1
|
Maciel-Guerra A, Babaarslan K, Baker M, Rahman A, Hossain M, Sadique A, Alam J, Uzzaman S, Ferdous Rahman Sarker M, Sultana N, Islam Khan A, Ara Begum Y, Hassan Afrad M, Senin N, Hossain Habib Z, Shirin T, Qadri F, Dottorini T. Core and accessory genomic traits of Vibrio cholerae O1 drive lineage transmission and disease severity. Nat Commun 2024; 15:8231. [PMID: 39313510 PMCID: PMC11420230 DOI: 10.1038/s41467-024-52238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with increased virulence and spreading ability. However, our understanding of the genomic determinants influencing lineage transmission and disease severity remains incomplete. Here, we developed a computational framework using machine-learning, genome scale metabolic modelling (GSSM) and 3D structural analysis, to identify V. cholerae genomic traits linked to lineage transmission and disease severity. We analysed in-patients isolates from six Bangladeshi regions (2015-2021), and uncovered accessory genes and core SNPs unique to the most recent dominant lineage, with virulence, motility and bacteriophage resistance functions. We also found a strong correlation between V. cholerae genomic traits and disease severity, with some traits overlapping those driving lineage transmission. GSMM and 3D structure analysis unveiled a complex interplay between transcription regulation, protein interaction and stability, and metabolic networks, associated to lifestyle adaptation, intestinal colonization, acid tolerance and symptom severity. Our findings support advancing therapeutics and targeted interventions to mitigate cholera spread.
Collapse
Affiliation(s)
- Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Kubra Babaarslan
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Maqsud Hossain
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Salim Uzzaman
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Ferdous Rahman Sarker
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nasrin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mokibul Hassan Afrad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nicola Senin
- Department of Engineering, University of Perugia, 06125, Perugia, Italy
| | - Zakir Hossain Habib
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| |
Collapse
|
2
|
Li F, Deng J, Zhang Z, Wang C, Mao Y. FabV, the Unique Enoyl-Acyl Carrier Protein Reductase in Xanthomonas arboricola pv. juglandis Associated with Walnut Bacterial Blight, Is Essential for the Growth and Confers Triclosan Resistance to the Strain. PHYTOPATHOLOGY 2024; 114:780-791. [PMID: 37913555 DOI: 10.1094/phyto-08-23-0272-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Walnut bacterial blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is one of the most prevalent diseases of walnut (Juglans spp.), causing significant reductions in nut yield and important losses in economy. Enoyl-acyl carrier protein (ACP) reductase (ENR) is one of the key enzymes involved in the biosynthesis of bacterial fatty acids. In this study, we identified a single ENR-encoding gene, RS10040, in the genome of the XajDW3F3 strain. Sequence alignment analysis suggested RS10040 as a candidate fabV gene in Xaj. Expression of XajfabV restored the growth of the Escherichia coli fabI temperature-sensitive mutant under a nonpermissive growth condition. In vitro assays demonstrated that XajFabV catalyzed enoyl-ACPs of various chain lengths to acyl-ACPs, demonstrating its role in de novo fatty acid biosynthesis. Furthermore, we confirmed that XajfabV is an essential gene for growth, as no XajfabV deletion mutant could be obtained, although XajfabV in the chromosome could be deleted after compensating with a functional ENR-encoding gene via an exogenous plasmid. The fabV replacement mutants showed similar growth characteristic and fatty acid compositions. Our data further identified that fabV conferred Xaj with tolerance to various environmental stresses. Although XajFabV conferred Xaj with triclosan resistance, the resistance of Xaj was weaker than that found for Pseudomonas aeruginosa. Moreover, triclosan exhibited a control effect against infection of the ΔfabV/EcfabI to its host walnut. This study revealed the function of XajFabV and laid a theoretical foundation for the fatty acid synthesis mechanism of Xaj.
Collapse
Affiliation(s)
- Feng Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Jiangli Deng
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Zhilin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yahui Mao
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
3
|
Zhao Z, Liu Y, Jiang H, Yu H, Qin G, Qu M, Xiao W, Lin Q. Microbial profiles and immune responses in seahorse gut and brood pouch under chronic exposure to environmental antibiotics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114711. [PMID: 36868035 DOI: 10.1016/j.ecoenv.2023.114711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Ocean antibiotics pose substantial risks to the adaptation and lifespan of marine organisms. Seahorses are unique owing to the occurrence of brood pouches, male pregnancy, and loss of gut-associated lymphatic tissues and spleen, which lead to increased sensitivity to environmental changes. This study evaluated the changes in microbial diversity and immune responses within the gut and brood pouch in the lined seahorse Hippocampus erectus under chronic exposure to environmental levels of triclosan (TCS) and sulfamethoxazole (SMX), which are common antibiotics in coastal regions. The results showed that microbial abundance and diversity within the gut and brood pouch of seahorses were significantly changed following antibiotics treatment, with the expression of core genes involved in immunity, metabolism, and circadian rhythm processes evidently regulated. Notably, the abundance of potential pathogens in brood pouches was considerably increased upon treatment with SMX. Transcriptome analysis revealed that the expression of toll-like receptors, c-type lectins, and inflammatory cytokine genes in brood pouches was significantly upregulated. Notably, some essential genes related to male pregnancy significantly varied after antibiotic treatment, implying potential effects on seahorse reproduction. This study provides insights into the physiological adaptation of marine animals to environmental changes resulting from human activity.
Collapse
Affiliation(s)
- Zhanwei Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Han Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
The inside scoop: Comparative genomics of two intranuclear bacteria, "Candidatus Berkiella cookevillensis" and "Candidatus Berkiella aquae". PLoS One 2022; 17:e0278206. [PMID: 36584052 PMCID: PMC9803151 DOI: 10.1371/journal.pone.0278206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/12/2022] [Indexed: 12/31/2022] Open
Abstract
"Candidatus Berkiella cookevillensis" (strain CC99) and "Candidatus Berkiella aquae" (strain HT99), belonging to the Coxiellaceae family, are gram-negative bacteria isolated from amoebae in biofilms present in human-constructed water systems. Both bacteria are obligately intracellular, requiring host cells for growth and replication. The intracellular bacteria-containing vacuoles of both bacteria closely associate with or enter the nuclei of their host cells. In this study, we analyzed the genome sequences of CC99 and HT99 to better understand their biology and intracellular lifestyles. The CC99 genome has a size of 2.9Mb (37.9% GC) and contains 2,651 protein-encoding genes (PEGs) while the HT99 genome has a size of 3.6Mb (39.4% GC) and contains 3,238 PEGs. Both bacteria encode high proportions of hypothetical proteins (CC99: 46.5%; HT99: 51.3%). The central metabolic pathways of both bacteria appear largely intact. Genes for enzymes involved in the glycolytic pathway, the non-oxidative branch of the phosphate pathway, the tricarboxylic acid pathway, and the respiratory chain were present. Both bacteria, however, are missing genes for the synthesis of several amino acids, suggesting reliance on their host for amino acids and intermediates. Genes for type I and type IV (dot/icm) secretion systems as well as type IV pili were identified in both bacteria. Moreover, both bacteria contain genes encoding large numbers of putative effector proteins, including several with eukaryotic-like domains such as, ankyrin repeats, tetratricopeptide repeats, and leucine-rich repeats, characteristic of other intracellular bacteria.
Collapse
|
5
|
Abstract
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| |
Collapse
|
6
|
Hopf FSM, Roth CD, de Souza EV, Galina L, Czeczot AM, Machado P, Basso LA, Bizarro CV. Bacterial Enoyl-Reductases: The Ever-Growing List of Fabs, Their Mechanisms and Inhibition. Front Microbiol 2022; 13:891610. [PMID: 35814645 PMCID: PMC9260719 DOI: 10.3389/fmicb.2022.891610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Enoyl-ACP reductases (ENRs) are enzymes that catalyze the last step of the elongation cycle during fatty acid synthesis. In recent years, new bacterial ENR types were discovered, some of them with structures and mechanisms that differ from the canonical bacterial FabI enzymes. Here, we briefly review the diversity of structural and catalytic properties of the canonical FabI and the new FabK, FabV, FabL, and novel ENRs identified in a soil metagenome study. We also highlight recent efforts to use the newly discovered Fabs as targets for drug development and consider the complex evolutionary history of this diverse set of bacterial ENRs.
Collapse
Affiliation(s)
- Fernanda S. M. Hopf
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Candida D. Roth
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduardo V. de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Galina
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexia M. Czeczot
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiano V. Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Cristiano V. Bizarro,
| |
Collapse
|
7
|
Katiki M, Neetu N, Pratap S, Kumar P. Biochemical and structural basis for Moraxella catarrhalis enoyl-acyl carrier protein reductase (FabI) inhibition by triclosan and estradiol. Biochimie 2022; 198:8-22. [PMID: 35276316 DOI: 10.1016/j.biochi.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
Abstract
The enoyl-acyl carrier protein reductase (ENR) is an established drug target and catalyzes the last reduction step of the fatty acid elongation cycle. Here, we report the crystal structures of FabI from Moraxella catarrhalis (McFabI) in the apo form, binary complex with NAD+ and ternary complex with NAD + -triclosan (TCL) determined at 2.36, 2.12 and 2.22 Å resolutions, respectively. The comparative study of these three structures revealed three different conformational states for the substrate-binding loop (SBL), including an unstructured intermediate, a structured intermediate and a closed conformation in the apo, binary and ternary complex forms, respectively; indicating the flexibility of SBL during the ligand binding. Virtual screening has suggested that estradiol cypionate may be a potential inhibitor of McFabI. Subsequently, estradiol (EST), the natural form of estradiol cypionate, was assessed for its FabI-binding and -inhibition properties. In vitro studies demonstrated that TCL and EST bind to McFabI with high affinity (KD = 0.038 ± 0.004 and 5 ± 0.06 μM respectively) and inhibit its activity (Ki = 62.93 ± 3.95 nM and 25.97 ± 1.93 μM respectively) and suppress the growth of M. catarrhalis. These findings reveal that TCL and EST inhibit the McFabI activity and thereby affect cell growth. This study suggests that estradiol may be exploited as a novel scaffold for the designing and development of more potential FabI inhibitors.
Collapse
Affiliation(s)
- Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Neetu Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
8
|
Sun J, Barrett H, Hall DR, Kutarna S, Wu X, Wang Y, Peng H. Ecological Role of 6OH-BDE47: Is It a Chemical Offense Molecule Mediated by Enoyl-ACP Reductases? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:451-459. [PMID: 34914355 DOI: 10.1021/acs.est.1c05718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although hydroxylated polybrominated diphenyl ethers (OH-BDEs) are among the most abundant natural organobromine compounds, the fundamental biological rationale for marine organisms to produce OH-BDEs remains elusive. Herein, we demonstrated that natural OH-BDEs exerted strong antibacterial activities against Escherichia coli by inhibiting enoyl-[acyl-carrier-protein] reductase (FabI), while anthropogenic OH-BDEs were inactive. Distinct from E. coli, OH-BDE-producing marine γ-proteobacteria including Marinomonas mediterranea MMB-1 (MMB-1) and Pseudoalteromonas luteoviolacea 2ta16 (Pl2ta16) exhibited resistance to 6OH-BDE47. An alternative enoyl-[acyl-carrier-protein] (ACP) reductase, FabV, was detected in all three OH-BDE-producing marine γ-proteobacteria. Thermal stability and protein affinity purification studies revealed that 6OH-BDE47 did not bind to recombinant or endogenous FabV of MMB-1 or Pl2ta16, demonstrating that FabV was the primary mechanism for OH-BDE-producing marine γ-proteobacteria to be resistant to 6OH-BDE47. To further confirm if the laboratory results were evidenced in the field, the 16S rRNA sequencing and metagenomics data from seven field-collected marine sponges were analyzed. Notably, the two Clade 4 sponges containing high concentrations of 6OH-BDE47 exhibited a distinct microbiome community structure compared to the other analyzed clades. Correspondingly, FabV was found to be selectively enriched in the same Clade 4 sponges. The merged evidence from the laboratory experiments and field studies demonstrated that 6OH-BDE47 may act as a chemical offense molecule in marine sponges.
Collapse
Affiliation(s)
- Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 70A3317, United States
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Yu M, Wang X, Yan A. Microbial Profiles of Retail Pacific Oysters ( Crassostrea gigas) From Guangdong Province, China. Front Microbiol 2021; 12:689520. [PMID: 34305851 PMCID: PMC8292972 DOI: 10.3389/fmicb.2021.689520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
Oysters are one of the main aquatic products sold in coastal areas worldwide and are popular among consumers because of their delicious taste and nutritional value. However, the microorganisms present in oysters may pose health risks to consumers. In this study, the microbial communities of Pacific oysters (Crassostrea gigas) collected from aquatic product markets in three cities (Guangzhou, Zhuhai, and Jiangmen) of Guangdong Province, China, where raw oysters are popular, were investigated. The plate counts of viable bacteria in oysters collected in the three cities were all approximately 2 log colony-forming units/g. High-throughput sequencing analysis of the V3–V4 region of the 16Sribosomal DNA gene showed a high level of microbial diversity in oysters, as evidenced by both alpha and beta diversity analysis. Proteobacteria, Bacteroidetes, and Firmicutes were the dominant phyla of the microorganisms present in these samples. A variety of pathogenic bacteria, including the fatal foodborne pathogen Vibrio vulnificus, were found, and Vibrio was the dominant genus. Additionally, the relationship between other microbial species and pathogenic microorganisms may be mostly symbiotic in oysters. These data provide insights into the microbial communities of retail oysters in the Guangdong region and indicate a considerable risk related to the consumption of raw oysters.
Collapse
Affiliation(s)
- Mingjia Yu
- Department of Food Science, Foshan Polytechnic, Foshan, China
| | - Xiaobo Wang
- Department of Food Science, Foshan Polytechnic, Foshan, China
| | - Aixian Yan
- Department of Food Science, Foshan Polytechnic, Foshan, China
| |
Collapse
|
10
|
McFarland AG, Bertucci HK, Littman E, Shen J, Huttenhower C, Hartmann EM. Triclosan Tolerance Is Driven by a Conserved Mechanism in Diverse Pseudomonas Species. Appl Environ Microbiol 2021; 87:e02924-20. [PMID: 33483311 PMCID: PMC8091609 DOI: 10.1128/aem.02924-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 02/04/2023] Open
Abstract
Perturbation of natural microbial communities by antimicrobials, such as triclosan, can result in selection for antibiotic tolerance, which is of particular concern when pathogens are present. Members of the genus Pseudomonas are found in many natural microbial communities and frequently demonstrate increased abundance following triclosan exposure. The pathogen and well-studied model organism Pseudomonas aeruginosa exhibits high triclosan tolerance; however, it is unknown if all Pseudomonas species share this trait or if there are susceptible strains. We characterized the triclosan tolerance phenotypes of diverse Pseudomonas isolates obtained from triclosan-exposed built environments and identified both tolerant and sensitive strains. High tolerance is associated with carriage of the enoyl-acyl carrier reductase (ENR) isozyme gene fabV, compared to the lesser protective effects of efflux or presence of ENRs. Given its unique importance, we examined fabV distribution throughout Pseudomonas species using large-scale phylogenomic analyses. We find fabV presence or absence is largely invariant at the species level but demonstrates multiple gain and loss events in its evolutionary history. We further provide evidence of its presence on mobile genetic elements. Our results demonstrate the surprising variability in triclosan tolerance in Pseudomonas and confirm fabV to be a useful indicator for high triclosan tolerance in Pseudomonas These findings provide a framework for better monitoring of Pseudomonas in triclosan-exposed environments and interpreting effects on species and gene composition.IMPORTANCE Closely related species are typically assumed to demonstrate similar phenotypes driven by underlying conserved genotypes. When monitoring for the effect of antimicrobials on the types of species that may be selected for, this assumption may prove to be incorrect, and identification of additional genetic markers may be necessary. We isolated several phylogenetically diverse members of Pseudomonas from indoor environments and tested their phenotypic tolerance toward the commonly used antimicrobial triclosan. Although Pseudomonas isolates are broadly regarded to be highly triclosan tolerant, we demonstrate the presence of both triclosan-tolerant and -susceptible strains, separated by a difference in tolerance of nearly 3 orders of magnitude. Bioinformatic and experimental investigation demonstrated that the presence of the gene fabV was associated with high tolerance. We demonstrate that fabV is not evenly distributed in all Pseudomonas species and that its presence could be a useful predictor of high triclosan tolerance suitable for antimicrobial monitoring efforts involving triclosan.
Collapse
Affiliation(s)
- Alexander G McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Hanna K Bertucci
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Erica Littman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
11
|
Nardi T, Olivieri E, Kariuki E, Sassera D, Castelli M. Sequence of a Coxiella Endosymbiont of the Tick Amblyomma nuttalli Suggests a Pattern of Convergent Genome Reduction in the Coxiella Genus. Genome Biol Evol 2021; 13:evaa253. [PMID: 33275132 PMCID: PMC7851586 DOI: 10.1093/gbe/evaa253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Ticks require bacterial symbionts for the provision of necessary compounds that are absent in their hematophagous diet. Such symbionts are frequently vertically transmitted and, most commonly, belong to the Coxiella genus, which also includes the human pathogen Coxiella burnetii. This genus can be divided in four main clades, presenting partial but incomplete cocladogenesis with the tick hosts. Here, we report the genome sequence of a novel Coxiella, endosymbiont of the African tick Amblyomma nuttalli, and the ensuing comparative analyses. Its size (∼1 Mb) is intermediate between symbionts of Rhipicephalus species and other Amblyomma species. Phylogenetic analyses show that the novel sequence is the first genome of the B clade, the only one for which no genomes were previously available. Accordingly, it allows to draw an enhanced scenario of the evolution of the genus, one of parallel genome reduction of different endosymbiont lineages, which are now at different stages of reduction from a more versatile ancestor. Gene content comparison allows to infer that the ancestor could be reminiscent of C. burnetii. Interestingly, the convergent loss of mismatch repair could have been a major driver of such reductive evolution. Predicted metabolic profiles are rather homogenous among Coxiella endosymbionts, in particular vitamin biosynthesis, consistently with a host-supportive role. Concurrently, similarities among Coxiella endosymbionts according to host genus and despite phylogenetic unrelatedness hint at possible host-dependent effects.
Collapse
Affiliation(s)
- Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Edward Kariuki
- Veterinary and Capture Service Department, Kenya Wildlife Service, Kenya
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
12
|
Fage CD, Lathouwers T, Vanmeert M, Gao L, Vrancken K, Lammens E, Weir ANM, Degroote R, Cuppens H, Kosol S, Simpson TJ, Crump MP, Willis CL, Herdewijn P, Lescrinier E, Lavigne R, Anné J, Masschelein J. The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in
Staphylococcus aureus
by Targeting the Enoyl‐Acyl Carrier Protein Binding Site of FabI. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Thomas Lathouwers
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Michiel Vanmeert
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Ling‐Jie Gao
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Kristof Vrancken
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Eveline‐Marie Lammens
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Angus N. M. Weir
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Ruben Degroote
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Harry Cuppens
- Department of Human Genetics KU Leuven Herestraat 49 3000 Leuven Belgium
| | - Simone Kosol
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Thomas J. Simpson
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Matthew P. Crump
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Christine L. Willis
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Jozef Anné
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Joleen Masschelein
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
- Laboratory for Biomolecular Discovery and Engineering KU Leuven Kasteelpark Arenberg 31, box 2438 3001 Heverlee Belgium
| |
Collapse
|
13
|
Radka CD, Frank MW, Yao J, Seetharaman J, Miller DJ, Rock CO. The genome of a Bacteroidetes inhabitant of the human gut encodes a structurally distinct enoyl-acyl carrier protein reductase (FabI). J Biol Chem 2020; 295:7635-7652. [PMID: 32317282 PMCID: PMC7261799 DOI: 10.1074/jbc.ra120.013336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Enoyl-acyl carrier protein reductase (FabI) catalyzes a rate-controlling step in bacterial fatty-acid synthesis and is a target for antibacterial drug development. A phylogenetic analysis shows that FabIs fall into four divergent clades. Members of clades 1-3 have been structurally and biochemically characterized, but the fourth clade, found in members of phylum Bacteroidetes, is uncharacterized. Here, we identified the unique structure and conformational changes that distinguish clade 4 FabIs. Alistipes finegoldii is a prototypical Bacteroidetes inhabitant of the gut microbiome. We found that A. finegoldii FabI (AfFabI) displays cooperative kinetics and uses NADH as a cofactor, and its crystal structure at 1.72 Å resolution showed that it adopts a Rossmann fold as do other characterized FabIs. It also disclosed a carboxyl-terminal extension that forms a helix-helix interaction that links the protomers as a unique feature of AfFabI. An AfFabI·NADH crystal structure at 1.86 Å resolution revealed that this feature undergoes a large conformational change to participate in covering the NADH-binding pocket and establishing the water channels that connect the active site to the central water well. Progressive deletion of these interactions led to catalytically compromised proteins that fail to bind NADH. This unique conformational change imparted a distinct shape to the AfFabI active site that renders it refractory to a FabI drug that targets clade 1 and 3 pathogens. We conclude that the clade 4 FabI, found in the Bacteroidetes inhabitants of the gut, have several structural features and conformational transitions that distinguish them from other bacterial FabIs.
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthew W. Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Darcie J. Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O. Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, To whom correspondence should be addressed:
262 Danny Thomas Place, Memphis, TN 38105. Tel.:
901-595-3491; E-mail:
| |
Collapse
|
14
|
Fage CD, Lathouwers T, Vanmeert M, Gao L, Vrancken K, Lammens E, Weir ANM, Degroote R, Cuppens H, Kosol S, Simpson TJ, Crump MP, Willis CL, Herdewijn P, Lescrinier E, Lavigne R, Anné J, Masschelein J. The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in
Staphylococcus aureus
by Targeting the Enoyl‐Acyl Carrier Protein Binding Site of FabI. Angew Chem Int Ed Engl 2020; 59:10549-10556. [DOI: 10.1002/anie.201915407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Indexed: 01/07/2023]
Affiliation(s)
| | - Thomas Lathouwers
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Michiel Vanmeert
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Ling‐Jie Gao
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Kristof Vrancken
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Eveline‐Marie Lammens
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Angus N. M. Weir
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Ruben Degroote
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Harry Cuppens
- Department of Human Genetics KU Leuven Herestraat 49 3000 Leuven Belgium
| | - Simone Kosol
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Thomas J. Simpson
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Matthew P. Crump
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Christine L. Willis
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Jozef Anné
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Joleen Masschelein
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
- Laboratory for Biomolecular Discovery and Engineering KU Leuven Kasteelpark Arenberg 31, box 2438 3001 Heverlee Belgium
| |
Collapse
|
15
|
Zeng Q, Yang Q, Jia J, Bi H. A Moraxella Virulence Factor Catalyzes an Essential Esterase Reaction of Biotin Biosynthesis. Front Microbiol 2020; 11:148. [PMID: 32117167 PMCID: PMC7026016 DOI: 10.3389/fmicb.2020.00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Pimeloyl-acyl carrier protein (ACP) methyl ester esterase catalyzes the last biosynthetic step of the pimelate moiety of biotin, a key intermediate in biotin biosynthesis. The paradigm pimeloyl-ACP methyl ester esterase is the BioH protein of Escherichia coli that hydrolyses the ester bond of pimeloyl-ACP methyl ester. Biotin synthesis in E. coli also requires the function of the malonyl-ACP methyltransferase gene (bioC) to employ a methylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. However, bioinformatics analyses of the extant bacterial genomes showed that bioH is absent in many bioC-containing bacteria. The genome of the Gram-negative bacterium, Moraxella catarrhalis lacks a gene encoding a homolog of any of the six known pimeloyl-ACP methyl ester esterase isozymes suggesting that this organism encodes a novel pimeloyl-ACP methyl ester esterase isoform. We report that this is the case. The gene encoding the new isoform, called btsA, was isolated by complementation of an E. coli bioH deletion strain. The requirement of BtsA for the biotin biosynthesis in M. catarrhalis was confirmed by a biotin auxotrophic phenotype caused by deletion of btsA in vivo and a reconstituted in vitro desthiobiotin synthesis system. Purified BtsA was shown to cleave the physiological substrate pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a Ser117-His254-Asp287 catalytic triad. The lack of sequence alignment with other isozymes together with phylogenetic analyses revealed BtsA as a new class of pimeloyl-ACP methyl ester esterase. The involvement of BtsA in M. catarrhalis virulence was confirmed by the defect of bacterial invasion to lung epithelial cells and survival within macrophages in the ΔbtsA strains. Identification of the new esterase gene btsA exclusive in Moraxella species that links biotin biosynthesis to bacterial virulence, can reveal a new valuable target for development of drugs against M. catarrhalis.
Collapse
Affiliation(s)
- Qi Zeng
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qi Yang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jia Jia
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Biochemical and Structural Insights Concerning Triclosan Resistance in a Novel YX 7K Type Enoyl-Acyl Carrier Protein Reductase from Soil Metagenome. Sci Rep 2019; 9:15401. [PMID: 31659200 PMCID: PMC6817880 DOI: 10.1038/s41598-019-51895-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022] Open
Abstract
Enoyl-acyl carrier protein reductase (ENR) catalyzes the last reduction step in the bacterial type II fatty acid biosynthesis cycle. ENRs include FabI, FabL, FabL2, FabK, and FabV. Previously, we reported a unique triclosan (TCL) resistant ENR homolog that was predominant in obligate intracellular pathogenic bacteria and Apicomplexa. Herein, we report the biochemical and structural basis of TCL resistance in this novel ENR. The purified protein revealed NADH-dependent ENR activity and shared similarity to prototypic FabI. Thus, this metagenome-derived ENR was designated FabI2. Unlike other prototypic bacterial ENRs with the YX6K type catalytic domain, FabI2 possessed a unique YX7K type catalytic domain. Computational modeling followed by site-directed mutagenesis revealed that mild resistance (20 µg/ml of minimum inhibitory concentration) of FabI2 to TCL was confined to the relatively less bulky side chain of A128. Substitution of A128 in FabI2 with bulky valine (V128) elevated TCL resistance. Phylogenetic analysis further suggested that the novel FabI2 and prototypical FabI evolved from a common short-chain dehydrogenase reductase family. To our best knowledge, FabI2 is the only known ENR shared by intracellular pathogenic prokaryotes, intracellular pathogenic lower eukaryotes, and a few higher eukaryotes. This suggests that the ENRs of prokaryotes and eukaryotes diverged from a common ancestral ENR of FabI2.
Collapse
|
17
|
Jones JA, Prior AM, Marreddy RKR, Wahrmund RD, Hurdle JG, Sun D, Hevener KE. Small-Molecule Inhibition of the C. difficile FAS-II Enzyme, FabK, Results in Selective Activity. ACS Chem Biol 2019; 14:1528-1535. [PMID: 31184849 DOI: 10.1021/acschembio.9b00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of significant morbidity, mortality, and healthcare-related costs in the United States. After standard therapy, recurrence rates remain high, and multiple recurrences are not uncommon. Causes include treatments employing broad-spectrum agents that disrupt the normal host microbiota, as well as treatment-resistant spore formation by C. difficile. Thus, novel druggable anti-C. difficile targets that promote narrow-spectrum eradication and inhibition of sporulation are desired. As a critical rate-limiting step within the FAS-II bacterial fatty acid synthesis pathway, which supplies precursory component phospholipids found in bacterial cytoplasmic and spore-mediated membranes, enoyl-acyl carrier protein (ACP) reductase II (FabK) represents such a target. FabK is essential in C. difficile (CdFabK) and is structurally and mechanistically distinct from other isozymes found in gut microbiota species, making CdFabK an attractive narrow-spectrum target. We report here the kinetic evaluation of CdFabK, the biochemical activity of a series of phenylimidazole analogues, and microbiological data suggesting these compounds' selective antibacterial activity against C. difficile versus several other prominent gut organisms. The compounds display promising, selective, low micromolar CdFabK inhibitory activity without significantly affecting the growth of other gut organisms, and the series prototype (1b) is shown to be competitive for the CdFabK cofactor and uncompetitive for the substrate. A series analogue (1g) shows maintained inhibitory activity while also possessing increased solubility. These findings represent the basis for future drug discovery efforts by characterizing the CdFabK enzyme while demonstrating its druggability and potential role as a narrow-spectrum antidifficile target.
Collapse
Affiliation(s)
- Jesse A. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Allan M. Prior
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, 96720, United States
| | - Ravi K. R. Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Rebecca D. Wahrmund
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julian G. Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, 96720, United States
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
18
|
Functional screening for triclosan resistance in a wastewater metagenome and isolates of Escherichia coli and Enterococcus spp. from a large Canadian healthcare region. PLoS One 2019; 14:e0211144. [PMID: 30677104 PMCID: PMC6345445 DOI: 10.1371/journal.pone.0211144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/07/2019] [Indexed: 01/31/2023] Open
Abstract
The biocide triclosan is in many consumer products and is a frequent contaminant of wastewater (WW) such that there is concern that triclosan promotes resistance to important antibiotics. This study identified functional mechanisms of triclosan resistance (TCSR) in WW metagenomes, and assessed the frequency of TCSR in WW-derived and clinical isolates of Escherichia coli and Enterococcus spp. Metagenomic DNA extracted from WW was used to profile the microbiome and construct large-insert cosmid libraries, which were screened for TCSR. Resistant cosmids were sequenced and the TCSR determinant identified by transposon mutagenesis. Wastewater Enterococcus spp. (N = 94) and E. coli (N = 99) and clinical Enterococcus spp. (N = 146) and vancomycin-resistant E. faecium (VRE; N = 149) were collected and tested for resistance to triclosan and a comprehensive drug panel. Functional metagenomic screening revealed diverse FabV homologs as major WW TCSR determinants. Resistant clones harboured sequences likely originating from Aeromonas spp., a common WW microbe. The triclosan MIC90s for E. coli, E. faecalis, and E. faecium isolates were 0.125, 32, and 32 mg/L, respectively. For E. coli, there was no correlation between the triclosan MIC and any drug tested. Negative correlations were detected between the triclosan MIC and levofloxacin resistance for E. faecalis, and between triclosan and vancomycin, teicoplanin, and ampicillin resistance for E. faecium. Thus, FabV homologs were the major contributor to the WW triclosan resistome and high-level TCSR was not observed in WW or clinical isolates. Elevated triclosan MICs were not positively correlated with antimicrobial resistance to any drug tested.
Collapse
|
19
|
Phandanouvong-Lozano V, Sun W, Sanders JM, Hay AG. Biochar does not attenuate triclosan's impact on soil bacterial communities. CHEMOSPHERE 2018; 213:215-225. [PMID: 30223126 DOI: 10.1016/j.chemosphere.2018.08.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Triclosan, a broad-spectrum antimicrobial, has been widely used in pharmaceutical and personal care products. It undergoes limited degradation during wastewater treatment and is present in biosolids, most of which are land applied in the United States. This study assessed the impact of triclosan (0-100 mg kg-1) with and without biochar on soil bacterial communities. Very little 14C-triclosan was mineralized to 14CO2 (<7%) over the course of the study (42 days). While biochar (1%) significantly lowered mineralization of triclosan, analysis of 16S rRNA gene sequences revealed that biochar impacted very few OTUs and did not alter the overall structure of the community. Triclosan, on the other hand, significantly affected bacterial diversity and community structure (alpha diversity, ANOVA, p < 0.001; beta diversity, AMOVA, p < 0.01). Dirichlet multinomial mixtures (DMM) modeling and complete linkage clustering (CLC) revealed a dose-dependent impact of triclosan. Non-Parametric Metastats (NPM) analysis showed that 150 of 734 OTUs from seven main phyla were significantly impacted by triclosan (adjusted p < 0.05). Genera harboring opportunistic pathogens such as Flavobacterium were enriched in the presence of triclosan, as was Stenotrophomonas. The latter has previously been implicated in triclosan degradation via stable isotope probing. Surprisingly, Sphingomonads, which include well-characterized triclosan degraders were negatively impacted by even low doses of triclosan. Analyses of published genomes showed that triclosan resistance determinants were rare in Sphingomonads which may explain why they were negatively impacted by triclosan in our soil.
Collapse
Affiliation(s)
| | - Wen Sun
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennie M Sanders
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Biochemical and Structural Basis of Triclosan Resistance in a Novel Enoyl-Acyl Carrier Protein Reductase. Antimicrob Agents Chemother 2018; 62:AAC.00648-18. [PMID: 29891603 DOI: 10.1128/aac.00648-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
Enoyl-acyl carrier protein reductases (ENR), such as FabI, FabL, FabK, and FabV, catalyze the last reduction step in bacterial type II fatty acid biosynthesis. Previously, we reported metagenome-derived ENR homologs resistant to triclosan (TCL) and highly similar to 7-α hydroxysteroid dehydrogenase (7-AHSDH). These homologs are commonly found in Epsilonproteobacteria, a class that contains several human-pathogenic bacteria, including the genera Helicobacter and Campylobacter Here we report the biochemical and predicted structural basis of TCL resistance in a novel 7-AHSDH-like ENR. The purified protein exhibited NADPH-dependent ENR activity but no 7-AHSDH activity, despite its high homology with 7-AHSDH (69% to 96%). Because this ENR was similar to FabL (41%), we propose that this metagenome-derived ENR be referred to as FabL2. Homology modeling, molecular docking, and molecular dynamic simulation analyses revealed the presence of an extrapolated six-amino-acid loop specific to FabL2 ENR, which prevented the entry of TCL into the active site of FabL2 and was likely responsible for TCL resistance. Elimination of this extrapolated loop via site-directed mutagenesis resulted in the complete loss of TCL resistance but not enzyme activity. Phylogenetic analysis suggested that FabL, FabL2, and 7-AHSDH diverged from a common short-chain dehydrogenase reductase family. This study is the first to report the role of the extrapolated loop of FabL2-type ENRs in conferring TCL resistance. Thus, the FabL2 ENR represents a new drug target specific for pathogenic Epsilonproteobacteria.
Collapse
|
21
|
Lydon KA, Robertson MJ, Lipp EK. Patterns of triclosan resistance in Vibrionaceae. PeerJ 2018; 6:e5170. [PMID: 30013840 PMCID: PMC6046194 DOI: 10.7717/peerj.5170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/16/2018] [Indexed: 11/30/2022] Open
Abstract
The antimicrobial additive triclosan has been used in personal care products widely across the globe for decades. Triclosan resistance has been noted among Vibrio spp., but reports have been anecdotal and the extent of phenotypic triclosan resistance across the Vibrionaceae family has not been established. Here, triclosan resistance was determined for Vibrionaceae strains across nine distinct clades. Minimum inhibitory concentrations (MIC) were determined for 70 isolates from clinical (n = 6) and environmental sources (n = 64); only two were susceptible to triclosan. The mean MIC for all resistant Vibrionaceae was 53 µg mL-1 (range 3.1-550 µg mL-1), but was significantly different between clades (p < 0.001). The highest mean triclosan MIC was observed in the Splendidus clade (200 µg mL-1; n = 3). Triclosan mean MICs were 68.8 µg mL-1 in the Damselae clade and 45.3 µg mL-1 in the Harveyi clade. The lowest mean MIC was observed in the Cholerae clade with 14.4 µg mL-1, which was primarily represented by clinical strains. There were no significant differences in triclosan MIC among individual species or among environmental strains isolated from different locations. Overall, phenotypic triclosan resistance appears to be widespread across multiple clades of Vibrionaceae.
Collapse
Affiliation(s)
- Keri A. Lydon
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | - Megan J. Robertson
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
22
|
Ren J, Mistry TL, Su PC, Mehboob S, Demissie R, Fung LWM, Ghosh AK, Johnson ME. Determination of absolute configuration and binding efficacy of benzimidazole-based FabI inhibitors through the support of electronic circular dichroism and MM-GBSA techniques. Bioorg Med Chem Lett 2018; 28:2074-2079. [PMID: 29730028 DOI: 10.1016/j.bmcl.2018.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/12/2023]
Abstract
We have previously reported benzimidazole-based compounds to be potent inhibitors of FabI for Francisella tularensis (FtFabI), making them promising antimicrobial hits. Optically active enantiomers exhibit markedly differing affinities toward FtFabI. The IC50 of benzimidazole (-)-1 is ∼100× lower than the (+)-enantiomer, with similar results for the 2 enantiomers. Determining the absolute configuration for these optical compounds and elucidating their binding modes is important for further design. Electronic circular dichroism (ECD) quantum calculations have become important in determining absolute configurations of optical compounds. We determined the absolute configuration of (-)/(+)-1 and (-)/(+)-2 by comparing experimental spectra and theoretical density functional theory (DFT) simulations of ECD spectra at the B3LYP/6-311+G(2d, p) level using Gaussian09. Comparison of experimental and calculated ECD spectra indicates that the S configuration corresponds to the (-)-rotation for both compounds 1 and 2, while the R configuration corresponds to the (+)-rotation. Further, molecular dynamics simulations and MM-GBSA binding energy calculations for these two pairs of enantiomers with FtFabI show much tighter binding MM-GBSA free energies for S-1 and S-2 than for their enantiomers, R-1 and R-2, consistent with the S configuration being the more active one, and with the ECD determination of the S configuration corresponding to (-) and the R configuration corresponding to (+). Thus, our computational studies allow us to assign (-) to (S)- and (+) to (R)- for compounds 1 and 2, and to further evaluate structural changes to improve efficacy.
Collapse
Affiliation(s)
- Jinhong Ren
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Tina L Mistry
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Pin-Chih Su
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Shahila Mehboob
- Novalex Therapeutics, Inc., 2242 W Harrison, Chicago, IL 60612, USA
| | - Robel Demissie
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St, Chicago, IL 60607, USA
| | - Leslie Wo-Mei Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St, Chicago, IL 60607, USA
| | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Michael E Johnson
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; Novalex Therapeutics, Inc., 2242 W Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
23
|
Abstract
Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB United Kingdom
| |
Collapse
|
24
|
Richie DL, Wang L, Chan H, De Pascale G, Six DA, Wei JR, Dean CR. A pathway-directed positive growth restoration assay to facilitate the discovery of lipid A and fatty acid biosynthesis inhibitors in Acinetobacter baumannii. PLoS One 2018; 13:e0193851. [PMID: 29505586 PMCID: PMC5837183 DOI: 10.1371/journal.pone.0193851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/19/2018] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii ATCC 19606 can grow without lipooligosaccharide (LOS). Lack of LOS can result from disruption of the early lipid A biosynthetic pathway genes lpxA, lpxC or lpxD. Although LOS itself is not essential for growth of A. baumannii ATCC 19606, it was previously shown that depletion of the lipid A biosynthetic enzyme LpxK in cells inhibited growth due to the toxic accumulation of lipid A pathway intermediates. Growth of LpxK-depleted cells was restored by chemical inhibition of LOS biosynthesis using CHIR-090 (LpxC) and fatty acid biosynthesis using cerulenin (FabB/F) and pyridopyrimidine (acetyl-CoA-carboxylase). Here, we expand on this by showing that inhibition of enoyl-acyl carrier protein reductase (FabI), responsible for converting trans-2-enoyl-ACP into acyl-ACP during the fatty acid elongation cycle also restored growth during LpxK depletion. Inhibition of fatty acid biosynthesis during LpxK depletion rescued growth at 37°C, but not at 30°C, whereas rescue by LpxC inhibition was temperature independent. We exploited these observations to demonstrate proof of concept for a targeted medium-throughput growth restoration screening assay to identify small molecule inhibitors of LOS and fatty acid biosynthesis. The differential temperature dependence of fatty acid and LpxC inhibition provides a simple means by which to separate growth stimulating compounds by pathway. Targeted cell-based screening platforms such as this are important for faster identification of compounds inhibiting pathways of interest in antibacterial discovery for clinically relevant Gram-negative pathogens.
Collapse
Affiliation(s)
- Daryl L. Richie
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Lisha Wang
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Helen Chan
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - David A. Six
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Charles R. Dean
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| |
Collapse
|
25
|
Khan R, Roy N, Choi K, Lee SW. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis. PLoS One 2018; 13:e0192277. [PMID: 29420585 PMCID: PMC5805296 DOI: 10.1371/journal.pone.0192277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed. Further, the excessive use of this biocide in natural environments may selectively enrich for not only TCS-resistant bacterial pathogens, but possibly for additional resistance to multiple antibiotics.
Collapse
Affiliation(s)
- Raees Khan
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Nazish Roy
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Kihyuck Choi
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
26
|
Kwon HT, Chi YM, Park AK. Crystal Structure of FabV, A New Class of Enoyl-Acyl Carrier Protein Reductase from Vibrio fischeri. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ha Taek Kwon
- Division of Biotechnology, College of Life Sciences; Korea University; Seoul 02841 South Korea
| | - Young Min Chi
- Division of Biotechnology, College of Life Sciences; Korea University; Seoul 02841 South Korea
| | - Ae Kyung Park
- Division of Biotechnology, College of Life Sciences; Korea University; Seoul 02841 South Korea
- Unit of Polar Genomics; Korea Polar Research Institute; Incheon 21990 South Korea
| |
Collapse
|
27
|
Studies of Staphylococcus aureus FabI inhibitors: fragment-based approach based on holographic structure-activity relationship analyses. Future Med Chem 2017; 9:135-151. [PMID: 28128979 DOI: 10.4155/fmc-2016-0179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM FabI is a key enzyme in the fatty acid metabolism of Gram-positive bacteria such as Staphylococcus aureus and is an established drug target for known antibiotics such as triclosan. However, due to increasing antibacterial resistance, there is an urgent demand for new drug discovery. Recently, aminopyridine derivatives have been proposed as promising competitive inhibitors of FabI. METHODS In the present study, holographic structure-activity relationship (HQSAR) analyses were employed for determining structural contributions of a series containing 105 FabI inhibitors. RESULTS & CONCLUSION The final HQSAR model was robust and predictive according to statistical validation (q2 and r2pred equal to 0.696 and 0.854, respectively) and could be further employed to generate fragment contribution maps. Then, final HQSAR model together with FabI active site information can be useful for designing novel bioactive ligands.
Collapse
|
28
|
Ha BH, Shin SC, Moon JH, Keum G, Kim CW, Kim EE. Structural and biochemical characterization of FabK from Thermotoga maritima. Biochem Biophys Res Commun 2017; 482:968-974. [PMID: 27908729 DOI: 10.1016/j.bbrc.2016.11.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 11/26/2022]
Abstract
TM0800 from Thermotoga maritima is one of the hypothetical proteins with unknown function. The crystal structure determined at 2.3 Å resolution reveals a two domain structure: the N-terminal domain forming a barrel and the C-terminal forming a lid. One FMN is bound between the two domains with the phosphate making intricate hydrogen bonds with protein and three tightly bound water molecules, and the isoalloxazine ring packed against the side chains of Met22 and Met276. The structure is almost identical to that of FabK (enoyl-acyl carrier protein (ACP) reductase, ENR II), a key enzyme in bacterial type II fatty-acid biosynthesis that catalyzes the final step in each elongation cycle; and the enzymatic activity confirms that TM0800 is an ENR. Enzymatic activity was almost completely abolished when the helices connecting the barrel and the lid were deleted. Also, the Met276Ala and Ser280Ala mutants showed a significant reduction in enzymatic activity. The crystal structure of Met276Ala mutant at 1.9 Å resolution showed an absence of FMN suggesting that FMN plays a role in catalysis, and Met276 is important in positioning FMN. TmFabK exists as a dimer in both solution and crystal. Together this study provides molecular basis for the catalytic activity of FabK.
Collapse
Affiliation(s)
- Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Ho Moon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chan-Wha Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
29
|
Mistry TL, Truong L, Ghosh AK, Johnson ME, Mehboob S. Benzimidazole-Based FabI Inhibitors: A Promising Novel Scaffold for Anti-staphylococcal Drug Development. ACS Infect Dis 2017; 3:54-61. [PMID: 27756129 DOI: 10.1021/acsinfecdis.6b00123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enoyl-ACP reductase (FabI) enzyme is a well validated target for anti-staphylococcal drug discovery and development. With the goal of finding alternate therapeutics for drug-resistant strains of Staphylococcus aureus, such as methicillin-resistant S. aureus (MRSA), our previously published series of benzimidazole-based inhibitors of the FabI enzyme from Francisella tularensis (FtFabI) have been evaluated against FabI from S. aureus (SaFabI). We report here the preliminary structure-activity relationship of this series and the prioritization of compounds toward lead optimization. Mutational studies have identified key residues that contribute toward stabilizing the inhibitors in the active site of FabI. Mutations that do not significantly impact enzyme function but destabilize inhibitor binding are more likely to occur in nature as organisms evolve to evade the action of antibiotics leading to resistance. Identifying these residues provides guidance for minimizing susceptibility to resistance. Additionally, we have identified compounds that elicit antibacterial activity through off-target effects and observe that close analogs can display differing modes of action (on-target vs off-target) and need to be individually evaluated early on to prioritize compounds for lead optimization. Overall, our data suggest that the benzimidazole scaffold is a promising scaffold for anti-staphylococcal drug development.
Collapse
Affiliation(s)
- Tina L. Mistry
- Center
for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lena Truong
- Center
for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Arun K. Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael E. Johnson
- Center
for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Novalex Therapeutics, 2242 W. Harrison, Chicago, Illinois 60612, United States
| | - Shahila Mehboob
- Novalex Therapeutics, 2242 W. Harrison, Chicago, Illinois 60612, United States
| |
Collapse
|
30
|
Lydon KA, Glinski DA, Westrich JR, Henderson WM, Lipp EK. Effects of triclosan on bacterial community composition and Vibrio populations in natural seawater microcosms. ELEMENTA (WASHINGTON, D.C.) 2017; 5:1-16. [PMID: 35178461 PMCID: PMC8849560 DOI: 10.1525/elementa.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, Vibrio, a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm) can induce a significant Vibrio growth response (68-1,700 fold increases) in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary), Doctors Arm Canal (Big Pine Key, FL), and Clam Bank Landing (North Inlet Estuary, Georgetown, SC). Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of Vibrionaceae (17-fold), Pseudoalteromonadaceae (65-fold), Alteromonadaceae (108-fold), Colwelliaceae (430-fold), and Oceanospirillaceae (1,494-fold). While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to use triclosan as a carbon source. The results further suggest the potential for selection of Vibrio in coastal environments, especially sediments, where triclosan may accumulate at high levels.
Collapse
Affiliation(s)
- Keri Ann Lydon
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, US
| | - Donna A. Glinski
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, US
- Oak Ridge Institute of Science and Education, U.S. Environmental Protection Agency, Athens, Georgia, US
| | - Jason R. Westrich
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, US
| | - W. Matthew Henderson
- U.S. Environmental Protection Agency, Office of Research and Development, NERL/EMMD, Athens, Georgia, US
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, US
| |
Collapse
|
31
|
Huang YH, Lin JS, Ma JC, Wang HH. Functional Characterization of Triclosan-Resistant Enoyl-acyl-carrier Protein Reductase (FabV) in Pseudomonas aeruginosa. Front Microbiol 2016; 7:1903. [PMID: 27965638 PMCID: PMC5126088 DOI: 10.3389/fmicb.2016.01903] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is extremely resistant to triclosan. Previous studies have shown that P. aeruginosa encodes a triclosan-resistant enoyl-acyl-carrier protein reductase (ENR), FabV, and that deletion of fabV causes P. aeruginosa to be extremely sensitive to triclosan. In this report, we complemented a P. aeruginosa fabV deletion strain with several triclosan-resistant ENR encoding genes, including Vibrio cholerae fabV, Bacillus subtilis fabL and Enterococcus faecalis fabK. All complemented strains restored triclosan resistance to the level of the wild-type strain, which confirmed that triclosan-resistant ENR allows P. aeruginosa to be extremely resistant to triclosan. Moreover, fabV exhibits pleiotropic effects. Deletion of fabV led P. aeruginosa to show attenuated swarming motility, decreased rhamnolipid, pyoverdine and acyl-homoserine lactones (AHLs) production. Complementation of the fabV mutant with any one ENR encoding gene could restore these features to some extent, in comparison with the wild-type strain. Furthermore, we found that addition of exogenous AHLs could restore the fabV mutant strain to swarm on semisolid plates and to produce more virulence factors than the fabV mutant strain. These findings indicate that deletion of fabV reduced the activity of ENR in P. aeruginosa, decreased fatty acid synthesis, and subsequently depressed the production of AHLs and other virulence factors, which finally may led to a reduction in the pathogenicity of P. aeruginosa. Therefore, fabV should be an ideal target for the control of P. aeruginosa infectivity.
Collapse
Affiliation(s)
- Yong-Heng Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, China
| | - Jin-Shui Lin
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences, Yan'an University Yan'an, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, China
| |
Collapse
|
32
|
Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes. Infect Immun 2016; 84:3597-3607. [PMID: 27736774 DOI: 10.1128/iai.00647-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/02/2016] [Indexed: 12/28/2022] Open
Abstract
Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes.
Collapse
|
33
|
Bi H, Zhu L, Jia J, Zeng L, Cronan JE. Unsaturated Fatty Acid Synthesis in the Gastric Pathogen Helicobacter pylori Proceeds via a Backtracking Mechanism. Cell Chem Biol 2016; 23:1480-1489. [PMID: 27866909 DOI: 10.1016/j.chembiol.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that inhabits the upper gastrointestinal tract in humans, and the presence of this pathogen in the gut microbiome increases the risk of peptic ulcers and stomach cancer. H. pylori depends on unsaturated fatty acid (UFA) biosynthesis for maintaining membrane structure and function. Although some of the H. pylori enzymes involved in UFA biosynthesis are functionally homologous with the enzymes found in Escherichia coli, we show here that an enzyme HP0773, now annotated as FabX, uses an unprecedented backtracking mechanism to not only dehydrogenate decanoyl-acyl carrier protein (ACP) in a reaction that parallels that of acyl-CoA dehydrogenase, the first enzyme of the fatty acid β-oxidation cycle, but also isomerizes trans-2-decenoyl-ACP to cis-3-decenoyl-ACP, the key UFA synthetic intermediate. Thus, FabX reverses the normal fatty acid synthesis cycle in H. pylori at the C10 stage. Overall, this unusual FabX activity may offer a broader explanation for how many bacteria that lack the canonical pathway enzymes produce UFA-containing phospholipids.
Collapse
Affiliation(s)
- Hongkai Bi
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| | - Lei Zhu
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Jia Jia
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Liping Zeng
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - John E Cronan
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
34
|
Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1300-1309. [PMID: 27668701 DOI: 10.1016/j.bbalip.2016.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
Abstract
Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
35
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
36
|
Triclosan Resistome from Metagenome Reveals Diverse Enoyl Acyl Carrier Protein Reductases and Selective Enrichment of Triclosan Resistance Genes. Sci Rep 2016; 6:32322. [PMID: 27577999 PMCID: PMC5006077 DOI: 10.1038/srep32322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
Triclosan (TCS) is a widely used antimicrobial agent and TCS resistance is considered to have evolved in diverse organisms with extensive use of TCS, but distribution of TCS resistance has not been well characterized. Functional screening of the soil metagenome in this study has revealed that a variety of target enoyl acyl carrier protein reductases (ENR) homologues are responsible for the majority of TCS resistance. Diverse ENRs similar to 7-α-hydroxysteroid dehydrogenase (7-α-HSDH), FabG, or the unusual YX7K-type ENR conferred extreme tolerance to TCS. The TCS-refractory 7-α HSDH-like ENR and the TCS-resistant YX7K-type ENR seem to be prevalent in human pathogenic bacteria, suggesting that a selective enrichment occurred in pathogenic bacteria in soil. Additionally, resistance to multiple antibiotics was found to be mediated by antibiotic resistance genes that co-localize with TCS resistance determinants. Further comparative analysis of ENRs from 13 different environments has revealed a huge diversity of both prototypic and metagenomic TCS-resistant ENRs, in addition to a selective enrichment of TCS-resistant specific ENRs in presumably TCS-contaminated environments with reduced ENR diversity. Our results suggest that long-term extensive use of TCS can lead to the selective emergence of TCS-resistant bacterial pathogens, possibly with additional resistance to multiple antibiotics, in natural environments.
Collapse
|
37
|
Neckles C, Pschibul A, Lai CT, Hirschbeck M, Kuper J, Davoodi S, Zou J, Liu N, Pan P, Shah S, Daryaee F, Bommineni GR, Lai C, Simmerling C, Kisker C, Tonge PJ. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase. Biochemistry 2016; 55:2992-3006. [PMID: 27136302 DOI: 10.1021/acs.biochem.5b01301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89-100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156.
Collapse
Affiliation(s)
| | - Annica Pschibul
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | | | - Maria Hirschbeck
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | | | | | | | | | | | | | | | - Cristina Lai
- William A. Shine Great Neck South High School , Great Neck, New York 11020, United States
| | | | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | | |
Collapse
|
38
|
DeLorenzo ME, Brooker J, Chung KW, Kelly M, Martinez J, Moore JG, Thomas M. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance. ENVIRONMENTAL TOXICOLOGY 2016; 31:469-477. [PMID: 25348372 DOI: 10.1002/tox.22060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Antimicrobial compounds are widespread, emerging contaminants in the aquatic environment and may threaten ecosystem and human health. This study characterized effects of antimicrobial compounds common to human and veterinary medicine, aquaculture, and consumer personal care products [erythromycin (ERY), sulfamethoxazole (SMX), oxytetracycline (OTC), and triclosan (TCS)] in the grass shrimp Palaemonetes pugio. The effects of antimicrobial treatments on grass shrimp mortality and lipid peroxidation activity were measured. The effects of antimicrobial treatments on the bacterial community of the shrimp were then assessed by measuring Vibrio density and testing bacterial isolates for antibiotic resistance. TCS (0.33 mg/L) increased shrimp mortality by 37% and increased lipid peroxidation activity by 63%. A mixture of 0.33 mg/L TCS and 60 mg/L SMX caused a 47% increase in shrimp mortality and an 88% increase in lipid peroxidation activity. Exposure to SMX (30 mg/L or 60 mg/L) alone and to a mixture of SMX/ERY/OTC did not significantly affect shrimp survival or lipid peroxidation activity. Shrimp exposure to 0.33 mg/L TCS increased Vibrio density 350% as compared to the control whereas SMX, the SMX/TCS mixture, and the mixture of SMX/ERY/OTC decreased Vibrio density 78-94%. Increased Vibrio antibiotic resistance was observed for all shrimp antimicrobial treatments except for the mixture of SMX/ERY/OTC. Approximately 87% of grass shrimp Vibrio isolates displayed resistance to TCS in the control treatment suggesting a high level of TCS resistance in environmental Vibrio populations. The presence of TCS in coastal waters may preferentially increase the resistance and abundance of pathogenic bacteria. These results indicate the need for further study into the potential interactions between antimicrobials, aquatic organisms, and associated bacterial communities.
Collapse
Affiliation(s)
- M E DeLorenzo
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412
| | - J Brooker
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| | - K W Chung
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412
| | - M Kelly
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| | - J Martinez
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| | - J G Moore
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412
| | - M Thomas
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| |
Collapse
|
39
|
Luo Q, Li M, Fu H, Meng Q, Gao H. Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP. Front Microbiol 2016; 7:327. [PMID: 27014246 PMCID: PMC4793157 DOI: 10.3389/fmicb.2016.00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
It is established that Escherichia coli β-ketoacyl-ACP synthase (KAS) I (encoded by EcfabB) is the primary, if not exclusive, factor for elongation of the cis-3-decenoyl-ACP (C10:1-ACP) but not effective with C16:1- or longer-chain-ACPs. To test the extent to which these features apply to KAS I proteins in other species, in this study, we examined the physiological role of FabB in Shewanella oneidensis, an excellent model for researching type II fatty acid synthetic (FAS) system and its regulation. We showed that the loss of either FabA (the enzyme that introduces double bond) or FabB, in the absence of DesA which desaturizes C16 and C18 to generate respective C16:1 and C18:1, leads to a UFA auxotroph. However, fatty acid profiles of membrane phospholipid of the fabA and fabB mutants are significantly different, suggesting that FabB participates in steps beyond elongation of C10:1-ACP. Further analyses demonstrated that S. oneidensis FabB differs from EcFabB in that (i) it is not the only enzyme capable of catalyzing elongation of the cis-3-decenoyl-ACP produced by FabA, (ii) it plays a critical role in elongation of C16:1- and longer-chain-ACPs, and (iii) its overproduction is detrimental.
Collapse
Affiliation(s)
- Qixia Luo
- Institute of Microbiology and College of Life Sciences, Zhejiang UniversityHangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| | - Meng Li
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Qiu Meng
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
40
|
Yao J, Rock CO. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics. Cold Spring Harb Perspect Med 2016; 6:a027045. [PMID: 26931811 DOI: 10.1101/cshperspect.a027045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
41
|
Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle. Appl Environ Microbiol 2016; 81:1406-16. [PMID: 25527535 DOI: 10.1128/aem.03521-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the -oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782).While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a -oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled deltaffabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli.
Collapse
|
42
|
Fischer TL, White RJ, Mares KFK, Molnau DE, Donato JJ. ucFabV Requires Functional Reductase Activity to Confer Reduced Triclosan Susceptibility in Escherichia coli. J Mol Microbiol Biotechnol 2015; 25:394-402. [PMID: 26683704 DOI: 10.1159/000441640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We previously identified the Triclo1 fosmid in a functional metagenomic selection for clones that increased triclosan tolerance in Escherichia coli. The active enzyme encoded by Triclo1 is ucFabV. Although ucFabV is homologous to FabV from other organisms, ucFabV contains substitutions at key positions that would predict differences in substrate binding. Therefore, a detailed characterization of ucFabV was conducted to link its biochemical activity to its ability to confer reduced triclosan sensitivity. METHODS ucFabV and a catalytic mutant were purified and used to reduce crotonoyl-CoA in vitro. The mutant and wild-type enzymes were introduced into E. coli, and their ability to confer triclosan tolerance as well as suppress a temperature-sensitive mutant of FabI were measured. RESULTS Purified ucFabV, but not the mutant, reduced crotonoyl-CoA in vitro. The wild-type enzyme confers increased triclosan tolerance when introduced into E. coli, whereas the mutant remained susceptible to triclosan. Additionally, wild-type ucFabV, but not the mutant, functionally replaced FabI within living cells. CONCLUSION ucFabV confers increased tolerance through its function as an enoyl-ACP reductase. Furthermore, ucFabV is capable of restoring viability in the presence of compromised FabI, suggesting ucFabV is likely facilitating an alternate step within fatty acid synthesis, bypassing FabI inhibition.
Collapse
Affiliation(s)
- Taylor L Fischer
- Department of Chemistry, University of St. Thomas, St. Paul, Minn., USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
44
|
Kondakova T, D'Heygère F, Feuilloley MJ, Orange N, Heipieper HJ, Duclairoir Poc C. Glycerophospholipid synthesis and functions in Pseudomonas. Chem Phys Lipids 2015; 190:27-42. [PMID: 26148574 DOI: 10.1016/j.chemphyslip.2015.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022]
Abstract
The genus Pseudomonas is one of the most heterogeneous groups of eubacteria, presents in all major natural environments and in wide range of associations with plants and animals. The wide distribution of these bacteria is due to the use of specific mechanisms to adapt to environmental modifications. Generally, bacterial adaptation is only considered under the aspect of genes and protein expression, but lipids also play a pivotal role in bacterial functioning and homeostasis. This review resumes the mechanisms and regulations of pseudomonal glycerophospholipid synthesis, and the roles of glycerophospholipids in bacterial metabolism and homeostasis. Recently discovered specific pathways of P. aeruginosa lipid synthesis indicate the lineage dependent mechanisms of fatty acids homeostasis. Pseudomonas glycerophospholipids ensure structure functions and play important roles in bacterial adaptation to environmental modifications. The lipidome of Pseudomonas contains a typical eukaryotic glycerophospholipid--phosphatidylcholine -, which is involved in bacteria-host interactions. The ability of Pseudomonas to exploit eukaryotic lipids shows specific and original strategies developed by these microorganisms to succeed in their infectious process. All compiled data provide the demonstration of the importance of studying the Pseudomonas lipidome to inhibit the infectious potential of these highly versatile germs.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - François D'Heygère
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45071 Orléans, France
| | - Marc J Feuilloley
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Nicole Orange
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Cécile Duclairoir Poc
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France.
| |
Collapse
|
45
|
Ali SA, Chew YW. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium-Copy Number Plasmids in Escherichia coli. PLoS One 2015; 10:e0129547. [PMID: 26057251 PMCID: PMC4461242 DOI: 10.1371/journal.pone.0129547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium –copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium -copy number plasmid vectors in E. coli.
Collapse
Affiliation(s)
- Syed A. Ali
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
- * E-mail:
| | - Yik Wei Chew
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
46
|
Zhang H, Zheng B, Gao R, Feng Y. Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon. Protein Cell 2015; 6:667-679. [PMID: 26050090 PMCID: PMC4537474 DOI: 10.1007/s13238-015-0172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid synthesis in the marine bacteria Shewanella genus.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Beiwen Zheng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Rongsui Gao
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
47
|
Carey DE, McNamara PJ. The impact of triclosan on the spread of antibiotic resistance in the environment. Front Microbiol 2015; 5:780. [PMID: 25642217 PMCID: PMC4295542 DOI: 10.3389/fmicb.2014.00780] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022] Open
Abstract
Triclosan (TCS) is a commonly used antimicrobial agent that enters wastewater treatment plants (WWTPs) and the environment. An estimated 1.1 × 10(5) to 4.2 × 10(5) kg of TCS are discharged from these WWTPs per year in the United States. The abundance of TCS along with its antimicrobial properties have given rise to concern regarding its impact on antibiotic resistance in the environment. The objective of this review is to assess the state of knowledge regarding the impact of TCS on multidrug resistance in environmental settings, including engineered environments such as anaerobic digesters. Pure culture studies are reviewed in this paper to gain insight into the substantially smaller body of research surrounding the impacts of TCS on environmental microbial communities. Pure culture studies, mainly on pathogenic strains of bacteria, demonstrate that TCS is often associated with multidrug resistance. Research is lacking to quantify the current impacts of TCS discharge to the environment, but it is known that resistance to TCS and multidrug resistance can increase in environmental microbial communities exposed to TCS. Research plans are proposed to quantitatively define the conditions under which TCS selects for multidrug resistance in the environment.
Collapse
Affiliation(s)
| | - Patrick J. McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
48
|
Narrowe AB, Albuthi-Lantz M, Smith EP, Bower KJ, Roane TM, Vajda AM, Miller CS. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure. MICROBIOME 2015; 3:6. [PMID: 25815185 PMCID: PMC4374533 DOI: 10.1186/s40168-015-0069-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 01/29/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Triclosan is a widely used antimicrobial compound and emerging environmental contaminant. Although the role of the gut microbiome in health and disease is increasingly well established, the interaction between environmental contaminants and host microbiome is largely unexplored, with unknown consequences for host health. This study examined the effects of low, environmentally relevant levels of triclosan exposure on the fish gut microbiome. Developing fathead minnows (Pimephales promelas) were exposed to two low levels of triclosan over a 7-day exposure. Fish gastrointestinal tracts from exposed and control fish were harvested at four time points: immediately preceding and following the 7-day exposure and after 1 and 2 weeks of depuration. RESULTS A total of 103 fish gut bacterial communities were characterized by high-throughput sequencing and analysis of the V3-V4 region of the 16S rRNA gene. By measures of both alpha and beta diversity, gut microbial communities were significantly differentiated by exposure history immediately following triclosan exposure. After 2 weeks of depuration, these differences disappear. Independent of exposure history, communities were also significantly structured by time. This first detailed census of the fathead minnow gut microbiome shows a bacterial community that is similar in composition to those of zebrafish and other freshwater fish. Among the triclosan-resilient members of this host-associated community are taxa associated with denitrification in wastewater treatment, taxa potentially able to degrade triclosan, and taxa from an unstudied host-associated candidate division. CONCLUSIONS The fathead minnow gut microbiome is rapidly and significantly altered by exposure to low, environmentally relevant levels of triclosan, yet largely recovers from this short-term perturbation over an equivalently brief time span. These results suggest that even low-level environmental exposure to a common antimicrobial compound can induce significant short-term changes to the gut microbiome, followed by restoration, demonstrating both the sensitivity and resilience of the gut flora to challenges by environmental toxicants. This short-term disruption in a developing organism may have important long-term consequences for host health. The identification of multiple taxa not often reported in the fish gut suggests that microbial nitrogen metabolism in the fish gut may be more complex than previously appreciated.
Collapse
Affiliation(s)
- Adrienne B Narrowe
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Munira Albuthi-Lantz
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Erin P Smith
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
- />Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
- />School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Kimberly J Bower
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Timberley M Roane
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Alan M Vajda
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Christopher S Miller
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| |
Collapse
|
49
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
50
|
Schiebel J, Chang A, Shah S, Lu Y, Liu L, Pan P, Hirschbeck MW, Tareilus M, Eltschkner S, Yu W, Cummings JE, Knudson SE, Bommineni GR, Walker SG, Slayden RA, Sotriffer CA, Tonge PJ, Kisker C. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J Biol Chem 2014; 289:15987-6005. [PMID: 24739388 DOI: 10.1074/jbc.m113.532804] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.
Collapse
Affiliation(s)
- Johannes Schiebel
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany, the Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Andrew Chang
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Sonam Shah
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Yang Lu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Li Liu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Pan Pan
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Maria W Hirschbeck
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mona Tareilus
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Sandra Eltschkner
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Weixuan Yu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Jason E Cummings
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Susan E Knudson
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Gopal R Bommineni
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Stephen G Walker
- School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Richard A Slayden
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Christoph A Sotriffer
- the Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Peter J Tonge
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Caroline Kisker
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany,
| |
Collapse
|