell-shaped frequency-response curves characteristic of genuine frequency decoders. GnRH frequency decoding is therapeutically important (pulsatile GnRH can drive ovulation in assisted reproduction, whereas sustained activation can treat breast and prostate cancers), but the mechanisms are unknown. In the present paper, we review recent work in this area, placing emphasis on the regulation of transcription, and showing how mathematical modelling of GnRH effects on two effectors [ERK (extracellular-signal-regulated kinase) and NFAT (nuclear factor of activated T-cells)] reveals the potential for genuine frequency decoding as an emergent feature of the GnRH signalling network, rather than an intrinsic feature of a given protein or pathway within it.
Collapse
|
31
|
Finch AR, Caunt CJ, Perrett RM, Tsaneva-Atanasova K, McArdle CA. Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell Signal 2012; 24:1002-11. [PMID: 22245064 PMCID: PMC3314959 DOI: 10.1016/j.cellsig.2011.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/28/2011] [Indexed: 11/25/2022]
Abstract
We have explored the possible role of dual specificity phosphatases (DUSPs) on acute EGF-mediated ERK signalling using high content imaging and a delayed MEK inhibition protocol to distinguish direct and indirect effects of the phosphatases on ERK activity. Using siRNAs, we were unable to find evidence that any of the MAPK phosphatases (MKPs) expressed in HeLa cells acts directly to dephosphorylate ppERK1/2 (dual phosphorylated ERKs 1 and/or 2) in the acute time-frame tested (0-14 min). Nevertheless, siRNAs against two p38/JNK MKPs (DUSPs 10 and 16) inhibited acute EGF-stimulated ERK activation. No such effect was seen for acute effects of the protein kinase C activator PDBu (phorbol 12,13 dibutyrate) on ERK activity, although effects of EGF and PDBu on ERK-dependent transcription (Egr-1 luciferase activity) were both reduced by siRNA targeting DUSPs 10 and 16. Inhibition of EGF-stimulated ERK activity by these siRNAs was reversed by pharmacological inhibition of p38 MAPK and single cell analysis revealed that the siRNAs did not influence the nuclear-cytoplasmic distribution of ppERK1/2. Thus, DUSPs 10 and 16 are positive regulators of activation, apparently acting by modulating cross-talk between the p38 and ERK pathways. A simplified mathematical model of this scenario accurately predicted the experimental data, supporting the conclusion that the major mechanism by which MKPs influence acute EGF-stimulated ERK responses is the negative regulation of p38, resulting in the positive regulation of ERK phosphorylation and activity.
Collapse
Affiliation(s)
- Ann R. Finch
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol, BS1 3NY, UK
| | - Christopher J. Caunt
- Dept. of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol, BS1 3NY, UK
| | - Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol, BS1 3NY, UK
| |
Collapse
|
32
|
Lee S, Bae YS. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Mol Cells 2012; 33:325-34. [PMID: 22450690 PMCID: PMC3887802 DOI: 10.1007/s10059-012-0023-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/24/2022] Open
Abstract
Extracellular signal-regulated protein kinase 2 (ERK2) plays many vital roles in cellular signal regulation. Phosphorylation of ERK2 leads to propagation and execution of various extracellular stimuli, which influence cellular responses to stress. The final response of the ERK2 signaling pathway is determined by localization and duration of active ERK2 at specific target cell compartments through protein-protein interactions of ERK2 with various cytoplasmic and nuclear substrates, scaffold proteins, and anchoring counterparts. In this respect, dimerization of phosphorylated ERK2 has been suggested to be a part of crucial regulating mechanism in various protein-protein interactions. After the report of putative dimeric structure of active ERK2 (Canagarajah et al., 1997), dimeric model was employed to explain many in vivo and in vitro experimental results. But more recently, many reports have been presented questioning the validity of dimer hypothesis of active ERK2. In this review, we summarize the various in vitro and in vivo studies concerning the Monomeric or the dimeric forms of ERK2 and the validity of the dimer hypothesis.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Life Sciences, Center for Cell Signal.ing Research, Ewha Womans University, Seoul 120-750, Korea.
| | | |
Collapse
|
33
|
Ryan MM, Mason-Parker SE, Tate WP, Abraham WC, Williams JM. Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 2012; 21:541-53. [PMID: 20108223 DOI: 10.1002/hipo.20770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The canonical view of the maintenance of long-term potentiation (LTP), a widely accepted experimental model for memory processes, is that new gene transcription contributes to its consolidation; however, the gene networks involved are unknown. To address this issue, we have used high-density Rat 230.2 Affymetrix arrays to establish a set of genes induced 20-min post-LTP, and using Ingenuity Pathway network analysis tools we have investigated how these early responding genes are interrelated. This analysis identified LTP-induced regulatory networks in which the transcription factors (TFs) nuclear factor-KB and serum response factor, which, to date, have not been widely recognized as coordinating the early gene response, play a key role alongside the more well-known TFs cyclic AMP response element-binding protein, and early growth response 1. Analysis of gene-regulatory promoter sites and chromosomal locations of the genes within the dataset reinforced the importance of these molecules in the early gene response and predicted that the coordinated action might arise from gene clustering on particular chromosomes. We have also identified a transcription-based response that affects mitogen-activated protein kinase signaling pathways and protein synthesis during the stabilization of the LTP response. Furthermore, evidence from biological function, networks, and regulatory analyses showed convergence on genes related to development, proliferation, and neurogenesis, suggesting that these functions are regulated early following LTP induction. This raises the interesting possibility that LTP-related gene expression plays a role in both synaptic reorganization and neurogenesis.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
34
|
Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition. Oncogene 2012; 32:564-76. [PMID: 22430215 DOI: 10.1038/onc.2012.88] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gain-of-function mutations in KRAS and BRAF genes are found in up to 50% of colorectal cancers. These mutations result in the activation of the BRAF/MEK signaling pathway culminating in the stimulation of ERK1/2 mitogen-activated protein kinases. Upon activation, ERK1/2 translocate from the cytoplasm to the nucleus. This process has been shown to be required for the induction of many cellular responses, although the molecular mechanisms regulating ERK nuclear function, especially under oncogenic stimulation, remain to be explored. Herein, we examined the spatiotemporal regulation of ERK1/2 activity upon oncogenic activation of KRAS(G12V) and BRAF(V600E) in normal intestinal epithelial crypt cells (IECs). Results demonstrate that expression of these oncogenes markedly stimulated ERK1/2 activities and morphologically transformed IECs. Importantly however, ERK phosphorylation was not observed in the nucleus, but restricted to the cytoplasm of KRAS(G12V)- and BRAF(V600E)-transformed IECs. The absence of nuclear ERK phosphorylation was due to a vanadate-sensitive phosphatase activity. Nuclear ERK dephosphorylation was found to be tightly correlated with the rapid expression of DUSP4 phosphatase induced in an MEK-dependent manner. In addition, MEK-dependent phosphorylation of T361, T363, S390 and S395 residues highly stabilized DUSP4 protein. Finally, in human colorectal cancer cells, ERK1/2 activities were also confined to the cytoplasm and treatment with pervanadate reactivated ERK1/2 in the nucleus. Accordingly, DUSP4 mRNAs were found to be highly expressed, in an MEK-dependent manner, in all colorectal cancer cells analyzed. These findings indicate that DUSP4 functions as part of a negative feedback mechanism in the control of the duration and magnitude of nuclear ERK activation during intestinal tumorigenesis.
Collapse
|
35
|
ERK phosphorylation and nuclear accumulation: insights from single-cell imaging. Biochem Soc Trans 2012; 40:224-9. [DOI: 10.1042/bst20110662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many stimuli mediate activation and nuclear translocation of ERK (extracellular-signal-regulated kinase) by phosphorylation on the TEY (Thr-Glu-Tyr) motif. This is necessary to initiate transcriptional programmes controlling cellular responses, but the mechanisms that govern ERK nuclear targeting are unclear. Single-cell imaging approaches have done much to increase our understanding of input–output relationships in the ERK cascade, but few studies have addressed how the range of ERK phosphorylation responses observed in cell populations influences subcellular localization. Using automated microscopy to explore ERK regulation in single adherent cells, we find that nuclear localization responses increase in proportion to stimulus level, but not the level of TEY phosphorylation. This phosphorylation-unattributable nuclear localization response occurs in the presence of tyrosine phosphatase and protein synthesis inhibitors. It is also seen with a catalytically inactive ERK2–GFP (green fluorescent protein) mutant, and with a mutant incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK-binding partners. It is, however, reduced by MEK (mitogen-activated protein kinase/ERK kinase) inhibition and by mutations preventing TEY phosphorylation or in the ERK common docking region. We therefore show that TEY phosphorylation of ERK is necessary, but not sufficient, for the full nuclear accumulation response and that this ‘phosphorylation-unattributable’ component of stimulus-mediated ERK nuclear localization requires association with partner proteins via the common docking motif.
Collapse
|
36
|
Abstract
Biological cells accomplish their physiological functions using interconnected networks of genes, proteins, and other biomolecules. Most interactions in biological signaling networks, such as bimolecular association or covalent modification, can be modeled in a physically realistic manner using elementary reaction kinetics. However, the size and combinatorial complexity of such reaction networks have hindered such a mechanistic approach, leading many to conclude that it is premature and to adopt alternative statistical or phenomenological approaches. The recent development of rule-based modeling languages, such as BioNetGen (BNG) and Kappa, enables the precise and succinct encoding of large reaction networks. Coupled with complementary advances in simulation methods, these languages circumvent the combinatorial barrier and allow mechanistic modeling on a much larger scale than previously possible. These languages are also intuitive to the biologist and accessible to the novice modeler. In this chapter, we provide a self-contained tutorial on modeling signal transduction networks using the BNG Language and related software tools. We review the basic syntax of the language and show how biochemical knowledge can be articulated using reaction rules, which can be used to capture a broad range of biochemical and biophysical phenomena in a concise and modular way. A model of ligand-activated receptor dimerization is examined, with a detailed treatment of each step of the modeling process. Sections discussing modeling theory, implicit and explicit model assumptions, and model parameterization are included, with special focus on retaining biophysical realism and avoiding common pitfalls. We also discuss the more advanced case of compartmental modeling using the compartmental extension to BioNetGen. In addition, we provide a comprehensive set of example reaction rules that cover the various aspects of signal transduction, from signaling at the membrane to gene regulation. The reader can modify these reaction rules to model their own systems of interest.
Collapse
Affiliation(s)
- John A P Sekar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
37
|
Conway-Campbell BL, George CL, Pooley JR, Knight DM, Norman MR, Hager GL, Lightman SL. The HSP90 molecular chaperone cycle regulates cyclical transcriptional dynamics of the glucocorticoid receptor and its coregulatory molecules CBP/p300 during ultradian ligand treatment. Mol Endocrinol 2011; 25:944-54. [PMID: 21511880 PMCID: PMC3163797 DOI: 10.1210/me.2010-0073] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/24/2011] [Indexed: 01/16/2023] Open
Abstract
Glucocorticoid (GC) hormones are secreted from the adrenal gland in a characteristic pulsatile pattern. This ultradian secretory activity exhibits remarkable plasticity, with distinct changes in response to both physiological and stressful stimuli in humans and experimental animals. It is therefore important to understand how the pattern of GC exposure regulates intracellular signaling through the GC receptor (GR). We have previously shown that each pulse of ligand initiates rapid, transient GR activation in several physiologically relevant and functionally diverse target cell types. Using chromatin immunoprecipitation assays, we detect cyclical shifts in the net equilibrium position of GR association with regulatory elements of GC-target genes and have investigated in detail the mechanism of pulsatile transcriptional regulation of the GC-induced Period 1 gene. Transient recruitment of the histone acetyl transferase complex cAMP response element-binding protein (CREB) binding protein (CBP)/p300 is found to precisely track the ultradian hormone rhythm, resulting in transient localized net changes in lysine acetylation at GC-regulatory regions after each pulse. Pulsatile changes in histone H4 acetylation and concomitant recruitment of RNA polymerase 2 precede ultradian bursts of Period 1 gene transcription. Finally, we report the crucial underlying role of the intranuclear heat shock protein 90 molecular chaperone complex in pulsatile GR regulation. Pharmacological interference of heat shock protein 90 (HSP90) with geldanamycin during the intranuclear chaperone cycle completely ablated GR's cyclical activity, cyclical cAMP response element-binding protein (CREB) binding protein (CBP)/p300 recruitment, and the associated cyclical acetylation at the promoter region. These data imply a key role for an intact nuclear chaperone cycle in cyclical transcriptional responses, regulated in time by the pattern of pulsatile hormone.
Collapse
Affiliation(s)
- Becky L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Faustino RS, Maddaford TG, Pierce GN. Mitogen activated protein kinase at the nuclear pore complex. J Cell Mol Med 2011; 15:928-37. [PMID: 20497490 PMCID: PMC3922677 DOI: 10.1111/j.1582-4934.2010.01093.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/19/2010] [Indexed: 01/09/2023] Open
Abstract
Mitogen activated protein (MAP) kinases control eukaryotic proliferation, and import of kinases into the nucleus through the nuclear pore complex (NPC) can influence gene expression to affect cellular growth, cell viability and homeostatic function. The NPC is a critical regulatory checkpoint for nucleocytoplasmic traffic that regulates gene expression and cell growth, and MAP kinases may be physically associated with the NPC to modulate transport. In the present study, highly enriched NPC fractions were isolated and investigated for associated kinases and/or activity. Endogenous kinase activity was identified within the NPC fraction, which phosphorylated a 30 kD nuclear pore protein. Phosphomodification of this nucleoporin, here termed Nup30, was inhibited by apigenin and PD-98059, two MAP kinase antagonists as well as with SB-202190, a pharmacological blocker of p38. Furthermore, high throughput profiling of enriched NPCs revealed constitutive presence of all members of the MAP kinase family, extracellular regulated kinases (ERK), p38 and Jun N-terminal kinase. The NPC thus contains a spectrum of associated MAP kinases that suggests an intimate role for ERK and p38 in regulation of nuclear pore function.
Collapse
Affiliation(s)
- Randolph S Faustino
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of ManitobaWinnipeg, Canada
| | - Thane G Maddaford
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of ManitobaWinnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of ManitobaWinnipeg, Canada
- Faculty of Pharmacy, University of ManitobaWinnipeg, Canada
| |
Collapse
|
39
|
Choi SG, Ruf-Zamojski F, Pincas H, Roysam B, Sealfon SC. Characterization of a MAPK scaffolding protein logic gate in gonadotropes. Mol Endocrinol 2011; 25:1027-39. [PMID: 21436256 DOI: 10.1210/me.2010-0387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the pituitary gonadotropes, both protein kinase C (PKC) and MAPK/ERK signaling cascades are activated by GnRH. Phosphoprotein-enriched in astrocytes 15 (PEA-15) is a cytosolic ERK scaffolding protein, which is expressed in LβT2 gonadotrope cells. Pharmacological inhibition of PKC and small interfering RNA-mediated silencing of Gαq/11 revealed that GnRH induces accumulation of phosphorylated PEA-15 in a PKC-dependent manner. To investigate the potential role of PEA-15 in GnRH signaling, we examined the regulation of ERK subcellular localization and the activation of ribosomal S6 kinase, a substrate of ERK. Results obtained by cellular fractionation/Western blot analysis and immunohistochemistry revealed that GnRH-induced accumulation of phosphorylated ERK in the nucleus was attenuated when PEA-15 expression was reduced. Conversely, in the absence of GnRH stimulation, PEA-15 anchors ERK in the cytosol. Our data suggest that GnRH-induced nuclear translocation of ERK requires its release from PEA-15, which occurs upon PEA-15 phosphorylation by PKC. Additional gene-silencing experiments in GnRH-stimulated cells demonstrated that ribosomal S6 kinase activation was dependent on both PEA-15 and PKC. Furthermore, small interfering RNA-mediated knockdown of PEA-15 caused a reduction in GnRH-stimulated expression of early response genes Egr2 and c-Jun, as well as gonadotropin FSHβ-subunit gene expression. PEA-15 knockdown increased LHβ and common α-glycoprotein subunit mRNAs, suggesting a possible role in differential regulation of gonadotropin subunit gene expression. We propose that PEA-15 represents a novel point of convergence of the PKC and MAPK/ERK pathways under GnRH stimulation. PKC, ERK, and PEA-15 form an AND logic gate that shapes the response of the gonadotrope cell to GnRH.
Collapse
Affiliation(s)
- Soon Gang Choi
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-94, Box 1137, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
40
|
Parthasarathy S, Dhayaparan D, Jayanthi V, Devaraj SN, Devaraj H. Aberrant expression of epidermal growth factor receptor and its interaction with protein kinase C δ in inflammation associated neoplastic transformation of human esophageal epithelium in high risk populations. J Gastroenterol Hepatol 2011; 26:382-90. [PMID: 21155880 DOI: 10.1111/j.1440-1746.2010.06526.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIM Esophageal cancer is the second most common cancer among Indian males and is mostly associated with tobacco smoking and alcohol consumption. Epidermal growth factor receptor (EGFR) is a member of Type I tyrosine kinases. Its activation causes the docking of various proteins in its cytosolic tail. In the present study we have analyzed the expression pattern of EGFR, protein kinase C δ (PKCδ), tumor necrosis factor-α (TNF-α), nuclear factor κB (NFκB) and the interactions between EGFR and PKCδ in various pathological conditions. METHODS Human esophageal biopsies were obtained from 93 patients with a past history of smoking and alcohol consumption: 20 showed normal mucosa, 40 with dysplasia and 33 squamous cell carcinoma (SCC). These pathological conditions were analyzed immunohistochemically for the presence of EGFR expression and then subsequently analyzed using immunoblot and immunoprecipitation. RESULTS A statistically significant difference of EGFR overexpression was found between low- and high-grade dysplasia and carcinoma (χ² = 3.3, χ² = 3.42: P = 0.07, 0.33). A statistical significance was observed between dysplasia and SCC and in all histopathological types (χ² = 4, χ² = 4.9; P < 0.05, P = 0.18 and χ² = 26.3, 26.6; P < 0.001). EGFR tyrosine phosphorylation and its association with PKCδ was significantly higher in all histopathological types with χ² = 7.965; P < 0.05 and 4.0830; P = 0.2530. CONCLUSION Altogether, our findings reveal that the activation of EGFR and its subsequent interaction with PKCδ under inflammatory conditions might positively be attributed to the transformation of normal esophageal epithelia to SCC, which could explain ongoing inflammation in normal mucosa in a population prone to smoking and alcoholism.
Collapse
|
41
|
Armstrong S, Caunt C, Finch A, McArdle C. Using automated imaging to interrogate gonadotrophin-releasing hormone receptor trafficking and function. Mol Cell Endocrinol 2011; 331:194-204. [PMID: 20688134 PMCID: PMC3021717 DOI: 10.1016/j.mce.2010.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/07/2010] [Accepted: 07/13/2010] [Indexed: 01/03/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) acts via seven transmembrane receptors on gonadotrophs to stimulate gonadotrophin synthesis and secretion, and thereby mediates central control of reproduction. Type I mammalian GnRHR are unique, in that they lack C-terminal tails. This is thought to underlie their resistance to rapid homologous desensitisation as well as their slow rate of internalisation and inability to provoke G-protein-independent (arrestin-mediated) signalling. More recently it has been discovered that the vast majority of human GnRHR are actually intracellular, in spite of the fact that they are activated at the cell surface by a membrane impermeant peptide hormone. This apparently reflects inefficient exit from the endoplasmic reticulum and again, the absence of the C-tail likely contributes to their intracellular localisation. This review is intended to cover some of these novel aspects of GnRHR biology, focusing on ways that we have used automated fluorescence microscopy (high content imaging) to explore GnRHR localisation and trafficking as well as spatial and temporal aspects of GnRH signalling via the Ca(2+)/calmodulin/calcineurin/NFAT and Raf/MEK/ERK pathways.
Collapse
Affiliation(s)
- S.P. Armstrong
- University of Bristol, School of Clinical Sciences, Labs. for Integrative Neuroscience and Endocrinology, 1 Whitson Street, Bristol BS1 3NY, UK
| | - C.J. Caunt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - A.R. Finch
- University of Bristol, School of Clinical Sciences, Labs. for Integrative Neuroscience and Endocrinology, 1 Whitson Street, Bristol BS1 3NY, UK
| | - C.A. McArdle
- University of Bristol, School of Clinical Sciences, Labs. for Integrative Neuroscience and Endocrinology, 1 Whitson Street, Bristol BS1 3NY, UK
- Corresponding author.
| |
Collapse
|
42
|
Caunt CJ, McArdle CA. Stimulus-induced uncoupling of extracellular signal-regulated kinase phosphorylation from nuclear localization is dependent on docking domain interactions. J Cell Sci 2010; 123:4310-20. [PMID: 21123621 PMCID: PMC2995615 DOI: 10.1242/jcs.076349] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2010] [Indexed: 01/27/2023] Open
Abstract
Many stimuli activate the extracellular signal-regulated kinase (ERK) by phosphorylation on the TEY motif. Activated ERK characteristically accumulates in the nucleus, but the underlying mechanisms involved are unclear. Using automated microscopy to explore ERK regulation in single intact cells, we find that, when protein kinase C or epidermal growth factor receptors are activated, a substantial fraction of the ERK nuclear localization response is uncoupled from TEY phosphorylation. This phosphorylation-unattributable nuclear localization response occurs in the presence of inhibitors of tyrosine phosphatases and protein synthesis. It was also evident with a catalytically inactive ERK2-GFP mutant, and with a mutant incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK binding partners. It was, however, reduced by MEK inhibition and by mutations preventing either TEY phosphorylation or D (docking)-domain-dependent ERK binding (D319N). Thus, we show that MEK-catalysed ERK phosphorylation is necessary but not sufficient for the full nuclear localization response: there is an additional phosphorylation-unattributable component of the response that does not reflect induced expression of nuclear anchors and is independent of ERK catalytic activity or DEF-domain binding. It is, however, dependent upon D-domain binding, highlighting distinct roles of ERK motifs during nuclear targeting.
Collapse
Affiliation(s)
- Christopher J. Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK BA2 7AY
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Whitson Street, Bristol, UK BS1 3NY
| |
Collapse
|
43
|
Walker JJ, Terry JR, Tsaneva-Atanasova K, Armstrong SP, McArdle CA, Lightman SL. Encoding and decoding mechanisms of pulsatile hormone secretion. J Neuroendocrinol 2010; 22:1226-38. [PMID: 21054582 DOI: 10.1111/j.1365-2826.2010.02087.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ultradian pulsatile hormone secretion underlies the activity of most neuroendocrine systems, including the hypothalamic-pituitary adrenal (HPA) and gonadal (HPG) axes, and this pulsatile mode of signalling permits the encoding of information through both amplitude and frequency modulation. In the HPA axis, glucocorticoid pulse amplitude increases in anticipation of waking, and, in the HPG axis, changing gonadotrophin-releasing hormone pulse frequency is the primary means by which the body alters its reproductive status during development (i.e. puberty). The prevalence of hormone pulsatility raises two crucial questions: how are ultradian pulses encoded (or generated) by these systems, and how are these pulses decoded (or interpreted) at their target sites? We have looked at mechanisms within the HPA axis responsible for encoding the pulsatile mode of glucocorticoid signalling that we observe in vivo. We review evidence regarding the 'hypothalamic pulse generator' hypothesis, and describe an alternative model for pulse generation, which involves steroid feedback-dependent endogenous rhythmic activity throughout the HPA axis. We consider the decoding of hormone pulsatility by taking the HPG axis as a model system and focussing on molecular mechanisms of frequency decoding by pituitary gonadotrophs.
Collapse
Affiliation(s)
- J J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Welsh GI, Hale LJ, Eremina V, Jeansson M, Maezawa Y, Lennon R, Pons DA, Owen RJ, Satchell SC, Miles MJ, Caunt CJ, McArdle CA, Pavenstädt H, Tavaré JM, Herzenberg AM, Kahn CR, Mathieson PW, Quaggin SE, Saleem MA, Coward RJM. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 2010; 12:329-340. [PMID: 20889126 PMCID: PMC4949331 DOI: 10.1016/j.cmet.2010.08.015] [Citation(s) in RCA: 348] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 05/21/2010] [Accepted: 07/07/2010] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of renal failure in the world. It is characterized by albuminuria and abnormal glomerular function and is considered a hyperglycemic "microvascular" complication of diabetes, implying a primary defect in the endothelium. However, we have previously shown that human podocytes have robust responses to insulin. To determine whether insulin signaling in podocytes affects glomerular function in vivo, we generated mice with specific deletion of the insulin receptor from their podocytes. These animals develop significant albuminuria together with histological features that recapitulate DN, but in a normoglycemic environment. Examination of "normal" insulin-responsive podocytes in vivo and in vitro demonstrates that insulin signals through the MAPK and PI3K pathways via the insulin receptor and directly remodels the actin cytoskeleton of this cell. Collectively, this work reveals the critical importance of podocyte insulin sensitivity for kidney function.
Collapse
Affiliation(s)
- Gavin I Welsh
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Lorna J Hale
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Vera Eremina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Marie Jeansson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Yoshiro Maezawa
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Rachel Lennon
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Deborah A Pons
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Rachel J Owen
- School of Physics, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Simon C Satchell
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Mervyn J Miles
- School of Physics, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Christopher J Caunt
- Department of Molecular Pharmacology, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Craig A McArdle
- Department of Molecular Pharmacology, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Hermann Pavenstädt
- Department of Internal Medicine D, Nephrology and Hypertension, University Clinics Muenster, Muenster 48149, Germany
| | - Jeremy M Tavaré
- School of Biochemistry, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Andrew M Herzenberg
- Department of Pathology, University Health Network and University of Toronto, Ontario M5G 2C4, Canada
| | - C Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Peter W Mathieson
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Susan E Quaggin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Moin A Saleem
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Richard J M Coward
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK; Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
45
|
Dobkin-Bekman M, Rahamin-Ben Navi L, Shterntal B, Sviridonov L, Przedecki F, Naidich-Exler M, Brodie C, Seger R, Naor Z. Differential role of PKC isoforms in GnRH and phorbol 12-myristate 13-acetate activation of extracellular signal-regulated kinase and Jun N-terminal kinase. Endocrinology 2010; 151:4894-907. [PMID: 20810567 DOI: 10.1210/en.2010-0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH is the first key hormone of reproduction. The role of protein kinase C (PKC) isoforms in GnRH-stimulated MAPK [ERK and Jun N-terminal kinase (JNK)] was examined in the αT3-1 and LβT2 gonadotrope cells. Incubation of the cells with GnRH resulted in a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2. Gonadotropes express conventional PKCα and conventional PKCβII, novel PKCδ, novel PKCε, and novel PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein-PKC constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. Interestingly, PKCα, PKCβII, and PKCε translocation to the plasma membrane was more pronounced and more prolonged in phorbol-12-myristate-13-acetate (PMA) than in GnRH-treated cells. The use of selective inhibitors and dominant-negative plasmids for the various PKCs has revealed that PKCβII, PKCδ, and PKCε mediate ERK2 activation by GnRH, whereas PKCα, PKCβII, PKCδ, and PKCε mediate ERK2 activation by PMA. Also, PKCα, PKCβII, PKCδ, and PKCε are involved in GnRH and PMA stimulation of JNK1 in a cell-context-dependent manner. We present preliminary evidence that persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane may dictate its selective role in ERK or JNK activation. Thus, we have described the contribution of selective PKCs to ERK and JNK activation by GnRH.
Collapse
Affiliation(s)
- Masha Dobkin-Bekman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sollazzo V, Palmieri A, Pezzetti F, Massari L, Carinci F. Effects of pulsed electromagnetic fields on human osteoblastlike cells (MG-63): a pilot study. Clin Orthop Relat Res 2010; 468:2260-77. [PMID: 20387020 PMCID: PMC2895828 DOI: 10.1007/s11999-010-1341-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 03/25/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although pulsed electromagnetic fields (PEMFs) are used to treat delayed unions and nonunions, their mechanisms of action are not completely clear. However, PEMFs are known to affect the expression of certain genes. QUESTIONS/PURPOSES We asked (1) whether PEMFs affect gene expression in human osteoblastlike cells (MG63) in vitro, and (2) whether and to what extent stimulation by PEMFs induce cell proliferation and differentiation in MG-63 cultures. METHODS We cultured two groups of MG63 cells. One group was treated with PEMFs for 18 hours whereas the second was maintained in the same culture condition without PEMFs (control). Gene expression was evaluated throughout cDNA microarray analysis containing 19,000 genes spanning a substantial fraction of the human genome. RESULTS PEMFs induced the upregulation of important genes related to bone formation (HOXA10, AKT1), genes at the transductional level (CALM1, P2RX7), genes for cytoskeletal components (FN1, VCL), and collagenous (COL1A2) and noncollagenous (SPARC) matrix components. However, PEMF induced downregulation of genes related to the degradation of extracellular matrix (MMP-11, DUSP4). CONCLUSIONS AND CLINICAL RELEVANCE PEMFs appear to induce cell proliferation and differentiation. Furthermore, PEMFs promote extracellular matrix production and mineralization while decreasing matrix degradation and absorption. Our data suggest specific mechanisms of the observed clinical effect of PEMFs, and thus specific approaches for use in regenerative medicine.
Collapse
Affiliation(s)
- Vincenzo Sollazzo
- Istituto di Clinica Ortopedica Università di Ferrara, Corso Giovecca 203, 44100 Ferrara, Italy
| | - Annalisa Palmieri
- Istituto di Chirurgia Maxillo Facciale Università di Ferrara, Ferrara, Italy
| | - Furio Pezzetti
- Istituto di Istologia ed Embriologia Generale Università di Bologna, Bologna, Italy
| | - Leo Massari
- Istituto di Clinica Ortopedica Università di Ferrara, Corso Giovecca 203, 44100 Ferrara, Italy
| | - Francesco Carinci
- Istituto di Chirurgia Maxillo Facciale Università di Ferrara, Ferrara, Italy
| |
Collapse
|
47
|
Deng YB, Nagae G, Midorikawa Y, Yagi K, Tsutsumi S, Yamamoto S, Hasegawa K, Kokudo N, Aburatani H, Kaneda A. Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma. Cancer Sci 2010; 101:1501-10. [PMID: 20345479 PMCID: PMC11158022 DOI: 10.1111/j.1349-7006.2010.01549.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic infections by hepatitis B virus (HBV) and hepatitis C virus (HCV) appear to be the most significant causes of hepatocellular carcinoma (HCC). Aberrant promoter methylation is known to be deeply involved in cancer, including in HCC. In this study, we analyzed aberrant promoter methylation by methylated DNA immunoprecipitation-on-chip analysis on a genome-wide scale in six HCCs including three HBV-related and three HCV-related HCCs, six matched noncancerous liver tissues, and three normal liver tissues. Candidate genes with promoter methylation were detected more frequently in HCV-related HCC. Candidate genes methylated preferentially to HBV-related or HCV-related HCCs were detected and selected, and methylation levels of the selected genes were validated by quantitative methylation analysis using MALDI-TOF mass spectrometry using 125 liver tissue samples, including 61 HCCs (28 HBV-related HCCs and 33 HCV-related HCCs) and 59 matched noncancerous livers, and five normal livers. Among analyzed genes, preferential methylation in HBV-related HCC was validated in one gene only. However, 15 genes were found to be methylated preferentially in HCV-related HCC, which was independent from age. Hierarchical clustering of HCC using these genes stratified HCV-related HCC as a cluster of frequently methylated samples. The 15 genes included genes inhibitory to cancer-related signaling such as RAS/RAF/ERK and Wnt/beta-catenin pathways. Methylation of dual specificity phosphatase 4 (DUSP4), cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), and natriuretic peptide receptor A (NPR1) significantly correlated with recurrence-free survival. It was indicated that genes methylated preferentially in HCV-related HCC exist, and that DNA methylation might play an important role in HCV-related HCC by silencing cancer-related pathway inhibitors, and might perhaps be useful as a prognostic marker.
Collapse
Affiliation(s)
- Ying-Bing Deng
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Armstrong SP, Caunt CJ, Fowkes RC, Tsaneva-Atanasova K, McArdle CA. Pulsatile and sustained gonadotropin-releasing hormone (GnRH) receptor signaling: does the ERK signaling pathway decode GnRH pulse frequency? J Biol Chem 2010; 285:24360-71. [PMID: 20507982 PMCID: PMC2915671 DOI: 10.1074/jbc.m110.115964] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein-coupled receptors on gonadotrophs to stimulate synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used an extracellular signal regulated kinase-green fluorescent protein (ERK2-GFP) reporter to monitor GnRH signaling. GnRH caused dose-dependent ERK2-GFP translocation to the nucleus, providing a live-cell readout for activation. Pulsatile GnRH caused dose- and frequency-dependent ERK2-GFP translocation. These responses were rapid and transient, showed only digital tracking, and did not desensitize under any condition tested (dose, frequency, and receptor number varied). We also tested for the effects of cycloheximide (to prevent induction of nuclear-inducible MAPK phosphatases) and used GFP fusions containing ERK mutations (D319N, which prevents docking domain-dependent binding to MAPK phosphatases, and K52R, which prevents catalytic activity). These manipulations had little or no effect on the translocation responses, arguing against a role for MAPK phosphatases or ERK-mediated feedback in shaping ERK activation during pulsatile stimulation. GnRH also caused dose- and frequency-dependent activation of the alpha-gonadotropin subunit-, luteinizing hormone beta-, and follicle-stimulating hormone beta- luciferase reporters, and the latter response was inhibited by ERK1/2 knockdown. Moreover, GnRH caused frequency-dependent activation of an Egr1-luciferase reporter, but the response was proportional to cumulative pulse duration. Our data suggest that frequency decoding is not due to negative feedback shaping ERK signaling in this model.
Collapse
Affiliation(s)
- Stephen P Armstrong
- Laboratories for Integrative Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Blaukovitch CI, Pugh R, Gilotti AC, Kanyi D, Lowe-Krentz LJ. Heparin treatment of vascular smooth muscle cells results in the synthesis of the dual-specificity phosphatase MKP-1. J Cell Biochem 2010; 110:382-91. [PMID: 20235148 PMCID: PMC2899885 DOI: 10.1002/jcb.22543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ability of heparin to block proliferation of vascular smooth muscle cells has been well documented. It is clear that heparin treatment can decrease the level of ERK activity in vascular smooth muscle cells that are sensitive to heparin. In this study, the mechanism by which heparin induces decreases in ERK activity was investigated by evaluating the dual specificity phosphatase, MKP-1, in heparin treated cells. Heparin induced MKP-1 synthesis in a time and concentration dependent manner. The time-course of MKP-1 expression correlated with the decrease in ERK activity. Over the same time frame, heparin treatment did not result in decreases in MEK-1 activity which could have, along with constitutive phosphatase activity, accounted for the decrease in ERK activity. Antibodies against a heparin receptor also induced the synthesis of MKP-1 along with decreasing ERK activity. Blocking either phosphatase activity or synthesis also blocked heparin-induced decreases in ERK activity. Consistent with a role for MKP-1, a nuclear phosphatase, heparin treated cells exhibited decreases in nuclear ERK activity more rapidly than cells not treated with heparin. The data support MKP-1 as a heparin-induced phosphatase that dephosphorylates ERK, decreasing ERK activity, in vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Blotting, Western
- Cells, Cultured
- Dual Specificity Phosphatase 1/biosynthesis
- Dual Specificity Phosphatase 1/metabolism
- Enzyme Activation
- Heparin/pharmacology
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Receptors, Cell Surface/immunology
- Swine
Collapse
|
50
|
Bermudez O, Pagès G, Gimond C. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol 2010; 299:C189-202. [PMID: 20463170 DOI: 10.1152/ajpcell.00347.2009] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular signaling by mitogen-activated protein (MAP) kinases (MAPK) is involved in many cellular responses and in the regulation of various physiological and pathological conditions. Tight control of the localization and duration of extracellular-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), or p38 MAPK activity is thus a fundamental aspect of cell biology. Several members of the dual-specificity phosphatase (DUSPs) family are able to dephosphorylate MAPK isoforms with different specificity, cellular, and tissue localization. Understanding how these phosphatases are themselves regulated during development or in physiological and pathological conditions is therefore fundamental. Over the years, gene deletion and knockdown studies have completed initial in vitro studies and shed a new light on the global and specific roles of DUSPs in vivo. Whereas DUSP1, DUSP2, and DUSP10 appear as crucial players in the regulation of immune responses, other members of the family, like the ERK-specific DUSP6, were shown to play a major role in development. Recent findings on the involvement of DUSPs in cancer progression and resistance will also be discussed.
Collapse
Affiliation(s)
- O Bermudez
- Institute of Developmental Biology and Cancer, CNRS, UMR 6543, Université Nice-Sophia, Nice, France
| | | | | |
Collapse
|